JP2004019385A - Structure of joining steel-concrete combined floor panel to its unit steel skeleton - Google Patents

Structure of joining steel-concrete combined floor panel to its unit steel skeleton Download PDF

Info

Publication number
JP2004019385A
JP2004019385A JP2002179522A JP2002179522A JP2004019385A JP 2004019385 A JP2004019385 A JP 2004019385A JP 2002179522 A JP2002179522 A JP 2002179522A JP 2002179522 A JP2002179522 A JP 2002179522A JP 2004019385 A JP2004019385 A JP 2004019385A
Authority
JP
Japan
Prior art keywords
fastening
steel
unit steel
concrete
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179522A
Other languages
Japanese (ja)
Other versions
JP4039138B2 (en
Inventor
Nauemon Uno
宇野 名右衛門
Kenji Matsuno
松野 憲司
Yuichi Watanabe
渡邉 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002179522A priority Critical patent/JP4039138B2/en
Publication of JP2004019385A publication Critical patent/JP2004019385A/en
Application granted granted Critical
Publication of JP4039138B2 publication Critical patent/JP4039138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of joining a steel-concrete combined floor panel to its unit steel skeletons, allowing easy construction and preventing cracking resulting in corrosive deterioration without causing the shortage in filling a concrete. <P>SOLUTION: The unit steel skeletons 20A of the floor panel 20 are constructed with grooved-steel joint reinforcing beams 30 directed sideways to open to the side and fixed to the upper face of a bottom steel plate 21 at predetermined intervals approximately perpendicularly to a bridge shaft. The adjacent unit steel skeletons 20A are joined with a plurality of fastening mechanisms 40 provided at predetermined intervals along a joint line 20B. The fastening mechanisms fasten fastening plates erected on the joint edges of the bottom steel plate 21 and having a preset width in the direction perpendicular to the bridge shaft with fastening bolts. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁や高架道路を構成する床版であって、鋼骨格とコンクリートとが一体化して強度合成されて構成される鋼コンクリート合成床版に関する。
【0002】
【従来の技術】
橋梁や高架道路を構成する床版として、スタッド等の合成結合部材が立設された鋼板製の基板部材(鋼骨格)の上側に所定厚さのRCコンクリート層を形成し、基板部材とコンクリート層を強度合成して構成される鋼コンクリート合成床版が知られている。
【0003】
このような鋼コンクリート合成床版は、通常、工場において鋼骨格を少なくとも橋軸方向に分割した単位鋼骨格体を製作し、この単位鋼骨格体を配設現場に搬送して桁組上に並設配置した後、各単位鋼骨格体を結合手段によって結合すると共に鉄筋を配筋し、コンクリートを打設するいわゆるハーフプレキャスト工法によって施工される。
【0004】
その鋼骨格構造として、近時、長支間に対応するために、図8にその一例を適用した鋼コンクリート合成床版桁橋20′の概念斜視図を示すように鋼板製の基板部材21′の上面に橋軸と直交する方向の補強ビーム30′を配設したものが提案されている。
【0005】
図示鋼コンクリート合成床版20′の鋼骨格は、基板部材21′の上面に、図示しない多数のジベルが溶接によって植設されると共に、橋軸と直交するT形鋼による補強ビーム30′が橋軸方向に所定間隔で配設されて構成されており、基板部材21′が型枠として機能し、補強ビーム30′はその腹板に開口形成された図示しない複数の開口部でコンクリート層22′と強固に結合し橋直方向の強度部材として作用する。このような構造により、コンクリート層22′を形成するコンクリートを打設する際に下面の型枠が不要となると共に、高い剛性によって桁組上で形状を維持し得るために支保工を設ける必要がなく、施工が容易となる。
【0006】
また、鋼骨格施工の際に隣接する単位鋼骨格体を結合する結合構造としては、図9に示すように、隣接する単位鋼骨格体20A′の基板部材21′の間に跨って重合配置した鋼板製の結合板22′と基板部材21′とをボルト・ナット等の締結部材23′によって締結し、結合板22′と基板部材21′の間に作用する摩擦力によって結合するもの(摩擦結合構造)や、図10に示すように、単位鋼骨格体の基板部材21′の端縁にそれぞれ立設された所定高さの結合リブ21A′を、ボルト・ナット等の締結部材24′によって締結するもの(引っ張り結合構造:締結部材に引っ張り力が作用するためにこう呼ばれる)がある。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のごとき従来構成の鋼コンクリート合成床版では、基板部材21′の上面に固定されたT形鋼による補強ビーム30′の上部フランジの下側部位へのコンクリートの充填が不足しがちとなるという問題があった。この傾向は特に図11に示すように橋軸方向に勾配を有する場合の図中Xで示す坂下側の部位において著しい。
【0008】
また、単位鋼骨格体の結合構造として摩擦結合構造を採用すると足場が必要となって極めて面倒となり、図10に示す引っ張り結合構造を適用した場合には、結合リブ21A′が橋軸直交方向に連続するためにその上側のコンクリート層22′の厚さが当該部位のみ薄くなる(tx<ta)ことから応力集中によって亀裂を生じ易いという問題があった。亀裂が生ずるとそこから侵入した雨水によって接合部の腐食劣化を招来する。
【0009】
本発明は、上記問題に鑑みてなされたものであって、コンクリートの充填不足を招来することがなく、施工が容易であると共に腐食劣化を招来する亀裂の発生を防ぐことのできる、鋼コンクリート合成床版とその単位鋼骨格体の結合構造を提供することを目的とする。
【0010】
【課題を解決する為の手段】
上記目的を達成する本発明の鋼コンクリート合成床版は、単位鋼骨格体が主桁上に並設配置されて結合手段によって結合されると共に、該単位鋼骨格体にコンクリート層が一体化して強度合成されて成る鋼コンクリート合成床版であって、前記単位鋼骨格体は、床版の下面を構成する基板部材の上面に、結合補強部材が所定間隔で固定されて構成され、前記結合手段は、隣接する前記基板部材にそれぞれ立設された所定幅の締結板部材を締結ボルトによって締結して成る締結機構が、結合部に沿って複数設けられて構成されていることを特徴とする。
【0011】
また、上記締結機構は、上記締結板部材の両端部から反結合側に延設された補強リブを備えて構成されていることを特徴とする。
【0012】
更に、上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることを特徴とする。
【0013】
鋼コンクリート合成床版における単位鋼骨格体の結合構造は、単位鋼骨格体が主桁上に並設配置されて結合手段によって結合されると共に、該単位鋼骨格体にコンクリート層が一体化して強度合成されて成る鋼コンクリート合成床版において、前記結合手段は、複数の締結機構が結合部に沿って配設されて構成され、前記締結機構は、締結板部材の両端縁から補強リブが延設されて成る締結金具が、前記締結板部材を対向させて結合する前記単位鋼骨格体にそれぞれ固定されると共に、前記対向する締結金具の締結板部材が締結ボルトによって締結されるように構成されていることを特徴とする。
【0014】
また、上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることを特徴とする。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
【0016】
図1は、本発明に係る鋼コンクリート合成床版とその単位鋼骨格体の結合構造の一例を適用した橋梁をコンクリート層を除いて示す概念斜視図、図2はそのA部拡大図、図3は橋梁の横断面図(中心から片側のみ示す),図4は橋梁の縦断面図である。
【0017】
図示橋梁1は、鋼コンクリート合成床版である床版20が、鋼主桁11と横桁12によって構成される桁組10によって支持されて構成されている。
【0018】
桁組10は、幅方向左右に一対配設された鋼主桁11(図2では一方のみ示す)の間に横桁12が所定間隔で配設されて構成されている。鋼主桁11及び横桁12は、それぞれ鋼板によって所定高さのI形断面形状に形成されており、横桁12は端部で鋼主桁11の腹板に固定されている。鋼主桁11の上フランジの上面には多数のスタッドジベル13が立設されており、このスタッドジベル13が床版20の後述するコンクリート層22に没入して鋼主桁11(即ち桁組10)と床版20とを結合している。
【0019】
床版20は、所定板厚の鋼板による基板部材としての底鋼板21の上に所定厚さのコンクリート層22が一体に形成されて構成されている。
【0020】
底鋼板21は、鋼主桁11による支持部両側のハンチ部位も含めて床版20の下面を形成し、その上面には結合補強部材としての結合補強ビーム30が橋軸方向に所定間隔で固定配設されると共に多数のスタッドジベル23が立設され、これら結合補強ビーム30とスタッドジベル23がコンクリート層22に没入してコンクリート層22と強度合成可能に結合一体化している。鋼主桁11と対応する部位は分断されて、幅方向に三つの部分(中央プレート21C,側部プレート21L,21R)に分割されており、これら分割された中央プレート21C,側部プレート21L,21Rは幅方向に連続する結合補強ビーム30によって連結一体化されている。
【0021】
中央プレート21Cと側部プレート21L,21Rの対向する縁部は、それぞれハンチ部21aを形成して最縁部が鋼主桁11の上フランジの側縁部上面にシール材を介して載置されている。中央プレート21Cと側部プレート21L,21Rのハンチ部21aの上面には、結合補強ビーム30に溶接固定された門型の連結支持板24の脚部がそれぞれ溶接固定されており、これによってハンチ部21aのコンクリート打設時における自立強度を確保している。中央プレート21Cと側部プレート21L,21Rの対向縁部の間は鋼主桁11の上フランジと対応する間隔に設定され、この間隔部位を介して鋼主桁11の上フランジに立設されたスタッドジベル13が床版20のコンクリート層22に没入するようになっている。
【0022】
結合補強ビーム30は、底板部の両側に側板部が所定高さに形成された断面形状U字状の溝形鋼を横倒しにして橋軸方向に開放するようにその側板部で底鋼板21に溶接固定されて、橋軸方向と直交するように床版20の幅全体に亘って配設されている。その開放方向は、当該橋梁1が橋軸方向に勾配を有する場合には坂上側に向けて設定される。また、底鋼板21から直角に起立するその底板部には、所定径の開口31が長手方向に所定間隔で形成されている。
【0023】
スタッドジベル23は、橋軸方向に所定間隔で配設された結合補強ビーム30の間に、橋軸と直交する方向に所定間隔で立設されている。
【0024】
また、結合補強ビーム30の上側には、コンクリート層22を補強する鉄筋24が配筋されている。
【0025】
上記のごとき構成の橋梁1は、図5に平面図を示すように、橋軸方向に所定幅の単位鋼骨格体20Aを桁組10上に並べて配置した後、各単位鋼骨格体20Aを結合すると共に鉄筋を配筋し、コンクリートを打設して桁組10及び単位鋼骨格体20Aと一体的に結合したコンクリート層22を形成することで施工される。
【0026】
単位鋼骨格体20Aは、工場等において、所定幅の底鋼板21(中央プレート21C,側部プレート21L,21R)の上面に、結合補強ビーム30とスタッドジベル23を溶接固定して製作され、架設現場に搬送されて設置される。
【0027】
橋軸方向に隣接する単位鋼骨格体20Aは、図5及びそのB部拡大図である図6に示すように、接合部(橋軸と直交する結合線20B)に沿って所定間隔で複数設けられた締結機構40によって結合されている。
【0028】
締結機構40は、図7(A)に平面図,(B)にその断面図を示すように、所定高さ且つ所定幅の締結板部材としての締結板部41Aの両縁から所定長さの補強リブとしての支持リブ41Bが延設されて成る平面形状U字状の結合金具41が、それぞれ隣接する両単位骨格板に締結板部41Aを対向させて締結板部41A及び支持リブ41Bの周囲で底鋼板21に溶接固定され、これら締結板部41Aを貫通する締結ボルト42とそれに螺合したナット43によって締結するように構成されている。つまり、本結合構造は締結ボルト42に引っ張り力が作用する引っ張り結合構造である。尚、図示本構成では、結合金具41は、所定長さの溝形鋼の側板部に所定長さの支持リブ41Bを溶接固定して形成されているが、結合金具41はこの構成に限らず鋼板を屈曲して形成しても良いものである。
【0029】
対向する締結板部41Aの間には、図7(C)に示す平座金のように円形で所定厚さのスペーサー部材としてのスペーサー44(図では同一厚さのものが三枚)が介装されており、また、締結板部41Aとボルト頭締結ボルト42の頭部又はナット43の間には、支持リブ41Bの間に嵌る図7(C)に示すような角座金45が介装されている。尚、図中20Cは結合線20Bの隙間を塞ぐシール部材である。
【0030】
このような締結機構40が単位鋼骨格体20Aの結合線20Bに沿って所定間隔で間欠的に設けられて成る結合構造では、単位鋼骨格体20Aの結合部(結合線20B)に沿って幅方向全域に亘って結合リブが立設しているものではないため、結合部におけるコンクリート層22の厚さ減少が少なく応力集中による亀裂の発生を抑えることができる。結合金具41は、平面形状がU字状でその周囲で底鋼板21に溶接されるために溶接長が長く強固に固定でき、大きな結合強度を得ることができる。
【0031】
また、対向する締結板部41Aの間にスペーサー44を介装するため、厚さの異なるスペーサー43を用意して選択したり、同一厚さでも介装枚数を変えることによって結合金具41Aの間隔の誤差を吸収調節することができる。これにより、単位鋼骨格体20Aの形成及び結合金具41Aの取付の精度を緩和することができ、製作コストを低減できる。更に、スペーサー43は円形であるためにコンクリート打設の際にその下側へコンクリートが円滑に回り込み、充填不足を招来することがないものである。
【0032】
【発明の効果】
以上述べたように、本発明に係る鋼コンクリート合成床版によれば、単位鋼骨格体は、床版の下面を構成する基板部材の上面に、結合補強部材が所定間隔で固定されて構成され、結合手段は、隣接する基板部材にそれぞれ立設された所定幅の締結板部材を締結ボルトによって締結して成る締結機構が結合部に沿って複数設けられて構成されていることにより、結合補強部材が橋軸と直交する方向の剛性を向上させると共に、橋軸方向に勾配を有する場合に溝形鋼が坂上に向けて開放するように設定することでコンクリートの充填不足を防ぐことができる。締結機構は単位鋼骨格体の結合部に沿って間欠的に設けられているために当該結合部のコンクリート層の厚さを確保でき、応力集中による亀裂の発生を抑えることができる。
【0033】
また、上記締結機構は、上記締結板部材の両端部から反結合側に延設された補強リブを備えて構成されていることにより、溶接長が長く大きな強度で固定でき、その結果、大きな結合強度を得ることができる。
【0034】
更に、上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることにより、厚さの異なるスペーサー部材を用意して選択したり、同一厚さでも介装枚数を変えることによって締結板部材の間隔の誤差を吸収調整することができる。これにより、単位鋼骨格体の形成及び締結板部材の取付の精度を緩和することが可能となり、製作コストを低減できる。また、スペーサー部材は円形であるためにコンクリート打設の際にその下側へコンクリートが円滑に回り込み、充填不足を招来することがないものである。
【0035】
また、鋼コンクリート合成床版における単位鋼骨格体の結合構造として、単位鋼骨格体が主桁上に並設配置されて結合手段によって結合されると共に、該単位鋼骨格体にコンクリート層が一体化して強度合成されて成る鋼コンクリート合成床版において、結合手段は、複数の締結機構が結合部に沿って配設されて構成され、締結機構は、締結板部材の両端縁から補強リブが延設されて成る締結金具が、締結板部材を対向させて結合する単位鋼骨格体にそれぞれ固定されると共に、対向する締結金具の締結板部材が締結ボルトによって締結されるように構成されていることにより、締結機構は単位鋼骨格体の結合部に沿って間欠的に設けられているために当該結合部のコンクリート層の厚さを確保でき、応力集中による亀裂の発生を抑えることができる。締結板部材の両端部から反結合側に延設された補強リブを備えて構成されていることにより、溶接長が長く大きな強度で固定でき、その結果、大きな結合強度を得ることができる。
【0036】
更に、上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることにより、厚さの異なるスペーサー部材を用意して選択したり、同一厚さでも介装枚数を変えることによって締結板部材の間隔の誤差を吸収調整することができる。単位鋼骨格体の形成及び締結板部材の取付の精度を緩和することが可能となり、製作コストを低減できる。また、スペーサー部材は円形であるためにコンクリート打設の際にその下側へコンクリートが円滑に回り込み、充填不足を招来することがないものである。
【図面の簡単な説明】
【図1】本発明に係る鋼コンクリート合成床版とその単位鋼骨格体の結合構造の一例を適用した橋梁をコンクリート層を除いて示す概念斜視図である。
【図2】図1のA部拡大図である。
【図3】橋梁の横断面図である。
【図4】橋梁の縦断面図である。
【図5】単位鋼骨格体の設置状態を示す平面図である。
【図6】図5のB部拡大図である。
【図7】締結機構を示し、(A)は平面図,(B)は断面図,(C)はスペーサー,(D)は角座金である。
【図8】従来例としての鋼コンクリート合成床版を概念的に示す斜視図である。
【図9】単位鋼骨格体の摩擦結合構造を示す断面図である。
【図10】単位鋼骨格体の引っ張り結合構造を示す断面図である。
【図11】補強ビームの下側へのコンクリートの充填不足の説明図である。
【符号の説明】
1 橋梁
10 桁組
11 主桁
20 床版(鋼コンクリート合成床版)
20A 単位鋼骨格体
20B 結合線(結合部)
21 底鋼板(基板部材)
22 コンクリート層
30 結合補強ビーム(結合補強部材)
40 締結機構
41A 締結板部(締結板部材)
41B 支持リブ(補強リブ)
42 締結ボルト
44 スペーサー(スペーサー部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel-concrete composite slab that is a floor slab that constitutes a bridge or an elevated road, and is formed by integrating a steel skeleton and concrete into a strength composite.
[0002]
[Prior art]
As a floor slab that constitutes a bridge or an elevated road, an RC concrete layer having a predetermined thickness is formed on the upper side of a steel plate substrate member (steel skeleton) on which a synthetic coupling member such as a stud is erected, and the substrate member and the concrete layer A steel-concrete composite slab constructed by strength-synthesized is known.
[0003]
Such a steel-concrete composite slab is usually manufactured in a factory by manufacturing a unit steel skeleton body in which the steel skeleton is divided at least in the direction of the bridge axis, and the unit steel skeleton body is transported to the installation site and aligned on the girder. After the installation and arrangement, each unit steel skeleton is joined by a joining means, and a reinforcing bar is placed, and concrete is placed by a so-called half precast method.
[0004]
As a steel skeleton structure, in order to correspond to a long span recently, as shown in a conceptual perspective view of a steel concrete composite slab girder bridge 20 'to which one example is applied, FIG. A structure in which a reinforcing beam 30 'in a direction orthogonal to the bridge axis is disposed on the upper surface has been proposed.
[0005]
The steel skeleton of the illustrated steel-concrete composite slab 20 'has a large number of unillustrated dowels implanted by welding on the upper surface of the substrate member 21', and a reinforcing beam 30 'made of T-shaped steel orthogonal to the bridge axis. The substrate member 21 ′ functions as a mold, and the reinforcing beam 30 ′ is provided with a plurality of openings (not shown) formed in the abdominal plate, and the concrete layer 22 ′. It works as a strength member in the direction of the bridge. With such a structure, when placing the concrete forming the concrete layer 22 ′, there is no need for a lower formwork, and it is necessary to provide a support in order to maintain the shape on the girder with high rigidity. No construction is easy.
[0006]
In addition, as a coupling structure for coupling adjacent unit steel frame bodies during the construction of the steel frame, as shown in FIG. 9, a superposed arrangement is provided between the substrate members 21 ′ of the adjacent unit steel frame bodies 20 A ′. A steel plate coupling plate 22 ′ and a substrate member 21 ′ are fastened by a fastening member 23 ′ such as a bolt and a nut, and are coupled by a frictional force acting between the coupling plate 22 ′ and the substrate member 21 ′ (friction coupling) Structure) and, as shown in FIG. 10, the connecting ribs 21A 'each having a predetermined height standing on the edge of the substrate member 21' of the unit steel frame are fastened by fastening members 24 'such as bolts and nuts. There is something to do (tensile coupling structure: this is called because a tensile force acts on the fastening member).
[0007]
[Problems to be solved by the invention]
However, the conventional steel-concrete composite slab as described above tends to be insufficient in filling the lower portion of the upper flange of the reinforcing beam 30 'with the T-shaped steel fixed to the upper surface of the substrate member 21'. There was a problem of becoming. This tendency is particularly remarkable in the part on the hill side indicated by X in the figure when there is a gradient in the bridge axis direction as shown in FIG.
[0008]
Further, if a frictional coupling structure is adopted as the coupling structure of the unit steel frame, a scaffold is required, which is extremely troublesome. When the tensile coupling structure shown in FIG. 10 is applied, the coupling rib 21A ′ is in the direction perpendicular to the bridge axis. In order to be continuous, the thickness of the concrete layer 22 'on the upper side is reduced only at the relevant portion (tx <ta), so that there is a problem that cracks are likely to occur due to stress concentration. When cracks occur, the rainwater that enters from the cracks causes corrosion deterioration of the joints.
[0009]
The present invention has been made in view of the above problems, and does not cause a shortage of concrete filling, is easy to construct, and can prevent the occurrence of cracks that cause corrosion degradation. It aims at providing the connection structure of a floor slab and its unit steel frame.
[0010]
[Means for solving the problems]
In the steel-concrete composite slab of the present invention that achieves the above object, the unit steel frame bodies are arranged side by side on the main girder and joined together by a coupling means, and the concrete layer is integrated with the unit steel frame bodies to provide strength. A steel-concrete composite floor slab formed by synthesis, wherein the unit steel skeleton body is configured by fixing coupling reinforcing members at predetermined intervals on an upper surface of a substrate member constituting a lower surface of the floor slab. A plurality of fastening mechanisms, each of which is formed by fastening fastening plate members each having a predetermined width erected on the adjacent board member with fastening bolts, are provided along the coupling portion.
[0011]
In addition, the fastening mechanism includes a reinforcing rib that extends from both ends of the fastening plate member to the anti-bonding side.
[0012]
Furthermore, a disc-like spacer member is interposed between the opposing fastening plate members of the fastening mechanism.
[0013]
The combined structure of unit steel frames in the steel-concrete composite slab is that the unit steel frames are arranged side by side on the main girder and are connected by a connecting means, and the concrete layer is integrated with the unit steel frames and the strength is increased. In the combined steel-concrete composite slab, the coupling means is configured by arranging a plurality of fastening mechanisms along the coupling portion, and the fastening mechanism includes reinforcing ribs extending from both end edges of the fastening plate member. Fastening fasteners formed in this manner are fixed to the unit steel skeleton bodies that are coupled so that the fastening plate members face each other, and the fastening plate members of the opposing fastening fittings are fastened by fastening bolts. It is characterized by being.
[0014]
Further, a disc-shaped spacer member is interposed between the opposing fastening plate members of the fastening mechanism.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
1 is a conceptual perspective view showing a bridge to which an example of a combined structure of a steel-concrete composite floor slab and its unit steel skeleton according to the present invention is applied, excluding a concrete layer, FIG. 2 is an enlarged view of a portion A, FIG. Is a cross-sectional view of the bridge (only one side is shown from the center), and FIG. 4 is a vertical cross-sectional view of the bridge.
[0017]
The illustrated bridge 1 includes a floor slab 20, which is a steel-concrete composite floor slab, supported by a girder set 10 including a steel main girder 11 and a cross girder 12.
[0018]
The girder 10 is configured such that a horizontal girder 12 is disposed at a predetermined interval between a pair of steel main girders 11 (only one is shown in FIG. 2) arranged on the left and right in the width direction. The steel main girder 11 and the cross girder 12 are each formed in an I-shaped cross section with a predetermined height by a steel plate, and the cross girder 12 is fixed to the belly plate of the steel main girder 11 at the end. A large number of stud dowels 13 are erected on the upper surface of the upper flange of the steel main girder 11, and these stud divers 13 are immersed in a concrete layer 22 (to be described later) of the floor slab 20 so that the steel main girder 11 (that is, the girder group 10). ) And the floor slab 20.
[0019]
The floor slab 20 is configured by integrally forming a concrete layer 22 having a predetermined thickness on a bottom steel plate 21 as a substrate member made of a steel plate having a predetermined thickness.
[0020]
The bottom steel plate 21 forms the lower surface of the floor slab 20 including the haunch portions on both sides of the support portion by the steel main girder 11, and on the upper surface, the coupling reinforcing beam 30 as a coupling reinforcing member is fixed at a predetermined interval in the bridge axis direction. A large number of stud dowels 23 are erected and these coupled reinforcing beams 30 and stud dowels 23 are immersed in the concrete layer 22 so as to be combined and integrated with the concrete layer 22 so that strength can be combined. The part corresponding to the steel main girder 11 is divided and divided into three parts (center plate 21C, side plates 21L, 21R) in the width direction. These divided center plate 21C, side plate 21L, 21R is connected and integrated by a joint reinforcing beam 30 continuous in the width direction.
[0021]
The opposed edges of the central plate 21C and the side plates 21L and 21R form a haunch portion 21a, and the outermost edge is placed on the upper surface of the side edge of the upper flange of the steel main girder 11 via a sealing material. ing. The leg portions of the gate-shaped connecting support plate 24 welded and fixed to the coupling reinforcing beam 30 are welded and fixed to the upper surfaces of the central plate 21C and the side plates 21L and 21R, respectively. The self-supporting strength at the time of concrete placement of 21a is secured. The space between the opposing edges of the central plate 21C and the side plates 21L and 21R is set at a distance corresponding to the upper flange of the steel main girder 11, and is erected on the upper flange of the steel main girder 11 through this space. The stud gibber 13 is immersed in the concrete layer 22 of the floor slab 20.
[0022]
The joint reinforcing beam 30 is formed on the bottom steel plate 21 at the side plate portion so that the U-shaped grooved steel having a side plate portion formed at a predetermined height on both sides of the bottom plate portion is laid down and opened in the bridge axis direction. It is fixed by welding and disposed over the entire width of the floor slab 20 so as to be orthogonal to the bridge axis direction. The opening direction is set toward the upper side of the slope when the bridge 1 has a gradient in the bridge axis direction. In addition, openings 31 having a predetermined diameter are formed at predetermined intervals in the longitudinal direction in the bottom plate portion that stands up at a right angle from the bottom steel plate 21.
[0023]
The stud dowels 23 are erected at predetermined intervals in a direction orthogonal to the bridge axis between the coupling reinforcing beams 30 arranged at predetermined intervals in the bridge axis direction.
[0024]
A reinforcing bar 24 that reinforces the concrete layer 22 is arranged above the joint reinforcing beam 30.
[0025]
As shown in the plan view of FIG. 5, the bridge 1 configured as described above is arranged by arranging the unit steel skeleton bodies 20A having a predetermined width in the bridge axis direction on the girder 10 and then connecting the unit steel skeleton bodies 20A. At the same time, reinforcing bars are arranged and concrete is placed to form a concrete layer 22 that is integrally coupled with the girder 10 and the unit steel skeleton 20A.
[0026]
The unit steel skeleton 20A is manufactured in a factory or the like by welding and fixing the joint reinforcing beam 30 and the stud diver 23 to the upper surface of the bottom steel plate 21 (center plate 21C, side plates 21L, 21R) having a predetermined width. It is transported to the site and installed.
[0027]
As shown in FIG. 5 and FIG. 6 which is an enlarged view of the B portion thereof, a plurality of unit steel skeleton bodies 20A adjacent to each other in the bridge axis direction are provided at predetermined intervals along a joint portion (a connecting line 20B orthogonal to the bridge axis). The fastening mechanism 40 is connected.
[0028]
The fastening mechanism 40 has a predetermined length from both edges of the fastening plate portion 41A as a fastening plate member having a predetermined height and width as shown in a plan view in FIG. 7A and a cross-sectional view in FIG. A planar U-shaped coupling bracket 41 formed by extending support ribs 41B as reinforcing ribs has a fastening plate portion 41A opposed to both adjacent unit skeleton plates, and the periphery of the fastening plate portion 41A and the support rib 41B. Are fixed to the bottom steel plate 21 and fastened by a fastening bolt 42 penetrating the fastening plate portion 41A and a nut 43 screwed thereto. That is, this coupling structure is a tensile coupling structure in which a tensile force acts on the fastening bolt 42. In the illustrated configuration, the coupling fitting 41 is formed by welding and fixing a support rib 41B having a predetermined length to a side plate portion of a predetermined length of the grooved steel. However, the coupling fitting 41 is not limited to this configuration. A steel plate may be bent and formed.
[0029]
Between the opposing fastening plate portions 41A, spacers 44 (three in the figure having the same thickness) as spacer members having a circular shape and a predetermined thickness as shown in FIG. 7C are interposed. Further, a square washer 45 as shown in FIG. 7 (C) fitted between the support ribs 41B is interposed between the fastening plate portion 41A and the head of the bolt head fastening bolt 42 or the nut 43. ing. In the figure, reference numeral 20C denotes a seal member that closes the gap between the connecting lines 20B.
[0030]
In such a coupling structure in which the fastening mechanism 40 is intermittently provided at predetermined intervals along the coupling line 20B of the unit steel skeleton 20A, the width along the coupling part (coupling line 20B) of the unit steel skeleton 20A. Since the connecting ribs are not erected over the entire direction, the thickness of the concrete layer 22 at the connecting portion is reduced little, and the occurrence of cracks due to stress concentration can be suppressed. Since the planar shape of the coupling fitting 41 is U-shaped and is welded to the bottom steel plate 21 at the periphery thereof, the welding length is long and can be firmly fixed, and a large coupling strength can be obtained.
[0031]
Further, since the spacer 44 is interposed between the opposing fastening plate portions 41A, the spacers 43 having different thicknesses are prepared and selected, or the interval between the coupling fittings 41A can be changed by changing the number of interposed members even with the same thickness. The error can be adjusted for absorption. Thereby, the precision of formation of unit steel frame 20A and attachment of fitting 41A can be eased, and manufacturing cost can be reduced. Furthermore, since the spacer 43 is circular, the concrete smoothly flows to the lower side of the concrete when it is placed and does not cause insufficient filling.
[0032]
【The invention's effect】
As described above, according to the steel-concrete composite floor slab according to the present invention, the unit steel skeleton is configured such that the coupling reinforcing members are fixed to the upper surface of the substrate member constituting the lower surface of the floor slab at predetermined intervals. The coupling means includes a plurality of fastening mechanisms formed by fastening fastening plate members each having a predetermined width, which are erected on adjacent substrate members, with fastening bolts. In addition to improving the rigidity of the member in the direction perpendicular to the bridge axis, it is possible to prevent insufficient filling of the concrete by setting the grooved steel to open toward the hill when there is a gradient in the bridge axis direction. Since the fastening mechanism is intermittently provided along the connecting portion of the unit steel skeleton body, the thickness of the concrete layer of the connecting portion can be secured, and the occurrence of cracks due to stress concentration can be suppressed.
[0033]
In addition, the fastening mechanism includes a reinforcing rib extending from the both ends of the fastening plate member to the anti-bonding side, so that the welding length is long and can be fixed with a large strength. Strength can be obtained.
[0034]
Furthermore, a disc-shaped spacer member is interposed between the opposing fastening plate members of the fastening mechanism, so that spacer members having different thicknesses can be prepared and selected, or the same thickness can be selected. However, it is possible to absorb and adjust an error in the interval between the fastening plate members by changing the number of interposed members. Thereby, it becomes possible to relieve the precision of formation of a unit steel frame and attachment of a fastening plate member, and can reduce manufacturing cost. In addition, since the spacer member is circular, the concrete smoothly flows to the lower side when the concrete is placed, so that insufficient filling is not caused.
[0035]
In addition, as a united steel frame structure in the steel-concrete composite floor slab, the unit steel frame bodies are arranged side by side on the main girder and connected by a connecting means, and a concrete layer is integrated with the unit steel frame body. In the steel-concrete composite floor slab that has been strength-combined, the coupling means comprises a plurality of fastening mechanisms arranged along the joint, and the fastening mechanism has reinforcing ribs extending from both ends of the fastening plate member. The fastening brackets formed are fixed to the unit steel frame bodies that are coupled with the fastening plate members facing each other, and the fastening plate members of the opposing fastening brackets are fastened by fastening bolts. The fastening mechanism is provided intermittently along the connecting part of the unit steel skeleton, so that the thickness of the concrete layer of the connecting part can be secured and the occurrence of cracks due to stress concentration can be suppressed. It can be. By comprising the reinforcing ribs extending from the both ends of the fastening plate member to the anti-bonding side, the weld length is long and can be fixed with a large strength, and as a result, a large coupling strength can be obtained.
[0036]
Furthermore, a disc-shaped spacer member is interposed between the opposing fastening plate members of the fastening mechanism, so that spacer members having different thicknesses can be prepared and selected, or the same thickness can be selected. However, it is possible to absorb and adjust an error in the interval between the fastening plate members by changing the number of interposed members. It becomes possible to relax the accuracy of forming the unit steel frame and attaching the fastening plate member, and the manufacturing cost can be reduced. In addition, since the spacer member is circular, the concrete smoothly flows to the lower side when the concrete is placed, so that insufficient filling is not caused.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view showing a bridge to which an example of a combined structure of a steel-concrete composite floor slab and its unit steel skeleton according to the present invention is applied, excluding a concrete layer.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a cross-sectional view of a bridge.
FIG. 4 is a longitudinal sectional view of a bridge.
FIG. 5 is a plan view showing an installed state of a unit steel skeleton.
6 is an enlarged view of a portion B in FIG.
7A is a plan view, FIG. 7B is a sectional view, FIG. 7C is a spacer, and FIG. 7D is a square washer.
FIG. 8 is a perspective view conceptually showing a steel concrete composite slab as a conventional example.
FIG. 9 is a cross-sectional view showing a friction coupling structure of a unit steel skeleton.
FIG. 10 is a cross-sectional view showing a tensile bond structure of a unit steel frame.
FIG. 11 is an explanatory diagram of insufficient filling of concrete under the reinforcing beam.
[Explanation of symbols]
1 Bridge 10 Girder 11 Main girder 20 Floor slab (steel-concrete composite slab)
20A Unit steel skeleton 20B Bond line (bonding part)
21 Bottom steel plate (substrate member)
22 Concrete layer 30 Bond reinforcement beam (bond reinforcement member)
40 fastening mechanism 41A fastening plate part (fastening plate member)
41B Support rib (Reinforcement rib)
42 Fastening bolt 44 Spacer (Spacer member)

Claims (5)

単位鋼骨格体が主桁上に並設配置されて結合手段によって結合されると共に、該単位鋼骨格体にコンクリート層が一体化して強度合成されて成る鋼コンクリート合成床版であって、
前記単位鋼骨格体は、床版の下面を構成する基板部材の上面に、結合補強部材が所定間隔で固定されて構成され、
前記結合手段は、隣接する前記基板部材にそれぞれ立設された所定幅の締結板部材を締結ボルトによって締結して成る締結機構が、結合部に沿って複数設けられて構成されていることを特徴とする鋼コンクリート合成床版。
A steel-concrete composite slab in which unit steel skeleton bodies are arranged side by side on the main girder and joined together by a coupling means, and a concrete layer is integrated with the unit steel skeleton body and strength-synthesized.
The unit steel skeleton is configured by fixing coupling reinforcing members at predetermined intervals on the upper surface of the substrate member constituting the lower surface of the floor slab,
The coupling means is constituted by a plurality of fastening mechanisms formed by fastening fastening plate members each having a predetermined width, which are erected on adjacent substrate members, by fastening bolts, along the coupling portion. Steel concrete composite floor slab.
上記締結機構は、上記締結板部材の両端部から反結合側に延設された補強リブを備えて構成されていることを特徴とする請求項1に記載の鋼コンクリート合成床版。The steel-concrete composite floor slab according to claim 1, wherein the fastening mechanism includes reinforcing ribs extending from both ends of the fastening plate member to the anti-bonding side. 上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることを特徴とする請求項1又は2に記載の鋼コンクリート合成床版。3. The steel-concrete composite slab according to claim 1, wherein a disk-shaped spacer member is interposed between the opposing fastening plate members of the fastening mechanism. 単位鋼骨格体が主桁上に並設配置されて結合手段によって結合されると共に、該単位鋼骨格体にコンクリート層が一体化して強度合成されて成る鋼コンクリート合成床版において、
前記結合手段は、複数の締結機構が結合部に沿って配設されて構成され、
前記締結機構は、締結板部材の両端縁から補強リブが延設されて成る締結金具が、前記締結板部材を対向させて結合する前記単位鋼骨格体にそれぞれ固定されると共に、前記対向する締結金具の締結板部材が締結ボルトによって締結されるように構成されていることを特徴とする鋼コンクリート合成床版における単位鋼骨格体の結合構造。
In the steel-concrete composite floor slab in which unit steel skeleton bodies are arranged side by side on the main girder and joined together by a coupling means, and a concrete layer is integrated with the unit steel skeleton bodies and strength-synthesized,
The coupling means includes a plurality of fastening mechanisms arranged along the coupling portion,
The fastening mechanism is configured such that fastening metal fittings in which reinforcing ribs are extended from both end edges of the fastening plate member are respectively fixed to the unit steel frame bodies that are coupled so that the fastening plate members are opposed to each other, and the opposing fastening is performed. A unit steel skeleton joint structure in a steel-concrete composite floor slab, wherein a fastening plate member of a metal fitting is configured to be fastened by a fastening bolt.
上記締結機構の対向する締結板部材の間には、円盤状のスペーサー部材が介装されて構成されていることを特徴とする請求項4に記載の単位鋼骨格体の結合構造。The unit steel skeleton coupling structure according to claim 4, wherein a disk-shaped spacer member is interposed between the opposing fastening plate members of the fastening mechanism.
JP2002179522A 2002-06-20 2002-06-20 Joint structure of steel concrete composite slab and its unit steel frame Expired - Lifetime JP4039138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179522A JP4039138B2 (en) 2002-06-20 2002-06-20 Joint structure of steel concrete composite slab and its unit steel frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179522A JP4039138B2 (en) 2002-06-20 2002-06-20 Joint structure of steel concrete composite slab and its unit steel frame

Publications (2)

Publication Number Publication Date
JP2004019385A true JP2004019385A (en) 2004-01-22
JP4039138B2 JP4039138B2 (en) 2008-01-30

Family

ID=31176899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179522A Expired - Lifetime JP4039138B2 (en) 2002-06-20 2002-06-20 Joint structure of steel concrete composite slab and its unit steel frame

Country Status (1)

Country Link
JP (1) JP4039138B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231688A (en) * 2007-03-16 2008-10-02 Nippon Steel Engineering Co Ltd Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP2009287226A (en) * 2008-05-28 2009-12-10 Ihi Corp Synthetic floor slab and its reinforcement method
JP2010255196A (en) * 2009-04-21 2010-11-11 Yokogawa Sumikin Bridge Corp Steel-concrete composite floor slab
CN102864741A (en) * 2012-10-19 2013-01-09 长安大学 Light structural steel and concrete combined bridge floor structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231688A (en) * 2007-03-16 2008-10-02 Nippon Steel Engineering Co Ltd Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP2009287226A (en) * 2008-05-28 2009-12-10 Ihi Corp Synthetic floor slab and its reinforcement method
JP2010255196A (en) * 2009-04-21 2010-11-11 Yokogawa Sumikin Bridge Corp Steel-concrete composite floor slab
CN102864741A (en) * 2012-10-19 2013-01-09 长安大学 Light structural steel and concrete combined bridge floor structure

Also Published As

Publication number Publication date
JP4039138B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
KR101186062B1 (en) Connection of concrete filled steel tube column and H-shaped steel beam and constructing method of the same
US20130061406A1 (en) Modular Bridge
JP5755458B2 (en) Deck plate panel and floor structure using the same
US8453406B2 (en) Precast composite structural girder and floor system
US8381485B2 (en) Precast composite structural floor system
JP4780442B2 (en) Joint structure between reinforced concrete column and steel beam and its construction method
JPH0424306A (en) Method of laying floor plate for prefabricated house
JP2001081729A (en) Composite floor slab
KR101619067B1 (en) Fabricated Column Structure with Jointing Structure of the Beam
EP0882162B1 (en) Composite-structure building framework
JP4039138B2 (en) Joint structure of steel concrete composite slab and its unit steel frame
JP2004218429A (en) Bridge structure
JP4039139B2 (en) Steel framework structure of steel concrete composite slab
JPH10331436A (en) Earthquake-resisting reinforcing structure for beam-column in existing structure
JP3106881B2 (en) Mixed structure of reinforced concrete columns and steel beams
JP4348601B2 (en) Synthetic floor slab girder
JP2000120021A (en) Floor-slab installing-section structure of bridge
JPH11293626A (en) Bridge structure
JP2002004220A (en) Joint device of panel member in composite floor board
JPH11166292A (en) Steel frame beam and floor execution using the beam
JP2004124375A (en) Construction method for composite floor panel
JP2003213622A (en) Steel girder bridge using concrete cross beam
KR20150029484A (en) Temporary bridge
JP3842587B2 (en) Reinforcing method and reinforcing structure of reinforced concrete ramen structure
JP2000213094A (en) Sandwich composite floor slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4039138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term