JP2004019793A - Vibration-proof structure of hydraulic apparatus - Google Patents

Vibration-proof structure of hydraulic apparatus Download PDF

Info

Publication number
JP2004019793A
JP2004019793A JP2002175739A JP2002175739A JP2004019793A JP 2004019793 A JP2004019793 A JP 2004019793A JP 2002175739 A JP2002175739 A JP 2002175739A JP 2002175739 A JP2002175739 A JP 2002175739A JP 2004019793 A JP2004019793 A JP 2004019793A
Authority
JP
Japan
Prior art keywords
vibration
hydraulic
damper
hydraulic device
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002175739A
Other languages
Japanese (ja)
Other versions
JP3977158B2 (en
Inventor
Yasunobu Nakatani
中谷 安信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002175739A priority Critical patent/JP3977158B2/en
Publication of JP2004019793A publication Critical patent/JP2004019793A/en
Application granted granted Critical
Publication of JP3977158B2 publication Critical patent/JP3977158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4183Preventing or reducing vibrations or noise, e.g. avoiding cavitations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/433Pump capacity control by fluid pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/448Control circuits for tandem pumps or motors

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a permanent countermeasure for reducing or eliminating a noise and vibration in a hydraulic apparatus without remarkable increase the cost. <P>SOLUTION: This vibration-proof structure includes a throttle passage 43 and an expansion chamber 44 having a larger sectional area than the sectional area of the throttle passage 43 and communicated with the throttle passage 43, wherein damper (d) is integrated with a transmission case 6c, and the throttle passage 43 is connected and communicated with supply and discharge oil passages 29, 30 near relief valves 34, 35 in a hydraulic continuously variable transmission. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、油圧装置の防振構造に係り、詳しくは、走行用の静油圧式無段変速装置といった、トラクタ、ホイールローダ等の作業機に用いられる油圧装置の騒音や振動を防止させる技術に関するものである。
【0002】
【従来の技術】
例えば、特開平11−59210号公報に示された走行用の静油圧式無段変速装置には、回路圧の上限を定めるリリーフ弁が設けてあり、泥濘地走行等によって負荷が著しく増大して回路圧が限界を超えると、リリーフ弁が開通して圧を逃がし作動する。このように、油圧装置では、装置保護や最大圧設定等のためにリリーフ弁を装備するのが一般的である。
【0003】
【発明が解決しようとする課題】
前述のように、リリーフ弁が開通作動するのは、回路に上限以上の圧が作用する高圧状態であることから、その開通作動時に「ピー」といった騒音の出ることがある。これは、リリーフ作動する際の脈動的な圧力変動により、弁体、戻しバネといった可動部、或いは弁箱部分等が共振することで騒音を引起しているものと考えられる。
【0004】
そのため、リリーフ弁の各パーツ寸法や重量を変更したり、機能に影響の無い範囲で形状を変更したりするという対策によって、騒音を無くすようにしていたが、このような対策は、騒音が生じた箇所のリリーフ弁毎に専用のものとなっていた。共振を解消するための恒久的な対策はなかなか見つからないものであり、騒音が出た不都合箇所には、試行錯誤による専用の対策を行うしかなく、面倒で効率の芳しくない作業が必要となる問題があった。
【0005】
一方、静油圧式無段変速装置のチャージ用等、潤滑用や補給用として用いられるトロコイドポンプは、小型、安価に構成できる利点から多用されているが、その反面、脈動が大きいものであり、例えば、ポンプ吐出側の配管が脈動に共振して大きく振動するという問題がある。また、それによって高圧化が難しいものでもあった。従って、脈動に起因した振動に耐えるように、吐出側の配管を過剰強度気味に設定するといった不利があった。
【0006】
このように、油圧装置においては、共振に伴って騒音や振動が生じ易い面があり、しかもそれらに対する恒久的な対策も無いため、騒音や振動を有効に防止できる手段が望まれているのが実状であった。そこで、本発明の目的は、油圧装置における前述した騒音や振動を軽減又は解消する恒久的な対策手段を、大幅なコストアップなく実現して提供する点にある。
【0007】
【課題を解決するための手段】
〔構成〕
請求項1の構成は、油圧装置の防振構造において、絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で絞り流路に連通する膨張室とを備えてダンパを構成するとともに、油圧装置における圧油流路に絞り流路を連通接続してあることを特徴とする。
【0008】
〔作用、効果〕
請求項1の構成は、油圧装置の圧油流路に連通接続される絞り流路と、絞り流路の断面積よりも大なる断面積を有した膨張室とを連通させて成るダンパを設ける手段である。圧油流路に生じた振動や脈動が絞り流路を介して膨張室に伝わる際に断面積が一挙に増大するので、共鳴周波数の付近でインピーダンスが小さくなる作用が生まれて振動波が短絡され、それによって固有振動での共振現象を低減させることができる。
【0009】
この振動低減作用は、ダンパの存在によって必ず発揮させることができるから、ダンパを連通接続するという単一の改造を行うことで、防振作用を得ることが可能である。故に、共振による不都合が生じた部分に種々の対策を施してみて、最良の手段を選択設定するという、面倒で非効率な従来の防振作業を不要にすることができる。
【0010】
その結果、請求項1に記載の油圧装置の防振構造では、絞り流路と膨張室とを備えたダンパを、共振現象の生じる箇所の付近の油路に連通接続させる工夫により、あらゆる箇所における騒音や振動といった共振による不都合を回避することができるので、ダンパを接続するだけの簡単で廉価な単一種の対策でありながら、恒久的な防振手段を提供することができた。
【0011】
〔構成〕
請求項2の構成は、請求項1の構成において、ダンパを、リリーフ弁近傍の圧油流路に連通接続してあることを特徴とする。
【0012】
〔作用、効果〕
請求項2の構成によれば、ダンパによる振動低減作用により、リリーフ弁が開弁作動した際に、可動弁体やリリーフバネ等の可動部の共振が抑制又は解消されるようになり、共振によってブザーのように騒音を発生することが回避できるようになる。その結果、簡単構造のダンパを設けることにより、リリーフ弁がリリーフ作動するときに生じていた騒音を解消することができた。
【0013】
〔構成〕
請求項3の構成は、請求項1の構成において、ダンパを、トロコイドポンプの吐出側流路に連通接続してあることを特徴とする。
【0014】
〔作用、効果〕
請求項3の構成によれば、ダンパによる振動低減作用により、トロコイドポンプの吐出側流路に生じる脈動が抑制又は解消されるようになり、吐出側流路である油圧配管の振動を解消することができる。従って、振動に耐えなくても良い分、配管径の小型化ができるとか、振動による移動が無い分、配管スペースの削減が可能になるといった利点を得ることができた。
【0015】
〔構成〕
請求項4の構成は、請求項1〜3の構成において、ダンパを、油圧装置を構成するためのケーシングに一体形成してあることを特徴とするものである。
【0016】
〔作用、効果〕
請求項4の構成によれば、油圧装置を構成するための必須部材であるケーシングにダンパを一体形成してあるから、部材の兼用化によってコンパクトに、また経済的に防振構造を提供することができた。例えば、ミッションケース等のように、ケーシングが鋳鉄等の鋳造合金で形成されている場合には、流路や膨張室といった空間部分を一体形成すること容易である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1に農用トラクタが示されおり、Eはエンジン、1は前輪、2は後輪、3はボンネット、4は運転部、5はエンジン、6は走行用ミッション、7は車体、8は運転座席、9はPTO軸、10は後部作業装置、11は後輪用フェンダ、gはガード部材である。
【0018】
図2、図3に、走行用ミッション6の主要部であるHST12が、そして図4にはその油圧回路図がそれぞれ示されている。このHST12は、入力軸13に入力されたエンジン動力を平ギヤ連動機構14を介して、可変容量型の油圧ポンプPのポンプ軸15に伝動し、油圧ポンプPの圧油によって作動する2個の油圧モータM1,M2それぞれの出力軸16,17をカップリング18(出力合流機構Aの一例)を用いて直結連動してあり、1ポンプ・2モータ型に構成されている。なお、図4において、一点破線で囲まれた部分がミッションケース6cであり、その外側に描かれたもの(チャージポンプ19の吐出側油路19aや後述の電磁切換弁39等)は、外部配管やケース外付け部品となっている。
【0019】
ポンプ軸15には、HST12用のチャージポンプ19が装備されるとともに、その先端をミッションケース6c外に突出させてあり、ライブPTO軸等に利用できる突出先端軸部20としてある。ミッションケース6cは、主として油圧ポンプP及び第1油圧モータM1とを覆う主ケース部21、入力軸13等を軸支する蓋ケース部22、第2油圧モータM2を覆うモータケース部23、及び、主ケース部21とモータケース部23との間に介装される油路ブロック24を有して構成されている。
【0020】
図4に示すように、プランジャ式の油圧ポンプPは可変容量型に、アキシャルピストン式の第1油圧モータM1は定容量型に、そして、アキシャルピストン式の第2油圧モータM2は可変容量型にそれぞれ構成されており、これら2個の油圧モータM1,M2の圧油入力側ポート25,26どうし、及び排油側ポート27,28どうしを連通接続して並列回路hを形成して、一対の給排油路29,30を介して油圧ポンプPに接続してある。34,35は、前進側及び後進側の最大負荷圧を設定する走行用のリリーフ弁であり、36は回路圧の上限を設定する主リリーフ弁である。なお、入力側と排油側各ポート25〜28は、HST12としての出力回転方向が正転のときと逆転のときとでは、その機能が互いに反対となる。
【0021】
油圧ポンプPの斜板操作部33に連動している油圧式の変速シリンダ31を変速バルブ32の切換えによって操作することにより、油圧ポンプPの斜板角が変化して単位時間当たりの圧油の吐出量を変化させ、その吐出された圧油のエネルギーを第1及び第2油圧モータM1,M2によって回転力に変換して、入力軸13からの回転動力を前進側と後進側とに切換え自在であるとともに、前進側と後進側のいずれにおいても無段階に変速して出力軸17から取り出し、図示しない副変速機構等を介して後輪2に伝達するように、HST12が機能する。
【0022】
第2油圧モータM2を、これの斜板角が、第1油圧モータM1における斜板角に等しい第1速度状態と、0度となる第2速度状態との2状態切換型に構成してある。図4に示すように、第2油圧モータM2の斜板37の斜板操作部37aに作用する切換シリンダ38と、この切換シリンダ38を切換え操作する2位置切換え型の電磁切換弁39と、そのボタンスイッチ40とを設けてある。つまり、ボタンスイッチ40を操作して、電磁切換弁39を切換えて切換シリンダ38を伸縮動させることにより、斜板37が傾斜した第1速度状態(図3に示す状態)と、斜板37が垂直に立って傾角が0となる第2速度状態(図2に示す状態)とが選択切換え自在に構成されている。
【0023】
切換シリンダ38は、シリンダ室41aとピストンロッド41bとで成る操作部41と、復帰バネ42aと押しロッド42bとで成る戻し部42とを、モータケース部23内において対向配置して構成されており、シリンダ室41aに圧油を供給して復帰バネ42aの付勢力に抗して強制的にピストンロッド41bを押し出せば図3に示す第1速度状態になり、シリンダ室41aから排油すれば、復帰バネ42aの付勢力によって押しロッド42bが斜板操作部37aを0度位置に押し戻し、図2に示す第2速度状態に自己復帰するのである。
【0024】
第2油圧モータM2は、その出力軸17の軸心が、第1油圧モータM1の出力軸16の軸心Xと一致して一直線上に並ぶように配置されている。従って、モータ部として見た場合は、軸心X方向(前後方向)には長いが、上下及び左右方向にはコンパクトに形成できおり、ミッションのスペースが前後に長くなるトラクタ等に好適な配置レイアウトになっている。
【0025】
第1速度状態では、両油圧モータM1,M2が同斜板角となるので、第1油圧モータM1による場合のほぼ2倍のトルクを発生することができる。理論上トルクは2倍になるが、実際には機械的な摩擦損失等のエネルギーロスが存在するので、出力軸17から取り出されるトルクは「ほぼ2倍」になる。従って、この第1速度状態で油圧ポンプPを最低速操作すれば、従来のほぼ2倍の最大トルクを発生できるので、泥濘地におけるプラウ作業等の負荷トルクが非常に大きくなる作業走行に好適なものとなる。また、傾角が0となる第2速度状態では、圧油が第2油圧モータを素通りするような状態となるので、実質的に第1油圧モータM1のみが装備された1モータ状態のHSTとして使用することができる。
【0026】
次に、リリーフ弁作動時の騒音やチャージポンプの吐出脈動を低減させる防振機構Bについて説明する。
【0027】
図4に示すように、各給排油路29,30におけるリリーフ弁34,35への分岐点近く、及びチャージポンプ19の吐出側油路19aの計3箇所に、それぞれの油路(圧油流路rの一例)に連通する防振機構Bを装備してある。リリーフ弁34,35近くの2個の防振機構B,Bは、リリーフ作動時にリリーフ弁34,35から「ピー」といった騒音の生じることを回避させるものであり、吐出側油路19aに装備された防振機構Bは、トロコイドポンプで成るチャージポンプ19の脈動を吸収して振動防止させるものである。
【0028】
図5〜図7に示すように、騒音防止用の防振機構Bは、絞り流路43と、この絞り流路43の断面積よりも大なる断面積を有した状態で絞り流路43に連通する膨張室44とを備えてダンパdを構成するとともに、給排油路(油圧装置における圧油流路の一例)29,30に絞り流路43を連通接続して構成されている。直径1.5mmの細孔で成る絞り流路43と、絞り流路43の数倍の径を有した膨張室44とを鋳鉄製のミッションケース6cに一体形成してあり、膨張室44を密閉するための栓45が螺着された状態では、膨張室44の容積が約1.5立方センチメートルになるように設定してある。
【0029】
一対のリリーフ弁34,35は同じものであり、一方のリリーフ弁34で説明すると、このリリーフ弁34は逆止弁の機能も有しており、一方の流れ方向にはリリーフ作動し、反対側の流れは殆ど抵抗なく通すというチェック作用を発揮する複合弁に構成されている。図5において、46はリリーフバネ、47はダンピング室、48は弁体、49はプラグ、50は弁座、59はリリーフ弁体48をスライド移動自在に内嵌する支持体、60はバネ受け、61は弁体48を極軽く閉じ付勢するための巻きバネである。
【0030】
すなわち、給排油路29に連通される導入油路29bの圧が所定以上になると、リリーフバネ46の付勢力に抗してリリーフ弁34が開弁状態になり、給排油路29の圧が所定圧未満になるまで排出油路29aを介して吐出側油路19aに圧を逃がすリリーフ作用が発揮される。そして、リーク等によってHST12としての作動油が不足してくると、巻きバネ61の極軽い付勢力に抗してリリーフ弁34が開弁状態になり、殆ど抵抗無くチャージ圧をHST12に供給できるのである。
【0031】
絞り流路43は、各導入油路29b,30bを介して各リリーフ弁34,35におけるダンピング室47に連通されている。絞り流路43及び膨張室44は、ミッションケース6cの端からドリリングするといった機械加工によって形成することが可能である。また、リリーフ弁34も、ミッションケース6c(ケーシングの一例)の端からドリリングする機械加工によって形成された穴の内部に構成することができる。
【0032】
図4に示す振動防止用の防振機構Bは、構造としては前述の騒音防止用の防振機構Bと全く同じであり、やはりミッションケース6cに一体形成されている。その絞り流路43は、トロコイド型のチャージポンプ19の吐出側油路19aに連通されている。
【0033】
〔別実施形態〕
図8に示すように、外付け構造の防振機構Bでも良い。すなわち、一端が開放された筒状のダンピングケース51と、先端側に細孔による絞り流路52が、かつ、基端側に油路ホース56用の接続金具53が螺着されたプラグ54とを螺着することにより、ダンピングケース51内に膨張室55を有するダンパdを構成する。接続金具53には、油圧装置57の油路58に連通する油路ホース56が連通接続してあり、これによって専用部品のダンパdを用いた外付け構造の防振機構Bが構成されている。
【0034】
油圧装置としては、トラクタの作業装置昇降用のものや、パワーステアリング装置等、種々のものが考えられる。
【図面の簡単な説明】
【図1】トラクタの側面図
【図2】第2速度状態でのHSTの構造を示す側面図
【図3】第1速度状態でのHSTの構造を示す側面図
【図4】HSTの油圧回路図
【図5】りリーフ弁、及び騒音防止用の防振機構を示す断面図
【図6】防振機構装着部位におけるミッションケースの正面図
【図7】防振機構の断面図
【図8】外付け構造のダンパを示す断面図
【符号の説明】
6c      ケーシング
19      トロコイドポンプ
19a     吐出側流路
43      絞り流路
44      膨張室
A       出力合流機構
Y       油圧装置
d       ダンパ
r       圧油流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anti-vibration structure for a hydraulic device, and more particularly, to a technology for preventing noise and vibration of a hydraulic device used for a working machine such as a tractor or a wheel loader, such as a hydrostatic continuously variable transmission for traveling. Things.
[0002]
[Prior art]
For example, a hydrostatic continuously variable transmission for traveling disclosed in Japanese Patent Application Laid-Open No. 11-59210 is provided with a relief valve for setting an upper limit of a circuit pressure. When the circuit pressure exceeds the limit, the relief valve opens to release the pressure and operate. As described above, a hydraulic device is generally equipped with a relief valve for protection of the device, setting of the maximum pressure, and the like.
[0003]
[Problems to be solved by the invention]
As described above, the opening operation of the relief valve is a high-pressure state in which a pressure equal to or higher than the upper limit acts on the circuit. This is considered to be caused by noise caused by resonance of the movable part such as the valve element and the return spring or the valve box part due to the pulsating pressure fluctuation during the relief operation.
[0004]
For this reason, noise was eliminated by changing the dimensions and weight of each part of the relief valve or changing the shape within a range that did not affect the function.However, such measures caused noise. It was a dedicated one for each relief valve at the location where it was used. Permanent countermeasures to eliminate resonance are difficult to find, and at inconvenient locations where noise is generated, there is no choice but to take dedicated measures by trial and error, which requires troublesome and inefficient work. was there.
[0005]
On the other hand, trochoid pumps used for lubrication and replenishment, such as for charging a hydrostatic continuously variable transmission, are often used because of their advantages of being compact and inexpensive, but on the other hand, they have large pulsation, For example, there is a problem that the pipe on the pump discharge side resonates with pulsation and vibrates greatly. In addition, it was difficult to increase the pressure. Therefore, there is a disadvantage in that the discharge-side pipe is set to be excessively strong so as to withstand vibration caused by pulsation.
[0006]
As described above, in a hydraulic device, noise and vibration are easily generated due to resonance, and there is no permanent countermeasure against them. Therefore, means for effectively preventing noise and vibration are desired. It was actual. Therefore, an object of the present invention is to provide and provide a permanent countermeasure for reducing or eliminating the above-described noise and vibration in a hydraulic device without significantly increasing the cost.
[0007]
[Means for Solving the Problems]
〔Constitution〕
According to a first aspect of the present invention, in the vibration damping structure of the hydraulic device, there is provided a throttle channel, and an expansion chamber communicating with the throttle channel in a state having a cross-sectional area larger than a cross-sectional area of the throttle channel. A damper is configured, and a throttle flow path is connected to a pressure oil flow path in the hydraulic device.
[0008]
[Action, effect]
According to a first aspect of the present invention, there is provided a damper formed by connecting a throttle passage that is connected to a pressure oil flow passage of a hydraulic device and an expansion chamber having a cross-sectional area larger than a cross-sectional area of the throttle flow passage. Means. When vibrations and pulsations generated in the pressure oil flow path are transmitted to the expansion chamber via the throttle flow path, the cross-sectional area increases at a stretch, so that the effect of reducing the impedance near the resonance frequency is created, and the vibration wave is short-circuited. Thus, the resonance phenomenon due to the natural vibration can be reduced.
[0009]
Since the vibration reducing action can always be exerted by the presence of the damper, it is possible to obtain the vibration damping action by performing a single remodeling of connecting the damper in communication. Therefore, it is possible to eliminate the troublesome and inefficient conventional anti-vibration work of performing various countermeasures on a portion where the inconvenience due to resonance occurs and selecting and setting the best means.
[0010]
As a result, in the vibration damping structure of the hydraulic device according to the first aspect, the damper provided with the throttle passage and the expansion chamber is connected to the oil passage near the location where the resonance phenomenon occurs, so that the damper can be connected at any location. Since it is possible to avoid inconvenience due to resonance such as noise and vibration, it is possible to provide a permanent anti-vibration means while providing a simple and inexpensive single type of measure simply by connecting a damper.
[0011]
〔Constitution〕
According to a second aspect of the present invention, in the configuration of the first aspect, the damper is connected to the pressure oil flow passage near the relief valve.
[0012]
[Action, effect]
According to the configuration of the second aspect, the vibration of the movable portion such as the movable valve element and the relief spring is suppressed or eliminated when the relief valve is opened by the vibration reducing action of the damper. The generation of noise as described above can be avoided. As a result, by providing a damper having a simple structure, it was possible to eliminate the noise generated when the relief valve operated in relief.
[0013]
〔Constitution〕
According to a third aspect of the present invention, in the first aspect, the damper is connected to the discharge-side flow path of the trochoid pump.
[0014]
[Action, effect]
According to the configuration of the third aspect, the pulsation generated in the discharge side flow path of the trochoid pump is suppressed or eliminated by the vibration reducing action of the damper, and the vibration of the hydraulic pipe which is the discharge side flow path is eliminated. Can be. Therefore, there is an advantage that the pipe diameter can be reduced because it is not necessary to withstand the vibration, and the piping space can be reduced because there is no movement due to the vibration.
[0015]
〔Constitution〕
According to a fourth aspect of the present invention, in the configuration of the first to third aspects, the damper is formed integrally with a casing for forming a hydraulic device.
[0016]
[Action, effect]
According to the fourth aspect of the present invention, since the damper is integrally formed in the casing which is an essential member for constituting the hydraulic device, the vibration damping structure can be provided compactly and economically by combining the members. Was completed. For example, when the casing is made of a cast alloy such as cast iron as in a transmission case, it is easy to integrally form a space such as a flow path and an expansion chamber.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an agricultural tractor, where E is an engine, 1 is a front wheel, 2 is a rear wheel, 3 is a hood, 4 is a driving unit, 5 is an engine, 6 is a driving mission, 7 is a vehicle body, and 8 is a driving seat. Reference numeral 9 denotes a PTO shaft, 10 denotes a rear working device, 11 denotes a rear wheel fender, and g denotes a guard member.
[0018]
2 and 3 show an HST 12 which is a main part of the traveling mission 6, and FIG. 4 shows a hydraulic circuit diagram thereof. The HST 12 transmits the engine power input to the input shaft 13 to the pump shaft 15 of the variable displacement hydraulic pump P via the spur gear interlocking mechanism 14, and the two HSTs 12 are operated by the hydraulic oil of the hydraulic pump P. The output shafts 16 and 17 of the hydraulic motors M1 and M2 are directly connected and linked using a coupling 18 (an example of an output merging mechanism A), and are configured as a one-pump two-motor type. In FIG. 4, a portion surrounded by a dashed line is the transmission case 6c, and the portion drawn outside thereof (the discharge-side oil passage 19a of the charge pump 19, the electromagnetic switching valve 39 described later, etc.) is an external piping. And external parts of the case.
[0019]
The pump shaft 15 is equipped with a charge pump 19 for the HST 12, and its tip is projected outside the transmission case 6c to form a projected tip shaft portion 20 that can be used for a live PTO shaft or the like. The transmission case 6c includes a main case portion 21 that mainly covers the hydraulic pump P and the first hydraulic motor M1, a lid case portion 22 that supports the input shaft 13 and the like, a motor case portion 23 that covers the second hydraulic motor M2, and An oil passage block 24 is provided between the main case 21 and the motor case 23.
[0020]
As shown in FIG. 4, the plunger type hydraulic pump P is of a variable displacement type, the axial piston type first hydraulic motor M1 is of a constant displacement type, and the axial piston type second hydraulic motor M2 is of a variable displacement type. The two hydraulic motors M1 and M2 are connected to each other, and the hydraulic oil input ports 25 and 26 and the oil drain ports 27 and 28 are connected to each other to form a parallel circuit h. It is connected to a hydraulic pump P via oil supply / discharge passages 29 and 30. Reference numerals 34 and 35 denote traveling relief valves for setting the maximum load pressures on the forward and reverse sides, and reference numeral 36 denotes a main relief valve for setting the upper limit of the circuit pressure. The functions of the input-side and oil-discharge-side ports 25 to 28 are opposite to each other when the output rotation direction of the HST 12 is forward rotation and reverse rotation.
[0021]
By operating the hydraulic transmission cylinder 31 interlocked with the swash plate operation unit 33 of the hydraulic pump P by switching the transmission valve 32, the swash plate angle of the hydraulic pump P changes, and the pressure oil per unit time changes. The discharge amount is changed, and the energy of the discharged pressure oil is converted into rotational force by the first and second hydraulic motors M1 and M2, and the rotational power from the input shaft 13 can be switched between the forward side and the reverse side. In addition, the HST 12 functions so that the speed is changed steplessly on both the forward side and the reverse side, taken out of the output shaft 17, and transmitted to the rear wheels 2 via a not-shown auxiliary transmission mechanism or the like.
[0022]
The second hydraulic motor M2 is configured to be a two-state switching type in which a swash plate angle of the second hydraulic motor M2 is equal to the swash plate angle of the first hydraulic motor M1 and a second speed state in which the swash plate angle is 0 degree. . As shown in FIG. 4, a switching cylinder 38 acting on the swash plate operating portion 37a of the swash plate 37 of the second hydraulic motor M2, a two-position switching type electromagnetic switching valve 39 for switching the switching cylinder 38, A button switch 40 is provided. That is, by operating the button switch 40 and switching the electromagnetic switching valve 39 to extend and retract the switching cylinder 38, the first speed state in which the swash plate 37 is inclined (the state shown in FIG. 3) and the swash plate 37 are The second speed state (state shown in FIG. 2) in which the vehicle stands vertically and has a tilt angle of 0 can be selectively switched.
[0023]
The switching cylinder 38 is configured by arranging an operation unit 41 including a cylinder chamber 41a and a piston rod 41b and a return unit 42 including a return spring 42a and a push rod 42b in the motor case 23 in opposition. If the pressure oil is supplied to the cylinder chamber 41a and the piston rod 41b is forcibly pushed out against the urging force of the return spring 42a, the first speed state shown in FIG. 3 is reached, and if the oil is discharged from the cylinder chamber 41a, The push rod 42b pushes the swash plate operating portion 37a back to the 0 degree position by the urging force of the return spring 42a, and returns to the second speed state as shown in FIG.
[0024]
The second hydraulic motor M2 is arranged such that the axis of its output shaft 17 coincides with the axis X of the output shaft 16 of the first hydraulic motor M1, and is aligned on a straight line. Therefore, when viewed as a motor unit, it is long in the axial direction X (front-back direction), but can be formed compactly in the up-down and left-right directions. It has become.
[0025]
In the first speed state, since both hydraulic motors M1 and M2 have the same swash plate angle, it is possible to generate almost twice the torque as in the case of the first hydraulic motor M1. Theoretically, the torque is doubled, but actually, there is an energy loss such as mechanical friction loss, so that the torque taken out from the output shaft 17 is "almost twice". Therefore, if the hydraulic pump P is operated at the lowest speed in the first speed state, a maximum torque almost twice as large as that of the conventional case can be generated, which is suitable for work traveling in which the load torque such as plowing work on muddy land becomes extremely large. It will be. Further, in the second speed state in which the inclination angle is 0, the hydraulic oil passes through the second hydraulic motor, so that it is used as an HST in a one-motor state in which substantially only the first hydraulic motor M1 is provided. can do.
[0026]
Next, a description will be given of an anti-vibration mechanism B that reduces noise during operation of the relief valve and discharge pulsation of the charge pump.
[0027]
As shown in FIG. 4, respective oil passages (pressure oils) are provided near a branch point of each of the oil supply / discharge oil passages 29 and 30 to the relief valves 34 and 35 and a total of three locations on the discharge-side oil passage 19 a of the charge pump 19. An anti-vibration mechanism B communicating with an example of the flow path r) is provided. The two anti-vibration mechanisms B, B near the relief valves 34, 35 prevent noise such as "P" from being generated from the relief valves 34, 35 during the relief operation, and are provided in the discharge-side oil passage 19a. The anti-vibration mechanism B absorbs pulsation of the charge pump 19 composed of a trochoid pump to prevent vibration.
[0028]
As shown in FIGS. 5 to 7, the vibration isolating mechanism B for noise prevention includes a throttle channel 43 and a throttle channel 43 with a cross-sectional area larger than the cross-sectional area of the throttle channel 43. A damper d is provided with an expansion chamber 44 communicating therewith, and a throttle channel 43 is connected to supply / discharge oil passages (an example of a pressure oil passage in a hydraulic device) 29 and 30. A throttle channel 43 having a diameter of 1.5 mm and an expansion chamber 44 having a diameter several times that of the throttle channel 43 are integrally formed in a transmission case 6c made of cast iron, and the expansion chamber 44 is sealed. When the stopper 45 is screwed, the volume of the expansion chamber 44 is set to be about 1.5 cubic centimeters.
[0029]
The pair of relief valves 34 and 35 are the same, and if one relief valve 34 is described, this relief valve 34 also has the function of a check valve. Is formed in a composite valve which exerts a check function of passing the flow with almost no resistance. In FIG. 5, reference numeral 46 denotes a relief spring, 47 denotes a damping chamber, 48 denotes a valve body, 49 denotes a plug, 50 denotes a valve seat, 59 denotes a support body for slidably moving the relief valve body 48, 60 denotes a spring receiver, and 61 denotes a spring receiver. Is a winding spring for closing and urging the valve element 48 very lightly.
[0030]
That is, when the pressure of the introduction oil passage 29b communicating with the supply / discharge oil passage 29 becomes equal to or higher than a predetermined value, the relief valve 34 is opened against the urging force of the relief spring 46, and the pressure of the supply / discharge oil passage 29 is reduced. Until the pressure becomes lower than the predetermined pressure, a relief action of releasing the pressure to the discharge-side oil passage 19a via the discharge oil passage 29a is exerted. When the hydraulic oil as the HST 12 becomes insufficient due to a leak or the like, the relief valve 34 is opened against the extremely light urging force of the winding spring 61, and the charge pressure can be supplied to the HST 12 with almost no resistance. is there.
[0031]
The throttle passage 43 is communicated with the damping chamber 47 in each of the relief valves 34 and 35 via each of the introduction oil passages 29b and 30b. The throttle channel 43 and the expansion chamber 44 can be formed by machining such as drilling from the end of the transmission case 6c. Further, the relief valve 34 can also be configured inside a hole formed by machining to drill from the end of the transmission case 6c (an example of a casing).
[0032]
The anti-vibration mechanism B for preventing vibration shown in FIG. 4 is exactly the same in structure as the above-described anti-vibration mechanism for preventing noise B, and is also formed integrally with the transmission case 6c. The throttle passage 43 communicates with the discharge-side oil passage 19 a of the trochoid-type charge pump 19.
[0033]
[Another embodiment]
As shown in FIG. 8, an anti-vibration mechanism B having an external structure may be used. That is, a cylindrical damping case 51 having an open end, a throttle passage 52 formed by a fine hole at the distal end, and a plug 54 to which a connection fitting 53 for an oil passage hose 56 is screwed at the proximal end. Is screwed to form a damper d having an expansion chamber 55 in the damping case 51. An oil passage hose 56 communicating with an oil passage 58 of a hydraulic device 57 is connected to the connection fitting 53 so as to form an external vibration damping mechanism B using a dedicated damper d. .
[0034]
Various types of hydraulic devices, such as a device for raising and lowering a tractor working device and a power steering device, are conceivable.
[Brief description of the drawings]
FIG. 1 is a side view of a tractor. FIG. 2 is a side view showing a structure of an HST in a second speed state. FIG. 3 is a side view showing a structure of the HST in a first speed state. FIG. 4 is a hydraulic circuit of the HST. FIG. 5 is a sectional view showing a relief valve and a vibration isolating mechanism for noise prevention. FIG. 6 is a front view of a transmission case at a portion where the vibration isolating mechanism is mounted. FIG. 7 is a sectional view of the vibration isolating mechanism. Sectional view showing damper with external structure
6c Casing 19 Trochoid pump 19a Discharge side flow path 43 Restriction flow path 44 Expansion chamber A Output merging mechanism Y Hydraulic device d Damper r Pressure oil flow path

Claims (4)

絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で前記絞り流路に連通する膨張室とを備えてダンパを構成するとともに、油圧装置における圧油流路に前記絞り流路を連通接続してある油圧装置の防振構造。A damper comprising a throttle channel and an expansion chamber communicating with the throttle channel in a state having a cross-sectional area larger than the cross-sectional area of the throttle channel; An anti-vibration structure for a hydraulic device in which the throttle channels are connected to each other. 前記ダンパを、リリーフ弁近傍の圧油流路に連通接続してある請求項1に記載の油圧装置の防振構造。The vibration damping structure for a hydraulic device according to claim 1, wherein the damper is connected to a pressure oil flow passage near a relief valve. 前記ダンパを、トロコイドポンプの吐出側流路に連通接続してある請求項1に記載の油圧装置の防振構造。The vibration damping structure for a hydraulic device according to claim 1, wherein the damper is connected to a discharge-side flow path of a trochoid pump. 前記ダンパを、前記油圧装置を構成するためのケーシングに一体形成してある請求項1〜3のいずれか一項に記載の油圧装置の防振構造。The vibration damping structure for a hydraulic device according to any one of claims 1 to 3, wherein the damper is formed integrally with a casing for constituting the hydraulic device.
JP2002175739A 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission Expired - Lifetime JP3977158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175739A JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175739A JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007055828A Division JP4653769B2 (en) 2007-03-06 2007-03-06 Hydrostatic continuously variable transmission for tractor

Publications (2)

Publication Number Publication Date
JP2004019793A true JP2004019793A (en) 2004-01-22
JP3977158B2 JP3977158B2 (en) 2007-09-19

Family

ID=31174304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175739A Expired - Lifetime JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3977158B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249118A (en) * 2004-03-05 2005-09-15 Aichi Corp Pressure control valve
JP2005248472A (en) * 2004-03-02 2005-09-15 Hitachi Constr Mach Co Ltd Construction machinery
JP2009097569A (en) * 2007-10-15 2009-05-07 Kyokuto Kaihatsu Kogyo Co Ltd Power unit and cargo receiving base lifting device
JP2009257440A (en) * 2008-04-15 2009-11-05 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic circuit for construction machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248472A (en) * 2004-03-02 2005-09-15 Hitachi Constr Mach Co Ltd Construction machinery
JP2005249118A (en) * 2004-03-05 2005-09-15 Aichi Corp Pressure control valve
JP4719423B2 (en) * 2004-03-05 2011-07-06 株式会社アイチコーポレーション Pressure control valve
JP2009097569A (en) * 2007-10-15 2009-05-07 Kyokuto Kaihatsu Kogyo Co Ltd Power unit and cargo receiving base lifting device
JP2009257440A (en) * 2008-04-15 2009-11-05 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic circuit for construction machine

Also Published As

Publication number Publication date
JP3977158B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US7374010B2 (en) Transmission for a working vehicle and vehicle
US8056670B2 (en) Pump unit and working vehicle
US7775309B2 (en) Pump unit
JP2004011769A (en) Hydrostatic continuously variable transmission
US20090178400A1 (en) Neutral Valve Structure
JP4132926B2 (en) Pump unit and work vehicle
JP2004019793A (en) Vibration-proof structure of hydraulic apparatus
JP2007147086A (en) Vibration control structure of hydraulic device in hydrostatic continuously variable transmission
JP5341610B2 (en) Work vehicle transmission case
CA1320980C (en) Hydraulic steering systems dampening devices
JP4714926B2 (en) Pumping unit
JP4966250B2 (en) Hydraulic control device for work vehicle
JP2005016562A (en) Hydro-mechanical transmission
JP3678665B2 (en) Work vehicle
JP2003306052A (en) Pump unit and maintenance vehicle
JP4901789B2 (en) Hydrostatic continuously variable transmission
US4949802A (en) Hydraulic steering systems dampening devices
JP3920070B2 (en) Vehicle
JP2008157468A5 (en)
JP2004204868A (en) Pulsation reducer for hydraulic circuit
JP2005308031A (en) Hydraulic pump set and hydraulic pump unit
JP2007309288A (en) Dual pump unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3977158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

EXPY Cancellation because of completion of term