JP2004019846A - Oscillating spindle having shaking function - Google Patents

Oscillating spindle having shaking function Download PDF

Info

Publication number
JP2004019846A
JP2004019846A JP2002178019A JP2002178019A JP2004019846A JP 2004019846 A JP2004019846 A JP 2004019846A JP 2002178019 A JP2002178019 A JP 2002178019A JP 2002178019 A JP2002178019 A JP 2002178019A JP 2004019846 A JP2004019846 A JP 2004019846A
Authority
JP
Japan
Prior art keywords
tool
internal gear
gear
planetary
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178019A
Other languages
Japanese (ja)
Inventor
Shigeomi Koshimizu
越水 重臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002178019A priority Critical patent/JP2004019846A/en
Publication of JP2004019846A publication Critical patent/JP2004019846A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool excellent in machining performance by oscillating a spindle, and suppressing temperature rise in the blade edge of the tool. <P>SOLUTION: A plurality of planetary gears 30L, 30R having diameters of pitch circles different from each other are respectively engaged with a sun gear 10 and an internal gear 20, and the gears 30L, 30R are mutually linked by planetary arms 31 fastened to a motor shaft 33. The interval gear 20 is fit to a tool-supporting base 40 to which a machining tool 42 such as a circular knife is attached. When rotation power is applied from the motor shaft 33 to the planetary arms 31, the internal gear 20 rotates by means of the gears 30L, 30R, and a workpiece is cut off or polished by the tool 42. The spindle is oscillated by eccentric rotation of the internal gear 20 by the planetary gears 30L, 30R, consequently, high-speed machining, accuracy in a worked surface, and prolongation of the service life of the tool 42 can be attained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、切削工具,研磨工具等の動力伝達機構に組み込まれ、加工中の加工工具を加振する揺動スピンドルに関する。
【0002】
【従来技術及び問題点】
切削,研磨等の加工作業では、スピンドルに取り付けた円板状のブレードや円筒状のグラインダを被加工物に押し当て、被加工物を切削,研磨する加工工具が使用されている。この種の加工工具用に従来から種々のスピンドル機構が知られているが、加工熱軽減,バリ除去等の機能を付与するためスピンドルの高速回転に揺動を随伴させた方式が有望である。
【0003】
スピンドルを高速回転及び揺動させる機構には、円板状回転板の偏心位置に出力回転軸を軸着させたスピンドル機構(特開平12−304106号公報),駆動軸の回転運動を揺動運動に変換するプラネタリギアを組み込んだ電動工具(特開平14−079476号公報)等がある。しかし、従来の機構は何れも複雑な構造をもち、工具の組立てが困難であるばかりか、各種歯車の間で動力伝達にロスが発生しやすい。特に、出力回転軸に回転板を偏心させた構造では、出力回転軸の中心から歯車が変位するため、高速回転時に過大な負荷が軸受けに加わる構造的な欠陥がある。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、サンギア,プラネタリギア,インターナルギアの簡単な組合せにより、動力伝達効率が高く、プラネタリギアのピッチ円直径で偏心量を調整でき、工具寿命の延長,加工性能の向上に適した揺動スピンドルを提供することを目的とする。
【0005】
本発明の揺動スピンドルは、その目的を達成するため、中心部に固定配置されたサンギアと、円板状又は円筒状の加工工具が装着されるインターナルギアと、サンギア及びインターナルギアに噛み合いピッチ円直径が異なる複数のプラネタリギアとを備え、モータ軸に固着されたプラネタリアームでプラネタリギアが相互に連結されていることを特徴とする。
【0006】
【実施の形態】
本発明に従った揺動スピンドルは、サンギア10及びインターナルギア20に一対のプラネタリギア30L,30Rを噛み合わせている(図1)。サンギア10は、工具本体(図示せず)にボルト等で固定された非回転の歯車であり、外周面に複数の歯12が刻設されている。インターナルギア20は、サンギア10から偏心配置され、内周面に複数の歯22が刻設されている。サンギア10に回転動力を伝えるモータ軸33の中心をC33,インターナルギア20の中心をC20と図2(b)に表示している。
【0007】
サンギア10とインターナルギア20との間に配置されたプラネタリギア30L,30Rは、サンギア10の歯12及びインターナルギア20の歯22に噛み合う複数の歯32L,32Rが周面に刻設され、プラネタリアーム31で中心軸が互いに連結されている。プラネタリアーム31は、中央のモータ軸33(図2b)に固定されており、モータ軸33からの動力で旋回する。プラネタリアーム31の旋回によって、サンギア10の周囲をプラネタリギア30L,30Rが周回する。
図示の例では一対のプラネタリギア30L,30Rを示しているが、3個以上のプラネタリギアを使用することも可能である。この場合、サンギア10の周囲に等間隔で配置したプラネタリギアの個数に対応する数のギア支持部をもつ三叉,十字状等のプラネタリアーム31が使用される。
【0008】
プラネタリギア30Lと30Rの間では、サンギア10に対しインターナルギア20を偏心回転させるため、ピッチ円の直径を変えている。プラネタリギア30Lのピッチ円直径Z30L,プラネタリギア30Rのピッチ円直径をZ30Rとすると、サンギア10の中心からインターナルギア20の回転中心までの距離(偏心量D)がD=(Z30L−Z30R)/2になるので、ピッチ円直径Z30L,Z30Rの設定によって偏心量Dを適切に調整できる。ピッチ円直径が異なるプラネタリギア30L,30Rの組込みによりインターナルギア20が偏心回転するので、モータ軸33の回転数N33(rpm)に応じた揺動周波数f(Hz:N33/60)でインターナルギア20が加振される。
インターナルギア20は、フランジ41を備えた工具支持ベース40に焼嵌め等の手段で強固に嵌合されている。丸ナイフ,グラインダ等の加工工具42は、フランジ41にボルト,リベット等の固着具43でフランジ41に固着されている。
【0009】
各ギア10,20,30L,30Rのピッチ円直径の組合せにより加工工具42の回転数を調整でき、モータ軸33の回転数よりも加工工具42を増速回転させる。具体的には、サンギア10のピッチ円直径がZ10,インターナルギア20のピッチ円直径がZ20の場合、式(1)に従いモータ軸33の回転数N33がインターナルギア20の回転数N20に変換される。

Figure 2004019846
【0010】
インターナルギア20の増速回転は、被加工材の切断や研磨に関与する刃先部分が時々刻々変化することを意味する。併せて、インターナルギア20の中心C20は、プラネタリアーム31の旋回に従ってモータ軸33の中心C33を中心とし偏心量Dを半径とする円周状軌跡を移動する。
インターナルギア20は、歯数(ピッチ円直径Z20/モジュールm)に相当する回転数だけ回転したとき初期位置に戻る。したがって、加工工具42は、刃先円周上のZ20×m個所が切断,研磨等の加工に寄与する。ここで、偏心回転(加振)及び増速回転が組み合わされているので、加工に寄与する刃先位置が加工工具42の全周に分散される。その結果、次の加工位置に刃先が至るまでの時間が長くなり、その間に刃先が冷却されるので加工工具42の冷却が進み、加工発熱による工具摩耗が抑えられる、また、揺動周波数fでインターナルギア20が加振されるため、加工性能も向上する。
【0011】
更に、サンギア10の歯12及びインターナルギア20の歯22が両側からプラネタリギア30L,30Rの歯32L,32Rに噛み合っており、サンギア10がバックアップとして働き、プラネタリギア30L,30Rの回転が効率よくインターナルギア20に伝達される。その結果、モータ軸33からインターナルギア20への動力伝達に無駄がなく、投入電力の利用効率が向上する。
【0012】
【実施例】
ピッチ円直径Z10=28.5mmのサンギア10,ピッチ円直径Z20=56.5mmのインターナルギア20,ピッチ円直径Z30L=15mmのプラネタリギア30L及びピッチ円直径Z30R=13mmのプラネタリギア30Rを図2(a)に示すように噛み合わせて揺動スピンドルを組み立てた。
この組合せでは、インターナルギア20の偏心量Dが1.0mm,モータ軸33の回転数N33が1800rpmのときインターナルギア20の回転数N20が約2700rpm,加工工具42の揺動周波数fが30Hzと算出される。すなわち、加工工具42が約2700回転する間にモータ軸33が1800回転するので、加工工具42の刃先位置が分散される。
【0013】
前掲の式(1)にピッチ円直径Z10=28.5mm,Z20=56.5mmを代入するとN20=1.504×N33となり、モータ軸33の約1.5倍の回転速度でインターナルギア20が回転する。仮に、加工工具42がモータ軸33の中心から最も離れた点P(図2a)を考える。インターナルギア20が一周したとき点Pは再び最下点に来るが、モータ軸が1/1.5周しているためインターナルギア20の偏心位置C20も1/1.5周し、点Pは図2より上昇した加工に寄与しない位置に来る。モータ軸33,ひいてはプラネタリアーム31が一周して図2(a)の位置に来て偏心が最下点Pに達したとき、加工工具42の外周上の点は、厳密には1.504回転しているため、加工に寄与する刃先位置が少しずつずれていき、その後殆ど同じ点が最下点に来ない。このように、インターナルギア20が同時に回転,揺動するので、加工に寄与する円周上の位置が次々に分散され、加工工具42が十分冷却される。
【0014】
加工工具42として丸ナイフを工具支持ベース40に装着し、板厚3mmのバルサ材を切断する試験で刃先の温度上昇及び切断性能を調査した。比較のため刃先を加振しない従来の回転スピンドルを組み込んだ切削工具も使用し、切込み速度を一定値:1mm/秒に設定した。
切断加工後に刃先温度を測定したところ、揺動スピンドルを用いた場合に刃先の温度上昇が16℃程度に留まっていたのに対し、通常の回転スピンドルを用いた場合には25℃と大きな温度上昇であった。刃先温度の上昇抑制は、刃先に加わる熱負荷や摩擦熱による工具摩耗が軽減され、工具寿命が長くなることを意味する。
【0015】
送り速度を変更する以外は同じ条件下でバルサ材を切断し、切断可能な長さに及ぼす送り速度の影響を調査した。図3の調査結果にみられるように、通常の回転スピンドルを用いた切断作業では、バルサ材の送り速度が40mm/秒を超えると切断不能となり、丸ナイフで加えられる負荷によってバルサ材が割れてしまった。他方、揺動スピンドルを用いた切断作業では、2倍の80mm/秒まで送り速度を上げても支障なくバルサ材を切断できた。切断面を観察すると、木質繊維がきれいに切断された切断面であり、繊維の引きちぎりに起因するバリ,毛羽立ち等の欠陥が検出されなかった。この対比結果から、揺動スピンドルが高速・高精度加工に適していることが確認された。
【0016】
【発明の効果】
以上に説明したように、本発明の揺動スピンドルは、ピッチ円直径が異なる複数のプラネタリギアをサンギアとインターナルギアとの間に噛み合わせることにより、サンギアに対してインターナルギアを偏心回転させている。しかも、偏心回転に増速回転を同期させていないので加工に寄与する刃先位置が加工工具の全周にわたって分散され、刃先温度の上昇が抑えられるため工具寿命も長くなる。インターナルギアの偏心回転は加工工具に振動を付与し、切削,研磨等の高速加工が可能になると共に加工面精度をも向上させる。
【図面の簡単な説明】
【図1】プラネタリギアを組み込んだ揺動スピンドルの斜視図
【図2】同揺動スピンドルの平面図(a)及び側断面図(b)
【図3】揺動スピンドルを用いてバルサ材を切断した際の切断性能を通常の回転スピンドルと対比したグラフ
【符号の説明】
10:サンギア  12:サンギアの歯
20:インターナルギア  22:インターナルギアの歯
30L,30R:プラネタリギア  31:プラネタリアーム  32L,32R:プラネタリギアの歯  33:モータ軸
40:工具支持ベース  41:フランジ  42:加工工具[0001]
[Industrial applications]
The present invention relates to an oscillating spindle that is incorporated in a power transmission mechanism such as a cutting tool or a polishing tool and vibrates a processing tool being processed.
[0002]
[Prior art and problems]
In processing operations such as cutting and polishing, a processing tool that presses a disk-shaped blade or a cylindrical grinder attached to a spindle against a workpiece to cut and polish the workpiece is used. Various spindle mechanisms have been conventionally known for this type of processing tool, but a system in which swing is accompanied by high-speed rotation of the spindle to impart functions such as reduction of processing heat and deburring is promising.
[0003]
The mechanism for rotating and rotating the spindle at high speed includes a spindle mechanism in which an output rotating shaft is axially mounted at an eccentric position of a disk-shaped rotating plate (Japanese Patent Laid-Open No. 12-304106), and a rotating motion of a driving shaft is oscillated. There is an electric tool incorporating a planetary gear for converting the power into a power tool (Japanese Patent Application Laid-Open No. 14-079476). However, any of the conventional mechanisms has a complicated structure, which makes it difficult to assemble a tool and easily causes loss of power transmission between various gears. In particular, in a structure in which the rotating plate is eccentric to the output rotating shaft, the gear is displaced from the center of the output rotating shaft, so that there is a structural defect that an excessive load is applied to the bearing during high-speed rotation.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem. The simple combination of a sun gear, a planetary gear, and an internal gear has high power transmission efficiency, and the eccentricity is adjusted by the pitch circle diameter of the planetary gear. It is an object of the present invention to provide an oscillating spindle that is capable of extending tool life and improving machining performance.
[0005]
In order to achieve the object, the oscillating spindle of the present invention has a sun gear fixedly disposed at the center, an internal gear on which a disk-shaped or cylindrical processing tool is mounted, and a pitch circle meshing with the sun gear and the internal gear. And a plurality of planetary gears having different diameters, wherein the planetary gears are connected to each other by a planetary arm fixed to the motor shaft.
[0006]
Embodiment
In the swing spindle according to the present invention, a pair of planetary gears 30L and 30R mesh with the sun gear 10 and the internal gear 20 (FIG. 1). The sun gear 10 is a non-rotating gear fixed to a tool body (not shown) with bolts or the like, and has a plurality of teeth 12 engraved on an outer peripheral surface. The internal gear 20 is eccentrically arranged from the sun gear 10 and has a plurality of teeth 22 engraved on the inner peripheral surface. FIG. 2B shows the center of the motor shaft 33 that transmits the rotational power to the sun gear 10 as C 33 , and the center of the internal gear 20 as C 20 .
[0007]
The planetary gears 30L, 30R arranged between the sun gear 10 and the internal gear 20 have a plurality of teeth 32L, 32R meshing with the teeth 12 of the sun gear 10 and the teeth 22 of the internal gear 20, and are engraved on the peripheral surface. At 31 the central axes are connected to one another. The planetary arm 31 is fixed to a central motor shaft 33 (FIG. 2B), and turns with power from the motor shaft 33. As the planetary arm 31 rotates, the planetary gears 30 </ b> L and 30 </ b> R orbit around the sun gear 10.
In the illustrated example, a pair of planetary gears 30L and 30R are shown, but three or more planetary gears can be used. In this case, a triangular or cross-shaped planetary arm 31 having a number of gear support portions corresponding to the number of planetary gears arranged at equal intervals around the sun gear 10 is used.
[0008]
Between the planetary gears 30L and 30R, the diameter of the pitch circle is changed to eccentrically rotate the internal gear 20 with respect to the sun gear 10. Assuming that the pitch circle diameter of the planetary gear 30L is Z 30L and the pitch circle diameter of the planetary gear 30R is Z 30R , the distance (the amount of eccentricity D) from the center of the sun gear 10 to the rotation center of the internal gear 20 is D = (Z 30L −Z). 30R ) / 2, the eccentricity D can be appropriately adjusted by setting the pitch circle diameters Z30L and Z30R . The pitch circle diameter is different planetary gears 30L, the 30R incorporation of the internal gear 20 rotates eccentrically, the rotation speed N 33 (rpm) swings according to the frequency f of the motor shaft 33: with (Hz N 33/60) Intana The lug gear 20 is vibrated.
The internal gear 20 is firmly fitted to the tool support base 40 having the flange 41 by shrink fitting or the like. A processing tool 42 such as a round knife or a grinder is fixed to the flange 41 with a fixing tool 43 such as a bolt or a rivet.
[0009]
The rotation speed of the processing tool 42 can be adjusted by the combination of the pitch circle diameters of the gears 10, 20, 30L, and 30R, and the rotation of the processing tool 42 is increased more than the rotation speed of the motor shaft 33. Specifically, the pitch circle diameter Z 10 of the sun gear 10, if the pitch circle diameter of the internal gear 20 is Z 20, the rotational speed N 20 of the rotational speed N 33 of the motor shaft 33 in accordance with equation (1) is an internal gear 20 Is converted to
Figure 2004019846
[0010]
The speed-up rotation of the internal gear 20 means that the cutting edge portion involved in cutting and polishing of the workpiece changes every moment. At the same time, the center C 20 of the internal gear 20 moves along a circular locus about the center C 33 of the motor shaft 33 and the eccentricity D as the radius in accordance with the rotation of the planetary arm 31.
The internal gear 20 returns to the initial position when rotated by the number of rotations corresponding to the number of teeth (pitch circle diameter Z 20 / module m). Therefore, the processing tool 42 contributes to processing such as cutting and polishing at Z 20 × m portions on the circumference of the cutting edge. Here, since the eccentric rotation (vibration) and the speed-up rotation are combined, the positions of the cutting edges contributing to the machining are dispersed over the entire circumference of the machining tool 42. As a result, the time required for the blade to reach the next processing position becomes longer, and during this time, the blade is cooled, so that the cooling of the processing tool 42 proceeds, tool wear due to processing heat is suppressed, and the swing frequency f Since the internal gear 20 is vibrated, the processing performance is also improved.
[0011]
Further, the teeth 12 of the sun gear 10 and the teeth 22 of the internal gear 20 mesh with the teeth 32L, 32R of the planetary gears 30L, 30R from both sides, so that the sun gear 10 functions as a backup and the rotation of the planetary gears 30L, 30R is efficiently performed. To the gear 20. As a result, there is no waste in power transmission from the motor shaft 33 to the internal gear 20, and the efficiency of use of input power is improved.
[0012]
【Example】
Sun gear 10 with pitch circle diameter Z 10 = 28.5 mm, internal gear 20 with pitch circle diameter Z 20 = 56.5 mm, planetary gear 30L with pitch circle diameter Z 30L = 15 mm, and planetary gear 30R with pitch circle diameter Z 30R = 13 mm Were engaged with each other as shown in FIG.
In this combination, when the eccentricity D of the internal gear 20 is 1.0 mm and the rotation speed N33 of the motor shaft 33 is 1800 rpm, the rotation speed N20 of the internal gear 20 is about 2700 rpm, and the swing frequency f of the processing tool 42 is 30 Hz. Is calculated. That is, since the motor shaft 33 rotates 1800 while the processing tool 42 rotates about 2700, the positions of the cutting edges of the processing tool 42 are dispersed.
[0013]
By substituting the pitch circle diameter Z 10 = 28.5 mm and Z 20 = 56.5 mm into the above equation (1), N 20 = 1.504 × N 33 , which is about 1.5 times the rotation speed of the motor shaft 33. The internal gear 20 rotates. Suppose a point P (FIG. 2 a) where the working tool 42 is farthest from the center of the motor shaft 33. When the internal gear 20 makes one revolution, the point P comes to the lowest point again. However, since the motor shaft makes 1 / 1.5 revolution, the eccentric position C 20 of the internal gear 20 also makes 1 / 1.5 revolution, and the point P Comes to a position that does not contribute to the processing, which is raised from FIG. When the motor shaft 33 and, consequently, the planetary arm 31 make a round to reach the position shown in FIG. 2A and the eccentricity reaches the lowest point P, the point on the outer periphery of the processing tool 42 is strictly 1.504 rotations. As a result, the position of the cutting edge contributing to the processing shifts little by little, and thereafter almost the same point does not come to the lowest point. As described above, since the internal gear 20 rotates and swings at the same time, the positions on the circumference contributing to machining are dispersed one after another, and the machining tool 42 is sufficiently cooled.
[0014]
A round knife was mounted on the tool support base 40 as the processing tool 42, and the temperature rise of the cutting edge and the cutting performance were examined in a test for cutting a balsa material having a thickness of 3 mm. For comparison, a cutting tool incorporating a conventional rotary spindle that does not vibrate the cutting edge was also used, and the cutting speed was set to a constant value: 1 mm / sec.
When the temperature of the cutting edge was measured after cutting, the temperature rise of the cutting edge stayed at about 16 ° C when using the oscillating spindle, but increased to 25 ° C when using a normal rotating spindle. Met. Suppression of increase in the temperature of the cutting edge means that tool wear due to heat load and frictional heat applied to the cutting edge is reduced, and the tool life is extended.
[0015]
The balsa wood was cut under the same conditions except for changing the feed rate, and the effect of the feed rate on the cuttable length was investigated. As can be seen from the investigation results in FIG. 3, in a cutting operation using a normal rotary spindle, cutting cannot be performed when the feed speed of the balsa material exceeds 40 mm / sec, and the balsa material is broken by a load applied by a round knife. Oops. On the other hand, in the cutting operation using the oscillating spindle, the balsa material could be cut without any trouble even if the feed rate was increased to 80 mm / sec, which is twice as high. When the cut surface was observed, it was a cut surface in which the wood fiber was cut neatly, and no defects such as burrs and fluff caused by tearing of the fiber were detected. From this comparison result, it was confirmed that the oscillating spindle was suitable for high-speed and high-precision machining.
[0016]
【The invention's effect】
As described above, the oscillating spindle of the present invention eccentrically rotates the internal gear with respect to the sun gear by meshing a plurality of planetary gears having different pitch circle diameters between the sun gear and the internal gear. . In addition, since the speed-up rotation is not synchronized with the eccentric rotation, the positions of the cutting edges contributing to the machining are dispersed over the entire circumference of the working tool, and a rise in the temperature of the cutting edges is suppressed, so that the tool life is extended. The eccentric rotation of the internal gear imparts vibration to the processing tool, enabling high-speed processing such as cutting and polishing, and improving the processing surface accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view of a swing spindle incorporating a planetary gear. FIG. 2 is a plan view (a) and a side sectional view (b) of the swing spindle.
FIG. 3 is a graph showing the cutting performance when cutting a balsa material using an oscillating spindle, as compared with a normal rotating spindle.
10: Sun gear 12: Sun gear tooth 20: Internal gear 22: Internal gear tooth 30L, 30R: Planetary gear 31: Planetary arm 32L, 32R: Planetary gear tooth 33: Motor shaft 40: Tool support base 41: Flange 42: Processing tool

Claims (1)

中心部に固定配置されたサンギアと、円板状又は円筒状の加工工具が装着されるインターナルギアと、サンギア及びインターナルギアに噛み合いピッチ円直径が異なる複数のプラネタリギアとを備え、モータ軸に固着されたプラネタリアームでプラネタリギアが相互に連結されていることを特徴とする加振機能をもつ揺動スピンドル。A sun gear fixedly disposed at the center, an internal gear on which a disk-shaped or cylindrical processing tool is mounted, and a plurality of planetary gears meshing with the sun gear and the internal gear and having different pitch circle diameters, are fixed to the motor shaft. A oscillating spindle having a vibration function, wherein the planetary gears are connected to each other by a set planetary arm.
JP2002178019A 2002-06-19 2002-06-19 Oscillating spindle having shaking function Pending JP2004019846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178019A JP2004019846A (en) 2002-06-19 2002-06-19 Oscillating spindle having shaking function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178019A JP2004019846A (en) 2002-06-19 2002-06-19 Oscillating spindle having shaking function

Publications (1)

Publication Number Publication Date
JP2004019846A true JP2004019846A (en) 2004-01-22

Family

ID=31175864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178019A Pending JP2004019846A (en) 2002-06-19 2002-06-19 Oscillating spindle having shaking function

Country Status (1)

Country Link
JP (1) JP2004019846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064064A (en) * 2013-09-25 2015-04-09 株式会社ニッセイ Planetary reduction gear, and method for fixing internal gear in planetary reduction gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064064A (en) * 2013-09-25 2015-04-09 株式会社ニッセイ Planetary reduction gear, and method for fixing internal gear in planetary reduction gear

Similar Documents

Publication Publication Date Title
JP3205051U (en) Polishing unit, deburring device, polishing device, deburring robot, polishing robot
JP4172865B2 (en) External gear polishing method and polishing apparatus
JPH0439447A (en) Annular geared power transmitting mechanism and bush cutter using the same
JP2001157906A (en) Machining apparatus, and machining method
JP2004019846A (en) Oscillating spindle having shaking function
JP2001071229A (en) Work device and rocking rotation converting unit
JPH02167674A (en) Polishing device
JP4278816B2 (en) Reduction method of angular backlash of swinging intermeshing planetary gear transmission
JP7240013B2 (en) Vertical grinder
JP2002079416A5 (en)
JPH06143078A (en) Tool holder for machining center
JPH0373261A (en) Plane processor
JP4149603B2 (en) External gear polishing method and polishing apparatus
JPH03251363A (en) Lapping work and double-face lapping machine
JP2005007532A (en) Rotary table device
TWI822541B (en) Single power source wavelet low-frequency axial fluctuation milling tool holder composite mechanism
JP2004338007A (en) Rotary drive mechanism, table device, tool spindle device, and machine tool
JPH07116922A (en) Bolt polishing tool
JP2003071623A (en) Star type drilling machine
JP2003170334A (en) Index device
JP2000280121A (en) Thread cutting and cutting apparatus therefor
JP2003220547A (en) Power tool
JPH08206920A (en) Hob cutter
JP3510097B2 (en) Swing spindle device for machine tools
JPH0683248U (en) Brush chamfering device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926