JP2004019583A - Method, device and system for estimating power generation output in wind power generation - Google Patents

Method, device and system for estimating power generation output in wind power generation Download PDF

Info

Publication number
JP2004019583A
JP2004019583A JP2002177254A JP2002177254A JP2004019583A JP 2004019583 A JP2004019583 A JP 2004019583A JP 2002177254 A JP2002177254 A JP 2002177254A JP 2002177254 A JP2002177254 A JP 2002177254A JP 2004019583 A JP2004019583 A JP 2004019583A
Authority
JP
Japan
Prior art keywords
power generation
prediction
wind
data
generation output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177254A
Other languages
Japanese (ja)
Other versions
JP3950928B2 (en
Inventor
Shigeaki Enomoto
榎本 重朗
Hisashi Fukuda
福田 寿
Ryoichi Tanigawa
谷川 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
CRC Solutions Corp
Original Assignee
Tohoku Electric Power Co Inc
CRC Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, CRC Solutions Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2002177254A priority Critical patent/JP3950928B2/en
Publication of JP2004019583A publication Critical patent/JP2004019583A/en
Application granted granted Critical
Publication of JP3950928B2 publication Critical patent/JP3950928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To reduce estimation errors of power generation output estimation data of a wind power generation facility. <P>SOLUTION: Sequential statistical analysis 5 is performed on wind condition (wind velocity, wind direction, etc.) estimation data 1 based on wind condition estimation data 2 and measured wind condition data 3 in the past, and estimation correction 6 is performed for each estimation to obtain wind condition estimation corrected data 7. Next, power generation output estimation data 10 is calculated from wind condition estimation correction data 7, based on the relationship 9 between the wind condition and the power generation output obtained from the statistical analysis 8 of measured wind condition data 3 and measured power generation output data 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、風力発電における発電出力予測システムに関し、特に予測値と観測値との誤差を低減する発電出力予測システムに関する。
【0002】
【従来の技術】
風力発電機からの出力は風速の変化に応じて変動・間欠するため、風力発電機が大規模に連系された電力系統の周波数を適当な値に維持するには、風力発電機の出力変動を補うように火力発電機や水力発電機の出力を増減させる制御を行う必要がある。
この出力制御は、電力需要の大きさや変動の予測結果と合わせ、電力需給計画として毎日スケジューリングされる。したがって、正確で効率的な電力需給計画をたてるために、数10時間先までの風力発電機の出力を、精度良く日々予測することが必要である。
【0003】
現在気象庁は、毎日9時、21時を初期値として51時間先までの数値予報を行い、その数値予報データであるGPV(Grid Point Value)データを各気象会社に気象業務支援センターを通じて配信している。従来、このGPVデータを入力データとして、風力発電施設における風速を予測し、予測された風速データから風力発電出力を予測する風力発電出力の予測方法が知られている(特許第3226031号公報参照)。ここで、風力発電施設とは、1つ又は複数の風力発電機からなる集合をいう。
【0004】
図9〜図12を参照して、従来の風力発電施設における発電出力の予測方法を説明する。
図9は、従来の風力発電施設における発電出力の予測フローである。図10は、気流場の計算領域である広領域の例を示し、図11は、気流場の計算領域である狭領域の例を示す。図12は、発電出力の予測に用いられる風速と発電出力の関係を示す発電特性曲線である。
【0005】
まず、風力発電施設を含む領域について数値予報データを段階的に計算するために、計算領域となる広領域及び狭領域を指定する。
広領域としては、図10に示すように、気象庁GPV領域(数1000Km程度の領域でメッシュ間隔は20km)から、風力発電施設を含む数100km程度の領域でメッシュ間隔は数kmの領域を選択する。図10には、広領域の例として、広領域(その1)、(その2)を示す。
【0006】
図11に、広領域(その1)内の風力発電施設を含む狭領域(その1)〜(その3)を示す。狭領域は、数km〜数10km程度の範囲で、メッシュ間隔は数10m〜数100mである。○印が風力発電機を示す。
【0007】
以下、図9のフローに基づいて説明する。
ステップS0は、狭領域数値予報データを計算するステップである。
このような計算範囲である広領域及び狭領域を設定した後、まず、ステップS01で、広領域(数100km程度の領域でメッシュ間隔は数km)について、気象庁GPVデータ(20kmメッシュごとの気温、地上気圧、指定気圧面高度、湿度、風向・風速)と標高・土地利用データとを初期入力値として、気流場の予測計算(広領域)行い、例えば10分間隔の時間ステップ毎に広領域数値予報データ(気温、気圧、風向・風速、湿度、降水量)を得て保存しておく。
【0008】
次に、ステップS02で、風力発電施設がある領域を含む狭領域の範囲で、広領域数値予報データと標高・土地データを初期入力として気流場の予測計算(狭領域)を行う。このようにして、例えば10分間隔の時間ステップで、狭領域数値予報データ(気温、気圧、風向・風速、湿度、降水量)得て保存しておく。
【0009】
ここで、上記気流場の予測計算の概要を説明する。
個々の予測領域に対して、初期値と境界値とが必要になるが、広領域では、気象庁GPVデータを内挿することによりメッシュ間隔数kmの格子点の初期値、境界値を得ることができる。狭領域の数10m〜数100mメッシュでは、広領域の出力結果を基にして同様に初期値境界値が求められる。
【0010】
気流場の計算は公知のもので、数値シミュレーションシステム(例えば(株)CRCソリューションズによるLOCALS(登録商標))を用いて、数値計算により各メッシュ領域内の風向及び風速を計算する。
LOCALS(登録商標)は、力学的原理に基づく数値シミュレーション法によるものである。この手法における基本式は以下の4つである。
【0011】
1)運動方程式:風が、圧力、地形、熱的影響および境界条件等の影響を受け、変化する様子を記述する式。
2)質量保存の式:計算領域内での質量変化は、側面や上部の境界と下部の境界における空気の出入りによってのみ起こることを記述する式。
3)熱力学の式:気塊に及ぼす熱的影響を記述する式。
4)乱流のモデル化:離散化された数値モデルでは解像できない細かな乱れの影響を評価するモデル。
【0012】
なお、広領域及び狭領域の計算に際して風力発電施設が1つの計算領域に入らない場合は、別途広領域ないし狭領域を設定して計算する。
狭領域数値予報データが得られると、このデータから風力発電機が存在するメッシュの風速データを各風力発電機に対するデータとして抽出して、風力発電機ごとの風速予測データWSを得る。例えば、図11における狭領域(その2)におけるメッシュM1の風力発電機W1に対しては、メッシュM1での数値計算で求められた風速データを風力発電機W1に対する風速データとする。
【0013】
ステップS90では、各風力発電機毎に抽出した風速予測データWSと風力発電機の発電特性曲線から風速値に対応する発電出力予測データPWを算出する。発電特性曲線とは各風力発電機特有の発電特性を示すもので、図12に示すように例えば風速が7.8m/sのとき発電出力は867kWと算出する。
【0014】
このようにして、各風力発電機について、時間終了までの時間ステップごと(例えば10分間間隔)に発電出力を算出予測する。
その後、風力発電機毎の発電出力の予測データを風力発電施設毎に積算し、時間ステップごとの風力発電施設の総発電出力とする。
さらに日本国内に存在するすべての風力発電施設の各時間ステップ毎の総発電出力を算出すると、全国での風力発電出力の予測が行われることになる。
【0015】
【発明が解決しようとする課題】
しかしながら、従来の発電出力予測方法は、主に風力発電位置の選定又は特定地点の発電施設の附存量を求めることを目的としており、正確で効率的な電力需給計画をたてるために、対象とする地域(日本全体であってもよい。)のすべての風力発電施設に対して、毎日発電出力の予測を行うことを目的とするものではなかった。
また、上記風力発電出力の予測方法を用いても、風力発電出力の予測データと実測データとの誤差が大きく出ることがあった。風力発電出力の予測精度を向上するために、メッシュ間隔を小さくして風力発電機が設置された付近の気流場の数値シミュレーションを行うことも考えられるが、これには大規模な計算機が必要であり、膨大な費用がかかる。
【0016】
本発明は、上記の問題点に鑑み、大規模な計算機を必要とせず、誤差の少ない風力発電出力予測値を得ることができ、正確で効率的な電力需給計画をたてることができる発電出力予測方法及びシステムを提供することを目的とする。
【0017】
【課題を解決するための手段】
従来の発電出力予測手法では、気象データとして、気象庁のGPVデータのみを入力しているが、本発明者は、過去の予測データと実測データとを統計解析し、この解析結果を新たに予測する予測データに反映させることで、さらに発電出力の予測精度が向上することを見出した。
【0018】
すなわち、本発明は、発電出力を予測する前提となる風況予測データについて、予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して、風況予測修正データを得るものである。
また、風況予測データないし風況予測修正データから発電出力を予測する際に、風況実測データと発電出力実測データとの統計解析により求められた風速と発電出力との関係式に基づいて、風況予測データないし風況予測修正データに応じて発電出力を予測するものである。
【0019】
また、本発明によれば、風況実測データが得られない場合などには、風況予測データに基づき発電出力を予測する際に、過去の風況予測データと過去の発電出力実測データを逐次統計解析して、発電出力予測データを得ることもできる。
【0020】
また、本発明によれば、風力発電施設の総発電出力実測データしか得られない場合などには、風力発電施設内にある風力発電機毎の風況予測データを風力発電施設毎に平均して風力発電施設毎の風況予測データを得て、風力発電施設毎の風況予測データに基づいて発電出力を予測する毎に、風力発電施設毎の過去の風況予測データと過去の総発電出力実測データを逐次統計解析して、発電出力の予測データを得ることもできる。
【0021】
また、本発明によれば、風況予測データから発電出力を予測する予測計算装置を備えた風力発電における発電出力予測システムであって、風況実測データを収集するデータ収集装置を備え、予測計算装置は、予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して風況予測修正データを得て、風況予測修正データから発電出力を予測する風力発電における発電出力予測システムを提供することができる。
また、データ収集装置は、風況実測データとともに発電出力実測データを収集し、予測計算装置は、前述と同様にして得られる風況予測修正データから、風況実測データと発電出力実測データとの統計解析により求められた風速と発電出力との関係式に基づいて、発電出力を予測する発電出力予測システムを提供できる。
また、データ収集装置は、発電出力実測データを収集し、予測計算装置は、風況予測データに基づき発電出力を予測する毎に、過去の風況予測データと過去の発電出力実測データを逐次統計解析して、風況予測データから発電出力を予測する発電予測システムを提供することもできる。
【0022】
【発明の実施の形態】
図1及び図2に、本発明の発電出力予測システムにおける発電出力予測方法の概要を示す。
すなわち、図1に記載の本発明による発電出力予測方法(その1)の概要は、風況(風速、風向等)予測データ1について、過去の風況予測データ2と風況実測データ3について逐次統計解析5を行い、予測のたびに予測修正6を行って風況予測修正データ7を得る。次いで、風況実測データ3と発電出力実測データ4とを統計解析8して得られた風況と発電出力の関係式9に基づいて、風況の予測修正データ7から発電出力予測データ10を算出するものである。
なお、風況予測データ1は、風速または風速及び風向等のデータであり、予測された後は過去の予測データ2として蓄積される。
【0023】
また、図2に記載の本発明の発電出力予測方法(その2)の概要は、風況の実測データが得られない場合等に関し、風況予測データ1から発電出力を予測する毎に、過去の風況予測データ2と過去の発電出力実測データ4とを統計解析5’し、誤差が少なくなるように逐次予測された発電出力予測データ10’を得るものである。
【0024】
図3に、本発明の発電出力予測システム全体の概観図を示す。
本発明の発電出力予測システムは、予測計算装置31と風力発電施設データ収集装置32を備える。
予測計算装置31は、気象庁の気象業務支援センターから気象予測の数値データを入手し、データ受信サーバを通してファイルサーバ(A)に保管し、計算機で所望のデータに加工することができ、たとえば全国各地の天気予報が可能である。
【0025】
風力発電施設データ収集装置32は、各地の風力発電施設33の通信サーバ(D)と通信可能なファイル・通信サーバ(B)を備え、風力発電施設33の風況及び発電出力等の観測データを時々刻々収集し、蓄積できるものである。この観測データは、予測計算装置31の通信サーバ(C)を介してファイルサーバ(A)に送られる。
【0026】
予測計算装置31は、気象業務支援センター34から気象予測の数値データをもとに各地の風力発電施設33の風況及び発電出力を予測するとともに、予測のたびに蓄積された予測データと過去の実測データをもとに、予測誤差の修正を行って予測誤差が低減された発電出力の予測を行うことができる。そして、誤差の少ない発電出力の予測により正確で効率的な電力需給計画35を出すことができる。
また、データ収集は風力発電施設のパソコンからインターネット等を介することによって行うことができ、特別なネットワークを構築する必要はない。
【0027】
風力発電施設の実測データの入手については、
(1)各風力発電機について風速・風向及び発電出力の実測データが入手できる場合
(2)各風力発電機について発電出力の実測データが入手できる場合
(3)風力発電施設における総発電出力の実測データが入手できる場合
の3つのパターンがある。
以下、図4〜図8を参照して、上記3パターンに対応する本発明の実施例を説明する。
【0028】
(第1の実施例:各風力発電機について風速・風向及び発電出力の実測データが入手できる場合)
図4は、本発明の第1の実施例の予測システムのフローである。
ステップS0は、狭領域予報データを算出するステップで、これは従来のシステムと同様である。
【0029】
次のステップでは、風力発電機ごとの風速予測データWSと風向予測データWDを抽出する。また、これらの予測データを順次記憶装置に格納しておく。
一方で、各風力発電施設内の各風力発電機の実測データ(風向WDobs、風速WSobs、発電出力PWobs)を逐次オンラインにて取得し、記憶装置に格納しておく。
【0030】
ステップS41では、風力発電機毎に、風向・風速についての過去の実測データWD・WSと過去の予測データWDobs・WSobsの統計解析を行い、予測データ(風向WD・風速WS)の誤差の修正を行う予測修正式を更新する。この手法としては例えばカルマンフィルタを使用すればよい。カルマンフィルタとは、線形予測式の係数を、予測誤差に基づき逐次最適化するアルゴリズムである。
【0031】
図5に、一つの風力発電機にカルマンフィルタを適用した場合の予測修正の概念図を示す。カルマンフィルタの更新は1日2回9時及び21時に行う。図中現在とは毎日の予測時間をさし、例えば9時を示す。このとき予測データは、9時から51時間先まで時間ステップ(例えば10分)毎に存在する。
一方で、風速及び風向について、これまで予測を行ってきた過去の予測データ(●印)と実測データ(○印)が記憶装置に格納されている。
【0032】
過去の実測及び予測の風速(WS)・風向(WD)のベクトルデータを、図6に示すように、東西(U)成分と南北(V)成分の風速へ変換を行う。このデータは、現在から一定期間(例えば3ヶ月)さかのぼり作成される。
【0033】
次に、過去の予測データと実測データとの誤差を、東西(U)成分と南北(V)成分毎に重回帰式を作成し、その係数を求める。
重回帰式の一例を次に示す。
東西成分の回帰式
E−W=−0.73X−0.16X+0.43
南北成分の回帰式
N−S=−0.22X−0.54X+1.33
ここで、
E−W:予測データと実測データの東西成分の誤差
N−S:予測データと実測データの南北成分の誤差
:予測データの東西成分
:予測データの南北成分
である。
【0034】
ステップS42では、このようにして得られた予測修正式に基づいて、予測データに対する東西成分及び南北成分の誤差が算出され、これを現時点での予測データ(図5◎印)に対して加算して修正を行い、予測修正データ(図5☆印)を算出する。これを毎回予測を行う際に実施し、予測誤差の関係式を常に更新して予測を行う。このようにして、風速・風向の予測データWS・WDから予測修正データWS・WDを得る。
【0035】
次に、風力発電機毎の風速及び風向の予測修正データWS・WDに基づいて発電出力を予測する方法を説明する。従来は、風力発電機毎の発電特性曲線により発電出力に変換していた。しかしながら、風力発電機に対して、同じ風速で吹いたとしても、風向、季節(ないし月)によりその発電出力は変化する。したがって、風速から発電出力を算出する際には、より誤差を低減するために、風速毎風向毎季節(月)毎に発電出力算出式を変更するようにした。
【0036】
すなわち、ステップ43で、風力発電機毎に、現在からある一定期間(例えば1年間)の過去の実測データの風向、風速、発電出力データ(WDobs,WSobs,PWobs)から、風向毎、季節毎ないし月毎、風速毎に発電出力と風速との回帰分析を行い、それぞれの条件毎に最適な回帰曲線を作成する。
【0037】
例えば、風速4m/s以上14m/s未満、北風(風向−45度から45度)の場合は、次のように、発電出力が風速の5次式で計算される。
Y=0.0088X−0.3679X+5.4621X+33.935X+98.812X+107.01
ここで、Y:発電出力
X:風速
【0038】
ステップ44では、日時及び風況予測修正データに基づいて適切な回帰曲線を選択して、風速の予測修正データから風力発電機毎の発電出力を算出して予測を行う。なお、この回帰曲線は、たとえば1年毎に更新される。
【0039】
その後、風力発電機毎の発電出力の予測データを風力発電施設毎に積算し、風力発電施設の総発電出力とし、逐次保存してゆく。さらに日本国内に存在するすべての風力発電施設に亙ってこれを行えば、全国での総発電出力の予測となる。これらは、従来例と同様である。
【0040】
以上のとおり、本例によれば、過去の風速と風向の予測データとこれに対応する過去の実測値との差を逐次統計解析することにより、新たな予測をするたびに誤差の修正を行うから、従来の予測データより誤差のない予測が可能であり、また、風速に対して発電出力を求めるに際して、発電特性曲線を用いることなく、過去の実測データに基づく回帰曲線を選択して求めることで、予測精度を向上させることができた。
【0041】
(第2の実施例:各風力発電機について発電出力の実測データが入手できる場合)
本例は、第1の実施例とは異なり、風力発電機ごとの風速と風向の予測データと風力発電機ごとの発電出力の実測データとの間で逐次統計解析を行い、発電出力の予測を行うものである。本例は、風力発電機毎の風速と風向の実測データが入手できないが、風力発電機毎の発電出力の実測データが入手できる場合に好適な実施例である。もちろん、風速・風向の実測データが入手できる場合に採用できないというものではない。
【0042】
図7に、第2の実施例のフローを示す。
ステップS0で、狭領域予測データを得て、次に風力発電機ごとの風速予測データWS及び風向予測データWDを抽出し、また、この予測データを順次記憶装置に格納して過去の予測データ(風速WS,風向WD)として格納蓄積する点は、第1の実施例と同様である。
一方で、各風力発電施設内の各風力発電機の発電出力の実測データPWobsを逐次オンラインで取得し、順次記憶装置に格納しておく。
【0043】
次に、ステップS71で、風力発電機毎に過去の発電出力の実測データPWob と過去の風向・風速に関する予測データWD,WSの統計解析を行い、予測式を更新作成する。統計解析の手法としては、第1の実施例と同様にカルマンフィルタを用いる。
【0044】
すなわち、過去の風速・風向の予測データWS及びWDを東西、南北成分にわけ、過去の発電出力PWobsとの重回帰式を作成し、係数を算出する。
例えば、
pwr=25X+25X+0.43
ここで、Ypwr:発電出力
:予測データの東西成分
:予測データの南北成分
【0045】
ステップ72では、この更新された予測式を用いて風力発電機毎の発電出力を計算予測する。このように、新たに発電出力を予測する際に、予測式を常に更新して予測を行う。
【0046】
本例の場合も、発電特性曲線を用いることなく、常に誤差を修正して更新される予測式で予測することができるので、従来のものより予測精度を上げることができる。
【0047】
(第3の実施例:風力発電施設における総発電出力の実測データが入手できる場合)
本例は、風力発電施設における総発電出力が入手できる場合に実施できるものであって、特に個々の風力発電機に対しては風況データとともに発電出力の実測データもとれないが、風力発電施設における総発電出力は入手できる場合に実施して好適な例である。
【0048】
図8に、本例のフローチャートを示す。
本例も、狭領域予測データを得て、風力発電機毎に風速予測データWS及び風向予測データWDを抽出するまでは、第1及び第2の実施例と共通する。
【0049】
第2の実施例では、この風力発電機毎の風速・風向の予測データと発電出力との関係にカルマンフィルタを適用したものであるが、本例では、ステップ80において、風力発電施設内の風力発電機毎の風速及び風向の予測データWS及びWDから、風力発電施設内での平均風速予測データWS、平均風向予測データWDを得て、これを風力発電施設ごとの風速風向の予測データWS,WDとする。
【0050】
ステップS81では、風力発電施設の過去の予測データ(風速WSsp、風向WDsp)と風力発電施設の総発電出力の実測データとの間で重回帰式を導き、カルマンフィルタを適用して予測式を更新する。すなわち、風力発電施設全体の発電出力を予測する毎にその係数を修正していくものである。
【0051】
そして、ステップ82において、更新された予測式を用いて、風力発電施設の予測データ(風速WS、風向WD)から風力発電施設の予測データPWを計算して予測する。
【0052】
このように、本例においても、過去の予測データと実測データとの統計解析を行って、逐次誤差を修正してゆくものであって、風力発電施設の総発電出力の実測値が入手できれば、より誤差の少ない予測を可能にする。
なお、上記実施例においては、風況データとして風速・風向データを用いているが、風況データとして風速データのみを用いても、本発明を実施することができるのはいうまでもない。
【0053】
【発明の効果】
以上説明したように、本発明によれば過去の観測値とその時点での予測値の差を統計処理することによって、未来の予測値の誤差を低減することができる。また、風力発電の出力値についてより誤差の少ない予測が可能であるから、正確で効率的な電力需給計画を作成することができる。さらに、大規模な計算機によるネットワークを組むことなく、簡易な通信サーバによる情報の提供を行うことができる。
【図面の簡単な説明】
【図1】本発明による発電出力予測方法(その1)の概要を示す図である。
【図2】本発明による発電出力予測方法(その2)の概要を示す図である。
【図3】本発明による発電出力予測システムの概観図である。
【図4】各風力発電機について風速・風向及び発電出力の実測データが入手できる場合の予測フローを示す図である。
【図5】カルマンフィルタによる予測誤差の修正を示す図である。
【図6】風速・風向データの東西成分・南北成分への変換を示す図である。
【図7】各風力発電機について発電出力の実測データが入手できる場合の予測フローを示す図である。
【図8】風力発電施設における総発電出力の実測データが入手できる場合の予測フローを示す図である。
【図9】従来の風力発電出力の予測フローを示す図である。
【図10】気流場の広領域の例を示す図である。
【図11】気流場の狭領域の例を示す図である。
【図12】従来の風力発電出力の予測に用いられる発電出力特性曲線を示す図である。
【符号の説明】
S0…狭領域予報データを計算するステップ
S41…風速・風向について予測データと実測データを統計解析するステップ
S42…風速・風向について予測データの修正するステップ
S43…風速・風向及び発電出力の実測データを統計解析するステップ
S44…風速・風向について予測修正データから発電出力を予測するステップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power generation output prediction system in wind power generation, and more particularly to a power generation output prediction system that reduces an error between a predicted value and an observed value.
[0002]
[Prior art]
Since the output from the wind power generator fluctuates and intermittently changes in accordance with the change in wind speed, the output fluctuation of the wind power generator must be maintained in order to maintain the frequency of the large-scale interconnected power system at an appropriate value. It is necessary to perform control to increase or decrease the output of the thermal power generator or the hydraulic power generator so as to compensate for this.
This output control is scheduled daily as a power supply and demand plan, together with the predicted results of the magnitude and fluctuation of the power demand. Therefore, in order to make an accurate and efficient power supply and demand plan, it is necessary to accurately predict the output of the wind generator up to several tens hours ahead on a daily basis.
[0003]
At present, the Japan Meteorological Agency conducts numerical forecasts for up to 51 hours ahead, starting at 9:00 and 21:00 every day, and distributes the numerical forecast data GPV (Grid Point Value) data to each weather company through the Meteorological Service Support Center. I have. Conventionally, there has been known a wind power generation output prediction method of predicting a wind speed in a wind power generation facility using the GPV data as input data and predicting a wind power generation output from the predicted wind speed data (see Japanese Patent No. 3226031). . Here, the wind power generation facility refers to a set including one or more wind power generators.
[0004]
With reference to FIGS. 9 to 12, a description will be given of a conventional power generation output prediction method in a wind power generation facility.
FIG. 9 shows a flow of predicting a power generation output in a conventional wind power generation facility. FIG. 10 shows an example of a wide area which is an airflow field calculation area, and FIG. 11 shows an example of a narrow area which is an airflow field calculation area. FIG. 12 is a power generation characteristic curve showing the relationship between the wind speed and the power generation output used for predicting the power generation output.
[0005]
First, a wide area and a narrow area are designated as calculation areas in order to calculate numerical forecast data stepwise for an area including a wind power generation facility.
As the wide area, as shown in FIG. 10, from the Meteorological Agency GPV area (an area of about several thousand km and a mesh interval of 20 km), an area of several hundred km including a wind power generation facility and an area of several km is selected. . FIG. 10 shows wide areas (No. 1) and (No. 2) as examples of the wide area.
[0006]
FIG. 11 shows narrow areas (No. 1) to (No. 3) including a wind power generation facility in a wide area (No. 1). The narrow region ranges from several km to several tens km, and the mesh interval is several tens to several hundred meters. A circle indicates a wind power generator.
[0007]
Hereinafter, description will be given based on the flow of FIG.
Step S0 is a step of calculating narrow-area numerical forecast data.
After setting such a wide area and a narrow area, which are the calculation ranges, first, in step S01, the Meteorological Agency GPV data (the temperature of each 20 km mesh, Using the ground pressure, designated pressure level, humidity, wind direction / wind speed) and altitude / land use data as initial input values, the airflow field is predicted and calculated (wide area). Obtain and save forecast data (temperature, pressure, wind direction / speed, humidity, precipitation).
[0008]
Next, in step S02, the prediction calculation (narrow area) of the airflow field is performed using the wide area numerical forecast data and the altitude / land data as initial inputs in the narrow area including the area where the wind power generation facility is located. In this way, for example, at a time step of 10-minute intervals, narrow-area numerical forecast data (temperature, pressure, wind direction / speed, humidity, precipitation) is obtained and stored.
[0009]
Here, the outline of the prediction calculation of the airflow field will be described.
An initial value and a boundary value are required for each prediction region. In a wide region, the initial value and the boundary value of a grid point with a mesh interval of several km can be obtained by interpolating the Meteorological Agency GPV data. it can. In the case of a mesh of several tens of meters to several hundreds of meters in a narrow region, an initial value boundary value is similarly obtained based on an output result of a wide region.
[0010]
The calculation of the airflow field is known, and a numerical simulation system (for example, LOCALS (registered trademark) by CRC Solutions Co., Ltd.) is used to calculate the wind direction and the wind speed in each mesh region by numerical calculation.
LOCALS (registered trademark) is based on a numerical simulation method based on a mechanical principle. The following four basic equations are used in this method.
[0011]
1) Equation of motion: An equation that describes how the wind changes under the influence of pressure, topography, thermal influence, boundary conditions, and the like.
2) Mass conservation equation: An equation that describes that a mass change in the calculation domain only occurs due to the ingress and egress of air at the side and upper and lower boundaries.
3) Thermodynamic equation: An equation that describes the thermal effect on the air mass.
4) Modeling of turbulence: A model for evaluating the effects of fine turbulence that cannot be resolved by a discrete numerical model.
[0012]
If the wind power generation facility does not fall into one calculation area when calculating the wide area and the narrow area, the calculation is performed by separately setting a wide area or a narrow area.
When the narrow-area NWP data is obtained, the wind speed data of mesh wind power generator is present from the data extracted as data for each wind turbine to obtain a wind speed prediction data WS 0 per wind turbine. For example, for the wind power generator W1 of the mesh M1 in the narrow area (No. 2) in FIG. 11, the wind speed data obtained by the numerical calculation on the mesh M1 is used as the wind speed data for the wind power generator W1.
[0013]
In step S90, it calculates the power output prediction data PW 0 corresponding to the wind speed value from the power generation characteristic curve of the wind speed prediction data WS 0 and wind power generator extracted for each wind turbine. The power generation characteristic curve indicates a power generation characteristic unique to each wind power generator. As shown in FIG. 12, for example, when the wind speed is 7.8 m / s, the power generation output is calculated to be 867 kW.
[0014]
In this way, for each wind power generator, the power generation output is calculated and predicted for each time step until the end of the time (for example, every 10 minutes).
After that, the prediction data of the power generation output for each wind power generator is integrated for each wind power generation facility, and the total power generation output of the wind power generation facility for each time step is obtained.
Further, when the total power generation output at each time step of all the wind power generation facilities existing in Japan is calculated, the wind power generation output nationwide is predicted.
[0015]
[Problems to be solved by the invention]
However, the conventional power generation output forecasting method mainly aims at selecting wind power generation locations or determining the amount of existing power generation facilities at specific points. It was not intended to predict the power generation output every day for all the wind power generation facilities in the area where the wind power generation was conducted (or the whole of Japan).
In addition, even when the method for predicting the wind power output is used, a large error may occur between the predicted data of the wind power output and the actually measured data. To improve the prediction accuracy of the wind power output, numerical simulation of the airflow field near the wind generator installed with a smaller mesh spacing can be considered, but this requires a large-scale computer. Yes, it is hugely expensive.
[0016]
In view of the above problems, the present invention does not require a large-scale computer, can obtain a predicted value of wind power output with less error, and can generate an accurate and efficient power supply and demand plan. It is an object to provide a prediction method and system.
[0017]
[Means for Solving the Problems]
In the conventional power generation output prediction method, only GPV data of the Japan Meteorological Agency is input as weather data. However, the present inventor statistically analyzes past prediction data and actual measurement data, and newly predicts the analysis result. We have found that the accuracy of power generation output prediction is further improved by reflecting it in the prediction data.
[0018]
That is, the present invention sequentially performs statistical analysis on the past wind condition prediction data and the past wind condition actual measurement data every time the wind condition prediction data on which the power generation output is predicted is predicted, and calculates the wind condition prediction correction data. What you get.
Further, when predicting the power generation output from the wind condition prediction data or the wind condition prediction correction data, based on a relational expression between the wind speed and the power generation output obtained by statistical analysis of the wind condition measurement data and the power generation output measurement data, The power generation output is predicted according to the wind condition prediction data or the wind condition prediction correction data.
[0019]
According to the present invention, when wind condition measurement data cannot be obtained, for example, when predicting the power generation output based on the wind condition prediction data, the past wind condition prediction data and the past power generation output measurement data are sequentially converted. Statistical analysis can be used to obtain power generation output prediction data.
[0020]
Further, according to the present invention, for example, when only the total power generation output measurement data of the wind power generation facility is obtained, the wind condition prediction data for each wind power generator in the wind power generation facility is averaged for each wind power generation facility. Each time the wind condition forecast data for each wind power facility is obtained and the power generation output is predicted based on the wind condition forecast data for each wind power facility, the past wind condition forecast data and the past total power output for each wind power facility are obtained. It is also possible to obtain statistical data of the power generation output by sequentially performing statistical analysis on the actually measured data.
[0021]
Further, according to the present invention, there is provided a power generation output prediction system for wind power generation including a prediction calculation device for predicting a power generation output from wind condition prediction data, comprising a data collection device for collecting wind condition measurement data, Each time the forecast is performed, the wind power forecasting data and the past measured wind data are statistically analyzed one after another to obtain wind forecast correction data, and the power generation in wind power generation is used to predict the power output from the wind forecast correction data. An output prediction system can be provided.
Further, the data collection device collects the power generation output measurement data together with the wind condition measurement data, and the prediction calculation device calculates the wind condition measurement data and the power generation output measurement data from the wind condition prediction correction data obtained in the same manner as described above. It is possible to provide a power generation output prediction system that predicts a power generation output based on a relational expression between the wind speed and the power generation output obtained by the statistical analysis.
In addition, the data collection device collects the measured power generation output data, and the prediction calculation device sequentially calculates the past wind condition prediction data and the past power generation output measurement data every time the power generation output is predicted based on the wind condition prediction data. It is also possible to provide a power generation prediction system that analyzes and predicts a power generation output from wind condition prediction data.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an outline of a power generation output prediction method in the power generation output prediction system of the present invention.
That is, the outline of the power generation output prediction method (part 1) according to the present invention shown in FIG. 1 is as follows. For wind condition (wind speed, wind direction, etc.) prediction data 1, past wind condition prediction data 2 and wind condition measurement data 3 A statistical analysis 5 is performed, and a prediction correction 6 is performed for each prediction to obtain wind condition prediction correction data 7. Next, based on the relational expression 9 between the wind condition and the power generation output obtained by statistically analyzing the wind condition measurement data 3 and the power generation output measurement data 4, the power generation output prediction data 10 is calculated from the wind condition prediction correction data 7. It is to be calculated.
The wind condition prediction data 1 is data such as a wind speed or a wind speed and a wind direction, and is stored as past prediction data 2 after being predicted.
[0023]
The outline of the power generation output prediction method (part 2) of the present invention shown in FIG. 2 relates to a case where actual measurement data of wind conditions cannot be obtained, and the like. Of the wind condition prediction data 2 and the past power generation output measurement data 4 are statistically analyzed 5 'to obtain power generation output prediction data 10' sequentially predicted so as to reduce errors.
[0024]
FIG. 3 shows an overview of the entire power generation output prediction system of the present invention.
The power generation output prediction system of the present invention includes a prediction calculation device 31 and a wind power generation facility data collection device 32.
The prediction calculation device 31 obtains numerical data of weather forecast from the Meteorological Agency's Meteorological Service Support Center, stores it in a file server (A) through a data receiving server, and can process it into desired data by a computer. Weather forecast is possible.
[0025]
The wind power generation facility data collection device 32 includes a file / communication server (B) capable of communicating with the communication server (D) of the wind power generation facility 33 in each place, and collects observation data such as the wind condition and the power generation output of the wind power generation facility 33. It can be collected and accumulated every moment. This observation data is sent to the file server (A) via the communication server (C) of the prediction calculation device 31.
[0026]
The prediction calculation device 31 predicts the wind condition and the power generation output of the wind power generation facilities 33 in various places based on the numerical data of the weather prediction from the weather service support center 34, and also stores the prediction data accumulated for each prediction and the past data. Based on the actually measured data, the prediction error is corrected, and the power generation output with the reduced prediction error can be predicted. Then, an accurate and efficient power supply and demand plan 35 can be issued by predicting the power generation output with a small error.
Further, data can be collected from a personal computer of the wind power generation facility via the Internet or the like, and there is no need to construct a special network.
[0027]
Regarding obtaining actual measurement data of wind power generation facilities,
(1) When actual measurement data of wind speed / wind direction and power generation output is available for each wind power generator (2) When actual measurement data of power generation output is available for each wind power generator (3) Actual measurement of total power generation output at a wind power generation facility There are three patterns when data is available.
Hereinafter, an embodiment of the present invention corresponding to the above three patterns will be described with reference to FIGS.
[0028]
(First embodiment: When actual measurement data of wind speed / wind direction and power generation output is available for each wind power generator)
FIG. 4 is a flowchart of the prediction system according to the first embodiment of this invention.
Step S0 is a step of calculating narrow area forecast data, which is the same as in the conventional system.
[0029]
In the next step, wind speed prediction data WS 0 and wind direction prediction data WD 0 for each wind power generator are extracted. Further, these prediction data are sequentially stored in the storage device.
On the other hand, actual measurement data (wind direction WD obs , wind speed WS obs , power generation output PW obs ) of each wind power generator in each wind power generation facility is sequentially acquired online and stored in a storage device.
[0030]
In step S41, for each wind turbine, performs statistical analysis of past measured data WD p-WS p and past prediction data WD obs · WS obs about wind direction and wind speed, the predicted data (wind direction WD 0 and speed WS 0 The prediction correction formula for correcting the error in ()) is updated. As this technique, for example, a Kalman filter may be used. The Kalman filter is an algorithm for sequentially optimizing coefficients of a linear prediction equation based on a prediction error.
[0031]
FIG. 5 shows a conceptual diagram of prediction correction when a Kalman filter is applied to one wind power generator. The Kalman filter is updated twice a day at 9:00 and 21:00. In the drawing, the present indicates a daily predicted time, for example, 9:00. At this time, the prediction data is present at every time step (for example, 10 minutes) from 9:00 to 51 hours ahead.
On the other hand, regarding the wind speed and the wind direction, past prediction data (marked by ●) and actual measurement data (marked by ○), which have been predicted so far, are stored in the storage device.
[0032]
The past measured and predicted wind speed (WS) and wind direction (WD) vector data are converted into east-west (U) and north-south (V) component wind velocities as shown in FIG. This data is created for a certain period (for example, three months) from the present.
[0033]
Next, a multiple regression equation is created for the error between the past prediction data and the actually measured data for each of the east-west (U) component and the north-south (V) component, and the coefficient is obtained.
An example of the multiple regression equation is shown below.
East-west component regression equation Y EW = −0.73X 1 −0.16X 2 +0.43
Regression north-south component Y N-S = -0.22X 1 -0.54X 2 +1.33
here,
Y EW : Error of east-west component between predicted data and measured data Y NS : Error of north-south component of predicted data and measured data X 1 : East-west component of predicted data X 2 : North-south component of predicted data.
[0034]
In step S42, the error of the east-west component and the north-south component with respect to the prediction data is calculated based on the prediction correction formula obtained in this way, and this is added to the current prediction data (marked by ◎ in FIG. 5). To make corrections to calculate predicted correction data (indicated by a star in FIG. 5). This is performed each time prediction is performed, and prediction is performed by constantly updating the relational expression of the prediction error. In this manner, the prediction correction data WS 1 · WD 1 is obtained from the wind speed / wind direction prediction data WS 0 · WD 0 .
[0035]
Next, a method of predicting the power generation output based on the wind speed and wind direction prediction correction data WS 1 and WD 1 for each wind power generator will be described. Conventionally, the output has been converted into a power generation output by a power generation characteristic curve for each wind power generator. However, even if the wind power is blown at the same wind speed, the power output varies depending on the wind direction and season (or month). Therefore, when calculating the power generation output from the wind speed, the power generation output calculation formula is changed for each wind speed, wind direction, and season (month) in order to further reduce errors.
[0036]
That is, in step 43, for each wind power generator, the wind direction, wind speed, and power generation output data (WD obs , WS obs , PW obs ) of the past measured data for a certain period (for example, one year) from the present are calculated for each wind direction. A regression analysis of the power generation output and the wind speed is performed for each season or month, and for each wind speed, and an optimal regression curve is created for each condition.
[0037]
For example, in the case of a wind speed of 4 m / s or more and less than 14 m / s and a north wind (wind direction from -45 degrees to 45 degrees), the power generation output is calculated by the fifth order expression of the wind speed as follows.
Y = 0.0088X 5 -0.3679X 4 + 5.4621X 3 + 33.935X 2 + 98.812X + 107.01
Here, Y: power generation output X: wind speed
In step 44, an appropriate regression curve is selected based on the date and time and wind condition prediction correction data, and a power generation output for each wind power generator is calculated from the wind speed prediction correction data to perform prediction. The regression curve is updated, for example, every year.
[0039]
Thereafter, the prediction data of the power generation output of each wind power generator is integrated for each wind power generation facility, and the total power generation output of the wind power generation facility is sequentially stored. Further, if this is performed for all wind power facilities existing in Japan, the total power generation output nationwide can be predicted. These are the same as the conventional example.
[0040]
As described above, according to the present example, the error is corrected each time a new prediction is performed by sequentially performing statistical analysis on the difference between the past predicted data of the wind speed and the wind direction and the corresponding past measured value. Therefore, it is possible to make predictions with less error than conventional prediction data, and to select and obtain a regression curve based on past measured data without using a power generation characteristic curve when calculating power generation output with respect to wind speed Thus, the prediction accuracy could be improved.
[0041]
(Second embodiment: when measured data of power generation output is available for each wind power generator)
This example is different from the first example in that a statistical analysis is sequentially performed between the predicted data of the wind speed and the wind direction for each wind generator and the actually measured data of the power generation output for each wind generator to predict the power generation output. Is what you do. This embodiment is a preferred embodiment in a case where actual measurement data of the wind speed and wind direction for each wind generator is not available, but actual measurement data of the power generation output for each wind generator is available. Of course, this is not something that cannot be adopted when actual measurement data of wind speed and direction is available.
[0042]
FIG. 7 shows a flow of the second embodiment.
In step S0, narrow area prediction data is obtained, and then wind speed prediction data WS 0 and wind direction prediction data WD 0 for each wind power generator are extracted. It is the same as the first embodiment in that it is stored and accumulated as data (wind speed WS p , wind direction WD p ).
On the other hand, actual measurement data PW obs of the power generation output of each wind power generator in each wind power generation facility is sequentially acquired online, and sequentially stored in the storage device.
[0043]
Next, in step S71, the prediction relates to the actual measurement data PW ob s and past wind direction and wind speed past power output for each wind turbine data WD p, performs statistical analysis of the WS p, updates create a prediction equation. As a method of statistical analysis, a Kalman filter is used as in the first embodiment.
[0044]
That is, the prediction data WS p and WD p of the past wind speed and direction are divided into east-west and north-south components, and a multiple regression equation with the past power generation output PW obs is created to calculate coefficients.
For example,
Y pwr = 25X 1 + 25X 2 +0.43
Here, Y pwr : power generation output X 1 : east-west component of predicted data X 2 : north-south component of predicted data
In step 72, the power generation output of each wind power generator is calculated and predicted using the updated prediction formula. As described above, when a new power generation output is predicted, the prediction formula is constantly updated to perform the prediction.
[0046]
Also in the case of this example, since the prediction can be performed by using the prediction formula updated with the error constantly corrected without using the power generation characteristic curve, the prediction accuracy can be improved as compared with the conventional one.
[0047]
(Third embodiment: when actual measurement data of total power generation output at a wind power generation facility is available)
This example can be implemented when the total power generation output of a wind power generation facility is available.Especially, although wind power data and actual measurement data of power generation output cannot be obtained for individual wind power generators, The total power generation output in is a preferred example to be implemented when available.
[0048]
FIG. 8 shows a flowchart of this example.
This example is also the same as the first and second examples until the narrow area prediction data is obtained and the wind speed prediction data WS 0 and the wind direction prediction data WD 0 are extracted for each wind power generator.
[0049]
In the second embodiment, the Kalman filter is applied to the relationship between the wind speed / wind direction prediction data and the power generation output for each wind power generator. The average wind speed prediction data WS s and the average wind direction prediction data WD s in the wind power generation facility are obtained from the wind speed and wind direction prediction data WS 0 and WD 0 for each machine, and the wind speed and wind direction prediction for each wind power generation facility are obtained. The data are WS s and WD s .
[0050]
In step S81, a multiple regression equation is derived between the past prediction data (wind speed WS sp , wind direction WD sp ) of the wind power generation facility and the actually measured data of the total power generation output of the wind power generation facility, and the prediction equation is obtained by applying the Kalman filter. Update. That is, each time the power generation output of the entire wind power generation facility is predicted, the coefficient is corrected.
[0051]
Then, in step 82, using the updated prediction equation, it predicts the prediction data of the wind power plant (wind speed WS s, wind direction WD s) to calculate the predicted data PW s wind farms.
[0052]
Thus, also in this example, by performing a statistical analysis of the past prediction data and the actual measurement data, and correcting the sequential error, if the actual measurement value of the total power generation output of the wind power generation facility can be obtained, Enables prediction with less error.
In the above embodiment, wind speed / wind direction data is used as wind condition data. However, it goes without saying that the present invention can be implemented by using only wind speed data as wind condition data.
[0053]
【The invention's effect】
As described above, according to the present invention, a difference between a past observed value and a predicted value at that time is statistically processed, so that an error in a future predicted value can be reduced. Further, since it is possible to predict the output value of the wind power generation with less error, it is possible to create an accurate and efficient power supply and demand plan. Further, information can be provided by a simple communication server without forming a network of large-scale computers.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a power generation output prediction method (part 1) according to the present invention.
FIG. 2 is a diagram showing an outline of a power generation output prediction method (part 2) according to the present invention.
FIG. 3 is a schematic view of a power generation output prediction system according to the present invention.
FIG. 4 is a diagram showing a prediction flow in a case where measured data of wind speed / wind direction and power generation output can be obtained for each wind power generator.
FIG. 5 is a diagram showing correction of a prediction error by a Kalman filter.
FIG. 6 is a diagram showing conversion of wind speed / wind direction data into east-west components and north-south components.
FIG. 7 is a diagram showing a prediction flow in a case where actual measurement data of a power generation output can be obtained for each wind power generator.
FIG. 8 is a diagram showing a prediction flow when actual measurement data of total power generation output in a wind power generation facility is available.
FIG. 9 is a diagram showing a conventional flow of predicting wind power output.
FIG. 10 is a diagram illustrating an example of a wide area of an airflow field.
FIG. 11 is a diagram showing an example of a narrow region of an airflow field.
FIG. 12 is a diagram showing a power generation output characteristic curve used for prediction of a conventional wind power generation output.
[Explanation of symbols]
S0: Step of calculating narrow area forecast data S41: Step of statistically analyzing predicted data and measured data of wind speed / wind direction S42: Step of correcting predicted data of wind speed / wind direction S43: Measured data of wind speed / wind direction and power generation output Statistical analysis step S44: a step of predicting the power generation output from the prediction correction data for the wind speed and direction.

Claims (13)

風況予測データから発電出力を予測する風力発電における発電出力予測方法において、
予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して、風況予測修正データを得る風況データ修正予測ステップと、
前記風況予測修正データに基づき発電出力を予測する発電出力予測ステップとを備えることを特徴とする風力発電における発電出力予測方法。
In a power generation output prediction method in wind power generation for predicting power generation output from wind condition prediction data,
A wind condition data correction prediction step of sequentially performing statistical analysis on the past wind condition prediction data and the past wind condition actual measurement data to obtain wind condition prediction correction data,
A power generation output prediction step of predicting a power generation output based on the wind condition prediction correction data.
風況予測データから発電出力を予測する風力発電における発電出力予測方法において、
風況実測データと発電出力実測データとの統計解析により求められた風速と発電出力との関係式に基づいて、前記風況予測データに応じて発電出力を予測する発電出力予測ステップを備えることを特徴とする風力発電における発電出力予測方法。
In a power generation output prediction method in wind power generation for predicting power generation output from wind condition prediction data,
A power generation output prediction step of predicting a power generation output according to the wind condition prediction data based on a relational expression between the wind speed and the power generation output obtained by statistical analysis of the wind condition measurement data and the power generation output measurement data. Characteristic power generation output prediction method in wind power generation.
風況予測データから発電出力を予測する風力発電における発電出力予測方法において、
予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して、風況予測修正データを得る風況データ修正予測ステップと、
風況実測データと発電出力実測データとの統計解析により求められた発電出力と風速との関係式に基づいて、前記風況予測修正データに応じて発電出力を予測する発電出力予測ステップとを備えることを特徴とする風力発電における発電出力予測方法。
In a power generation output prediction method in wind power generation for predicting power generation output from wind condition prediction data,
A wind condition data correction prediction step of sequentially performing statistical analysis on the past wind condition prediction data and the past wind condition actual measurement data to obtain wind condition prediction correction data,
A power generation output prediction step of predicting a power generation output according to the wind condition prediction correction data based on a relational expression between the power generation output and the wind speed obtained by statistical analysis of the wind condition measurement data and the power generation output measurement data. A power generation output prediction method for wind power generation.
風況予測データから発電出力を予測する風力発電における発電出力予測方法において、
前記風況予測データに基づき発電出力を予測する際に、過去の風況予測データと過去の発電出力実測データを逐次統計解析して、発電出力予測データを得る発電出力予測ステップを備えることを特徴とする風力発電における発電出力予測方法。
In a power generation output prediction method in wind power generation for predicting power generation output from wind condition prediction data,
When predicting a power generation output based on the wind condition prediction data, a power generation output prediction step of sequentially performing statistical analysis of past wind condition prediction data and past power generation output measurement data to obtain power generation output prediction data is provided. Power generation output prediction method for wind power generation.
風況予測データから発電出力を予測する風力発電における発電出力予測方法において、
前記風況予測データを風力発電施設毎に平均して風力発電施設毎の風況予測データを得るステップと、
前記風力発電施設毎の風況予測データに基づいて発電出力を予測する毎に、風力発電施設毎の過去の風況予測データと過去の発電出力実測データを逐次統計解析して、発電出力の予測データを得る発電出力予測ステップとを備えることを特徴とする風力発電における発電出力予測方法。
In a power generation output prediction method in wind power generation for predicting power generation output from wind condition prediction data,
Averaging the wind condition prediction data for each wind power generation facility to obtain wind condition prediction data for each wind power generation facility,
Each time the power generation output is predicted based on the wind condition prediction data for each wind power generation facility, the past wind condition prediction data and the past power generation output measurement data for each wind power generation facility are sequentially statistically analyzed to predict the power generation output. And a power generation output prediction step for obtaining data.
風況予測データから発電出力を予測する風力発電における発電出力予測装置において、
予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して、風況予測修正データを得る風況データ修正予測手段と、
前記風況予測修正データに基づき発電出力を予測する発電出力予測手段を備えることを特徴とする風力発電における発電出力予測装置。
In a power generation output prediction device for wind power generation that predicts the power generation output from wind condition prediction data,
A wind condition data correction prediction means for sequentially performing statistical analysis on the past wind condition prediction data and the past wind condition measurement data each time the prediction is performed, and obtaining wind condition prediction correction data;
A power generation output prediction device for wind power generation, comprising: a power generation output prediction unit that predicts a power generation output based on the wind condition prediction correction data.
風況予測データから発電出力を予測する風力発電における発電出力予測装置において、
風況実測データと発電出力実測データとの統計解析により求められた風速と発電出力との関係式に基づいて、前記風況予測データに応じて発電出力を予測する発電出力予測装置を備えることを特徴とする風力発電における発電出力予測装置。
In a power generation output prediction device for wind power generation that predicts the power generation output from wind condition prediction data,
Based on a relational expression between the wind speed and the power generation output obtained by statistical analysis of the wind condition measurement data and the power generation output measurement data, a power generation output prediction device that predicts a power generation output according to the wind condition prediction data is provided. Characteristic power generation output prediction device for wind power generation.
風況予測データから発電出力を予測する風力発電における発電出力予測装置において、
予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して、風況予測修正データを得る風況データ修正予測手段と、
風況実測データと発電出力実測データとの統計解析により求められた発電出力と風速との関係式に基づいて、前記風況予測修正データに応じて発電出力を予測する発電出力予測手段とを備えることを特徴とする風力発電における発電出力予測装置。
In a power generation output prediction device for wind power generation that predicts the power generation output from wind condition prediction data,
A wind condition data correction prediction means for sequentially performing statistical analysis on the past wind condition prediction data and the past wind condition measurement data each time the prediction is performed, and obtaining wind condition prediction correction data;
A power generation output predicting unit that predicts a power generation output according to the wind condition prediction correction data based on a relational expression between the power generation output and the wind speed obtained by statistical analysis of the wind condition measurement data and the power generation output measurement data. A power generation output prediction device for wind power generation.
風況予測データから発電出力を予測する風力発電における発電出力予測装置において、
予測する毎に過去の風況予測データと過去の発電出力実測データを逐次統計解析して、発電出力予測データを得る発電出力予測手段を備えることを特徴とする風力発電における発電出力予測装置。
In a power generation output prediction device for wind power generation that predicts the power generation output from wind condition prediction data,
A power generation output prediction device for wind power generation, comprising: a power generation output prediction unit that sequentially performs statistical analysis of past wind condition prediction data and past power generation output measurement data for each prediction to obtain power generation output prediction data.
風況予測データから発電出力を予測する風力発電における発電出力予測装置において、
前記風況予測データを風力発電施設毎に平均して風力発電施設毎の風況予測データを得る手段と、
前記風力発電施設毎の風況予測データに基づいて発電出力を予測する毎に、風力発電施設毎の過去の風況予測データと過去の発電出力実測データを逐次統計解析して、発電出力の予測データを得る発電出力予測手段とを備えることを特徴とする風力発電における発電出力予測装置。
In a power generation output prediction device for wind power generation that predicts the power generation output from wind condition prediction data,
Means for obtaining the wind condition prediction data for each wind power generation facility by averaging the wind condition prediction data for each wind power generation facility,
Each time the power generation output is predicted based on the wind condition prediction data for each wind power generation facility, the past wind condition prediction data and the past power generation output measurement data for each wind power generation facility are sequentially statistically analyzed to predict the power generation output. A power generation output prediction device for wind power generation, comprising: a power generation output prediction unit that obtains data.
風況予測データから発電出力を予測する予測計算装置を備えた風力発電における発電出力予測システムであって、
風況実測データを収集するデータ収集装置を備え、
前記予測計算装置は、予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して風況予測修正データを得て、前記風況予測修正データから発電出力を予測することを特徴とする風力発電における発電出力予測システム。
A power generation output prediction system for wind power generation, comprising a prediction calculation device that predicts a power generation output from wind condition prediction data,
Equipped with a data collection device to collect wind condition measurement data,
The prediction calculation device obtains wind condition prediction correction data by sequentially performing statistical analysis on past wind condition prediction data and past wind condition measurement data every time prediction is performed, and predicts a power generation output from the wind condition prediction correction data. A power generation output prediction system for wind power generation.
風況予測データから発電出力を予測する予測計算装置を備えた風力発電における発電出力予測システムであって、
風況実測データ及び発電出力実測データを収集するデータ収集装置を備え、
前記予測計算装置は、予測する毎に過去の風況予測データと過去の風況実測データを逐次統計解析して風況予測修正データを得て、風況実測データと発電出力実測データとの統計解析により求められた風速と発電出力との関係式に基づいて、前記風況予測修正データから発電出力を予測することを特徴とする風力発電における発電出力予測システム。
A power generation output prediction system for wind power generation, comprising a prediction calculation device that predicts a power generation output from wind condition prediction data,
Equipped with a data collection device that collects wind condition measurement data and power generation output measurement data,
The prediction calculation device obtains wind condition prediction correction data by sequentially performing statistical analysis of the past wind condition prediction data and the past wind condition measurement data every time prediction is performed, and obtains the statistical data of the wind condition measurement data and the power generation output measurement data. A power generation output prediction system for wind power generation, wherein a power generation output is predicted from the wind condition prediction correction data based on a relational expression between a wind speed and a power generation output obtained by analysis.
風況予測データから発電出力を予測する予測計算装置を備えた風力発電における発電出力予測システムであって、
発電出力実測データを収集するデータ収集装置を備え、
前記予測計算装置は、前記風況予測データに基づき発電出力を予測する毎に、過去の風況予測データと過去の発電出力実測データを逐次統計解析して、前記風況予測データから発電出力を予測することを特徴とする風力発電における発電出力予測システム。
A power generation output prediction system for wind power generation, comprising a prediction calculation device that predicts a power generation output from wind condition prediction data,
Equipped with a data collection device to collect power generation output measurement data,
Each time the prediction calculation device predicts a power generation output based on the wind condition prediction data, it sequentially performs statistical analysis on past wind condition prediction data and past power generation output measurement data, and generates a power generation output from the wind condition prediction data. A power generation output prediction system in wind power generation, wherein the prediction is performed.
JP2002177254A 2002-06-18 2002-06-18 Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation Expired - Lifetime JP3950928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177254A JP3950928B2 (en) 2002-06-18 2002-06-18 Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177254A JP3950928B2 (en) 2002-06-18 2002-06-18 Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation

Publications (2)

Publication Number Publication Date
JP2004019583A true JP2004019583A (en) 2004-01-22
JP3950928B2 JP3950928B2 (en) 2007-08-01

Family

ID=31175336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177254A Expired - Lifetime JP3950928B2 (en) 2002-06-18 2002-06-18 Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation

Country Status (1)

Country Link
JP (1) JP3950928B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163608A (en) * 2003-12-02 2005-06-23 Shikoku Res Inst Inc Output estimation method in wind power generation
JP2007009804A (en) * 2005-06-30 2007-01-18 Tohoku Electric Power Co Inc Schedule system for output-power control of wind power-plant
JP2007104786A (en) * 2005-10-03 2007-04-19 Furukawa Battery Co Ltd:The Wind turbine generating equipment
JP2007233639A (en) * 2006-02-28 2007-09-13 Tohoku Electric Power Co Inc Wind power generation output prediction method, wind power generation output prediction unit, and program
JP2008203125A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Air situation analytical method and analyzer, and program
JP2008225646A (en) * 2007-03-09 2008-09-25 Univ Of Tsukuba Prediction error compensation method and device, weather power generation planning method and device, and program
JP2010025115A (en) * 2008-07-22 2010-02-04 Siemens Ag Method and arrangement for forecast of wind-resources
JP2010048632A (en) * 2008-08-21 2010-03-04 Chugoku Electric Power Co Inc:The System for decision and support of disaster prevention system
JP2011038499A (en) * 2009-08-18 2011-02-24 Hitachi Ltd Natural energy power generation control system, control device, and control method
JP2011127461A (en) * 2009-12-16 2011-06-30 Hitachi Ltd Wind turbine generator system, wind turbine generator control device, and wind turbine generator control method
CN102562469A (en) * 2011-12-27 2012-07-11 华北电力大学 Short-term wind driven generator output power predicting method based on correction algorithm
KR101177435B1 (en) 2012-03-06 2012-08-27 전북대학교산학협력단 Method for predicting wind resource of wind farm
JP2013108462A (en) * 2011-11-22 2013-06-06 Fuji Electric Co Ltd System and program for predicting wind power generated electricity
JP2013222423A (en) * 2012-04-19 2013-10-28 Hitachi Power Solutions Co Ltd Method and system for predicting power generation capacity, and method and system for managing health of wind power generation facilities
JP2013225970A (en) * 2012-04-20 2013-10-31 Kyocera Corp Power management device, management server, local weather information generation system, and local weather information generation method
JP5339317B1 (en) * 2012-07-30 2013-11-13 祥人 平田 Prediction mechanism of renewable energy output fluctuation based on real-time prediction method of weather fluctuation
WO2014020778A1 (en) * 2012-07-31 2014-02-06 日揮株式会社 Weather reproduction method, weather reproduction device, and air use device
JP5461748B1 (en) * 2013-03-25 2014-04-02 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method, and program
JP2015092085A (en) * 2011-02-08 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Determination method for loss of energy
JP2015210222A (en) * 2014-04-28 2015-11-24 株式会社東芝 Weather prediction correction device and weather prediction correction method
JP2016073151A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Voltage regulator
JP2016073152A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Prediction device
JP2016079965A (en) * 2014-10-22 2016-05-16 株式会社東芝 Device and method for adjusting direction of windmill for wind power generation
JP2016136004A (en) * 2015-01-23 2016-07-28 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method and program
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
JP2017187371A (en) * 2016-04-05 2017-10-12 株式会社日立パワーソリューションズ Weather prediction device and wind power generation
JP2018031683A (en) * 2016-08-25 2018-03-01 国立研究開発法人防災科学技術研究所 Objective analysis device of meteorological field and objective analysis method of meteorological field
JP2019502219A (en) * 2015-11-24 2019-01-24 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for graphically presenting sensor data of a plurality of wind power plants, apparatus for this purpose, and system comprising said apparatus
US10190574B2 (en) 2013-12-02 2019-01-29 DOOSAN Heavy Industries Construction Co., LTD System and method for controlling generation output quantity of a wind power plant using dust detector
CN111311022A (en) * 2020-03-12 2020-06-19 深圳前海微众银行股份有限公司 Power generation amount prediction method, device, equipment and computer readable storage medium
JP2021182319A (en) * 2020-05-20 2021-11-25 株式会社日立製作所 Prediction apparatus and prediction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709035B2 (en) 2014-09-03 2017-07-18 General Electric Company System and method for regulating power in a wind farm

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163608A (en) * 2003-12-02 2005-06-23 Shikoku Res Inst Inc Output estimation method in wind power generation
JP2007009804A (en) * 2005-06-30 2007-01-18 Tohoku Electric Power Co Inc Schedule system for output-power control of wind power-plant
JP2007104786A (en) * 2005-10-03 2007-04-19 Furukawa Battery Co Ltd:The Wind turbine generating equipment
JP2007233639A (en) * 2006-02-28 2007-09-13 Tohoku Electric Power Co Inc Wind power generation output prediction method, wind power generation output prediction unit, and program
JP2008203125A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Air situation analytical method and analyzer, and program
JP2008225646A (en) * 2007-03-09 2008-09-25 Univ Of Tsukuba Prediction error compensation method and device, weather power generation planning method and device, and program
JP2010025115A (en) * 2008-07-22 2010-02-04 Siemens Ag Method and arrangement for forecast of wind-resources
JP2010048632A (en) * 2008-08-21 2010-03-04 Chugoku Electric Power Co Inc:The System for decision and support of disaster prevention system
JP2011038499A (en) * 2009-08-18 2011-02-24 Hitachi Ltd Natural energy power generation control system, control device, and control method
JP2011127461A (en) * 2009-12-16 2011-06-30 Hitachi Ltd Wind turbine generator system, wind turbine generator control device, and wind turbine generator control method
JP2015092085A (en) * 2011-02-08 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Determination method for loss of energy
JP2013108462A (en) * 2011-11-22 2013-06-06 Fuji Electric Co Ltd System and program for predicting wind power generated electricity
CN102562469A (en) * 2011-12-27 2012-07-11 华北电力大学 Short-term wind driven generator output power predicting method based on correction algorithm
EP2637046B1 (en) 2012-03-06 2016-02-10 Industrial Cooperation Foundation Chonbuk National University Method for predicting wind conditions in a wind farm
CN103308711A (en) * 2012-03-06 2013-09-18 全北大学校产学协力团 Method for predicting wind conditions in a wind farm
EP2637046A3 (en) * 2012-03-06 2014-05-07 Industrial Cooperation Foundation Chonbuk National University Method for predicting wind conditions in a wind farm
KR101177435B1 (en) 2012-03-06 2012-08-27 전북대학교산학협력단 Method for predicting wind resource of wind farm
JP2013222423A (en) * 2012-04-19 2013-10-28 Hitachi Power Solutions Co Ltd Method and system for predicting power generation capacity, and method and system for managing health of wind power generation facilities
JP2013225970A (en) * 2012-04-20 2013-10-31 Kyocera Corp Power management device, management server, local weather information generation system, and local weather information generation method
JP5339317B1 (en) * 2012-07-30 2013-11-13 祥人 平田 Prediction mechanism of renewable energy output fluctuation based on real-time prediction method of weather fluctuation
WO2014020778A1 (en) * 2012-07-31 2014-02-06 日揮株式会社 Weather reproduction method, weather reproduction device, and air use device
JPWO2014020778A1 (en) * 2012-07-31 2016-07-11 日揮株式会社 Weather reproduction method, weather reproduction device, and air utilization device
AU2012386701B2 (en) * 2012-07-31 2015-10-08 Jgc Corporation Weather predicting method, weather predicting apparatus, and air utilizing apparatus
RU2584918C1 (en) * 2012-07-31 2016-05-20 ДжейДжиСи КОРПОРЕЙШН Weather forecast method, weather forecast device and device for using air
WO2014155482A1 (en) * 2013-03-25 2014-10-02 中国電力株式会社 Power generation prediction device, and power generation prediction method and program
JP5461748B1 (en) * 2013-03-25 2014-04-02 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method, and program
US10190574B2 (en) 2013-12-02 2019-01-29 DOOSAN Heavy Industries Construction Co., LTD System and method for controlling generation output quantity of a wind power plant using dust detector
JP2015210222A (en) * 2014-04-28 2015-11-24 株式会社東芝 Weather prediction correction device and weather prediction correction method
JP2016073151A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Voltage regulator
JP2016073152A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Prediction device
JP2016079965A (en) * 2014-10-22 2016-05-16 株式会社東芝 Device and method for adjusting direction of windmill for wind power generation
JP2016136004A (en) * 2015-01-23 2016-07-28 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method and program
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
CN107251356A (en) * 2015-02-23 2017-10-13 冲绳科学技术大学院大学 The system and method for determining the predicated error of regenerative resource fluctuation
JP2018506258A (en) * 2015-02-23 2018-03-01 学校法人沖縄科学技術大学院大学学園 System and method for determining prediction error for fluctuations in renewable energy
US10742040B2 (en) 2015-02-23 2020-08-11 Okinawa Institute Of Science And Technology School Corporation System and method of determining forecast error for renewable energy fluctuations
CN107251356B (en) * 2015-02-23 2020-09-11 学校法人冲绳科学技术大学院大学学园 System and method for determining prediction error of renewable energy fluctuations
JP2019502219A (en) * 2015-11-24 2019-01-24 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for graphically presenting sensor data of a plurality of wind power plants, apparatus for this purpose, and system comprising said apparatus
JP2017187371A (en) * 2016-04-05 2017-10-12 株式会社日立パワーソリューションズ Weather prediction device and wind power generation
JP2018031683A (en) * 2016-08-25 2018-03-01 国立研究開発法人防災科学技術研究所 Objective analysis device of meteorological field and objective analysis method of meteorological field
CN111311022A (en) * 2020-03-12 2020-06-19 深圳前海微众银行股份有限公司 Power generation amount prediction method, device, equipment and computer readable storage medium
JP2021182319A (en) * 2020-05-20 2021-11-25 株式会社日立製作所 Prediction apparatus and prediction method
JP7346356B2 (en) 2020-05-20 2023-09-19 株式会社日立製作所 Prediction device and prediction method

Also Published As

Publication number Publication date
JP3950928B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3950928B2 (en) Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation
Zjavka Wind speed forecast correction models using polynomial neural networks
Zhou et al. Performance of the new NCEP Global Ensemble Forecast System in a parallel experiment
US11402542B2 (en) Forecasting method with machine learning
Tukimat et al. Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia
Krzysztofowicz Bayesian system for probabilistic river stage forecasting
Elbern et al. Ozone episode analysis by four‐dimensional variational chemistry data assimilation
Langland et al. Initial condition sensitivity and error growth in forecasts of the 25 January 2000 East Coast snowstorm
KR100802402B1 (en) Forecasting method of wind power generation by classification of wind speed patterns
JP4404220B2 (en) Gas condition prediction apparatus, method, program, and diffusion condition prediction system
JP2016136001A (en) Prediction device
Thorarinsdottir et al. Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression
CN110334732A (en) A kind of Urban Air Pollution Methods and device based on machine learning
JP2010060443A (en) Weather forecast device, method, and program
JP2009225550A (en) Power demand predicting method and system, and power generation prediction method
Ma et al. Prediction of outdoor air temperature and humidity using Xgboost
JP2013164286A (en) Solar radiation amount prediction method, photovoltaic power generation output prediction method and system
Zjavka Numerical weather prediction revisions using the locally trained differential polynomial network
Thatcher et al. A technique for dynamically downscaling daily-averaged GCM datasets using the conformal cubic atmospheric model
Kim et al. Evolution of analysis error and adjoint-based sensitivities: Implications for adaptive observations
Han et al. Probabilistic flood forecasting using hydrologic uncertainty processor with ensemble weather forecasts
JP7068531B1 (en) Information processing equipment, information processing methods, information processing systems and computer programs
Voorrips et al. Wave data assimilation with the Kalman filter
Manikumari et al. Time series forecasting of daily reference evapotranspiration by neural network ensemble learning for irrigation system
JP7346356B2 (en) Prediction device and prediction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Ref document number: 3950928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term