JP2004020323A - Measuring instrument provided with function for finding uncertainty - Google Patents

Measuring instrument provided with function for finding uncertainty Download PDF

Info

Publication number
JP2004020323A
JP2004020323A JP2002174320A JP2002174320A JP2004020323A JP 2004020323 A JP2004020323 A JP 2004020323A JP 2002174320 A JP2002174320 A JP 2002174320A JP 2002174320 A JP2002174320 A JP 2002174320A JP 2004020323 A JP2004020323 A JP 2004020323A
Authority
JP
Japan
Prior art keywords
uncertainty
unknown sample
calibration curve
combined
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174320A
Other languages
Japanese (ja)
Inventor
Mikio Sugioka
杉岡 幹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002174320A priority Critical patent/JP2004020323A/en
Publication of JP2004020323A publication Critical patent/JP2004020323A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a working time for finding composition uncertainty for a measured data to be displayed. <P>SOLUTION: Uncertainty Uc [appliance tolerance] of appliance tolerance in a measuring part 2, and uncertainty Uc [appliance operation] of an appliance operation are held in a known uncertainty holding part 4. A calibration curve uncertainty calculating part 6 calculates uncertainty Uc[calibration curve] of a calibration curve when the measuring part 2 measures a standard sample. When an unknown sample is measured by the measuring part 2, an unknown sample uncertainty calculating part 8 calculates uncertainty Uc [unknown sample] for an unknown sample measured value therein, a composition uncertainty calculating part 10 composes the uncertainties Uc [appliance tolerance], Uc [appliance operation], Uc[calibration curve] and Uc [unknown sample], to calculate composition uncertainty Uc, and a display part 12 displays the calculated composition uncertainty Uc together with the measured value of the unknown sample. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶液やガスなどの試料の化学量又は物理量を定量測定する分野において使用される液体クロマトグラフ(LC)、ガスクロマトグラフ(GC)、質量分析計(MS)などの計測装置に関し、特に試料を測定して得られた結果を検量線に当てはめて目的とする物質の定量値を求める計測装置に関するものである。
【0002】
【従来の技術】
昨今、国際的に、分析の分野では、求めたデータに不確かさの値をつけて出力又は表示するようになってきている。
不確かさは、分析者の器具操作による不確かさ、器具自体の公差による誤差、そして計測装置のデータふらつきによる誤差等の、さまざまな不確かさを統合したものとして算出される。すなわち、不確かさとは、出てきた結果がどの程度の信頼度をもった値なのかを明確にするための指標といえる。
【0003】
そのための計算方法は、統計学等で確立されているが、この値を算出しようと思えば、かなり大変な作業となる。とくに、計測装置のデータのふらつき(ノイズ誤差、データのバラツキ、又は繰返し再現性誤差などとも呼ばれる)によるデータ自体の不確かさも含めて、全ての不確かさを計算し組み合わせて最終的な合成不確かさとして計測結果に反映させる作業は、コンピュータを用いて表計算ソフトExcel等により計算させることになるため、時間のかかる作業であった。
しかも、計測データ表示と不確かさの計算結果の表示とは時間差があるため、計測を行う者がその計測データの信頼性を直ちに知ることはできなかった。
【0004】
【発明が解決しようとする課題】
本発明は、計測データの信頼性を表す合成不確かさを求めて表示するための作業時間をできるだけ短縮することを目的とするものである。
【0005】
【課題を解決するための手段】
この目的を達成するために、本発明は計測装置自体に不確かさを自動的に計算して表示する機能をもたせたものであり、図1に示されるように構成される。
2は試料の化学量又は物理量を定量測定する測定部である。4は既知不確かさ保持部であり、そこには測定部2の器具公差の不確かさUc[器具公差]及び器具操作の不確かさUc[器具操作]が保持される。6は検量線不確かさ算出部であり、測定部2が標準試料を測定したときの検量線の不確かさUc[検量線]を算出する。8は未知試料不確かさ算出部であり、測定部2が未知試料を測定したときの未知試料測定値に対する不確かさUc[未知試料]を算出する。10は合成不確かさ算出部であり、これらの不確かさUc[器具公差]、Uc[器具操作]、Uc[検量線]及びUc[未知試料]を合成して合成不確かさUcを算出する。表示部12は、合成不確かさ算出部10が算出した合成不確かさUcを未知試料の測定値とともに表示する。
【0006】
不確かさとしては一般に標準偏差が用いられる。また他の方法とし相対不確かさを用いることもできる。相対不確かさは標準偏差を平均値で割った値であり、相対標準偏差、又は変動係数とも呼ばれる。
【0007】
各不確かさを標準偏差又は相対標準偏差で表わした場合、合成不確かさは合成標準不確かさと呼ぶ。合成標準不確かさの求め方の一例は、平方和(2乗の平方和)であり、各不確かさを標準偏差又は相対標準偏差として求め、それぞれを2乗したものを足しあい、その和の平方根を求めたものである。
【0008】
器具公差の不確かさUc[器具公差]は計測装置により予め求められているものであり、標準物質の測定結果や既知の測定結果のデータに基づいて推定されたり、物理定数などに基づいて見積もられたりすることにより得られる不確かさである。
【0009】
器具操作の不確かさUc[器具操作]は、操作をする人の熟練度に依存する不確かさであり、一連の繰返し測定に基づいて統計的に評価することができる。
【0010】
器具公差の不確かさUc[器具公差]と器具操作の不確かさUc[器具操作]は予め求められているものであり、既知不確かさ保持部4にキーボードやパネルなどの入力部から入力されて設定されている。
【0011】
検量線不確かさUc[検量線]は、標準試料を測定して検量線データを求める際、標準試料を複数回測定し、そのデータのバラツキから求めることができ、例えば複数回の標準試料測定データの相対標準偏差として求めることができる。
【0012】
未知試料不確かさUc[未知試料]は、未知試料を複数回繰返し測定したときのデータのバラツキから求めることができる。未知試料不確かさも複数回の繰返し測定のデータに基づく相対標準偏差として求めることができる。
【0013】
【発明の実施の形態】
本発明は液体クロマトグラフなどの分析装置で実現され、図1に示された検量線不確かさ算出部6、未知試料不確かさ算出部8及び合成不確かさ算出部10はその分析装置の制御部に備えられているCPU(中央処理装置)により実現される。また、器具公差の不確かさUc[器具公差]及び器具操作の不確かさUc[器具操作]を保持する既知不確かさ保持部4はその分析装置の制御部に備えられている記憶装置により実現される。
【0014】
この実施例の動作を図2のフローチャートを参照して説明する。
本発明を実現した分析装置の表示画面には、「不確かさ条件設定画面」が表示され、標準試料の種類M、繰返し誤差を見るための測定回数(n回)、器具公差の不確かさUc[器具公差]及び器具操作の不確かさUc[器具操作]をキーボードから入力して設定できるようになっている。
【0015】
不確かさは標準偏差として表すものとして説明する。
この分析装置の操作にあたり、分析者の器具操作での標準不確かさUc[器具操作]と器具自体の公差による不確かさUc[器具公差]の値を予め算出しておく。
【0016】
まず、それらの値、すなわち器具操作での標準不確かさUc[器具操作]と器具自体の公差による不確かさUc[器具公差]を「不確かさ条件設定画面」で予め入力しておく。また、表示画面の「不確かさ条件設定画面」で、標準試料の種類Mと、繰返し誤差を見るための測定回数(n回)も入力する。
【0017】
次に、測定部での測定値から濃度など、求めようとする値に変換するための検量線を作成する。その検量線の作成のために、M個の標準試料ごとのそれぞれにおいてn回ずつデータが測定され、そのn回データの平均値からそのM個データの検量線が求められる。そして、M個の標準試料それぞれのn回のバラツキを考慮した形で、検量線の標準不確かさUc[検量線]が算出される。
【0018】
次に、未知試料の測定に進む。最初の未知試料である未知試料1をn回繰り返して測定し、その測定結果から未知試料1自体のデータのふらつき(n回繰返し測定によるふらつき誤差)による標準不確かさUc[未知1]が算出される。
【0019】
そして、その未知試料1の不確かさの最終的な指標となる合成標準不確かさUclが、Uc[器具操作]、Uc[器具公差]、Uc[検量線]及びUc[未知1]からCPUでソフトウェアにより求められる。
【0020】
2番目の未知試料2についても、同様にn回の測定が行われ、未知試料2の標準不確かさUc[未知2]が算出され、Uc[器具操作]、Uc[器具公差]及びUc[検量線]とともに用いられて合成標準不確かさUc2が算出される。
【0021】
同様にして、順次測定すべき未知試料がn回ずつ測定され、各未知試料の測定値に検量線データを適用して濃度などの定量値が求められるとともに、各未知試料の合成標準不確かさUcが次々に算出されていく。
【0022】
図3には、求められた濃度値とともに、算出された合成標準不確かさの値を添付して表示する例を示す。不確かさが標準偏差で表わされている場合、分布が正規分布の場合には、標準偏差をσで表わすと、平均±1σ以内に存在する確率は約68%である。図3の例は、合成不確かさとして合成標準不確かさ±σを示したものである。したがって、分布が正規分布と仮定すれば、図3に表示された(定量値)±(不確かさ)以内に真値が存在する確率は約68%であることを意味する。
【0023】
また、濃度値などの測定結果とともに表示する合成不確かさの値としては、合成標準不確かさを2倍した拡張不確かさを用いてもよい。分布が正規分布の場合は、真値が平均±2σ以内に存在する確率は約95%であるので、拡張不確かさを添付して表示すれば、そこに表示された(定量値)±(拡張不確かさ)は信頼性95%を意味することになる。
【0024】
なお、合成標準不確かさを3倍した不確かさを用いたとすれば、分布が正規分布であれば平均±3σ以内に存在する確率は約99.7%であるので、そこに表示された(定量値)±(不確かさ)は信頼性約99.7%を意味することになる。
【0025】
【発明の効果】
これまでは、合成不確かさは測定後に自分で計算して出さなければならなかったが、本発明では、器具公差の不確かさUc[器具公差]及び器具操作の不確かさUc[器具操作]を設定しておけば、検量線不確かさ算出部により標準試料を測定したときの検量線の不確かさUc[検量線]が算出され、未知試料不確かさ算出部により未知試料を測定したときの未知試料測定値に対する不確かさUc[未知試料]が算出され、合成不確かさ算出部によりこれらの不確かさを合成して合成不確かさUcが算出され、その算出された合成不確かさUcが表示部に未知試料の測定値とともに表示されるようにしたので、未知試料の測定終了と同時に、その「不確かさ」が算出されて表示されるので、次のような効果を達成することができる。
▲1▼合成不確かさUcまで算出してくるまでの作業量が従来よりかなり減る。
▲2▼測定後すぐに不確かさが求まるので、分析者は、測定値の信頼性をリアルタイムに判断できる。
▲3▼依頼分析会社などで、今後は不確かさまでデータに添付して出すことが要求されるが、それを効率的に算出できるため、コストの面でも寄与が大きい。
【図面の簡単な説明】
【図1】本発明を示すブロック図である。
【図2】一実施例の動作を示すフローチャート図である。
【図3】測定結果の表示画面の一例を示す図である。
【符号の説明】
2   測定部
4   既知不確かさ保持部
6   検量線不確かさ算出部
8   未知試料不確かさ算出部
10   10は合成不確かさ算出部
12   表示部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring apparatus such as a liquid chromatograph (LC), a gas chromatograph (GC), and a mass spectrometer (MS) used in the field of quantitatively measuring the stoichiometry or physical quantity of a sample such as a solution or a gas, and in particular, The present invention relates to a measurement apparatus for determining a quantitative value of a target substance by applying a result obtained by measuring a sample to a calibration curve.
[0002]
[Prior art]
In recent years, in the field of analysis, obtained data is output or displayed with an uncertainty value attached thereto.
The uncertainty is calculated as an integrated value of various uncertainties, such as an uncertainty due to the operation of the instrument by the analyst, an error due to tolerance of the instrument itself, and an error due to data fluctuation of the measuring device. In other words, the uncertainty can be said to be an index for clarifying the degree of reliability of the result.
[0003]
The calculation method for that has been established by statistics and the like, but if this value is to be calculated, it will be quite a difficult task. In particular, all uncertainties, including the uncertainty of the data itself due to fluctuations in the data of the measuring device (also called noise errors, data variations, or repeatability errors) are calculated and combined to form the final combined uncertainty. The work to be reflected in the measurement results is a time-consuming work because it is calculated by spreadsheet software Excel or the like using a computer.
Moreover, since there is a time difference between the display of the measurement data and the display of the calculation result of the uncertainty, the person performing the measurement cannot immediately know the reliability of the measurement data.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to reduce as much as possible the work time for obtaining and displaying a combined uncertainty representing the reliability of measurement data.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the present invention has a function of automatically calculating and displaying the uncertainty in the measuring apparatus itself, and is configured as shown in FIG.
Reference numeral 2 denotes a measuring unit for quantitatively measuring the stoichiometry or physical quantity of the sample. Reference numeral 4 denotes a known uncertainty holding unit which holds the uncertainty Uc [instrument tolerance] of the instrument tolerance of the measuring unit 2 and the uncertainty Uc [instrument operation] of the instrument operation. Reference numeral 6 denotes a calibration curve uncertainty calculation unit that calculates the uncertainty Uc [calibration curve] of the calibration curve when the measuring unit 2 measures the standard sample. Reference numeral 8 denotes an unknown sample uncertainty calculation unit, which calculates the uncertainty Uc [unknown sample] for the unknown sample measurement value when the measuring unit 2 measures the unknown sample. Reference numeral 10 denotes a combined uncertainty calculation unit that combines these uncertainties Uc [instrument tolerance], Uc [instrument operation], Uc [calibration curve], and Uc [unknown sample] to calculate the combined uncertainty Uc. The display unit 12 displays the combined uncertainty Uc calculated by the combined uncertainty calculation unit 10 together with the measured value of the unknown sample.
[0006]
The standard deviation is generally used as the uncertainty. Alternatively, relative uncertainty can be used. The relative uncertainty is a value obtained by dividing a standard deviation by an average value, and is also called a relative standard deviation or a coefficient of variation.
[0007]
When each uncertainty is expressed in terms of standard deviation or relative standard deviation, the combined uncertainty is called the combined standard uncertainty. An example of a method of obtaining the combined standard uncertainty is a sum of squares (square of squares). Each uncertainty is obtained as a standard deviation or a relative standard deviation, and the squared values of the sums are added together. It is what was asked.
[0008]
The uncertainty of the instrument tolerance Uc [instrument tolerance] is determined in advance by the measuring device, and is estimated based on the measurement result of the reference material or the data of the known measurement result, or based on the physical constant or the like. Is the uncertainty gained by
[0009]
The instrument operation uncertainty Uc [instrument operation] is uncertainty depending on the skill level of the operator, and can be statistically evaluated based on a series of repeated measurements.
[0010]
The uncertainty of instrument tolerance Uc [instrument tolerance] and the uncertainty of instrument operation Uc [instrument operation] are determined in advance, and are set in the known uncertainty holding unit 4 by being input from an input unit such as a keyboard or a panel. Have been.
[0011]
The calibration curve uncertainty Uc [calibration curve] can be obtained by measuring the standard sample a plurality of times and measuring the dispersion of the data when measuring the standard sample to obtain the calibration curve data. Can be determined as the relative standard deviation of
[0012]
The unknown sample uncertainty Uc [unknown sample] can be obtained from a variation in data when the unknown sample is repeatedly measured a plurality of times. The unknown sample uncertainty can also be determined as a relative standard deviation based on data from a plurality of repeated measurements.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is realized by an analyzer such as a liquid chromatograph, and the calibration curve uncertainty calculator 6, the unknown sample uncertainty calculator 8 and the synthetic uncertainty calculator 10 shown in FIG. It is realized by a provided CPU (central processing unit). The known uncertainty holding unit 4 for holding the instrument uncertainty Uc [instrument tolerance] and the instrument uncertainty Uc [instrument operation] is realized by a storage device provided in the control unit of the analyzer. .
[0014]
The operation of this embodiment will be described with reference to the flowchart of FIG.
On the display screen of the analyzer realizing the present invention, an "uncertainty condition setting screen" is displayed, the type M of the standard sample, the number of measurements (n times) for observing the repetition error, and the uncertainty Uc of the instrument tolerance [ The device tolerance] and the uncertainty Uc [device operation] of the device operation can be set by inputting from a keyboard.
[0015]
The uncertainty is described as being expressed as a standard deviation.
In operating this analyzer, the values of the standard uncertainty Uc [instrument operation] and the uncertainty Uc [instrument tolerance] due to the tolerance of the instrument itself are calculated in advance.
[0016]
First, those values, that is, the standard uncertainty Uc [instrument operation] in the appliance operation and the uncertainty Uc [instrument tolerance] due to the tolerance of the appliance itself are input in advance on the "uncertainty condition setting screen". Further, the user inputs the type M of the standard sample and the number of measurements (n times) for checking the repetition error on the “uncertainty condition setting screen” on the display screen.
[0017]
Next, a calibration curve for converting a value measured by the measuring unit into a value to be obtained, such as a concentration, is created. In order to create the calibration curve, data is measured n times for each of M standard samples, and a calibration curve of the M data is obtained from an average value of the n data. Then, the standard uncertainty Uc [calibration curve] of the calibration curve is calculated in consideration of n variations of each of the M standard samples.
[0018]
Next, proceed to the measurement of the unknown sample. The unknown sample 1, which is the first unknown sample, is repeatedly measured n times, and the standard uncertainty Uc [unknown 1] due to the fluctuation of the data of the unknown sample 1 itself (the fluctuation error due to the n-times repeated measurement) is calculated from the measurement result. You.
[0019]
Then, the combined standard uncertainty Ucl, which is the final index of the uncertainty of the unknown sample 1, is calculated by software using the CPU from Uc [instrument operation], Uc [instrument tolerance], Uc [calibration curve] and Uc [unknown 1]. Required by
[0020]
For the second unknown sample 2, the measurement is performed n times in the same manner, the standard uncertainty Uc [unknown 2] of the unknown sample 2 is calculated, Uc [instrument operation], Uc [instrument tolerance], and Uc [calibration]. Line] to calculate the composite standard uncertainty Uc2.
[0021]
Similarly, the unknown samples to be measured are measured n times in sequence, and the calibration curve data is applied to the measured values of each unknown sample to determine quantitative values such as concentration, and the synthesized standard uncertainty Uc of each unknown sample is determined. Are calculated one after another.
[0022]
FIG. 3 shows an example in which the calculated standard uncertainty value is displayed together with the calculated density value. When the uncertainty is represented by the standard deviation, and when the distribution is a normal distribution, when the standard deviation is represented by σ, the probability of being within ± 1σ is about 68%. The example of FIG. 3 shows the combined standard uncertainty ± σ as the combined uncertainty. Therefore, assuming that the distribution is a normal distribution, it means that the probability that a true value exists within (quantitative value) ± (uncertainty) shown in FIG. 3 is about 68%.
[0023]
As the value of the combined uncertainty displayed together with the measurement result such as the density value, an extended uncertainty obtained by doubling the combined standard uncertainty may be used. When the distribution is a normal distribution, the probability that the true value exists within the mean ± 2σ is about 95%. Therefore, if the extended uncertainty is attached and displayed, the (quantitative value) ± (extended Uncertainty) means 95% reliability.
[0024]
If the uncertainty obtained by multiplying the combined standard uncertainty by three is used, if the distribution is a normal distribution, the probability of being within ± 3σ of the average is about 99.7%. Value) ± (uncertainty) means about 99.7% reliability.
[0025]
【The invention's effect】
Until now, the composite uncertainty had to be calculated and output by itself after measurement. However, in the present invention, the uncertainty Uc [instrument tolerance] of the instrument tolerance and the uncertainty Uc [instrument operation] of the instrument operation are set. If this is done, the uncertainty Uc [calibration curve] of the calibration curve when the standard sample is measured by the calibration curve uncertainty calculation unit is calculated, and the unknown sample measurement when the unknown sample is measured by the unknown sample uncertainty calculation unit. The uncertainty Uc [unknown sample] for the value is calculated, and these uncertainties are combined by the combined uncertainty calculation unit to calculate the combined uncertainty Uc, and the calculated combined uncertainty Uc is displayed on the display unit. Since the measurement value is displayed together with the measured value, the “uncertainty” of the unknown sample is calculated and displayed at the same time as the measurement of the unknown sample is completed. Therefore, the following effects can be achieved.
{Circle around (1)} The amount of work required to calculate the combined uncertainty Uc is considerably reduced as compared with the related art.
(2) Since the uncertainty is obtained immediately after the measurement, the analyst can judge the reliability of the measured value in real time.
(3) In the future, it is required that the request analysis company attach uncertainty to the data and output it, but since it can be calculated efficiently, there is a large contribution in terms of cost.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating the present invention.
FIG. 2 is a flowchart illustrating the operation of one embodiment.
FIG. 3 is a diagram showing an example of a display screen of a measurement result.
[Explanation of symbols]
2 Measuring unit 4 Known uncertainty holding unit 6 Calibration curve uncertainty calculating unit 8 Unknown sample uncertainty calculating unit 10 10 is combined uncertainty calculating unit 12 Display unit

Claims (2)

試料の化学量又は物理量を定量測定する測定部と、
前記測定部の器具公差の不確かさUc[器具公差]及び器具操作の不確かさUc[器具操作]を保持する既知不確かさ保持部と、
前記測定部が標準試料を測定したときの検量線の不確かさUc[検量線]を算出する検量線不確かさ算出部と、
前記測定部が未知試料を測定したときの未知試料測定値に対する不確かさUc[未知試料]を算出する未知試料不確かさ算出部と、
これらの不確かさを合成して合成不確かさUcを算出する合成不確かさ算出部と、
前記合成不確かさ算出部が算出した合成不確かさUcを未知試料の測定値とともに表示する表示部とを備えたことを特徴とする計測装置。
A measuring unit for quantitatively measuring the stoichiometry or physical quantity of the sample,
A known uncertainty holding unit that holds the uncertainty of instrument tolerance Uc [instrument tolerance] and the uncertainty of instrument operation Uc [instrument operation] of the measurement unit;
A calibration curve uncertainty calculation unit that calculates the uncertainty Uc [calibration curve] of the calibration curve when the measurement unit measures a standard sample;
An unknown sample uncertainty calculation unit that calculates the uncertainty Uc [unknown sample] for the unknown sample measurement value when the measurement unit measures the unknown sample;
A combined uncertainty calculator that combines these uncertainties to calculate a combined uncertainty Uc;
A display unit for displaying the combined uncertainty Uc calculated by the combined uncertainty calculation unit together with the measured value of the unknown sample.
合成不確かさ算出部が算出する不確かさは標準偏差を基にした合成標準不確かさである請求項1に記載の計測装置。The measuring apparatus according to claim 1, wherein the uncertainty calculated by the combined uncertainty calculator is a combined standard uncertainty based on a standard deviation.
JP2002174320A 2002-06-14 2002-06-14 Measuring instrument provided with function for finding uncertainty Pending JP2004020323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174320A JP2004020323A (en) 2002-06-14 2002-06-14 Measuring instrument provided with function for finding uncertainty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174320A JP2004020323A (en) 2002-06-14 2002-06-14 Measuring instrument provided with function for finding uncertainty

Publications (1)

Publication Number Publication Date
JP2004020323A true JP2004020323A (en) 2004-01-22

Family

ID=31173321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174320A Pending JP2004020323A (en) 2002-06-14 2002-06-14 Measuring instrument provided with function for finding uncertainty

Country Status (1)

Country Link
JP (1) JP2004020323A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076267A (en) * 2006-09-22 2008-04-03 Sysmex Corp Accuracy control system, analyzer, and accuracy control method
CN102246047A (en) * 2008-12-09 2011-11-16 株式会社日立高新技术 Automatic analysis apparatus
JP4865737B2 (en) * 2005-03-01 2012-02-01 マシモ・ラボラトリーズ・インコーポレーテッド Reliability of physiological parameters
GB2500953A (en) * 2012-04-02 2013-10-09 Vigilant Technologies Ltd I A method of analysing gas chromatography data
WO2013153647A1 (en) * 2012-04-12 2013-10-17 株式会社島津製作所 Mass analysis device
WO2015049757A1 (en) * 2013-10-03 2015-04-09 株式会社島津製作所 Displacement field and strain field measurement method, and material testing machine
JP2017078665A (en) * 2015-10-21 2017-04-27 グリーンブルー株式会社 Method of auto-calibrating ozonometer
CN109346421A (en) * 2018-09-29 2019-02-15 中国电子科技集团公司第十三研究所 The valued methods of line-spacing standard sample of photo
CN112993989A (en) * 2021-03-05 2021-06-18 广东电网有限责任公司广州供电局 Robust state estimation data processing method for active power distribution system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865737B2 (en) * 2005-03-01 2012-02-01 マシモ・ラボラトリーズ・インコーポレーテッド Reliability of physiological parameters
US7925461B2 (en) 2006-09-22 2011-04-12 Sysmex Corporation Quality control system, analyzer, and quality control method
JP2008076267A (en) * 2006-09-22 2008-04-03 Sysmex Corp Accuracy control system, analyzer, and accuracy control method
CN102246047A (en) * 2008-12-09 2011-11-16 株式会社日立高新技术 Automatic analysis apparatus
CN102246047B (en) * 2008-12-09 2013-11-13 株式会社日立高新技术 Automatic analysis apparatus
US9891198B2 (en) 2012-04-02 2018-02-13 I-Vigilant Technologies Limited Method of analysing gas chromatography data
GB2500953A (en) * 2012-04-02 2013-10-09 Vigilant Technologies Ltd I A method of analysing gas chromatography data
GB2500953B (en) * 2012-04-02 2014-04-02 Vigilant Technologies Ltd I Improved method of analysing gas chromatography data
US10670570B2 (en) 2012-04-02 2020-06-02 I-Vigilant Technologies Limited Method of analysing gas chromatography data
WO2013153647A1 (en) * 2012-04-12 2013-10-17 株式会社島津製作所 Mass analysis device
WO2015049757A1 (en) * 2013-10-03 2015-04-09 株式会社島津製作所 Displacement field and strain field measurement method, and material testing machine
JPWO2015049757A1 (en) * 2013-10-03 2017-03-09 株式会社島津製作所 Displacement field and strain field measurement method and material testing machine
JP2017078665A (en) * 2015-10-21 2017-04-27 グリーンブルー株式会社 Method of auto-calibrating ozonometer
CN109346421A (en) * 2018-09-29 2019-02-15 中国电子科技集团公司第十三研究所 The valued methods of line-spacing standard sample of photo
CN112993989A (en) * 2021-03-05 2021-06-18 广东电网有限责任公司广州供电局 Robust state estimation data processing method for active power distribution system
CN112993989B (en) * 2021-03-05 2022-12-16 广东电网有限责任公司广州供电局 Robust state estimation data processing method for active power distribution system

Similar Documents

Publication Publication Date Title
Chauhan harti Mittu B, Chauhan P (2015) Analytical Method Development and Validation: A Concise Review
Currie Nomenclature in evaluation of analytical methods including detection and quantification capabilities:(IUPAC Recommendations 1995)
Campaña et al. ALAMIN: a chemometric program to check analytical method performance and to assess the trueness by standard addition methodology
Cox et al. Software Support for Metrology Best Practice Guide No. 6. Uncertainty evaluation.
Topchiy et al. Integrated construction supervision as a tool to reduce the developer’s risks when implementing new and redevelopment projects
US8666711B2 (en) Radiation analysis system and method
Milton et al. Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures
JP2004020323A (en) Measuring instrument provided with function for finding uncertainty
EP2917849A1 (en) Radiation analysis system and method
Ren et al. Analytical evaluation and Sigma metrics of 6 next generation chemistry assays on the Abbott Architect system
Milinković et al. Measurement uncertainty as a universal concept: can it be universally applicable in routine laboratory practice?
US6560562B2 (en) Method of estimating precision of apparatus
Acko et al. Verification of statistical calculations in interlaboratory comparisons by simulating input datasets
Xiongjie et al. Evaluation of the uniformity of concentration of radon in a radon chamber
Pereira et al. Statistical validation of standardless and standard-based analysis by X-ray fluorescence spectrometry in iron ores characterisation
JP2995841B2 (en) Gas chromatograph mass spectrometer data processor
Nabi et al. Uncertainty in analytical measurements: approaches, evaluation methods and their comparison based on a case study of arsenic determination in rice
Carnahan et al. Metrology for information technology
Worthingham et al. Bayesian estimates of measurement error for in-line inspection and field tools
JP2000074857A (en) Fluorescence x-ray analyzer
Matusevich et al. Computation and uncertainty evaluation of offset yield strength
Garai et al. On the uncertainty of sound reduction index measurements from inter-laboratory tests
Routti Interactive graphical computing for simulating and unfolding measured distributions
Chentsova et al. Estimation of Uncertainty in Charpy Pendulum Impact Test Using the Reference Material
Diaz et al. Concept for an Algorithm Testing and Evaluation Program at NIST

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080123

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A02