JP2004022508A - Manufacturing method of element wire for electric wire, and element wire for electric wire - Google Patents

Manufacturing method of element wire for electric wire, and element wire for electric wire Download PDF

Info

Publication number
JP2004022508A
JP2004022508A JP2002180230A JP2002180230A JP2004022508A JP 2004022508 A JP2004022508 A JP 2004022508A JP 2002180230 A JP2002180230 A JP 2002180230A JP 2002180230 A JP2002180230 A JP 2002180230A JP 2004022508 A JP2004022508 A JP 2004022508A
Authority
JP
Japan
Prior art keywords
wire
electric wire
electric
conductor
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002180230A
Other languages
Japanese (ja)
Inventor
Yoshiharu Deguchi
出口 善晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2002180230A priority Critical patent/JP2004022508A/en
Publication of JP2004022508A publication Critical patent/JP2004022508A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an element wire for an electric wire capable of providing sufficient strength while reducing the diameter thereof. <P>SOLUTION: By heating a Si-Ni-Cu-based alloy wire for less than two hours to anneal it after the temperature in the wire reaches 400°C, this element wire 1 for an electric wire having an elongation percentage of more than one that is smaller than that of a conventional element wire is manufactured. A plurality of the element wires 1 are collected and compressed to form a conductor 2 for a wire. The wire 10 is manufactured by forming a cover part 3 on the outer circumference of the conductor 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自動車や一般家庭・OA機器等に用いられる電線用の素線製造方法及び電線用素線に関する。
【0002】
【従来の技術】
従来の電線では、一般的に軟銅製の素線を7本撚り合わせた導体が用いられていた。
【0003】
これに対して、例えば、自動車用低圧電線に対して、近年、ワイヤーハーネスの軽量化・省スペース化を目的に細径化の要求が高まっている。この要求に応じて、電線の導体の細径化、絶縁体の薄肉化が行われている。
【0004】
【発明が解決しようとする課題】
ところで、例えば、自動車用電線においては、電線の製造時やワイヤーハーネスの加工時、ワイヤーハーネスの自動車への組付け時等において、電線に対して種々の引張り荷重、衝撃等の負担が発生する。このため、電線の導体について、それらの負担に耐え得る十分な強度を確保しておく必要がある。
【0005】
しかしながら、上述のように、軟銅製の素線(素線伸び率20〜30パーセント)7本により構成される導体に対して、細径化を実施しようとすると、電線強度が不十分となってしまう。
【0006】
そこで、この発明の課題は、細径化を図りつつ、十分な強度を得ることができる、電線用の素線製造方法及び電線用素線を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決すべく、請求項1記載の電線用素線製造方法は、Si−Ni−Cu系合金線材を、その線材内部温度が400度に到達した後2時間以下加熱するものである。
【0008】
より好ましくは、請求項2記載のように、合金線材を、その線材内部温度が400度に到達した後、1時間〜1.5時間加熱するとよい。
【0009】
また、請求項3記載の電線用素線は、Si−Ni−Cu系合金線材を、その線材内部温度が400度に到達した後2時間以下、又は、線材内部温度が400度に到達した後、1時間〜1.5時間加熱することにより、製造されたものである。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態に係る電線用素線製造方法について説明する。
【0011】
まず、図1を参照して、素線1が適用される電線10について説明しておく。
【0012】
この電線10は、導体2とその導体2の外周囲に形成された絶縁性の被覆部3とを備えている。
【0013】
導体2は、複数本の素線1を撚り合わせて圧縮した形態とされている。本実施の形態では、半径0.08mmの素線1を集合撚りした導体2を想定している。より具体的には、導体2は、1本の素線1の周りに6本の素線1を配設するようにして撚り合わせこれを圧縮した形態とされている。
【0014】
また、被覆部3は、PVC(ポリ塩化ビニル)を母材とする樹脂等を前記導体2の周囲に押出被覆等することにより形成されている。
【0015】
次に素線1の製造方法について説明する。
【0016】
まず、Si−Ni−Cu系合金により形成された線材を準備する。Si−Ni−Cu系合金線材としては、住友電気工業株式会社製のSNCA合金線を用いるのが好ましい。
【0017】
次に線材を、その内部温度が400度に到達した後2時間以下加熱して、焼鈍を行う。より好ましくは、その線材内部温度が400度に到達した時点から1時間〜1.5時間加熱して、焼鈍を行う。なお、ここでは、線材の実質的に内部温度を400度に保って加熱している。
【0018】
即ち、素線1としてSi−Ni−Cu系合金線材を用いた場合、その伸び率0が近い程に小さい場合には、電線衝撃強度が従来の軟銅製の素線(以下、従来素線ともいう)よりも悪くなると予測される。また、従来素線の伸び率は20〜30パーセントであるところ、素線1としてSi−Ni−Cu系合金線材を用いた場合でも、その伸び率が従来素線と同様の場合には、電線破断強度が従来素線とほぼ同等又は下回る結果となると予測される。
【0019】
このため、素線1としてSi−Ni−Cu系合金線材を用いた場合に、十分な電線衝撃強度及び電線破断強度を得るためには、即ち、十分な電線強度を得るためには、その伸び率を0よりも大きくかつ従来素線の伸び率よりも小さくすることが望ましい。より好ましくは、伸び率をおよそ4〜10パーセントの範囲内とするのがよい。
【0020】
そこで、加熱時間と伸び率との関係を測定したところ、下記表1に示すようになった。
【0021】
【表1】

Figure 2004022508
【0022】
なお、加熱は、ベル型軟化炉を用いて次のようにして行った。
【0023】
まず、図2(a)及び図2(b)に示すように、Si−Ni−Cu系合金線材1aを鉄製のリール11の胴部11aに巻付けた。
【0024】
そして、図2に示すようなベル型軟化炉を用いて加熱を行った。即ち、リール11を横倒しにして炉台15上に載置し、その周りにポットと呼ばれる外壁体16を被せ、外壁体16内部を真空引きして真空状態とした。そして、外壁体16の外周囲を、壁面内側にニクロムヒータ等の加熱部17を有する釜18(ベルともいう)で覆い、前記加熱部17が発する熱により内部を加熱する。これにより、リール11に巻付けられた線材1aが加熱される。
【0025】
また、上記リール11の内部に温度センサ19が配設してあり、この温度センサ19により加熱温度を測定する。この温度センサ19により測定される温度は、リール11に巻付けられた線材1aの内部温度とほぼ同等であることが実験的に確認されている。
【0026】
なお、加熱方法は、上記のものに限られず、真空焼鈍炉を用いてよいし、光輝焼鈍軟化炉を用いて加熱を行ってもよく、また、不活性ガスを充満させた炉内で加熱を行ってもよい。
【0027】
上記表1によると、加熱部(ヒータ)14の温度を500度に設定した状態で、リール11内部温度が400度、即ち、線材1aの内部温度が400度になった。そして、線材1aの内部温度が400度に到達した後の加熱時間が0時間、即ち、400度に到達後即時に冷却した場合には、伸び率が0〜5パーセントとなった。また、その後リール11の内部温度を実質的に400度に保ちつつ加熱を継続し、加熱時間が1時間経過後冷却した場合には、伸び率が2〜7パーセントとなり、加熱時間が1.5時間経過後冷却した場合には、伸び率が5〜10パーセントとなり、加熱時間が2時間経過後冷却した場合には、伸び率が15〜24パーセントとなることがわかった。
【0028】
この測定結果から、伸び率を0よりも大きく、かつ、従来素線の伸び率よりも小さくするためには、線材1aの内部温度が400度に到達した後、2時間以内加熱するのがよいと想定される。
【0029】
また、より好ましい4〜10パーセントの伸び率にするためには、線材1aの内部温度が400度に到達した後、1時間〜1.5時間加熱するのがよいと想定される。さらに好ましくは、線材1aの内部温度が400度に到達した後、実質的に1.5時間加熱するのが最もよいと想定される。
【0030】
このようにして製造された素線1を複数本撚り合わせて圧縮すると、導体2が製造される。そして、この導体2の外周囲に被覆部3を形成すると、電線10が製造される。
【0031】
以上のように構成された素線1の製造方法によると、素線1の伸び率が0よりも大きくかつ従来素線の伸び率よりも小さくなるため、素線1の細径化を図りつつ、十分な強度を得ることができる。
【0032】
特に、線材1aの内部温度が400度に到達した後、1時間〜1.5時間加熱した場合にあっては、伸び率が0よりも確実かつ十分に大きくなり、かつ、従来素線の伸び率よりも確実かつ十分に小さくなるため、より素線1の細径化を図りつつ、十分な強度を得ることができる。
【0033】
なお、実施例として、従来例に係る電線と本発明に係る電線とのそれぞれについて、導体破断強度、電線破断強度及び電線衝撃強度を、表2に示す。
【0034】
【表2】
Figure 2004022508
【0035】
この場合、従来例に係る電線では、素線の伸び率が20〜30パーセントであり、導体破断強度が30〜35Nで、電線破断強度が35〜40Nで、電線衝撃強度が3〜4N・mとなった。なお、この電線衝撃強度とは、電線に錘を取付け、該錘を1m自由落下させた際に電線が破断しない最大荷重(錘の重さ)である。
【0036】
一方、本発明に係る電線では、素線1の伸び率が4〜10パーセントであり、導体破断強度が55〜95Nで、電線破断強度が60〜100Nで、電線衝撃強度が5〜6N・mとなった。従って、導体破断強度、電線破断強度及び電線衝撃強度のいずれにおいても、十分な強度を得ることができるとわかった。
【0037】
【発明の効果】
以上のように、この発明の請求項1記載又は請求項2記載の電線用素線製造方法によると、素線の細径化を図りつつ、十分な強度を得ることができる。
【0038】
また、請求項3記載の電線用素線にあっては、素線の細径化を図りつつ、十分な強度を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に係る素線を用いた電線を示す断面図である。
【図2】図2(a)はリールを示す側面図であり、図2(b)はリールに線材を巻付けた状態を示す側面図である。
【図3】ベル型軟化炉を示す概略図である。
【符号の説明】
1 素線
2 導体
10 電線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a wire for an electric wire used for an automobile, a general home, OA equipment, and the like, and a wire for the electric wire.
[0002]
[Prior art]
In a conventional electric wire, generally, a conductor obtained by twisting seven strands of soft copper is used.
[0003]
On the other hand, for example, in recent years, there has been an increasing demand for a small-diameter wire for automobiles in order to reduce the weight and space of the wire harness. In response to this demand, the diameter of the conductor of the electric wire has been reduced and the thickness of the insulator has been reduced.
[0004]
[Problems to be solved by the invention]
By the way, for example, in the case of an electric wire for an automobile, various tensile loads, impacts, and the like are generated on the electric wire when the electric wire is manufactured, when the wire harness is processed, when the wire harness is attached to the automobile, and the like. For this reason, it is necessary to ensure that the conductors of the electric wires have sufficient strength to withstand these loads.
[0005]
However, as described above, when trying to reduce the diameter of a conductor composed of seven soft copper strands (stretch rate of 20 to 30%), the wire strength becomes insufficient. I will.
[0006]
Therefore, an object of the present invention is to provide a method for manufacturing a wire for an electric wire and a wire for the electric wire, which can obtain a sufficient strength while reducing the diameter.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for producing a wire for electric wire according to claim 1 is to heat a Si-Ni-Cu-based alloy wire rod for 2 hours or less after the internal temperature of the wire rod reaches 400 degrees.
[0008]
More preferably, the alloy wire is heated for 1 hour to 1.5 hours after the wire internal temperature reaches 400 degrees.
[0009]
Further, the wire for electric wire according to claim 3 is a Si-Ni-Cu-based alloy wire, which is not more than 2 hours after the wire internal temperature reaches 400 ° C, or after the wire internal temperature reaches 400 ° C. It is manufactured by heating for 1 hour to 1.5 hours.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing an element wire for an electric wire according to an embodiment of the present invention will be described.
[0011]
First, an electric wire 10 to which the element wire 1 is applied will be described with reference to FIG.
[0012]
The electric wire 10 includes a conductor 2 and an insulating coating 3 formed around the conductor 2.
[0013]
The conductor 2 has a form in which a plurality of strands 1 are twisted and compressed. In the present embodiment, a conductor 2 in which strands 1 having a radius of 0.08 mm are collectively twisted is assumed. More specifically, the conductor 2 has a form in which six strands 1 are twisted so that six strands 1 are arranged around one strand 1.
[0014]
The covering portion 3 is formed by extruding a resin or the like having PVC (polyvinyl chloride) as a base material around the conductor 2.
[0015]
Next, a method for manufacturing the strand 1 will be described.
[0016]
First, a wire rod made of a Si-Ni-Cu-based alloy is prepared. It is preferable to use an SNCA alloy wire manufactured by Sumitomo Electric Industries, Ltd. as the Si-Ni-Cu alloy wire.
[0017]
Next, the wire is heated for 2 hours or less after the internal temperature reaches 400 ° C. to perform annealing. More preferably, annealing is performed by heating the wire for 1 hour to 1.5 hours from the time when the internal temperature of the wire reaches 400 degrees. In this case, the wire is heated while maintaining the internal temperature substantially at 400 degrees.
[0018]
That is, when the Si-Ni-Cu alloy wire is used as the wire 1 and the elongation percentage is small as it is close to 0, the wire impact strength of the conventional soft copper wire (hereinafter, also referred to as the conventional wire) ) Is expected to be worse. In addition, when the elongation percentage of the conventional strand is 20 to 30%, even when the Si-Ni-Cu alloy wire is used as the strand 1, if the elongation percentage is the same as that of the conventional strand, the electric wire is It is expected that the breaking strength will be almost equal to or lower than that of the conventional strand.
[0019]
For this reason, when using a Si-Ni-Cu alloy wire as the strand 1, in order to obtain sufficient wire impact strength and wire breaking strength, that is, in order to obtain sufficient wire strength, the elongation is required. It is desirable that the rate is larger than 0 and smaller than the elongation rate of the conventional strand. More preferably, the elongation should be in the range of approximately 4 to 10 percent.
[0020]
Then, when the relationship between the heating time and the elongation rate was measured, it was as shown in Table 1 below.
[0021]
[Table 1]
Figure 2004022508
[0022]
The heating was performed using a bell-type softening furnace as follows.
[0023]
First, as shown in FIGS. 2A and 2B, a Si—Ni—Cu alloy wire rod 1 a was wound around a body 11 a of an iron reel 11.
[0024]
Then, heating was performed using a bell-type softening furnace as shown in FIG. That is, the reel 11 was placed on the furnace base 15 with the reel 11 turned sideways, an outer wall body 16 called a pot was put around the reel 11, and the inside of the outer wall body 16 was evacuated to a vacuum state. Then, the outer periphery of the outer wall body 16 is covered with a pot 18 (also referred to as a bell) having a heating unit 17 such as a nichrome heater inside the wall surface, and the inside is heated by the heat generated by the heating unit 17. Thereby, the wire 1a wound on the reel 11 is heated.
[0025]
Further, a temperature sensor 19 is provided inside the reel 11, and the heating temperature is measured by the temperature sensor 19. It has been experimentally confirmed that the temperature measured by the temperature sensor 19 is substantially equal to the internal temperature of the wire 1a wound on the reel 11.
[0026]
Note that the heating method is not limited to the above, and a vacuum annealing furnace may be used, heating may be performed using a bright annealing softening furnace, and heating may be performed in a furnace filled with an inert gas. May go.
[0027]
According to Table 1, when the temperature of the heating unit (heater) 14 was set to 500 degrees, the internal temperature of the reel 11 was 400 degrees, that is, the internal temperature of the wire 1a was 400 degrees. Then, when the heating time after the internal temperature of the wire 1a reached 400 degrees was 0 hour, that is, when the wire 1a was immediately cooled after reaching 400 degrees, the elongation was 0 to 5%. Further, after that, heating is continued while the internal temperature of the reel 11 is substantially maintained at 400 ° C., and when the heating time is cooled after one hour, the elongation becomes 2 to 7%, and the heating time is 1.5%. It was found that the elongation rate was 5 to 10% when cooled after elapse of time, and 15 to 24% when cooled after elapse of 2 hours.
[0028]
From this measurement result, in order to make the elongation percentage larger than 0 and smaller than the elongation percentage of the conventional wire, it is preferable to heat the wire 1a within two hours after the internal temperature of the wire 1a reaches 400 degrees. Is assumed.
[0029]
Further, in order to achieve a more preferable elongation rate of 4 to 10%, it is assumed that it is preferable to heat the wire 1a for 1 hour to 1.5 hours after the internal temperature of the wire 1a reaches 400 degrees. More preferably, after the internal temperature of the wire 1a reaches 400 degrees, it is assumed that it is best to perform heating for substantially 1.5 hours.
[0030]
The conductor 2 is manufactured by twisting and compressing a plurality of the wires 1 manufactured as described above. Then, when the covering portion 3 is formed around the outer periphery of the conductor 2, the electric wire 10 is manufactured.
[0031]
According to the method of manufacturing the strand 1 configured as described above, the elongation percentage of the strand 1 is larger than 0 and smaller than the elongation percentage of the conventional strand, and thus the diameter of the strand 1 is reduced. , Sufficient strength can be obtained.
[0032]
In particular, when the wire 1a is heated for 1 hour to 1.5 hours after the internal temperature of the wire 1a reaches 400 ° C., the elongation percentage is reliably and sufficiently larger than 0, and the elongation of the conventional strand is increased. Since the ratio is reliably and sufficiently smaller than the ratio, a sufficient strength can be obtained while reducing the diameter of the strand 1.
[0033]
As examples, Table 2 shows the conductor breaking strength, the wire breaking strength, and the wire impact strength of each of the wire according to the conventional example and the wire according to the present invention.
[0034]
[Table 2]
Figure 2004022508
[0035]
In this case, in the wire according to the conventional example, the elongation percentage of the strand is 20 to 30%, the conductor breaking strength is 30 to 35 N, the wire breaking strength is 35 to 40 N, and the wire impact strength is 3 to 4 N · m. It became. The electric wire impact strength is a maximum load (weight of the weight) at which the electric wire is not broken when a weight is attached to the electric wire and the weight is freely dropped by 1 m.
[0036]
On the other hand, in the electric wire according to the present invention, the elongation percentage of the strand 1 is 4 to 10%, the conductor breaking strength is 55 to 95 N, the wire breaking strength is 60 to 100 N, and the wire impact strength is 5 to 6 N · m. It became. Therefore, it was found that sufficient strength could be obtained in any of the conductor breaking strength, the wire breaking strength, and the wire impact strength.
[0037]
【The invention's effect】
As described above, according to the method for manufacturing a wire for an electric wire according to the first or second aspect of the present invention, sufficient strength can be obtained while reducing the diameter of the wire.
[0038]
Further, in the wire for wires according to the third aspect, sufficient strength can be obtained while reducing the diameter of the wire.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an electric wire using a strand according to an embodiment of the present invention.
FIG. 2A is a side view showing a reel, and FIG. 2B is a side view showing a state where a wire is wound around the reel.
FIG. 3 is a schematic view showing a bell-type softening furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Element wire 2 Conductor 10 Electric wire

Claims (3)

Si−Ni−Cu系合金線材を、その線材内部温度が400度に到達した後2時間以下加熱する、電線用素線製造方法。A method for producing a wire for an electric wire, comprising heating a Si-Ni-Cu-based alloy wire rod for 2 hours or less after the wire internal temperature reaches 400 degrees Celsius. 請求項1記載の電線用素線製造方法であって、
前記合金線材を、その線材内部温度が400度に到達した後、1時間〜1.5時間加熱する、電線用素線製造方法。
The method for producing a wire for an electric wire according to claim 1,
A method for manufacturing a wire for an electric wire, wherein the alloy wire is heated for 1 hour to 1.5 hours after the internal temperature of the wire reaches 400 degrees.
請求項1又は請求項2記載の電線用素線製造方法により製造された電線用素線。An electric wire strand manufactured by the method for manufacturing an electric wire strand according to claim 1.
JP2002180230A 2002-06-20 2002-06-20 Manufacturing method of element wire for electric wire, and element wire for electric wire Pending JP2004022508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180230A JP2004022508A (en) 2002-06-20 2002-06-20 Manufacturing method of element wire for electric wire, and element wire for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180230A JP2004022508A (en) 2002-06-20 2002-06-20 Manufacturing method of element wire for electric wire, and element wire for electric wire

Publications (1)

Publication Number Publication Date
JP2004022508A true JP2004022508A (en) 2004-01-22

Family

ID=31177420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180230A Pending JP2004022508A (en) 2002-06-20 2002-06-20 Manufacturing method of element wire for electric wire, and element wire for electric wire

Country Status (1)

Country Link
JP (1) JP2004022508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253093A (en) * 2005-03-14 2006-09-21 Mitsubishi Cable Ind Ltd Electric wire for automobile
JP2006253076A (en) * 2005-03-14 2006-09-21 Mitsubishi Cable Ind Ltd Electric wire for automobile
US7560649B2 (en) * 2005-12-07 2009-07-14 The Furukawa Electric Co., Ltd. Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
KR100954808B1 (en) * 2008-04-24 2010-04-28 주식회사 경신전선 A process for preparing compressed conductor electric wire that tensile strength is improved

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253093A (en) * 2005-03-14 2006-09-21 Mitsubishi Cable Ind Ltd Electric wire for automobile
JP2006253076A (en) * 2005-03-14 2006-09-21 Mitsubishi Cable Ind Ltd Electric wire for automobile
US7560649B2 (en) * 2005-12-07 2009-07-14 The Furukawa Electric Co., Ltd. Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
KR100954808B1 (en) * 2008-04-24 2010-04-28 주식회사 경신전선 A process for preparing compressed conductor electric wire that tensile strength is improved

Similar Documents

Publication Publication Date Title
JP5751268B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
KR101919677B1 (en) Copper alloy strand, copper alloy twisted wire, and automotive electric wire
WO2018083836A1 (en) Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
CN107709588A (en) Aluminium alloy wire, aluminium alloy stranded conductor, covered electric cable and wire harness
JP6686293B2 (en) Copper alloy wire, copper alloy stranded wire, coated wire and wire harness
JP6080336B2 (en) Electric wire / cable
JP2006019163A (en) Aluminum conductive wire
JP2009004256A (en) Compound conductor and cable for cabling using it
JP2004022508A (en) Manufacturing method of element wire for electric wire, and element wire for electric wire
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JP4330005B2 (en) Aluminum conductive wire
JP3901052B2 (en) Aluminum alloy stranded wire conductor cable
JP6729218B2 (en) Method for manufacturing rectangular insulated wire
JP2018045855A (en) Flat cable
JPWO2009154239A1 (en) Wire conductor for wiring, wire for wiring, and method for manufacturing wire conductor for wiring
JPH11224538A (en) Electric wire conductor for automobile
JP3864868B2 (en) Aluminum alloy braided wire
JP2004311102A (en) Aluminum alloy wiring material and its manufacturing method
JP6424925B2 (en) Plating copper wire, plated stranded wire and insulated wire, and method of manufacturing plated copper wire
KR20160128263A (en) copper clad aluminum wire for braiding and cable including the same, manufacturing method of copper clad aluminum wire for braiding
JP2008021562A (en) Shielding cable and manufacturing method therefor
KR101704845B1 (en) copper clad aluminum wire for braiding and cable including the same, manufacturing method of copper clad aluminum wire for braiding
JP2024004190A (en) Stranded wire conductor, electric wire, and method for manufacturing stranded wire conductor
JP2020186450A (en) Method for manufacturing aluminum alloy twisted wire, method for manufacturing electric wire using the same and method for manufacturing wire harness
JP2006032076A (en) Electric wire for automobile