JP2004021815A - Rear-end collision alarm - Google Patents

Rear-end collision alarm Download PDF

Info

Publication number
JP2004021815A
JP2004021815A JP2002178575A JP2002178575A JP2004021815A JP 2004021815 A JP2004021815 A JP 2004021815A JP 2002178575 A JP2002178575 A JP 2002178575A JP 2002178575 A JP2002178575 A JP 2002178575A JP 2004021815 A JP2004021815 A JP 2004021815A
Authority
JP
Japan
Prior art keywords
vehicle
end collision
distance
set inter
vehicle distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178575A
Other languages
Japanese (ja)
Inventor
Yoichi Kishi
貴志 陽一
Hideo Obara
小原 英郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002178575A priority Critical patent/JP2004021815A/en
Publication of JP2004021815A publication Critical patent/JP2004021815A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To alarm an rear-end collision according to an actual driving characteristic of a vehicle. <P>SOLUTION: This system is provided with a distance measurement means 2 which measures the distance to a preceding vehicle 200, a speed measurement means 3 which measures speed of an own vehicle 100, a relative speed calculating means 4 which detects relative speed between the own vehicle 100 and the preceding vehicle 200, and the following means based on the relative speed between the own vehicle 100 and the preceding vehicle 200. Thus, it is provided with a set-distance between the cars calculating means 5 which calculates set-distance between the own car 100 and the preceding car 200, a collision driving situation judging means 8 which predicts a collision driving situation that the own car 100 collides with the preceding car 200, a set-distance correcting means 9 which corrects the set-distance calculated at the set-distance between the cars calculating means 5 based on the collision driving situation, a risk rate judging means 6 which judges the collision risk rate between the own car 100 and the preceding car 200 based on the set-distance calculated at the set-distance between the cars calculating means 5 or the corrected set-distance and the distance to the preceding car 200, and an alarm means 7 which raises an alarm based on the collision risk rate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、先行車両との追突の可能性を算出してドライバに警告を発する追突警報装置に関する。
【0002】
【従来の技術】
先行車両との追突可能性を算出してドライバに警告を発する追突警報装置としては、例えば特開平8−179042号公報開示されているものがある。この従来の追突警報装置は、自車両の車速と、自車両と先行車両との相対速度とに基づいて、自車両と先行車両との設定車間距離を算出するとともに、運転者のわき見動作を検出し、先行車両までの車間距離と設定車間距離とわき見動作検出信号とに基づいて、先行車両との追突リスク度を算出している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の追突警報装置は、瞬間的な走行状況や運転者のわき見状態に基づいて追突可能性が高いと判定された場合に警報を発する構成となっているので、運転者の意思で車間距離を縮めた際にも一義的に警報が発生し、わずらわしさを発生するという問題があった。
【0004】
【課題を解決するための手段】
本発明による追突警報装置は、自車両前方の物体までの距離を測定する距離測定手段と、自車両の速度を測定する車速測定手段と、自車両と物体との相対速度を検出する相対速度検出手段と、車速測定手段により測定された速度と、相対速度検出手段により検出された相対速度とに基づいて、自車両と物体との間の設定車間距離を演算する設定車間距離演算手段と、自車両が前記物体に追突する追突走行状況を予測する追突走行状況予測手段と、追突走行状況予測手段により予測された追突走行状況に基づいて、設定車間距離演算手段にて演算される設定車間距離を補正する設定車間距離補正手段と、設定車間距離演算手段にて演算された設定車間距離または設定車間距離補正手段により補正された設定車間距離と、距離測定手段により測定された物体までの距離とに基づいて、自車両と物体との追突リスク度を判定する追突リスク度判定手段と、追突リスク度判定手段により判定された追突リスク度に基づいて、警報を発する警報手段とを備えることにより、上記目的を達成する。
【0005】
【発明の効果】
本発明による追突警報装置によれば、自車両と物体との間の設定車間距離と、物体までの距離とに基づいて、自車両が物体に追突する追突リスク度を判定する際に、自車両が物体に追突する追突走行状況を予測して設定車間距離を補正するので、瞬間的な走行状態だけではなく、実際の車両の走行特性に応じた追突警報を発することができる。
【0006】
【発明の実施の形態】
−第1の実施の形態−
図1は、本発明による追突警報装置の第1の実施の形態における構成を示す図である。第1の実施の形態における追突警報装置は、車間距離測定手段2と、車速測定手段3と、相対速度演算手段4と、設定車間距離演算手段5と、リスク度判定手段6と、警報手段7と、追突走行状況判定手段8と、設定車間距離補正手段9とを備える。
【0007】
車間距離測定手段2は、例えばレーザレーダであり、レーザビームを車両前方に送出し、先行車両200に反射して戻ってくるまでの時間に基づいて、先行車両200までの車間距離Lを測定する。車速測定手段3は、例えば車速センサであり、自車両100の速度Vを測定する。測定した自車両100の車速Vは、設定車間距離演算手段5および追突走行状況判定手段8に送られる。相対速度演算手段4は、上述したレーザレーダ内に実装された演算回路であり、車間距離測定手段2により測定された先行車両200までの車間距離Lに基づいて、先行車両200と自車両100との相対速度Vを演算する。演算した相対速度Vは、設定車間距離演算手段5に送られる。
【0008】
設定車間距離演算手段5は、相対速度演算手段4で演算された相対速度Vと、車速測定手段3で測定された車速Vとに基づいて、先行車両200との設定車間距離Laを算出する。また、後述する所定の条件が満たされた場合に、設定車間距離補正手段9から送られる設定車間距離補正係数(以下、単に補正係数と呼ぶ)kを用いて、設定車間距離Laを補正する。算出した設定車間距離Laは、リスク度判定手段6および追突走行状況判定手段8に送られる。また、設定車間距離演算手段5は、相対速度Vと自車両100の車速Vとに基づいて、先行車両200の車速Vを算出するとともに、算出した先行車両200の車速Vに基づいて、先行車両200の減速度αを算出する。
【0009】
リスク度判定手段6は、設定車間距離演算手段5で演算された設定車間距離Laと、車間距離測定手段2で測定された車間距離Lとに基づいて、自車両100と先行車両200との衝突リスクを示すリスク度D2を判定する。判定されたリスク度D2は、警報手段7に送られる。警報手段7は、リスク度判定手段6により判定されたリスク度D2に基づいて、ドライバに減速を促す警報を発する。なお、警報は、図示しないスピーカやインジケータを用いて行うことができる。
【0010】
追突走行状況判定手段8は、設定車間距離演算手段5で演算された先行車両200の車速Vおよび減速度αと、車速測定手段3で測定された自車両100の車速Vと、車間距離測定手段2で測定された車間距離Lとに基づいて、先行車両との追突走行状況D1を判定する。ここでの追突走行状況D1とは、自車両100と先行車両200との走行状態がそのまま継続した場合に走行中の先行車両200と追突する状況、あるいは、先行車両200が減速停止後に自車両100が追突する走行状況である。追突走行状況D1の判定方法については、後述する。
【0011】
設定車間距離補正手段9は、追突走行状況判定手段8により判定された追突走行状況D1に基づいて、設定車間距離Laを補正するための補正係数kを演算する。追突走行状況D1に基づいて、補正係数kを用いて設定車間距離Laを補正する方法については、後述する。なお、設定車間距離演算手段5,リスク度判定手段6,追突走行状況判定手段8,設定車間距離補正手段9は、CPUおよびその周辺機器よりなる制御装置で実現される。
【0012】
追突走行状況判定手段8が追突走行状況D1を判定する方法について説明する。図2は、先行車両200と自車両100との位置関係を示す図である。図2(a)は、先行車両200が減速をする前の状況を示す図、図2(b)は、先行車両200が減速を開始した時の状況を示す図、図2(c)は、先行車両200が減速を開始してからt秒経過した時の状況を示す図である。
【0013】
図2(a)に示すように、先行車両200が減速した時の先行車両200の車速をVL0、自車両100の車速をVF0とする。この状態で先行車両200が減速を開始した時の自車両100と先行車両200との車間距離をLとする(図2(b)参照)。先行車両200が減速を開始した時に、相対速度演算手段4にて演算された相対速度をVR0とすると、先行車両200の車速VL0は、次式(1)にて表される。
L0=VF0−VR0    …(1)
先行車両200の減速度αは、式(1)にて算出された車速VL0を時間微分演算することにより求めることができる(式(2))。
α=dVL0/dt     …(2)
【0014】
先行車両200が減速を開始してから自車両100がt秒間に進む距離L(t)および後続車両200が進む距離L(t)、t秒経過後の自車両の車速V(t)は、それぞれ式(3),(4),(5)で表される。
(t)=VL0(t)−(1/2)αt   …(3)
(t)=VF0t             …(4)
(t)=VL0−αt           …(5)
【0015】
t秒経過後の車間距離ΔL(t)は、L(t),L(t),Lを用いて、次式(6)で表される。
ΔL(t)=L(t)+L−L(t)   …(6)
また、次式(7)の条件が満たされる時に、自車両100が先行車両200に追突することになる。
ΔL(t)≦0   …(7)
【0016】
先行車両が減速を開始してから停止するまでの時間t1は、V(t)=0より、次式(8)で表される。
t1=VL0/α   …(8)
従って、先行車両200が減速を開始して停止した後に自車両100が先行車両200に追突する条件式は、式(3)〜(8)を用いて、次式(9)のように表される。
≧VL0(2VF0−VL0)/2α   …(9)
式(9)の条件が満たされる場合、すなわち、先行車両200が減速停止後に自車両100が先行車両200に追突するような走行状況は、追突を起こしやすい走行状況であり、事故の多い行動類型である。
【0017】
従って、先行車両200が減速を開始してから停止するまでの走行中に自車両100が先行車両200に追突する条件式は、次式(10)にて表される。
0≦L<VL0(2VF0−VL0)/2α   …(10)
式(10)の条件が満たされる場合、すなわち、自車両100が走行中の先行車両200に追突するような走行状況は、比較的追突を起こしにくい走行状況であり、事故の少ない行動類型である。従って、追突走行状況判定手段8は、式(9)および式(10)を用いて、追突走行状況D1を判定する。
【0018】
図3は、設定車間距離Laを演算して先行車両200との追突リスク度を演算する処理手順を示す一実施の形態のフローチャートである。ステップS1から始まる処理は、例えば、上述した制御装置のCPUにおいて、所定の時間間隔で随時行われる。ステップS1では、設定車間距離演算手段5は、車間距離測定手段2にて測定した先行車両200との車間距離Lと、車速測定手段3にて測定した自車両100の車速Vとを取り込む。次のステップS2では、相対速度演算手段4にて自車両100と先行車両200との相対速度Vを演算する。設定車間距離演算手段5が演算された相対速度Vを取り込むと、ステップS3に進む。なお、相対速度Vは、先行車両200に接近する方向をプラス、離れる方向をマイナスとする。
【0019】
ステップS3では、設定車間距離演算手段5が、自車両100の車速Vと相対速度Vとに基づいて、先行車両200の車速Vを演算するとともに、先行車両200の減速度αを演算する。次のステップS4では、設定車間距離演算手段5が、ステップS1で取り込んだ自車両100の車速Vと、ステップS2で演算した相対速度Vとに基づいて、設定車間距離Laを演算する。設定車間距離Laを演算するとステップS5に進む。
【0020】
ステップS5では、ステップS3で演算した減速度αに基づいて、先行車両200の減速を判定する。先行車両200の減速を判定するとステップS6に進み、減速していないと判定するとステップS10に進む。
【0021】
ステップS6では、設定車間距離演算手段5が、先行車両200の減速中の自車両100の車速VF0と、先行車両200の車速VL0および減速度αと、車間距離Lとを読み込む。これらの各パラメータを読み込むとステップS7に進む。ステップS7では、追突走行状況D1を判定するための条件式ΔLを次式(11)により算出する。なお、式(11)で表されるΔLは、上述した式(9)または(10)から導かれるものである。
ΔL=VL0(2VF0−VL0)/2α  …(11)
【0022】
条件式ΔLを算出するとステップS8に進む。ステップS8では、追突走行状況判定手段8がステップS6で読み込んだ車間距離Lと、ステップS7で算出した条件式ΔLとに基づいて、追突走行状況D1を判定する。すなわち、車間距離LがΔL以上であるときは、先行車両200が減速を開始して停止した後に追突する追突走行状況と判定する。この場合、先行車両200に追突する可能性が高い状況であるので、ステップS4で演算した設定車間距離Laを補正するために、ステップS9に進む。ステップS9では、設定車間距離Laを長めに補正するために、ステップS4で演算した設定車間距離Laに補正係数k(>1)を乗じて、補正後の設定車間距離Laを算出する(式(12))。
La=k・La   …(12)
本実施の形態では、k=1.6とする。設定車間距離Laを補正すると、ステップS10に進む。
【0023】
一方、ステップS8で車間距離LがΔLより小さいときは、先行車両200の走行中に自車両100が追突する追突走行状況と判定する。この場合には、追突を起こしにくい走行状況であるので、設定車間距離Laの補正は行わずに、ステップS10に進む。
【0024】
ステップS10では、リスク度判定手段6が、ステップS1で取り込んだ車間距離Lと、ステップS4で演算した設定車間距離LaまたはステップS9で補正を行った後の設定車間距離Laとを比較することにより、衝突可能性を判定する。La>Lが成立する時には、追突可能性が高いと判定してステップS11に進む。ステップS11では、警報手段7にてドライバに減速を促すために警報を行う。一方、ステップS10にて、La≦Lが成立するときは、追突する可能性が低いと判定してステップS1に戻る。
【0025】
第1の実施の形態における追突警報装置によれば、自車両100の車速Vと、先行車両200に対する相対速度Vとに基づいて設定車間距離Laを演算し(ステップS4)、先行車両200との間の車間距離Lと設定車間距離Laとを比較することにより(ステップS10)、衝突可能性を判定する。この際、先行車両200が減速していると判定すると(ステップS5)、その時の自車両100の車速VF0と、先行車両200の車速VL0および減速度αと、車間距離Lとを用いて追突走行状況D1を判定するための条件式ΔLを算出し(ステップS7)、車間距離Lと条件式ΔLとに基づいて、追突走行状況D1を判定する(ステップS8)。追突走行状況D1が、先行車両200が減速を開始して停止した後に追突する追突走行状況と判定すると、先行車両200に追突する可能性が高い状況であるので、設定車間距離Laを補正して新たな設定車間距離Laを算出する(ステップS9)。これにより、先行車両200が減速を開始した時の先行車両200および自車両100の走行状況や、車間距離Lを考慮した設定車間距離Laを用いて衝突可能性を判定することができるので、瞬間的な衝突リスクに基づいたわずらわしい警報が行われるのを防ぐことができる。すなわち、時間軸でみた走行状況に基づいて、適切な追突警報を発することができる。
【0026】
追突走行状況判定手段8は、先行車両200の減速を判定した時に、追突走行状況D1を予測するので、追突する可能性が高い状況にて追突走行状況を予測することができる。また、追突走行状況の予測は、先行車両200が減速していると判定された時の自車両100の速度VF0と、先行車両200の車速VL0および減速度αと、車間距離Lとに基づいて行うので、実際の走行状態に応じた追突走行状況を予測することができる。
【0027】
追突走行状況判定手段8は、走行中の先行車両200に自車両100が追突する追突走行状況、および、先行車両200が減速停止した後に自車両100が追突する追突走行状況のいずれか一方の追突走行状況を予測するので、予測した追突走行状況に応じて適切な設定車間距離Laを算出することができる。すなわち、先行車両200が減速停止した後に自車両100が追突する追突走行状況であると予測された時に、設定車間距離演算手段5で演算された設定車間距離Laを長くするための補正を行うので、瞬間的な衝突可能性に基づいたわずらわしい警報が行われるのを防ぐことができる。
【0028】
−第2の実施の形態−
第2の実施の形態における追突警報装置の構成は、図1に示される第1の実施の形態における追突警報装置の構成と同じである。第2の実施の形態における追突警報装置は、追突走行状況判定手段8で行われる処理に特徴がある。以下、第2の実施の形態における追突警報装置にて行われる処理手順を、図4に示すフローチャートを用いて説明する。
【0029】
図4に示すフローチャートで行われる処理のうち、図3に示すフローチャートで行われる処理と同一の処理については、同一の符合が付されている。すなわち、ステップS1〜ステップS11で行われる処理は、図3に示すフローチャートによる処理と同一であるので、詳しい説明は省略する。追突走行状況判定手段8は、ステップS8にて、先行車両200が減速中の車間距離Lと、ステップS7で演算した条件式ΔLとを比較することにより、追突走行状況D1を判定している。すなわち、L≧ΔLが成立する時は、先行車両200が減速停止後に自車両100が追突する追突走行状況であると判定している。
【0030】
しかし、実際の走行状況下においては、L≧ΔLが成立する時の追突走行状況として、▲1▼自車両100が追従していることを認識していた先行車両200に追突する追突走行状況と、▲2▼自車両100が追従していることを認識していない先行車両200、例えば既に停止していた車両に追突する走行状況とがある。▲2▼の追突走行状況は、先行車両200までの距離が長い時に起こりうる。この場合、先行車両200との相対速度が高ければ追突リスクは高くなるが、車間距離が長いために、ドライバの運転注意度は高くなる。すなわち、先行車両200への接近過程において他車両の割り込みや、先行車両200以外の物体との衝突リスクも意識されるので、結果的に追突を起こしにくい状況下であると判断できる。
【0031】
第2の実施の形態では、上述した▲1▼と▲2▼の追突走行状況を区別するために、先行車両200が減速中の車間距離Lと比較するための所定車間距離Lを設定する。追突走行状況判定手段8は、車間距離LがΔL以上であり、かつ、所定車間距離Lより小さい場合は、▲1▼の追突走行状況であると判定し、L>Lの関係が成立する場合には▲2▼の追突走行状況であると判定する。なお、本実施の形態では、所定車間距離Lを40mとする。
【0032】
図4に示すフローチャートのステップS8の判定にて、車間距離LがΔL以上であると判定するとステップS12に進み、ΔLより小さいと判定するとステップS10に進む。ステップS12では、車間距離Lが所定車間距離Lより小さいか否かを判定する。L<Lが成立する場合には、上述した▲1▼の追突走行状況、すなわち、追従していた先行車両200が減速停止後に自車両100が追突する追突走行状況であり、追突を起こしやすい状況であるので、設定車間距離Laを補正するためにステップS9に進む。一方、L<Lの場合には、上述した▲2▼の追突走行状況であり、追突を起こしにくい走行状況であるので、設定車間距離Laの補正を行うことなく、ステップS10に進む。
【0033】
第2の実施の形態における追突警報装置によれば、先行車両200の減速中の車間距離Lと、所定車間距離Lとに基づいて、自車両100が先行車両200に追突する可能性が高い状況にあるか否かを判定し、追突する可能性が高いと判定された場合に設定車間距離Laを補正するので、さらに実際の運転行動や追突事故が生じる状況に応じた追突リスク度を判定することができる。逆に、L≧ΔLの条件が満たされた場合でも、追突可能性が低い場合には、設定車間距離Laの補正を行わないので、追突可能性が低い状況下でのわずらわしい警報が行われるのを防ぐことができる。
【0034】
設定車間距離Laは、追突走行状況判定手段8により、先行車両200が減速停止した後に自車両100が追突する走行状況であると判定され、かつ、先行車両200が減速中の車間距離が所定距離Lより短い時に、長くする補正が行われるので、さらに細かい実際の運転行動に適合した追突警報を実現することができる。
【0035】
−第3の実施の形態−
図5は、第3の実施の形態における追突警報装置の構成を示す図である。第3の実施の形態における追突警報装置は、図1に示す第1の実施の形態における追突警報装置の構成に加えて、脇見動作検出手段10を備える。脇見動作検出手段10は、例えば、ドライバの視点の位置などに基づいて、ドライバが横を向くなどの脇見動作を検出する。検出した脇見動作情報D3は、リスク度判定手段6に送られる。リスク度判定手段6は、車間距離測定手段2にて測定された先行車両200との間の車間距離Lと、設定車間距離演算手段5にて演算された設定車間距離Laと、脇見動作検出手段10にて検出された脇見動作情報D3とに基づいて、追突リスク度D2を判定する。
【0036】
図6は、第3の実施の形態における追突警報装置により行われる制御手順を示すフローチャートである。図3に示すフローチャートの同一の処理を行うステップについては、同一の符合を付して詳しい説明は省略する。ステップS13では、設定車間距離演算手段5が、脇見動作検出手段10にて検出した脇見動作情報D3を取り込む。脇見動作情報D3を取り込むとステップS1に進む。ステップS1〜ステップS8で行う処理については、図3に示すフローチャートのステップS1〜ステップS8までの処理と同一である。
【0037】
ステップS8において、L≧ΔLの条件が成立すると判定するとステップS14に進む。ステップS14では、ステップS13で取り込んだ脇見動作情報D3に基づいて、ドライバの脇見動作が検出されたか否かを判定する。ドライバの脇見動作が検出されたと判定すると、先行車両200と追突する可能性が高いので、設定車間距離Laを補正するためにステップS9に進む。ステップS9では、補正係数kを用いて、ステップS4で演算した設定車間距離Laを補正するが、ドライバが脇見動作を行っている場合には、追突可能性が非常に高いと言えるので、補正係数kを例えば2.0とする。一方、ドライバの脇見動作が検出されない場合には、設定車間距離Laの補正を行わずにステップS10に進み、衝突リスク度D2を判定する。
【0038】
第3の実施の形態における追突警報装置によれば、先行車両200が減速停止後に自車両100が追突する追突走行状況下であって、かつ、ドライバの脇見動作を検出したときに、設定車間距離Laを補正するので、ドライバの運転状況をも考慮した追突警報を発することができる。
【0039】
すなわち、自車両100の運転者の脇見動作を検出する脇見動作検出手段10をさらに備えることにより、追突走行状況判定手段8により先行車両200が減速停止後に自車両100が追突する追突走行状況であると判定され、かつ、脇見動作検出手段10により運転者の脇見動作が検出された時に、設定車間距離Laを長くする補正を行うので、運転者の前方に対する注意状態をも考慮した追突警報の実現が可能となる。
【0040】
本発明は、上述した一実施の形態に限定されることはない。例えば、補正係数kや所定距離Lは、上述した値に限定されることはない。また、設定車間距離Laを演算して追突リスク度を演算するまでの処理を1つのフローチャートの中で説明したが、設定車間距離Laの補正演算処理を別ルーチンの処理としてもよい。例えば、図3に示すフローチャートの場合、ステップS1〜S4およびステップS10,S11の処理を一続きの処理とし、ステップS5〜S9で行う設定車間距離Laの補正演算処理を並行して行ってもよい。この場合、ステップS10の追突判定処理は、補正演算処理にて新たな設定車間距離Laが演算された場合には、その新たに演算された設定車間距離Laを用いて行うことになる。
【0041】
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、車間距離測定手段2が距離測定手段を、車速測定手段3が車速測定手段を、相対速度演算手段4が相対速度検出手段を、設定車間距離演算手段5が設定車間距離演算手段および減速判定手段を、追突走行状況判定手段8が追突走行状況予測手段を、設定車間距離補正手段9が設定車間距離補正手段を、リスク度判定手段6が追突リスク度判定手段を、警報手段7が警報手段をそれぞれ構成する。
【0042】
また、前述の実施例では、ステップS5で先行車両200の減速を判断したが、減速の開始を検出することで置換することができ、ステップS6では、減速中の全般に渡って自車速などを検出したが、先行車両200が減速する直前の自車速などを検出することに置換することもできる。なお、前述の実施例では、車間距離を長くする補正を行ったが、設定車間距離を短くする補正を行い、わずらわしさを低減することができるのはもちろんである。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【図面の簡単な説明】
【図1】第1の実施の形態における追突警報装置の構成を示す図
【図2】先行車両と自車両との位置関係を示す図であって、図2(a)は、先行車両が減速をする前の状況を示す図、図2(b)は、先行車両が減速を開始した時の状況を示す図、図2(c)は、先行車両が減速を開始してからt秒経過した時の状況を示す図である。
【図3】第1の実施の形態における追突警報装置により行われる処理手順を示すフローチャート
【図4】第2の実施の形態における追突警報装置により行われる処理手順を示すフローチャート
【図5】第3の実施の形態における追突警報装置の構成を示す図
【図6】第3の実施の形態における追突警報装置により行われる処理手順を示すフローチャート
【符号の説明】
2…車間距離測定手段、3…車速測定手段、4…相対速度演算手段、5…設定車間距離演算手段、6…リスク度判定手段、7…警報手段、8…追突走行状況判定手段、9…設定車間距離補正手段、10…脇見動作検出手段、100…自車両、200…先行車両
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rear-end collision warning device that calculates a possibility of a rear-end collision with a preceding vehicle and issues a warning to a driver.
[0002]
[Prior art]
An example of a rear-end collision warning device that calculates a rear-end collision possibility with a preceding vehicle and issues a warning to a driver is disclosed in, for example, Japanese Patent Application Laid-Open No. H8-179042. This conventional rear-end collision warning device calculates a set inter-vehicle distance between a host vehicle and a preceding vehicle based on a vehicle speed of the host vehicle and a relative speed between the host vehicle and the preceding vehicle, and detects a driver's sideways operation. Then, the rear-end collision degree with the preceding vehicle is calculated based on the inter-vehicle distance to the preceding vehicle, the set inter-vehicle distance, and the side-by-side motion detection signal.
[0003]
[Problems to be solved by the invention]
However, the conventional rear-end collision warning device is configured to issue an alarm when it is determined that the possibility of rear-end collision is high based on an instantaneous driving situation or a driver's look-aside state. Even when the distance is shortened, an alarm is uniquely generated, and there is a problem that troublesomeness is generated.
[0004]
[Means for Solving the Problems]
A rear-end collision warning device according to the present invention includes a distance measuring unit that measures a distance to an object in front of the own vehicle, a vehicle speed measuring unit that measures a speed of the own vehicle, and a relative speed detection that detects a relative speed between the own vehicle and the object. Means, a set inter-vehicle distance calculating means for calculating a set inter-vehicle distance between the own vehicle and the object based on the speed measured by the vehicle speed measuring means and the relative speed detected by the relative speed detecting means; Based on the rear-end collision situation predicted by the rear-end collision state prediction means for predicting the rear-end collision state where the vehicle collides with the object, the set inter-vehicle distance calculated by the rear-end collision distance calculation means is calculated. The set inter-vehicle distance correction means to be corrected, the set inter-vehicle distance calculated by the set inter-vehicle distance calculation means or the set inter-vehicle distance corrected by the set inter-vehicle distance correction means, and measured by the distance measurement means. A rear-end collision degree determining unit that determines a rear-end collision degree between the host vehicle and the object based on the distance to the collision object, and an alarm that issues an alarm based on the rear-end collision degree determined by the rear-end collision degree determining unit. The above-mentioned object is achieved by providing means.
[0005]
【The invention's effect】
According to the rear-end collision warning device of the present invention, when determining the rear-end collision risk degree at which the own vehicle collides with the object based on the set inter-vehicle distance between the own vehicle and the object and the distance to the object, Predicts a rear-end collision situation in which the vehicle collides with an object and corrects the set inter-vehicle distance, so that not only an instantaneous traveling state but also a rear-end collision warning according to the actual traveling characteristics of the vehicle can be issued.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
-1st Embodiment-
FIG. 1 is a diagram showing a configuration of a rear-end collision warning device according to a first embodiment of the present invention. The rear-end collision warning device according to the first embodiment includes an inter-vehicle distance measurement unit 2, a vehicle speed measurement unit 3, a relative speed calculation unit 4, a set inter-vehicle distance calculation unit 5, a risk degree determination unit 6, and an alarm unit 7. , A rear-end collision traveling state determining means 8 and a set inter-vehicle distance correcting means 9.
[0007]
The inter-vehicle distance measuring means 2 is, for example, a laser radar, and transmits a laser beam to the front of the vehicle, and measures an inter-vehicle distance L to the preceding vehicle 200 based on a time until the laser beam is reflected by the preceding vehicle 200 and returns. . The vehicle speed measuring means 3 is, for example, a vehicle speed sensor, and the speed V of the vehicle 100 F Is measured. The measured vehicle speed V of the own vehicle 100 F Is sent to the set inter-vehicle distance calculating means 5 and the rear-end collision traveling state determining means 8. The relative speed calculating means 4 is a calculating circuit mounted in the above-mentioned laser radar, and based on the inter-vehicle distance L to the preceding vehicle 200 measured by the inter-vehicle distance measuring means 2, the relative speed calculating means 4 Relative velocity V R Is calculated. Calculated relative speed V R Is sent to the set inter-vehicle distance calculating means 5.
[0008]
The set inter-vehicle distance calculating means 5 calculates the relative speed V calculated by the relative speed calculating means 4. R And the vehicle speed V measured by the vehicle speed measuring means 3 F Based on this, the set inter-vehicle distance La with the preceding vehicle 200 is calculated. When a predetermined condition described later is satisfied, the set inter-vehicle distance La is corrected using a set inter-vehicle distance correction coefficient (hereinafter, simply referred to as a correction coefficient) k sent from the set inter-vehicle distance correction means 9. The calculated set inter-vehicle distance La is sent to the risk degree judgment means 6 and the rear-end collision traveling state judgment means 8. The set inter-vehicle distance calculating means 5 calculates the relative speed V R And the vehicle speed V of the vehicle 100 F Vehicle speed V of preceding vehicle 200 based on L Is calculated, and the calculated vehicle speed V of the preceding vehicle 200 is calculated. L Is calculated based on the deceleration α of the preceding vehicle 200.
[0009]
The risk degree judging means 6 collides between the host vehicle 100 and the preceding vehicle 200 based on the set inter-vehicle distance La calculated by the set inter-vehicle distance calculating means 5 and the inter-vehicle distance L measured by the inter-vehicle distance measuring means 2. A risk level D2 indicating a risk is determined. The determined risk degree D2 is sent to the alarm unit 7. The warning unit 7 issues a warning that prompts the driver to decelerate based on the risk level D2 determined by the risk level determination unit 6. The alarm can be issued using a speaker or an indicator (not shown).
[0010]
The rear-end collision traveling state determining means 8 calculates the vehicle speed V of the preceding vehicle 200 calculated by the set inter-vehicle distance calculating means 5. L And deceleration α, and the vehicle speed V of the own vehicle 100 measured by the vehicle speed measuring means 3 F And a rear-end collision traveling state D1 with the preceding vehicle is determined based on the inter-vehicle distance L measured by the inter-vehicle distance measuring means 2. Here, the rear-end collision traveling state D1 refers to a state in which the traveling vehicle 200 collide with the traveling preceding vehicle 200 when the traveling state of the own vehicle 100 and the preceding vehicle 200 continues as it is, or the own vehicle 100 after the preceding vehicle 200 decelerates and stops. Is a driving situation in which a rear-end collision occurs. The method of determining the rear-end collision traveling state D1 will be described later.
[0011]
The set inter-vehicle distance correcting means 9 calculates a correction coefficient k for correcting the set inter-vehicle distance La based on the rear-end collision traveling state D1 determined by the rear-end collision traveling state determining means 8. A method of correcting the set inter-vehicle distance La using the correction coefficient k based on the rear-end collision situation D1 will be described later. The set inter-vehicle distance calculating means 5, the risk degree judging means 6, the rear-end collision situation judging means 8, and the set inter-vehicle distance correcting means 9 are realized by a control device including a CPU and its peripheral devices.
[0012]
A method in which the rear-end collision traveling state determination means 8 determines the rear-end collision traveling state D1 will be described. FIG. 2 is a diagram illustrating a positional relationship between the preceding vehicle 200 and the host vehicle 100. 2A is a diagram illustrating a situation before the preceding vehicle 200 decelerates, FIG. 2B is a diagram illustrating a situation when the preceding vehicle 200 starts decelerating, and FIG. FIG. 9 is a diagram illustrating a situation when t seconds have elapsed since the preceding vehicle 200 started decelerating.
[0013]
As shown in FIG. 2A, the vehicle speed of the preceding vehicle 200 when the preceding vehicle 200 is decelerated is represented by V L0 And the vehicle speed of the vehicle 100 F0 And In this state, the inter-vehicle distance between the host vehicle 100 and the preceding vehicle 200 when the preceding vehicle 200 starts to decelerate is represented by L. 0 (See FIG. 2B). When the preceding vehicle 200 starts decelerating, the relative speed calculated by the relative speed calculating means 4 is represented by V R0 Then, the vehicle speed V of the preceding vehicle 200 L0 Is represented by the following equation (1).
V L0 = V F0 -V R0 … (1)
The deceleration α of the preceding vehicle 200 is the vehicle speed V calculated by the equation (1). L0 Can be obtained by performing a time differential operation (Equation (2)).
α = dV L0 /Dt...(2)
[0014]
Distance L that host vehicle 100 advances in t seconds after preceding vehicle 200 starts decelerating L (T) and the distance L that the following vehicle 200 travels F (T), the vehicle speed V of the host vehicle after t seconds have elapsed. L (T) is represented by equations (3), (4), and (5), respectively.
L L (T) = V L0 (T)-(1/2) αt 2 … (3)
L F (T) = V F0 t ... (4)
V L (T) = V L0 -Αt (5)
[0015]
The inter-vehicle distance ΔL (t) after elapse of t seconds is L L (T), L F (T), L 0 And is expressed by the following equation (6).
ΔL (t) = L L (T) + L 0 -L F (T) ... (6)
Further, when the condition of the following expression (7) is satisfied, the own vehicle 100 will collide with the preceding vehicle 200.
ΔL (t) ≦ 0 (7)
[0016]
The time t1 from when the preceding vehicle starts to decelerate to when it stops is V L From (t) = 0, it is expressed by the following equation (8).
t1 = V L0 / Α… (8)
Therefore, the conditional expression in which the own vehicle 100 collides with the preceding vehicle 200 after the preceding vehicle 200 starts to decelerate and stops, is expressed by the following expression (9) using the expressions (3) to (8). You.
L 0 ≧ V L0 (2V F0 -V L0 ) / 2α (9)
When the condition of the expression (9) is satisfied, that is, a driving situation in which the host vehicle 100 collides with the preceding vehicle 200 after the preceding vehicle 200 decelerates and stops, is a driving situation in which a rear-end collision is likely to occur, and a type of behavior in which many accidents occur. It is.
[0017]
Therefore, the conditional expression in which the own vehicle 100 collides with the preceding vehicle 200 during the travel from the start of the deceleration to the stop of the preceding vehicle 200 is expressed by the following expression (10).
0 ≦ L 0 <V L0 (2V F0 -V L0 ) / 2α (10)
When the condition of the expression (10) is satisfied, that is, a traveling situation in which the own vehicle 100 collides with the preceding vehicle 200 during traveling is a traveling situation in which a rear-collision is relatively unlikely to occur, and is a behavior type with few accidents. . Therefore, the rear-end collision traveling state determining means 8 determines the rear-end collision traveling state D1 using Expressions (9) and (10).
[0018]
FIG. 3 is a flowchart of an embodiment showing a processing procedure of calculating the set inter-vehicle distance La and calculating the degree of rear-end collision with the preceding vehicle 200. The process starting from step S1 is performed, for example, at predetermined time intervals in the CPU of the control device described above. In step S <b> 1, the set inter-vehicle distance calculating means 5 calculates the inter-vehicle distance L from the preceding vehicle 200 measured by the inter-vehicle distance measuring means 2 and the vehicle speed V of the own vehicle 100 measured by the vehicle speed measuring means 3. F And take in. In the next step S2, the relative speed calculating means 4 calculates the relative speed V between the host vehicle 100 and the preceding vehicle 200. R Is calculated. Relative speed V calculated by set inter-vehicle distance calculating means 5 R , The process proceeds to step S3. Note that the relative speed V R Is plus in the direction approaching the preceding vehicle 200 and minus in the direction away from it.
[0019]
In step S3, the set inter-vehicle distance calculating means 5 determines the vehicle speed V of the host vehicle 100. F And relative speed V R Vehicle speed V of preceding vehicle 200 based on L And the deceleration α of the preceding vehicle 200 is calculated. In the next step S4, the set inter-vehicle distance calculating means 5 sets the vehicle speed V of the own vehicle 100 acquired in step S1. F And the relative speed V calculated in step S2 R Based on this, the set inter-vehicle distance La is calculated. After calculating the set inter-vehicle distance La, the process proceeds to step S5.
[0020]
In step S5, the deceleration of the preceding vehicle 200 is determined based on the deceleration α calculated in step S3. If the deceleration of the preceding vehicle 200 is determined, the process proceeds to step S6, and if it is determined that the vehicle is not decelerated, the process proceeds to step S10.
[0021]
In step S6, the set inter-vehicle distance calculating means 5 determines that the vehicle speed V of the own vehicle 100 during the deceleration of the preceding vehicle 200 F0 And the vehicle speed V of the preceding vehicle 200 L0 And deceleration α, and the following distance L 0 And read. When these parameters are read, the process proceeds to step S7. In step S7, a conditional expression ΔL for determining the rear-end collision situation D1 is calculated by the following equation (11). Note that ΔL represented by Expression (11) is derived from Expression (9) or (10) described above.
ΔL = V L0 (2V F0 -V L0 ) / 2α (11)
[0022]
After calculating the conditional expression ΔL, the process proceeds to step S8. In step S8, the inter-vehicle distance L read by the rear-end collision traveling state determination means 8 in step S6. 0 Then, the rear-end collision traveling state D1 is determined based on the conditional expression ΔL calculated in step S7. That is, the inter-vehicle distance L 0 Is greater than or equal to ΔL, it is determined that the vehicle 200 is in a rear-end collision state in which the preceding vehicle 200 starts decelerating and stops and then collides. In this case, since there is a high possibility that the vehicle will collide with the preceding vehicle 200, the process proceeds to step S9 in order to correct the set inter-vehicle distance La calculated in step S4. In step S9, in order to make the set inter-vehicle distance La longer, the set inter-vehicle distance La calculated in step S4 is multiplied by a correction coefficient k (> 1) to calculate the corrected set inter-vehicle distance La (Equation ( 12)).
La = k · La (12)
In the present embodiment, k = 1.6. After correcting the set inter-vehicle distance La, the process proceeds to step S10.
[0023]
On the other hand, in step S8, the inter-vehicle distance L 0 Is smaller than ΔL, it is determined that the own vehicle 100 is in a rear-end collision while the preceding vehicle 200 is traveling. In this case, since the vehicle is in a traveling state in which a rear-end collision is unlikely to occur, the process proceeds to step S10 without correcting the set inter-vehicle distance La.
[0024]
In step S10, the risk degree determination means 6 compares the inter-vehicle distance L captured in step S1 with the set inter-vehicle distance La calculated in step S4 or the set inter-vehicle distance La after correction in step S9. To determine the possibility of collision. When La> L holds, it is determined that the rear-end collision possibility is high, and the process proceeds to step S11. In step S11, an alarm is issued by the alarm means 7 to urge the driver to decelerate. On the other hand, when La ≦ L is satisfied in step S10, it is determined that the possibility of a rear-end collision is low, and the process returns to step S1.
[0025]
According to the rear-end collision warning device in the first embodiment, the vehicle speed V of the vehicle 100 F And the relative speed V with respect to the preceding vehicle 200 R The set inter-vehicle distance La is calculated on the basis of the following formula (Step S4), and the possibility of collision is determined by comparing the inter-vehicle distance L with the preceding vehicle 200 and the set inter-vehicle distance La (Step S10). At this time, when it is determined that the preceding vehicle 200 is decelerating (step S5), the vehicle speed V of the host vehicle 100 at that time is determined. F0 And the vehicle speed V of the preceding vehicle 200 L0 And deceleration α, and the following distance L 0 Is used to calculate a conditional expression ΔL for determining the rear-end collision situation D1 (step S7), and the inter-vehicle distance L is calculated. 0 The rear-end collision traveling state D1 is determined based on the conditional expression ΔL (step S8). If it is determined that the rear-end collision traveling state D1 is a rear-end collision traveling state in which the preceding vehicle 200 starts decelerating and stops and then collides, the possibility of rear-end collision with the preceding vehicle 200 is high. Therefore, the set inter-vehicle distance La is corrected. A new set inter-vehicle distance La is calculated (step S9). Thereby, the running conditions of the preceding vehicle 200 and the own vehicle 100 when the preceding vehicle 200 starts to decelerate, and the inter-vehicle distance L 0 Can be determined using the set inter-vehicle distance La in consideration of the above, it is possible to prevent a troublesome alarm based on an instantaneous collision risk from being issued. That is, it is possible to issue an appropriate rear-end collision warning based on the traveling situation viewed on the time axis.
[0026]
The rear-end collision traveling state determination means 8 predicts the rear-end collision traveling state D1 when the deceleration of the preceding vehicle 200 is determined, so that the rear-end collision traveling state can be predicted in a state where there is a high possibility of a rear-end collision. In addition, the prediction of the rear-end collision traveling state is based on the speed V of the own vehicle 100 when it is determined that the preceding vehicle 200 is decelerating. F0 And the vehicle speed V of the preceding vehicle 200 L0 And deceleration α, and the following distance L 0 Therefore, it is possible to predict the rear-end collision traveling state according to the actual traveling state.
[0027]
The rear-end collision state determination means 8 performs one of a rear-end collision state in which the host vehicle 100 collides with the traveling front vehicle 200 and a rear-end collision state in which the host vehicle 100 collides after the preceding vehicle 200 decelerates and stops. Since the traveling state is predicted, an appropriate set inter-vehicle distance La can be calculated according to the predicted rear-end collision traveling state. That is, when it is predicted that the own vehicle 100 will collide after the preceding vehicle 200 has decelerated and stopped, the correction for increasing the set inter-vehicle distance La calculated by the set inter-vehicle distance calculation means 5 is performed. In addition, a troublesome alarm based on a momentary collision possibility can be prevented from being issued.
[0028]
-2nd Embodiment-
The configuration of the rear-end collision warning device according to the second embodiment is the same as the configuration of the rear-end collision warning device according to the first embodiment shown in FIG. The rear-end collision warning device according to the second embodiment is characterized in the processing performed by the rear-end collision traveling state determination means 8. Hereinafter, a processing procedure performed by the rear-end collision warning device according to the second embodiment will be described with reference to a flowchart illustrated in FIG.
[0029]
Among the processes performed in the flowchart illustrated in FIG. 4, the same processes as those performed in the flowchart illustrated in FIG. 3 are denoted by the same reference numerals. That is, the processing performed in steps S1 to S11 is the same as the processing according to the flowchart shown in FIG. 3, and a detailed description thereof will be omitted. In step S <b> 8, the rear-end collision traveling state determining means 8 determines that the inter-vehicle distance L during which the 0 Is compared with the conditional expression ΔL calculated in step S7 to determine the rear-end collision traveling situation D1. That is, L 0 When ≧ ΔL holds, it is determined that the vehicle 100 is in a rear-end collision traveling situation in which the own vehicle 100 collides after the preceding vehicle 200 stops after deceleration.
[0030]
However, under actual driving conditions, L 0 As a rear-end collision situation when ≧ ΔL is established, (1) a rear-end collision situation where the own vehicle 100 follows the preceding vehicle 200 that has recognized that the self-vehicle 100 is following, and (2) a rear-end collision situation where the own vehicle 100 follows There is a driving situation in which the vehicle collides with a preceding vehicle 200 that does not recognize that the vehicle is in a stop, for example, a vehicle that has already stopped. The rear-end collision situation of (2) may occur when the distance to the preceding vehicle 200 is long. In this case, if the relative speed with respect to the preceding vehicle 200 is high, the risk of a rear-end collision increases, but the driver's caution is high because the inter-vehicle distance is long. That is, in the process of approaching the preceding vehicle 200, the interruption of another vehicle and the risk of collision with an object other than the preceding vehicle 200 are also conscious, so that it can be determined that the vehicle is in a situation in which a rear-end collision is unlikely to occur as a result.
[0031]
In the second embodiment, in order to distinguish between the rear-end collision situations (1) and (2), the inter-vehicle distance L during which the preceding vehicle 200 is decelerating is determined. 0 Predetermined inter-vehicle distance L for comparison with T Set. The rear-end collision traveling state determining means 8 calculates the following distance L 0 Is greater than or equal to ΔL and a predetermined inter-vehicle distance L T If smaller, it is determined that the vehicle is in the rear-end collision condition (1), and L 0 > L T Is established, it is determined that the vehicle is in the rear-end collision situation of (2). In the present embodiment, the predetermined inter-vehicle distance L T Is set to 40 m.
[0032]
In the determination in step S8 of the flowchart shown in FIG. 0 If it is determined that is less than or equal to ΔL, the process proceeds to step S12, and if it is determined that is less than ΔL, the process proceeds to step S10. In step S12, the inter-vehicle distance L 0 Is the predetermined distance L T It is determined whether it is smaller than. L 0 <L T Is satisfied, the above-described (1) rear-end collision traveling state, that is, the rear-end collision traveling state in which the own vehicle 100 collides after the preceding vehicle 200 following the deceleration stop, and the rear-end collision is likely to occur. The process proceeds to step S9 to correct the set inter-vehicle distance La. On the other hand, L 0 <L T In the case of (2), since the rear-end collision traveling state described in (2) above is a traveling state in which rear-end collision is unlikely to occur, the process proceeds to step S10 without correcting the set inter-vehicle distance La.
[0033]
According to the rear-end collision warning device in the second embodiment, the following distance L during deceleration of the preceding vehicle 200 is obtained. 0 And the predetermined inter-vehicle distance L T Based on this, it is determined whether there is a high possibility that the host vehicle 100 will collide with the preceding vehicle 200, and if it is determined that there is a high possibility of collision, the set inter-vehicle distance La is corrected. Further, it is possible to determine the degree of rear-end collision according to the actual driving behavior and the situation where a rear-end collision occurs. Conversely, L 0 Even if the condition of ≧ ΔL is satisfied, if the rear-end collision possibility is low, the correction of the set inter-vehicle distance La is not performed, so that it is possible to prevent a troublesome alarm from being issued in a situation where the rear-end collision possibility is low. it can.
[0034]
The set inter-vehicle distance La is determined by the rear-end collision traveling state determining means 8 to be a traveling state in which the own vehicle 100 collides after the preceding vehicle 200 has decelerated and stopped, and the inter-vehicle distance during which the preceding vehicle 200 is decelerating is a predetermined distance. L T When the distance is shorter, the lengthening correction is performed, so that it is possible to realize a more detailed rear-end collision warning suitable for the actual driving behavior.
[0035]
-Third embodiment-
FIG. 5 is a diagram illustrating a configuration of a rear-end collision warning device according to the third embodiment. The rear-end collision warning device according to the third embodiment includes an inattentive movement detection unit 10 in addition to the configuration of the rear-end collision alarm device according to the first embodiment shown in FIG. The inattentive motion detection means 10 detects an inattentive motion such as the driver turning sideways based on, for example, the position of the driver's viewpoint. The detected inattentive movement information D3 is sent to the risk degree determination means 6. The risk degree judging means 6 includes an inter-vehicle distance L between the vehicle and the preceding vehicle 200 measured by the inter-vehicle distance measuring means 2, a set inter-vehicle distance La calculated by the set inter-vehicle distance calculating means 5, and an inattentive motion detecting means. The rear-end collision risk level D2 is determined based on the inattentive motion information D3 detected at 10.
[0036]
FIG. 6 is a flowchart illustrating a control procedure performed by the rear-end collision warning device according to the third embodiment. Steps for performing the same processing in the flowchart shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted. In step S13, the set inter-vehicle distance calculating means 5 takes in the inattentive movement information D3 detected by the inattentive movement detecting means 10. When the inattentive movement information D3 is captured, the process proceeds to step S1. The processing performed in steps S1 to S8 is the same as the processing in steps S1 to S8 in the flowchart shown in FIG.
[0037]
In step S8, L 0 If it is determined that the condition of ≧ ΔL is satisfied, the process proceeds to step S14. In step S14, it is determined whether or not the driver's inattentive operation has been detected based on the inattentive operation information D3 captured in step S13. If it is determined that the driver's inattentive operation has been detected, there is a high possibility that the vehicle will collide with the preceding vehicle 200, so the process proceeds to step S9 to correct the set inter-vehicle distance La. In step S9, the set inter-vehicle distance La calculated in step S4 is corrected using the correction coefficient k. However, when the driver is performing an inattentive operation, it can be said that the possibility of a rear-end collision is extremely high. Let k be, for example, 2.0. On the other hand, when the driver's inattentive operation is not detected, the process proceeds to step S10 without correcting the set inter-vehicle distance La, and the collision risk degree D2 is determined.
[0038]
According to the rear-end collision warning device according to the third embodiment, the set inter-vehicle distance is set in a rear-end collision state in which the host vehicle 100 collides after the preceding vehicle 200 stops after deceleration and when the driver's inattentive operation is detected. Since La is corrected, it is possible to issue a rear-end collision warning in consideration of the driving situation of the driver.
[0039]
In other words, by further including the inattentive movement detection means 10 for detecting the inattentive movement of the driver of the own vehicle 100, the rear-end collision traveling state is determined by the rear-end collision traveling state determination means 8 so that the own vehicle 100 collides after the preceding vehicle 200 stops. Is determined, and when the driver's inattentive motion detection means 10 detects the driver's inattentive motion, a correction to increase the set inter-vehicle distance La is performed, so that a rear-end collision warning taking into account the driver's attention to the front is realized. Becomes possible.
[0040]
The present invention is not limited to the above embodiment. For example, the correction coefficient k and the predetermined distance L T Is not limited to the values described above. In addition, the processing up to the calculation of the set inter-vehicle distance La and the calculation of the rear-end collision risk degree has been described in one flowchart, but the correction calculation processing of the set inter-vehicle distance La may be performed as another routine. For example, in the case of the flowchart shown in FIG. 3, the processing of steps S1 to S4 and steps S10 and S11 may be a series of processing, and the correction calculation processing of the set inter-vehicle distance La performed in steps S5 to S9 may be performed in parallel. . In this case, when a new set inter-vehicle distance La is calculated in the correction calculation processing, the rear-end collision determination processing in step S10 is performed using the newly calculated set inter-vehicle distance La.
[0041]
The correspondence between the components of the claims and the components of the embodiment is as follows. That is, the following distance measuring means 2 is a distance measuring means, the vehicle speed measuring means 3 is a vehicle speed measuring means, the relative speed calculating means 4 is a relative speed detecting means, and the set following distance calculating means 5 is a set following distance calculating means and deceleration judgment. Means, a rear-end collision situation determination means 8, a rear-end collision situation prediction means, a set inter-vehicle distance correction section 9, a set inter-vehicle distance correction section, a risk degree judgment section 6, a rear-end collision risk degree judgment section, and an alarm section 7, an alarm section. Respectively.
[0042]
In the above-described embodiment, the deceleration of the preceding vehicle 200 is determined in step S5. However, the determination can be made by detecting the start of deceleration. In step S6, the host vehicle speed and the like can be changed throughout the deceleration. However, the detection may be replaced with the detection of the own vehicle speed or the like immediately before the preceding vehicle 200 decelerates. In the above-described embodiment, the correction for increasing the inter-vehicle distance is performed. However, it is needless to say that the correction for shortening the set inter-vehicle distance can be performed to reduce troublesomeness. Note that each component is not limited to the above configuration as long as the characteristic functions of the present invention are not impaired.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a rear-end collision warning device according to a first embodiment.
2A and 2B are diagrams showing a positional relationship between a preceding vehicle and a host vehicle, wherein FIG. 2A shows a situation before the preceding vehicle decelerates, and FIG. FIG. 2C is a diagram illustrating a situation when deceleration is started, and FIG. 2C is a diagram illustrating a situation when t seconds have elapsed since the preceding vehicle started decelerating.
FIG. 3 is a flowchart illustrating a processing procedure performed by the rear-end collision warning device according to the first embodiment;
FIG. 4 is a flowchart showing a processing procedure performed by the rear-end collision warning device according to the second embodiment;
FIG. 5 is a diagram showing a configuration of a rear-end collision warning device according to a third embodiment.
FIG. 6 is a flowchart illustrating a processing procedure performed by the rear-end collision warning device according to the third embodiment;
[Explanation of symbols]
2 ... inter-vehicle distance measuring means, 3 ... vehicle speed measuring means, 4 ... relative speed calculating means, 5 ... set inter-vehicle distance calculating means, 6 ... risk degree judging means, 7 ... alarm means, 8 ... rear-end collision situation judging means, 9 ... Set inter-vehicle distance correction means, 10 ... inattentive motion detection means, 100 ... own vehicle, 200 ... preceding vehicle

Claims (7)

自車両前方の物体までの距離を測定する距離測定手段と、
前記自車両の速度を測定する車速測定手段と、
前記自車両と前記物体との相対速度を検出する相対速度検出手段と、
前記車速測定手段により測定された速度と、前記相対速度検出手段により検出された相対速度とに基づいて、前記自車両と前記物体との間の設定車間距離を演算する設定車間距離演算手段と、
前記自車両が前記物体に追突する追突走行状況を予測する追突走行状況予測手段と、
前記追突走行状況予測手段により予測された追突走行状況に基づいて、前記設定車間距離演算手段にて演算される設定車間距離を補正する設定車間距離補正手段と、
前記設定車間距離演算手段にて演算された設定車間距離または前記設定車間距離補正手段により補正された設定車間距離と、前記距離測定手段により測定された前記物体までの距離とに基づいて、前記自車両と前記物体との追突リスク度を判定する追突リスク度判定手段と、
前記追突リスク度判定手段により判定された追突リスク度に基づいて、警報を発する警報手段とを備えることを特徴とする追突警報装置。
Distance measuring means for measuring a distance to an object in front of the vehicle,
Vehicle speed measuring means for measuring the speed of the vehicle,
Relative speed detecting means for detecting a relative speed between the host vehicle and the object,
A set inter-vehicle distance calculating unit that calculates a set inter-vehicle distance between the host vehicle and the object based on the speed measured by the vehicle speed measuring unit and the relative speed detected by the relative speed detecting unit;
A rear-end collision traveling state prediction unit that predicts a rear-end collision traveling state in which the host vehicle collides with the object;
A set inter-vehicle distance correction unit that corrects the set inter-vehicle distance calculated by the set inter-vehicle distance calculation unit based on the rear-end collision situation predicted by the rear-end collision situation prediction unit;
On the basis of the set inter-vehicle distance calculated by the set inter-vehicle distance calculation means or the set inter-vehicle distance corrected by the set inter-vehicle distance correction means, and the distance to the object measured by the distance measurement means, A rear-end collision risk degree determining unit that determines a rear-end collision degree between a vehicle and the object,
A rear-end collision warning device comprising: an alarm unit that issues an alarm based on the rear-end collision risk degree determined by the rear-end collision degree determination unit.
請求項1に記載の追突警報装置において、
前記物体の減速を判定する減速判定手段をさらに備え、
前記追突走行状況予測手段は、前記減速判定手段により前記物体の減速を判定した時に、前記追突走行状況を予測することを特徴とする追突警報装置。
The rear-end collision warning device according to claim 1,
The apparatus further includes deceleration determining means for determining deceleration of the object,
The rear-end collision warning device, wherein the rear-end collision traveling state predicting unit predicts the rear-end collision traveling state when the deceleration determining unit determines that the object is decelerated.
請求項1に記載の追突警報装置において、
前記車速測定手段により測定された自車両の速度と、前記相対速度検出手段により検出された相対速度とに基づいて、前記物体の速度を検出する物体速度検出手段と、
前記物体速度検出手段により検出された物体の速度に基づいて、前記物体の減速度を検出する減速度検出手段とをさらに備え、
前記追突走行状況予測手段は、前記減速判定手段により前記物体の減速を判定した時の前記自車両の速度と、前記物体の速度と、前記物体までの距離と、前記物体の減速度とに基づいて、前記追突走行状況を予測することを特徴とする追突警報装置。
The rear-end collision warning device according to claim 1,
Object speed detecting means for detecting the speed of the object, based on the speed of the own vehicle measured by the vehicle speed measuring means and the relative speed detected by the relative speed detecting means,
A deceleration detecting unit configured to detect a deceleration of the object based on the speed of the object detected by the object speed detecting unit,
The rear-end collision situation predicting means is based on a speed of the own vehicle when the deceleration determining means determines the deceleration of the object, a speed of the object, a distance to the object, and a deceleration of the object. A rear-end collision warning device for predicting the rear-end collision traveling state.
請求項1〜3のいずれかに記載の追突警報装置において、
前記追突走行状況予測手段は、移動中の前記物体に前記自車両が追突する追突走行状況、および、前記物体が減速停止した後に前記自車両が追突する追突走行状況のいずれか一方の追突走行状況を予測することを特徴とする追突警報装置。
The rear-end collision warning device according to any one of claims 1 to 3,
The rear-end collision traveling state predicting means may perform one of a rear-end collision traveling state in which the own vehicle collides with the moving object and a rear-end collision traveling state in which the own vehicle collides after the object decelerates and stops. A rear-end collision warning device characterized by predicting a collision.
請求項4に記載の追突警報装置において、
前記設定車間距離補正手段は、前記追突走行状況予測手段により前記物体が減速停止した後に前記自車両が追突する追突走行状況であると予測された時は、前記設定車間距離演算手段により演算された設定車間距離を長くするための補正を行うことを特徴とする追突警報装置。
The rear-end collision warning device according to claim 4,
The set inter-vehicle distance correction means is calculated by the set inter-vehicle distance calculation means when the rear-end collision state prediction means predicts that the own vehicle is in a rear-end collision traveling state after the object has decelerated and stopped. A rear-end collision warning device that performs a correction for increasing a set inter-vehicle distance.
請求項4に記載の追突警報装置において、
前記設定車間距離補正手段は、前記追突走行状況予測手段により前記物体が減速停止した後に前記自車両が追突する追突走行状況であると予測され、かつ、前記物体が減速中の前記物体までの距離が所定距離より短い時に、前記設定車間距離演算手段により演算された設定車間距離を長くするための補正を行うことを特徴とする追突警報装置。
The rear-end collision warning device according to claim 4,
The set inter-vehicle distance correction unit is predicted to be in a rear-end collision state in which the own vehicle collides after the object is decelerated and stopped by the rear-end collision state prediction unit, and the distance to the object in which the object is decelerating. A rear-end collision warning device that performs a correction for increasing the set inter-vehicle distance calculated by the set inter-vehicle distance calculation means when is shorter than a predetermined distance.
請求項1〜4のいずれかに記載の追突警報装置において、
前記自車両の運転者の脇見動作を検出する脇見動作検出手段をさらに備え、
前記設定車間距離補正手段は、前記追突走行状況予測手段により前記物体が減速停止した後に前記自車両が追突する追突走行状況であると予測され、かつ、前記脇見動作検出手段により運転者の脇見動作が検出された時に、前記設定車間距離演算手段により演算された設定車間距離を長くするための補正を行うことを特徴とする追突警報装置。
The rear-end collision warning device according to any one of claims 1 to 4,
Further comprising an inattentive operation detection means for detecting an inattentive operation of the driver of the vehicle,
The set inter-vehicle distance correction unit is configured to predict the rear-end collision state in which the subject vehicle collides after the object has decelerated and stopped by the rear-end collision state prediction unit, and that the inattention operation of the driver is performed by the inattention operation detection unit. A rear-end collision warning device that performs a correction for increasing the set inter-vehicle distance calculated by the set inter-vehicle distance calculation means when is detected.
JP2002178575A 2002-06-19 2002-06-19 Rear-end collision alarm Pending JP2004021815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178575A JP2004021815A (en) 2002-06-19 2002-06-19 Rear-end collision alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178575A JP2004021815A (en) 2002-06-19 2002-06-19 Rear-end collision alarm

Publications (1)

Publication Number Publication Date
JP2004021815A true JP2004021815A (en) 2004-01-22

Family

ID=31176261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178575A Pending JP2004021815A (en) 2002-06-19 2002-06-19 Rear-end collision alarm

Country Status (1)

Country Link
JP (1) JP2004021815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211498A (en) * 2008-03-05 2009-09-17 Honda Motor Co Ltd Vehicular alarm
KR101285350B1 (en) 2011-12-30 2013-07-10 부산대학교 산학협력단 Collision avoidance apparatus with adaptive type laser sensor and method using the same
CN113002533A (en) * 2019-12-20 2021-06-22 观致汽车有限公司 Vehicle and control method and device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211498A (en) * 2008-03-05 2009-09-17 Honda Motor Co Ltd Vehicular alarm
KR101285350B1 (en) 2011-12-30 2013-07-10 부산대학교 산학협력단 Collision avoidance apparatus with adaptive type laser sensor and method using the same
CN113002533A (en) * 2019-12-20 2021-06-22 观致汽车有限公司 Vehicle and control method and device thereof

Similar Documents

Publication Publication Date Title
US8781720B2 (en) Vehicle travel track estimator
CN110733501B (en) Method for automatically avoiding collisions
JP3189560B2 (en) Inter-vehicle distance detection device and inter-vehicle distance alarm device
US6871145B2 (en) Method and system for vehicle impact assessment using driver braking estimation
JP5278776B2 (en) Object detection apparatus and object detection method
CN101425228B (en) Monitoring target detecting apparatus associated with collision damage reducing apparatus
JP3031119B2 (en) Vehicle collision prevention device
KR20140118750A (en) Driving support system
KR20150099454A (en) Vehicle-installed obstacle detection apparatus having function for judging motion condition of detected object
WO2006126743A1 (en) Vehicle departure detecting device
CN101468630A (en) Device for reducing collision damage
JP5938518B2 (en) Collision safety control device
KR20200120082A (en) Control method for collision avoidance of vehicle and apparatus thereof
JP2008008679A (en) Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus
JP2012226635A (en) Collision prevention safety device for vehicle
JP3391091B2 (en) Inter-vehicle distance alarm
JP2000298800A (en) Device measuring distance between vehicles and collision warning device
JP2004224254A (en) Alarm device for vehicle
JP2017045367A (en) Vehicle control device and vehicle control method
JP2002248965A (en) Traveling control system for vehicle
JP2004021815A (en) Rear-end collision alarm
JP4569853B2 (en) Vehicle alarm device
JP2005199930A (en) Vehicle traveling control device
JP2005044167A (en) Device for reporting information on vehicle collision accident
JP2006024106A (en) Contact avoidance controller of vehicle