JP2004020266A - Determination method for metering chitosane content in foods - Google Patents

Determination method for metering chitosane content in foods Download PDF

Info

Publication number
JP2004020266A
JP2004020266A JP2002172867A JP2002172867A JP2004020266A JP 2004020266 A JP2004020266 A JP 2004020266A JP 2002172867 A JP2002172867 A JP 2002172867A JP 2002172867 A JP2002172867 A JP 2002172867A JP 2004020266 A JP2004020266 A JP 2004020266A
Authority
JP
Japan
Prior art keywords
chitosan
chitosane
dietary fiber
content
prosky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172867A
Other languages
Japanese (ja)
Inventor
Yakusuke Hoshino
星野 躍介
Sakura Kitahara
北原 さくら
Yoshihiro Ono
小野 嘉洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiro Corp
Original Assignee
Nichiro Corp
Nichiro Gyogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiro Corp, Nichiro Gyogyo Kaisha Ltd filed Critical Nichiro Corp
Priority to JP2002172867A priority Critical patent/JP2004020266A/en
Publication of JP2004020266A publication Critical patent/JP2004020266A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of conventional determination methods for measuring chitosane content included in foods, which use Prosky's method and the indole hydrogen chloride method, and to provide a novel determination method for measuring chitosane content, which makes its recovery rate of the chitosane high while keeping the variation small. <P>SOLUTION: The determination method is provided with a step in which impurities in the food including chitosane are decomposed by an improved Prosky's method using tris-Acetic acid buffer that does not contain phosphoric acid thereby recovering indigestible substances including chitosane, a step in which the indigestible substances are recovered through a glass filter without celite thereby taking out a constant mass and calculating a volume of the indigestible substances, a step in which a portion of the indigestible substance is sampled and hydrolyzed by adding 6-N hydrogen chloride under degassing, and a step in which the decomposed chitosane product is diluted into a suitable concentration after the hydrogen chloride hydrolyzing step, and then a colorimetric determination is carried out by using the indole hydrogen chloride method thereby executing the determination of the chitosane content. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、食品中に含有するキトサン含量の定量法に関するものである。
【0002】
【従来の技術】
健康食品として販売されているキトサン含有食品は、キトサン含有量の表示が必要となっている。
【0003】
従来、一般にキチン・キトサンの定量法は、キトサンを含有する食品を硫酸や塩酸で直接的に加水分解し、生成するβ−D−グルコサミン量を測定するものである。そのために食品中の成分、特に澱粉と蛋白質が加水分解され、生じたグルコースとアミノ酸が後のグルコサミンの定量に影響を及ぼし正確な定量値が求めにくいものであった。
【0004】
上記のような課題を解消する手段として、キチン及びキトサンを含む食品中の澱粉や蛋白を加水分解酵素により予め取り除いた後、残存するキチン及びキトサンを硫酸を用いて加水分解し、生成するグルコサミンを定量するものがあった(特開平5−252997)。この従来技術において、食品中から加水分解酵素により澱粉や蛋白を取り除く方法としては、プロスキー法を用いている。また、生成したグルコサミンを定量する方法としては、インドール塩酸法により比色定量しているものである。
【0005】
すなわち、従来技術ではキトサンを含む食物繊維をプロスキー法で処理し、この食物繊維をセライトをひいたグラスフィルターで回収し恒量を出したのち、グラスフィルターの食物繊維全量をセライトごと、容器に移して硫酸分解を行う。そして、硫酸分解後、適当な濃度に希釈し、キトサン分解物をインドール塩酸法により比色定量し、キトサン含量を算出する方法である。
【0006】
ここでプロスキー法とは、食品(試料)からの食物繊維の分離方法であり、また、インドール塩酸法とは、グルコサミン及びキトサン分解物を発色の度合いによりキトサンを定量する方法である。
【0007】
従来の食品中のキトサン含量を定量する方法について説明すると、食品試料としては、30メッシュパスのものを用い、液状または水分が多い試料の場合は、凍結乾燥を行った後、粉砕して定量分析に供する。また、粗脂肪が6%以上の食品試料の場合は、30分間の静置脱水を3〜4回行って用いるものである。
【0008】
従来法のプロスキー法では、まず第1に食品試料から食物繊維を分離する。
従来のプロスキー法による食物繊維の分離工程は、試料を正確に秤量して、リン酸緩衝液を加え懸濁した後、沸騰水浴中で時々攪拌しながら30分間酵素処理を行う。酵素処理後、室温まで冷却し水酸化ナトリウムを加え、水酸化ナトリウムまたはリン酸で、pHを調整する。
【0009】
次いで耐熱性プロテアーゼにリン酸緩衝液を用いて濃度調整した酵素液を加え、攪拌しながら60℃で30分間酵素処理を行う。終了後、室温まで水冷しリン酸を加え、水酸化ナトリウムまたはリン酸で、pHを調整する。続いてアミログルコシダーゼを加え、攪拌しながら60℃で30分間酵素処理を行う。終了後、加温したエタノールを加え室温で1時間放置する。放置後、酸洗浄したセライトを均一に敷き詰めたガラスフィルター(Prosity−2:pore size40−90μm)で吸引濾過する。濾過終了後、吸引しながらエタノールでトールビーカーに残っている食物繊維をフィルター上に回収する。この回収操作を2回繰り返した後、フィルター上の残渣をエタノールで2回、アセトンで2回洗浄し、一晩乾燥させ食物繊維残渣を得るものである。
【0010】
第2に得られた食物繊維残渣を希硫酸により加水分解する。上記により得られた食物繊維残渣を遠沈管にとり、硫酸を加えガラス棒でよく攪拌した後、2時間室温で放置する。その後、脱イオン水をガラス棒に付着したキトサンを洗浄しながら加え、密閉または冷却管を付して6時間100℃で加水分解を行う。分解後、分解熱が熱いうちに遠心分離を行い、セライトを沈殿させ、上清を回収する。遠沈管に残ったセライトに硫酸を加えよく攪拌し100℃まで加熱した後、同様に遠心分離を行って上清を回収する。このセライト洗浄操作を更に1回繰り返した後、上清は脱イオン水でキトサン濃度として0.02〜0.4mg/mlになるように定容して、次の発色試験に供する。
【0011】
第3にグルコサミンの発色はインドール塩酸法を用いる。まず、試験管に加水分解液をとり、試験1では亜硝酸ナトリウム、試験2では亜硝酸ナトリウムの代わりに脱イオン水を加え攪拌する。続いて、酢酸を加えよく攪拌し、室温で10分間放置する。放置後、スルファミン酸アンモニウムを加え、時々攪拌しながら室温で30分間放置する。この試料に塩酸を加えた後、インドール−エタノール溶液を加え混合し、沸騰水中で5分間反応させた後、エタノールを加え、室温に冷却した後、ただちに490nmと520nmの吸光度を測定する。検量線はグルコサミン塩酸塩水溶液を用い、上記のインドール塩酸法の操作から試験試料と同様に発色させ、OD値を算出する。
【0012】
【発明が解決しようとする課題】
しかしながら、従来のプロスキー法を用いた定量法によれば、キトサンの回収率が低くなり、バラツキが多くなるものであった。その原因としては次のようなことが推察される。
【0013】
第1にプロスキー分解において、リン酸緩衝液中のリン酸がキトサンと結合するなどの原因により、食物繊維量が2〜3割増える。このことは正確な食物繊維量が得られないほか、結合したリン酸などが原因で比色定量を正解に行うことが出来ないことが考えられる。
【0014】
第2にプロスキー分解後、セライトをひいたグラスフィルターでキトサンを含む食物繊維を回収し、乾燥して恒量を検出する操作があるが、この操作を行ったあと、グラスフィルターの食物繊維全量をセライトごと、硫酸分解する容器に移し、硫酸分解を行う。この際に食物繊維全量を容器に移すが、グラスフィルターなどに付着した食物繊維を完全に回収することが困難なため、最終的にキトサンの回収率が下がる。
【0015】
第3に硫酸分解後、硫酸分解を行ったサンプル中のセライトを除去する際に遠心分離を行うが、その際に高温を保ったまま遠心分離を行わなければ、キトサン分解物の硫酸塩と思われる細かな結晶がセライトとともに沈殿し、結果としてキトサンの回収率が下がることがあり操作が複雑である。
【0016】
第4に硫酸分解後の遠心によるセライト除去を行った上澄み液をメスフラスコに移し、メスアップしたサンプルを一部採取し、これを比色定量するものである。この際に硫酸分解したサンプルは、キトサン分解物の硫酸塩と思われる細かな結晶が沈殿し、メスアップしたサンプルから一部採取する時に、均一になるように良く攪拌しなければ、キトサンの回収率が低下する。
【0017】
従来のプロスキー法を用いた定量法により、キトサンにリン酸が結合して食物繊維量が増加することを示すため、キトサンを含む食品「キトサン・小麦粉混合物」について食物繊維量を測定した結果、下記の表1に示すとおりであった。
【0018】
【表1】

Figure 2004020266
※1:小麦粉由来の繊維量計算値は、小麦粉100%のサンプルより得られた食物繊維量より小麦粉の添加量に合わせて計算した値。
※2:キトサン由来食物繊維量計算値は、プロスキー法による総食物繊維量測定値から小麦粉由来食物繊維量計算値を差し引いた値。
【0019】
上記の測定結果からみて、キトサン添加率と見かけ上のキトサン重量増加量には明らかに相関が見られる(図1参照)。この現象はプロスキー法で分解する際、リン酸緩衝液中のリン酸が結合するために生ずる現象であると思われる。このことからみても従来のプロスキー法ではキトサンを含む食品の食物繊維量を正確に測ることはできないという課題を有していた。
【0020】
本発明は上記のようなプロスキー法及びインドール塩酸法を用いたキトサン含量の定量法による課題を解消すると共に、食品中のキトサン含有値の回収率が高くなると共に、バラツキが少ない新規な食品中のキトサン含量の定量法を提供するのが目的である。
【0021】
【課題を解決するための手段】
本発明は上記のような課題を解決する手段として、次のような手段を講じたものである。
特許を受けようとする発明は、キトサンを含有する食品を、リン酸を含まないTris−酢酸緩衝液を用いたプロスキー法でキトサンを含む食物繊維を回収する工程と、この食物繊維をセライトの引いていないグラスフィルターで回収することにより恒量を測定して食物繊維量を算出する工程と、グラスフィルターの食物繊維の一部を分取して6N塩酸を加え脱気下で加水分解を行う工程と、塩酸加水分解後、適当な濃度に希釈し、キトサン分解物をインドール塩酸法により比色定量してキトサン含量を定量する工程とからなる食品中のキトサン含量の定量法である。
【0022】
本発明における食品中のキトサン含量の定量法は、上記の各工程により定量するものであり、ここでプロスキー法とは、食品(試料)からの食物繊維の分離方法であり、また、インドール塩酸法とは、酸による加水分解を行った試料中のグルコサミン及びキトサン分解物の存在量を発色の度合いによりキトサンを定量する方法である。
【0023】
なお、比色定量法としては、インドール塩酸法の他にエルソン・モルガン法がある。キトサンを定量するにあたって酸分解を行い、キトサンを低分子化し比色定量可能なグルコサミン及びキトサンオリゴ糖にする必要があるが、酸分解の条件としては、キトサンが完全に分解された形のグルコサミンだけの状態にし、且つ出来るだけグルコサミンが分解されて減少しないような条件で酸分解を行うことが理想である。しかしながら、塩酸・硫酸のいずれで分解する場合であっても、グルコサミンの分解を出来る限り抑えることが一番重要である。その分解を抑えるために温和な条件下で酸分解を行うが、この場合、キトサンは完全に分解されずグルコサミン及びキトサンオリゴ糖の混合状態となる。
【0024】
エルソン・モルガン法では単糖であるヘキソサミン類(グルコサミン)のみを定量する。このためキトサンがグルコサミンにまで完全に分解されていなければ、キトサン含量が低くなるということになる。しかし、他の夾雑物の影響をほとんど受けずヘキソサミン類(グルコサミン)だけを定量することが可能なので、キトサンの酸分解を厳密にコントロールすることができ、キトサンのグルコサミンへの分解率が分かれば、よりキトサンに対して特異性の高い定量法になる可能性がある。両比色定量法には長短があり、本発明の比色定量法としては、インドール塩酸法を用いるものである。インドール塩酸法は、グルコサミン及びキトサンオリゴ糖の両方を測定することができるため、本方法を用いた。
【0025】
本発明においては、第1にリン酸を含まないTris−酢酸緩衝液を用いたプロスキー法でキトサンを含む食物繊維を回収する工程を経るものである。そのために、リン酸塩のキトサンに対する特異的吸着が起こらず、キトサンを含む食物繊維量が正確に算出できると共に、回収したキトサンを含む食物繊維中の不純物がより少なくなる。また、キトサンを含む食物繊維をグラスフィルターで回収する際に、セライトを引かずに直接回収し、キトサンを含む食物繊維量を決定し、その一部を採取し塩酸で加水分解を行うので、キトサンを含む食物繊維の含有比率を正確に測定することができる。
【0026】
これにより従来方法で問題となる食物繊維のグラスフィルターへの付着による、回収率の低下を防ぐことができる。更に、セライト濾過を行わないので、従来のプロスキー法のようにセライトの除去を行わなくて済み、操作が簡便であり、キトサン酸分解物の結晶の大量発生によって生じるサンプリングの誤差による回収率の低下が起こらないものとなる。
【0027】
【発明の効果】
このように本発明の定量法では、恒量を測定したキトサンを含む食物繊維の一部を採取し、塩酸で加水分解することによって、従来の定量法の課題である食物繊維のグラスフィルターへの付着による、回収率の低下を防ぐことができる。また従来法のようにセライト濾過を行わないため、セライトの除去操作の必要がないので操作を簡便化することができる。そして、硫酸分解のときのような、キトサン酸分解物の発生による回収率の低下が起こらない。更に正確な食物繊維量が出るので、食物繊維中のキトサン含量を算出することも可能である。
【0028】
【実施例】
以下、本発明の態様を試験例1及び試験例2により具体的に説明する。
【0029】
【試験例1】
本発明方法によるキトサン含量の測定値と、従来方法によるキトサン含量の測定値とを比較するため、従来のプロスキー法により食物繊維に分解したものと、改良したプロスキー法により食物繊維に分解したものを下記の表2に示す。なお、キトサン含有食品試料として市販健康食品「カニパワー」(株式会社ニチロ製)を用いた。また、食品試料である市販健康食品に表示されているキトサン等の配合率は下記の表3に示すとおりである。
【0030】
【表2】
Figure 2004020266
【0031】
【表3】
Figure 2004020266
【0032】
その後、上記の従来方法により分解した食物繊維をインドール塩酸法で硫酸分解したものと、同塩酸分解したもの、及び改良したプロスキー法により硫酸分解したもの、本発明方法により塩酸分解したものを下記の表4に示す。
【0033】
【表4】
Figure 2004020266
【0034】
本発明方法は、Tris−酢酸緩衝液を用いた本発明法によりキトサンを含む食物繊維に分解した後、塩酸でキトサンを脱気下で加水分解し、生じたグルコサミン及びオリゴグルコサミン量をインドール塩酸法で比色定量しキトサン含量を算出した。
【0035】
上記の結果から見て、硫酸分解法と比較して塩酸分解の方が回収率が高くなる傾向があった。また、従来プロスキー法と改良プロスキー法で分解した際の差はほとんどないが、前述したように従来プロスキー法ではリン酸のキトサンに対する特異的吸着等の現象が見られ食物繊維量が実際より多く測定されるなど、不純物が含まれている可能性がある。したがって、より不純物が少ない改良プロスキー法でキトサンを含む食物繊維に分解した後、操作が簡便で回収率が良くなる塩酸分解を行い、生じたグルコサミン及びキトサン分解物をインドール塩酸法で比色定量してキトサン含量を算出することにより、従来法と比較して正確な値が得られることが確認された。
【0036】
なお、参考データとしてエルソン・モルガン法により比色定量したものを下記の表5に示す。
【0037】
【表5】
Figure 2004020266

【図面の簡単な説明】
【図1】従来のプロスキー法を用いた定量法により、キトサンを含む食品の食物繊維量を測定した結果からキトサン添加率とキトサン重量増加量の相関関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for determining the content of chitosan contained in food.
[0002]
[Prior art]
Chitosan-containing foods sold as health foods require labeling of the chitosan content.
[0003]
Conventionally, a method for quantitatively determining chitin / chitosan generally involves directly hydrolyzing a food containing chitosan with sulfuric acid or hydrochloric acid, and measuring the amount of β-D-glucosamine produced. For this reason, components in foods, particularly starch and protein, are hydrolyzed, and the resulting glucose and amino acids affect the subsequent determination of glucosamine, making it difficult to obtain accurate quantitative values.
[0004]
As a means for solving the above-mentioned problems, glucosamine produced by removing starch and proteins in foods containing chitin and chitosan in advance by a hydrolytic enzyme, and then hydrolyzing the remaining chitin and chitosan using sulfuric acid to produce glucosamine. Some were quantified (JP-A-5-252997). In this conventional technique, a prosky method is used as a method for removing starch and protein from food by using a hydrolase. As a method for quantifying the generated glucosamine, colorimetric quantification is performed by the indole hydrochloric acid method.
[0005]
That is, in the prior art, dietary fiber containing chitosan is treated by the Prosky method, the dietary fiber is collected by a glass filter with celite, and a constant weight is given.After that, the entire dietary fiber of the glass filter is transferred to a container together with the celite. To perform sulfuric acid decomposition. After the decomposition with sulfuric acid, the mixture is diluted to an appropriate concentration, and the chitosan decomposition product is colorimetrically determined by the indole hydrochloric acid method to calculate the chitosan content.
[0006]
Here, the Prosky method is a method for separating dietary fiber from a food (sample), and the indole hydrochloride method is a method for quantifying chitosan based on the degree of color development of glucosamine and chitosan decomposition products.
[0007]
A conventional method for quantifying the content of chitosan in food will be described. As a food sample, a 30-mesh pass is used. In the case of a liquid or a sample having a large amount of water, freeze-drying is performed, followed by grinding and quantitative analysis. To serve. In the case of a food sample having a crude fat content of 6% or more, the sample is subjected to standing dehydration for 30 minutes three to four times before use.
[0008]
In the conventional Prosky method, first, dietary fiber is separated from a food sample.
In the conventional process of separating dietary fiber by the Prosky method, a sample is accurately weighed, a phosphate buffer is added and suspended, and then enzymatic treatment is performed for 30 minutes while stirring occasionally in a boiling water bath. After the enzyme treatment, the mixture is cooled to room temperature, sodium hydroxide is added, and the pH is adjusted with sodium hydroxide or phosphoric acid.
[0009]
Next, an enzyme solution adjusted in concentration using a phosphate buffer is added to the heat-resistant protease, and the enzyme treatment is performed at 60 ° C. for 30 minutes with stirring. After completion, water-cooled to room temperature, phosphoric acid is added, and the pH is adjusted with sodium hydroxide or phosphoric acid. Subsequently, amyloglucosidase is added, and the enzyme treatment is performed at 60 ° C. for 30 minutes while stirring. After completion, add warmed ethanol and leave at room temperature for 1 hour. After standing, the solution is suction-filtered through a glass filter (Prosity-2: pore size 40-90 μm) in which acid-washed celite is uniformly spread. After the filtration, the dietary fiber remaining in the tall beaker is collected on the filter with ethanol while suctioning. After this collection operation is repeated twice, the residue on the filter is washed twice with ethanol and twice with acetone, and dried overnight to obtain a dietary fiber residue.
[0010]
Second, the obtained dietary fiber residue is hydrolyzed with dilute sulfuric acid. The dietary fiber residue obtained above is placed in a centrifuge tube, sulfuric acid is added, and the mixture is stirred well with a glass rod, and then left at room temperature for 2 hours. Thereafter, deionized water is added while washing the chitosan adhered to the glass rod, and the mixture is hydrolyzed at 100 ° C. for 6 hours in a sealed or attached cooling tube. After decomposition, centrifugation is performed while the heat of decomposition is hot to precipitate celite, and the supernatant is recovered. Sulfuric acid is added to the celite remaining in the centrifuge tube, and the mixture is stirred well and heated to 100 ° C., and then centrifuged similarly to collect the supernatant. After repeating this celite washing operation one more time, the supernatant is adjusted to a chitosan concentration of 0.02 to 0.4 mg / ml with deionized water and subjected to the next color development test.
[0011]
Third, glucosamine is formed using the indole hydrochloric acid method. First, a hydrolyzate is placed in a test tube, and deionized water is added and stirred in place of sodium nitrite in test 1 and sodium nitrite in test 2. Subsequently, acetic acid is added, the mixture is stirred well, and left at room temperature for 10 minutes. After standing, ammonium sulfamate is added, and left for 30 minutes at room temperature with occasional stirring. After hydrochloric acid is added to this sample, an indole-ethanol solution is added and mixed, and the mixture is reacted in boiling water for 5 minutes. After adding ethanol and cooling to room temperature, the absorbance at 490 nm and 520 nm is measured immediately. The calibration curve uses an aqueous solution of glucosamine hydrochloride, develops the color in the same manner as the test sample from the above-mentioned operation of the indole hydrochloric acid method, and calculates the OD value.
[0012]
[Problems to be solved by the invention]
However, according to the conventional quantitative method using the Prosky method, the recovery rate of chitosan is low, and the dispersion is large. The following are presumed as the causes.
[0013]
First, in the decomposition of Prosky, the amount of dietary fiber increases by 20 to 30% due to factors such as binding of phosphoric acid in the phosphate buffer to chitosan. This means that the accurate amount of dietary fiber cannot be obtained, and the colorimetry cannot be performed correctly due to the bound phosphoric acid.
[0014]
Secondly, after decomposition of Prosky, there is an operation to collect dietary fiber containing chitosan with a glass filter coated with celite, dry and detect the constant weight. After this operation, the total amount of dietary fiber in the glass filter is reduced. The whole celite is transferred to a vessel for sulfuric acid decomposition, and sulfuric acid decomposition is performed. At this time, the whole amount of dietary fiber is transferred to the container, but it is difficult to completely recover the dietary fiber attached to the glass filter or the like, and thus the chitosan recovery rate eventually decreases.
[0015]
Third, after the sulfuric acid decomposition, centrifugation is performed when removing the celite in the sample subjected to the sulfuric acid decomposition. If centrifugation is not performed while maintaining the high temperature at that time, it is considered to be a sulfate of the chitosan decomposition product The fine crystals precipitate with celite, and as a result, the recovery of chitosan may decrease, and the operation is complicated.
[0016]
Fourthly, the supernatant liquid from which celite has been removed by centrifugation after sulfuric acid decomposition is transferred to a volumetric flask, and a partly sampled sample is collected and colorimetrically determined. At this time, fine crystals, which are considered to be sulfates of the chitosan decomposition product, precipitate in the sample decomposed by sulfuric acid. The rate drops.
[0017]
By the conventional quantitative method using the Prosky method, to show that the amount of dietary fiber increases by binding of phosphoric acid to chitosan, as a result of measuring the amount of dietary fiber for the food containing chitosan `` Chitosan-flour mixture '', It was as shown in Table 1 below.
[0018]
[Table 1]
Figure 2004020266
* 1: The calculated value of the amount of fiber derived from flour is a value calculated from the amount of dietary fiber obtained from a 100% flour sample according to the amount of added flour.
* 2: The calculated value of dietary fiber derived from chitosan is a value obtained by subtracting the calculated value of dietary fiber derived from flour from the measured value of total dietary fiber by the Prosky method.
[0019]
From the above measurement results, there is clearly a correlation between the chitosan addition rate and the apparent increase in chitosan weight (see FIG. 1). This phenomenon is considered to be caused by the binding of phosphate in the phosphate buffer when decomposed by the Prosky method. In view of this, the conventional Prosky method has a problem that the amount of dietary fiber in foods containing chitosan cannot be accurately measured.
[0020]
The present invention solves the problems of the above-described methods for determining the chitosan content using the Prosky method and the indole hydrochloride method, as well as increasing the recovery rate of the chitosan content value in the food and reducing the variation in the novel food. It is an object of the present invention to provide a method for quantifying the chitosan content of corn.
[0021]
[Means for Solving the Problems]
The present invention employs the following means as means for solving the above problems.
The invention to be patented includes a step of recovering chitosan-containing food fiber by a Prosky method using a Tris-acetate buffer solution containing no phosphoric acid, and a step of recovering the dietary fiber containing chitosan from celite. A step of calculating the amount of dietary fiber by measuring a constant weight by collecting with a glass filter which is not pulled, and a step of fractionating a part of the dietary fiber of the glass filter, adding 6N hydrochloric acid and performing hydrolysis under degassing. And a step of diluting the chitosan hydrolyzate to an appropriate concentration after hydrochloric acid hydrolysis, and colorimetrically determining the chitosan content by the indole hydrochloric acid method to determine the chitosan content.
[0022]
The method for determining the content of chitosan in foods according to the present invention is determined by the above-described steps. Here, the Prosky method is a method for separating dietary fiber from foods (samples). The method is a method of determining the amount of glucosamine and chitosan hydrolyzate in a sample that has been hydrolyzed with an acid to determine chitosan based on the degree of color development.
[0023]
The colorimetric method includes Elson-Morgan method in addition to the indole hydrochloric acid method. When quantifying chitosan, it is necessary to carry out acid decomposition to reduce the molecular weight of chitosan to glucosamine and chitosan oligosaccharide which can be colorimetrically determined. Ideally, acid decomposition is performed under such conditions that glucosamine is not decomposed and reduced as much as possible. However, regardless of whether it is decomposed with hydrochloric acid or sulfuric acid, it is most important to suppress the decomposition of glucosamine as much as possible. In order to suppress the decomposition, acid decomposition is performed under mild conditions, but in this case, chitosan is not completely decomposed and a mixed state of glucosamine and chitosan oligosaccharide is obtained.
[0024]
In the Elson-Morgan method, only hexosamines (glucosamines), which are monosaccharides, are quantified. For this reason, if chitosan is not completely decomposed to glucosamine, the chitosan content will be low. However, since only hexosamines (glucosamine) can be quantified without being affected by other contaminants, the acid decomposition of chitosan can be strictly controlled, and if the decomposition rate of chitosan to glucosamine is known, It may be a more specific method for chitosan. Both colorimetric methods have advantages and disadvantages, and the colorimetric method of the present invention uses the indole hydrochloric acid method. The indole hydrochloric acid method was used because both glucosamine and chitosan oligosaccharide can be measured.
[0025]
In the present invention, first, a step of collecting dietary fiber containing chitosan by a Prosky method using a Tris-acetate buffer solution containing no phosphoric acid is performed. Therefore, specific adsorption of phosphate to chitosan does not occur, the amount of dietary fiber containing chitosan can be accurately calculated, and impurities in the recovered dietary fiber containing chitosan are further reduced. In addition, when dietary fiber containing chitosan is collected with a glass filter, it is directly collected without pulling celite, the amount of dietary fiber containing chitosan is determined, a part thereof is collected and hydrolyzed with hydrochloric acid, so that chitosan Can be accurately measured.
[0026]
As a result, it is possible to prevent a decrease in the recovery rate due to the attachment of dietary fiber to the glass filter, which is a problem in the conventional method. Furthermore, since celite filtration is not performed, elimination of celite as in the conventional Prosky method is not necessary, the operation is simple, and the recovery rate due to sampling errors caused by the large generation of crystals of the chitosan acid decomposition product is reduced. No degradation will occur.
[0027]
【The invention's effect】
As described above, in the quantification method of the present invention, a part of dietary fiber containing chitosan whose constant weight is measured is collected and hydrolyzed with hydrochloric acid, thereby adhering dietary fiber to a glass filter, which is a problem of the conventional quantification method. , A reduction in the recovery rate can be prevented. Moreover, since celite filtration is not performed as in the conventional method, there is no need to perform an operation for removing celite, so that the operation can be simplified. Then, the recovery rate does not decrease due to the generation of chitosan acid decomposition product as in the case of sulfuric acid decomposition. Since a more accurate amount of dietary fiber is obtained, it is possible to calculate the chitosan content in the dietary fiber.
[0028]
【Example】
Hereinafter, embodiments of the present invention will be described specifically with reference to Test Examples 1 and 2.
[0029]
[Test Example 1]
In order to compare the measured value of the chitosan content according to the method of the present invention with the measured value of the chitosan content according to the conventional method, it was decomposed into dietary fiber by the conventional Prosky method and decomposed into dietary fiber by the improved Prosky method. The results are shown in Table 2 below. As a chitosan-containing food sample, a commercially available health food “Kanipower” (manufactured by Nichiro Co., Ltd.) was used. The compounding ratios of chitosan and the like, which are indicated on the commercially available health foods as food samples, are as shown in Table 3 below.
[0030]
[Table 2]
Figure 2004020266
[0031]
[Table 3]
Figure 2004020266
[0032]
Thereafter, dietary fiber decomposed by the above-mentioned conventional method was subjected to sulfuric acid decomposition by the indole hydrochloric acid method, and the following: Is shown in Table 4.
[0033]
[Table 4]
Figure 2004020266
[0034]
In the method of the present invention, after decomposing into dietary fiber containing chitosan by the method of the present invention using a Tris-acetate buffer, the chitosan is hydrolyzed under degassing with hydrochloric acid, and the amounts of glucosamine and oligoglucosamine produced are determined by the indole hydrochloric acid method. And the chitosan content was calculated.
[0035]
From the above results, there was a tendency that the recovery rate was higher in the case of decomposing with hydrochloric acid than in the case of decomposing with sulfuric acid. There is almost no difference between the conventional Prosky method and the modified Prosky method when decomposed, but as described above, the phenomenon such as specific adsorption of phosphoric acid to chitosan was observed in the conventional Prosky method, and the amount of dietary fiber actually increased. There may be impurities, such as more measurements. Therefore, after being decomposed into dietary fiber containing chitosan by the improved Prosky method with less impurities, hydrochloric acid decomposition is performed, which is convenient and the recovery rate is improved, and the resulting glucosamine and chitosan decomposition products are colorimetrically determined by the indole hydrochloric acid method. By calculating the chitosan content, it was confirmed that an accurate value was obtained as compared with the conventional method.
[0036]
Table 5 below shows data obtained by colorimetric quantification by the Elson-Morgan method as reference data.
[0037]
[Table 5]
Figure 2004020266

[Brief description of the drawings]
FIG. 1 is a graph showing the correlation between the chitosan addition rate and the weight increase of chitosan from the result of measuring the amount of dietary fiber in foods containing chitosan by a conventional quantitative method using the Prosky method.

Claims (1)

キトサンを含有する食品を、リン酸を含まないTris−酢酸緩衝液を用いたプロスキー法で夾雑物を分解しキトサンを含む食物繊維を回収する工程と、この食物繊維をセライトの引いていないグラスフィルターで回収することにより恒量を測定して食物繊維量を算出する工程と、この食物繊維の一部を分取して6N塩酸を加え脱気下で加水分解する工程と、塩酸加水分解後、適当な濃度に希釈してキトサン分解物をインドール塩酸法により比色定量してキトサン含量を定量する工程とからなる食品中のキトサン含量の定量法。A step of decomposing contaminants of the food containing chitosan by a Prosky method using a Tris-acetate buffer solution containing no phosphoric acid and collecting a dietary fiber containing chitosan; A step of calculating the amount of dietary fiber by measuring a constant weight by collecting with a filter, a step of fractionating a part of the dietary fiber, adding 6N hydrochloric acid and hydrolyzing under degassing, and after hydrolyzing hydrochloric acid, Diluting the chitosan hydrolyzate to an appropriate concentration and colorimetrically measuring the chitosan content by an indole hydrochloric acid method to determine the chitosan content.
JP2002172867A 2002-06-13 2002-06-13 Determination method for metering chitosane content in foods Pending JP2004020266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172867A JP2004020266A (en) 2002-06-13 2002-06-13 Determination method for metering chitosane content in foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172867A JP2004020266A (en) 2002-06-13 2002-06-13 Determination method for metering chitosane content in foods

Publications (1)

Publication Number Publication Date
JP2004020266A true JP2004020266A (en) 2004-01-22

Family

ID=31172311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172867A Pending JP2004020266A (en) 2002-06-13 2002-06-13 Determination method for metering chitosane content in foods

Country Status (1)

Country Link
JP (1) JP2004020266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431235B1 (en) 2010-04-29 2014-08-18 산동 후아싱 텍스타일 그룹 코포레이션 리미티드 Method for detecting content of chitosan fiber in textile
WO2014180099A1 (en) * 2013-05-09 2014-11-13 海斯摩尔生物科技有限公司 Method for measuring degree of deacetylation of chitosan fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431235B1 (en) 2010-04-29 2014-08-18 산동 후아싱 텍스타일 그룹 코포레이션 리미티드 Method for detecting content of chitosan fiber in textile
WO2014180099A1 (en) * 2013-05-09 2014-11-13 海斯摩尔生物科技有限公司 Method for measuring degree of deacetylation of chitosan fibers

Similar Documents

Publication Publication Date Title
Yamamura et al. Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids
CN102955009B (en) Method for analyzing and detecting inulin in infant formula
Anastassiadis et al. Liberation of hexosamine, hexuronic acid, and hydroxyproline from tissues by resin hydrolysis
BRPI0709667A2 (en) COMPOSITIONS OF WATER SOLUBLE B-GLYCAN, GLYCOSAMINE AND N-ACETILGLYCOSANINE AND METHODS FOR THEIR PRODUCTION
Rao Nature of carbohydrates in pulses
CN104181313B (en) Factor IX quality-control product preparation method
CN106353309B (en) A method of yeast beta-dextran content in detection modulation cream
JP2004020266A (en) Determination method for metering chitosane content in foods
Rowan et al. Effect of hydrolysis time on the determination of the amino acid composition of diet, ileal digesta, and feces samples and on the determination of dietary amino acid digestibility coefficients
Longstaff et al. Digestion of fibre polysaccharides of pea (Pisum sativum) hulls, carrot and cabbage by adult cockerels
JP3530567B2 (en) Method for producing resistant starch
CN113341059A (en) Stomach-small intestine-large intestine bionic digestion method for growing pigs and application of stomach-small intestine-large intestine bionic digestion method to estimation of effective energy value of feed
Lippi et al. Hyponatremia and pseudohyponatremia: first, do no harm
CA2640335A1 (en) Rapid saccharide biomarker assay
CN115436542B (en) Method for identifying sheep-derived heparin doping proportion in pig intestinal mucosa heparin
Jeltema et al. Revised method for quantitating dietary fibre components
Marlett et al. Comparison of gravimetric and chemical analyses of total dietary fiber in human foods
Arnold et al. Chemical determination of nicotinic acid
CN103901212A (en) Glycan microarray for identifying serial liver diseases based on saliva glycan-binding proteins, and application of glycan microarray
JP2006184131A (en) Measuring method of fucoidan content and fucoidan-containing food
CN114836516A (en) Method for rapidly detecting titer of non-starch polysaccharide enzyme for feed
CN110927154B (en) Method for evaluating action effect of heat-resistant phytase in vitro
CN113238010B (en) Method for in vitro determination of glycemic index of carbohydrate food
Chen et al. Direct determination of Cd and Pb in gel forming konjac samples by enzymatic hydrolysis assisted slurry sampling graphite furnace atomic absorption spectrometry
CN103076448A (en) Preparation method and device for novel labeling technique of cervix cancer cells