JP2004018886A - Corrosion resistant and wear resistant member and method of producing the same - Google Patents

Corrosion resistant and wear resistant member and method of producing the same Download PDF

Info

Publication number
JP2004018886A
JP2004018886A JP2002171696A JP2002171696A JP2004018886A JP 2004018886 A JP2004018886 A JP 2004018886A JP 2002171696 A JP2002171696 A JP 2002171696A JP 2002171696 A JP2002171696 A JP 2002171696A JP 2004018886 A JP2004018886 A JP 2004018886A
Authority
JP
Japan
Prior art keywords
alloy
resistant
corrosion
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002171696A
Other languages
Japanese (ja)
Inventor
Yasushi Fukase
深 瀬 泰 志
▲高▼橋  栄
Sakae Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2002171696A priority Critical patent/JP2004018886A/en
Publication of JP2004018886A publication Critical patent/JP2004018886A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost machine member which has excellent erosion resistance, wear resistance and strength even if it has a shape hard to be coated with slurry. <P>SOLUTION: As for the method of producing the corrosion resistant and wear resistant member, in the method of coating the surface of a steel member with a corrosion resistant and wear resistant alloy, slurry obtained by mixing the alloy of spherical grains produced by an atomizing method, and in which a grain size lies in 30≤χ≤150μm in a grain size distribution (grain size width) of 1/3χto χμm, a resin as a binder and a solvent is dried and crushed to obtain raw material powder P; and the raw material powder P is stuck to the surface of a base material T made of steel heated to 100 to 400°C at which the resin in the raw material powder P can be fused; and thereafter, degreasing and sintering are performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐食、耐摩耗性が要求される機械部材で、特に、▲1▼寿命の向上、▲2▼低コスト化が要求される機械部材に関するものである。
【0002】
【従来の技術】
耐食耐摩耗合金(おもにセラミックス、サーメット)は多数の開発事例があり、優れた性能を示し、多方面にて使用されている。機械部品に応用される場合は、そのほとんどが鋼材と接合した複合化部品として扱われる。その理由としては、▲1▼耐食耐摩耗合金が高価である、▲2▼耐食耐摩耗合金は靭性(耐衝撃性)が低い、▲3▼耐食耐摩耗合金は形状付加が難しい、などが挙げられる。
【0003】
その結果、耐食耐摩耗合金の開発と共に鋼材との複合化技術も多数開発され、鋼材と耐食耐摩耗合金の複合部材として、さまざまな分野で実用されている。また、耐食耐摩耗合金はその性能から部材の表面改質に用いられ、部材表面に薄くコーティングする技術も多数開発されている。その中でも、耐食および耐摩耗合金成分をスラリー状にして、鋼材表面に塗布、加熱することでコーティング層を形成させる技術が知られている。この方法によると、型や加圧装置を必要とせず手軽に層が形成できる。
【0004】
【発明が解決しようとする課題】
しかしながら、下記に示すようなさまざまな問題が生じていた。
【0005】
1)コーティング層が薄い。例えば特開2001−123277に開示されている方法では、元素の拡散によりコーティング層を形成しているが、この方法では、コーティング層が薄く、層がなくなると一気に損耗が進行するという問題点がある。
【0006】
2)コーティング層に気孔が残留する。すなわち、スラリーを塗布した状態では気孔が多数存在し、加熱処理後にも残留することがある。これは、粒子密度が低い場合、液相が少ない場合に起こりやすく、亀裂、剥離の原因となるという問題点がある。
【0007】
3)複雑な工程を必要とする。すなわち、上記2)で示した合金においても、ろう材などの低融点材料を用いることで繊密なコーティング層の形成が可能となるが、合金粉の混合などの調製工程が増加し、コスト高となるという問題点がある。
【0008】
4)コーティング層が剥離しやすい。特開2001−232443に開示された方法においては、刷毛塗りや吹き付け塗布後、自然乾燥や低温加熱乾燥で被膜を形成するようになっている。このような方法は、被膜と基材とが冶金的に接合されてないため、剥離しやすい。このため、その都度コーティングする必要があり、作業性が著しく低下する。
【0009】
そこで、このような問題点を解決すべく、球状粒子の合金と結合材とを混合して得られるスラリーを、鋼製基材表面に塗布した後、乾燥、脱脂、焼結する方法が開発されたが、部品の形状によっては、スラリーを塗りにくいものがあった。
【0010】
本発明は、上記問題点を解決することをその課題とし、耐久性にすぐれ、製造コストを低減することができるばかりでなく、スラリーを塗布することが困難な形状のものにも適用できる耐食耐摩耗部材の製造方法、並びに上記製造方法を用いて製造されたアルミダイカスト用部品又はプラスチック成形機用部品を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の第1の特徴は、鋼材表面へ耐食耐摩耗合金をコーティングする方法において、アトマイズ法により製造され粒度分布(粒度幅)が1/3χ〜χμmで、30≦χ≦150μmとなる球状粒子の合金と結合剤としての樹脂および溶剤とを混合して得られるスラリーを、乾燥、破砕して得られる原料粉を、この原料粉中の樹脂が融着可能な100℃〜400℃に加熱した鋼製基材表面に付着させたのち、脱脂、焼結することである。
【0012】
本発明の第2の特徴は、前記球状粒子は、15〜45μmであることである。
【0013】
本発明の第3の特徴は、前記合金は、組成が、重量%で、B:0.6〜3.2%、Si:0.5〜8%、Mo:5〜37%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi硼化物およびMo硼化物が分散していることである。
【0014】
本発明の第4の特徴は、前記合金は、組成が、重量%でB:1.1〜2.5%、Mo:11〜20%、Si:4.0〜6.5%、残部Niおよび不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐食耐摩耗合金であって、B含有量に対するMoの含有量の比が重量比で6.5〜13であることである。
【0015】
本発明の第5の特徴は、前記合金は、組成が、重量%でB:1.1〜2.5%、Si:4.0〜6.5%、Mo:8.0〜17%、Cr:2〜12%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐食耐摩耗性合金であって、Cr含有量およびMo含有量の和が合金全体に対して13〜20重量%であり、かつ、B含有量に対するMoの含有量の比(Mo/B)が重量比で5.5〜9.0であることである。
【0016】
本発明の第6の特徴は、上記耐食耐摩耗部材の製造方法によって製造されたアルミダイカスト用部品又はプラスチック成形機用部品である。
【0017】
このように、本発明は、アトマイズ法により製造された下記組成合金の球状粒子と結合剤としての樹脂および溶剤とを混合して得られるスラリーを、乾燥、破砕して得られる原料粉を、この原料粉中の樹脂が融着可能な100℃〜400℃に加熱した鋼製基材表面に付着させたのち、脱脂、焼結することで得られる複合部材の製造方法を提供する。ここで、上記組成合金(以下、開発合金と記す。)の粒子組成は、
a)Ni−B−Si−Mo系合金(本出願人による出願で特許になったもの:特願平6−277941)の場合
重量%で、B:0.6〜3.2%、Si:0.5〜8%、Mo:5〜37%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi硼化物およびMo硼化物が分散している。
【0018】
b)Ni−B−Si−Mo系合金(本出願人による出願:特願2001−367043)の場合
重量%でB:1.1〜2.5%、Mo:11〜20%、Si:4.0〜6.5%、残部Niおよび不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐摩耗合金であって、B含有量に対するMoの含有量の比が重量比で6.5〜13である。
【0019】
c)Ni−B−Si−Mo−Cr系合金(本出願人による出願:特願2001−355052)の場合
重量%でB:1.1〜2.5%、Si:4.0〜6.5%、Mo:8.0〜17%、Cr:2〜12%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐食耐摩耗合金であって、Cr含有量およびMo含有量の和が合金全体に対して13〜20重量%であり、かつ、B含有量に対するMoの含有量の比が重量比で5.5〜9.0である。
【0020】
ところで、上記開発合金(合金粉)は、耐食性および耐摩耗性に優れることが知られている。また、上記開発合金は、溶融アルミニウムに対する腐食性(耐溶損性)や、酸に対する腐食性(耐食性)に優れた耐食耐摩耗合金である。また、本開発合金組成では、アトマイズ法により球状粒子を製造することが可能となる。ここで、球状粒子の製法にアトマイズ法を選定した理由は、▲1▼真球度(真円度)精度が高く、安定している、▲2▼粒度分布が広く、分級することによって使用用途により粒径を選択できる、▲3▼緻密な合金粉が得られる、▲4▼微細な結晶組織の合金粉が得られる、▲5▼充填密度が高い、等が挙げられる。このように本開発合金によって、微細で球状の粉末が得られる。この粉末と結合剤としての樹脂および溶剤とを混合して得られるスラリーを、乾燥、破砕して得られる原料粉を、この原料粉中の樹脂が融着可能な100℃〜400℃に加熱した鋼製基材表面に付着させたのち、脱脂、焼結することで合金密度の高い層が得られる。これに対して、球状粉以外の粉末を用いて上記と全く同じ条件で得られる原料粉の付着層は、合金密度の低い層となり、その後の焼結によって緻密なコーティング層が得られず、気孔が残留する。その結果、強度の低いコーティング層となってしまう。また、アトマイズ以外の製法でも球状粒子を得ることは可能だが、気孔等を含み緻密な粉末やコーティング層が得られない問題や、工程増加によるコスト高を招いてしまう。
【0021】
また、球状粉以外の粉末でも緻密なコーティング層が得られる場合がある。それは、耐食耐摩耗性に優れたセラミックス粒子(硬質粒子)が非常に少ない、又は含まれず、多量の液相を発生する場合であり、得られるコーティング層の性能(特に耐摩耗性)は低い。
【0022】
原料粉(合金粉+樹脂)をスラリー(合金粉+樹脂+溶剤)より製造する理由は、常温で合金粉と少量の樹脂を均一にブレンドすることができるからである。合金粉と樹脂粉を混合しても樹脂の偏析が生じやすく、加熱した基材に充填しても均一な層が得られない。また、焼結後に気孔(もともと樹脂があった場所)が残留する。
【0023】
一方、スラリーに用いる合金粉の粒径により、良質なコーティング層が得られない場合がある。実験の結果では、結合剤の種類がどの場合でも、合金粉の粒径が大きいと、均一なコーティング層が得られにくく、強度も得られない結果となる。合金強度や層の均質性を考慮すると粒径150μm以下の合金粉を用いるのが好ましい。また、粒径45μm以下の球状合金粉(以下、微粉と示す)を用いることで、粗大な硼化物の結晶がなくなり合金強度や靭性がさらに向上する。しかし、スラリーに用いる合金粉の量に対するさらに粒径の小さな微粉を多量に用いると、合金密度の低い領域が発生し、コーティング層の割れや、気孔残留の原因となり好ましくない。したがって、本開発合金粉を用いてスラリーを調製し、乾燥、破砕後に加熱した鋼製基材に付着させてコーティング層を得る場合、粒度分布(粒度幅)に制限を設ける必要がある。(実施例で後述する)。
【0024】
実験の結果より粒度範囲は1/3χ〜χμmで、30μm≦χ≦150μmの範囲であり、特に15μm〜45μmが好ましい。
【0025】
ここで、粒度範囲は1/3χ〜χμmで、30≦χ≦150μmが好ましい理由について説明する。
【0026】
一般に、球状粒子の充填密度を高めるためには、大小の粒子径が7:1の寸法比とするのが好ましい。これは、大きな粒子同士の隙間に小さな粒子が入り込んだ状態が最も充填密度が高くなるからである。また、この時に大小の粒子重量比は7:3(相対充填密度86%)が好ましい。
【0027】
本発明によれば、大小の粒子径が7:1としなくても、緻密に焼結可能な充填密度を得ることができる。大小の粒子径3:1で十分である。理由は、本合金組成に含まれる金属結合相の配合比が多いためである。粒度比をさらに大きくすると、充填密度は高まるが、充填密度の偏析に起因する割れや、変形が生じ好ましくない。
【0028】
また、粒子径1:1(単一粒径の粉末)の充填密度(相対充填密度約60%)でも緻密に焼結可能である。その理由は、アトマイズ法により得られた精度の高い球状粒子を用いているからである。また、硬質粒子を多数含んだ耐食耐摩耗合金をアトマイズ法にて製造できるのは、本発明合金ならではの技術である。しかし、30μmより小さい粒子径1:1(単一粒径の粉末)の充填密度では、焼結による割れが確認された。粒子径1:1(単一粒径の粉末)の充填密度は粒径が小さくなるに連れて低く、また取り扱い性(流動性)などが悪くなることが知られている。本発明法によると粒子径1:1(単一粒径の粉末)の使用は30μmが下限と判断した。
【0029】
基材の加熱温度については、約100℃以下では原料粉の融着による接着量が少なく不安定である。また、基材の加熱温度が400℃以上となると、樹脂の熱分解により、合金粉の接着力が低下してしまう。
【0030】
本方法は、加圧装置を必要とせず、容易に鋼材表面ヘコーティング層を形成することが可能である。また、合金粉末に形状付加するための型も不要である。この結果、コーティングに要する設備は不要となり、低コストで複合部材を提供することが可能となる。
【0031】
また、本発明により得られるコーティング層と母材(鋼材)との密着力も高く、HIPなどによるコーティング層なみの接合力を有する。
【0032】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
【0033】
下記のような比較例1、比較例2、比較例3、実施例1、実施例2の5つの製造方法について実験を行った。
【0034】
比較例1…Ni−B−Si−Mo合金コーテイング(スラリー乾燥、破砕後に基材を加熱して付着)、アトマイズ粉15〜150μm。
【0035】
比較例2…Ni−B−Si−Mo合金コーテイング(スラリー乾燥、破砕後に基材を加熱して付着)、アトマイズ粉100〜200μm。
【0036】
比較例3…Ni−B−Si−Mo合金コーテイング(合金粉と樹脂粉を混合後に基材を加熱して付着)アトマイズ粉50〜150μm。
【0037】
実施例1…Ni−B−Si−Mo合金コーティング(スラリー乾燥、破砕後に基材を加熱して付着)、粒径50〜150μm。
【0038】
実施例2…Ni−B−Si−Mo合金コーティング(スラリー乾燥、破砕後に基材を加熱して付着)、粒径15〜45μm。
【0039】
ここで、Ni−B−Si−Mo合金粉の組成は、Ni:3.1%、B:4.6%、Si:20%、残Moで、比較例1、2、3、実施例1、2共に同じ組成である。すべてアトマイズ法にて製造した後、分級した。
【0040】
【表1】

Figure 2004018886
Figure 2004018886
比較例1は焼結時に不良(層割れ)が生じやすい結果となった。比較例2は、強度が十分でなくコーテイング層内に気孔が残留したり、不均一な状態でコーティングされやすい結果であった。比較例3は、コーティング層内に気孔が複数確認された。実施例1は、合金粒径を調整し、スラリーから原料粉を作製することにより、緻密なコーティング層を得ることができた。また、実施例2は、合金粒径を小さくし、調整したことで高強度なコーティング層を得ることができた。したがって、本実施例1,2の製造法により得られる複合部材の性能および製法が優れていることがわかる。
【0041】
本発明は、ダイカスト用の中子ピン、金型、プランジャチップおよびプランジャスリーブなどに応用できる。そのほか,射出成形機や押出成形機のバレルおよびスクリュ等の耐食耐摩耗性と強度が要求される部材への応用も可能である。
【0042】
基材の表面に原料粉の付着層を形成する方法は、図1(a)に示すように、合金粉と結合剤としての樹脂および溶剤とを混合してスラリーを調製し、乾燥、破砕して、原料粉Pを製造する。次いで、図1(b)で基材Tを前述したような温度に加熱する。そして、図1(c)に示すように、基材Tに原料粉Pを付着させる。また、図2(a)に示すように、スラリーを調製し、乾燥、破砕して原料粉Pを製造する。次いで、図2(b)で基材Tを加熱する。そして、図2(c)および(d)に示すように、原料粉Pに基材Tを埋め、原料粉Pが付着した基材Tを引き抜く。このようにして型を用いず加圧装置なしで原料粉の付着層を形成することができる。なお、この付着層は、冷却固化後に表面を削って所定の厚さに加工してもよい。
【0043】
【発明の効果】
本発明にあっては、アトマイズ法により製造され粒度分布(粒度幅)が1/3χ〜χμmで、30≦χ≦150μmとなる球状粒子の合金と結合剤としての樹脂および溶剤とを混合して得られるスラリーを、乾燥、破砕して得られる原料粉を、この原料粉中の樹脂が融着可能な100℃〜400℃に加熱した鋼製基材表面に付着させたのち、脱脂、焼結するようにしているから、スラリーを塗布することが困難な形状のものであっても、耐溶損性、耐摩耗性及び強度に優れた機械部材を低コストで製造することが可能となる。
【図面の簡単な説明】
【図1】本発明における原料粉の付着層を形成する手順を示す図。
【図2】本発明における原料粉の付着層を形成する他の手順を示す図。
【符号の説明】
P 原料粉
T 基材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mechanical member that requires corrosion resistance and wear resistance, and more particularly to a mechanical member that requires (1) longer life and (2) lower cost.
[0002]
[Prior art]
Corrosion-resistant wear-resistant alloys (mainly ceramics and cermets) have been developed in many cases, exhibit excellent performance, and are used in various fields. When applied to machine parts, most of them are treated as composite parts joined with steel. The reasons are as follows: (1) Corrosion-resistant and wear-resistant alloy is expensive; (2) Corrosion-resistant and wear-resistant alloy has low toughness (impact resistance); (3) Corrosion-resistant and wear-resistant alloy is difficult to add shape. Can be
[0003]
As a result, along with the development of corrosion-resistant and wear-resistant alloys, a large number of composite techniques with steel have been developed, and they have been put to practical use in various fields as composite members of steel and corrosion-resistant and wear-resistant alloys. Further, corrosion-resistant and wear-resistant alloys are used for surface modification of members due to their performance, and a number of techniques for thinly coating the surfaces of members have been developed. Among them, a technique is known in which a corrosion-resistant and wear-resistant alloy component is formed into a slurry, applied to the surface of a steel material, and heated to form a coating layer. According to this method, a layer can be easily formed without the need for a mold or a pressure device.
[0004]
[Problems to be solved by the invention]
However, various problems as described below have occurred.
[0005]
1) The coating layer is thin. For example, in the method disclosed in Japanese Patent Application Laid-Open No. 2001-123277, a coating layer is formed by diffusion of elements. However, in this method, there is a problem that the coating layer is thin, and if the layer disappears, the wear proceeds at a stretch. .
[0006]
2) Pores remain in the coating layer. That is, when the slurry is applied, a large number of pores exist and may remain after the heat treatment. This tends to occur when the particle density is low or when the liquid phase is small, and there is a problem that it causes cracks and peeling.
[0007]
3) It requires a complicated process. That is, even in the alloy shown in the above 2), it is possible to form a fine coating layer by using a low melting point material such as a brazing material. There is a problem that becomes.
[0008]
4) The coating layer is easily peeled. In the method disclosed in JP-A-2001-232443, a film is formed by natural drying or low-temperature heating drying after brush coating or spray coating. In such a method, since the coating and the substrate are not metallurgically bonded, they are easily separated. For this reason, it is necessary to coat each time, and workability is remarkably reduced.
[0009]
In order to solve such problems, a method has been developed in which a slurry obtained by mixing an alloy of spherical particles and a binder is applied to the surface of a steel base material, and then dried, degreased, and sintered. However, depending on the shape of the part, it was difficult to apply the slurry.
[0010]
The present invention has an object to solve the above problems, and has excellent durability, not only can reduce the manufacturing cost, but also can be applied to a shape in which slurry is difficult to be applied. An object of the present invention is to provide a method for manufacturing a wear member, and a part for aluminum die casting or a part for a plastic molding machine manufactured by using the above-described manufacturing method.
[0011]
[Means for Solving the Problems]
A first feature of the present invention is a method of coating a corrosion-resistant and wear-resistant alloy on a steel material surface, wherein spherical particles produced by an atomizing method and having a particle size distribution (particle size width) of 1 / 3χ to χμm and 30 ≦ χ ≦ 150 μm. The slurry obtained by mixing the alloy and the resin as a binder and a solvent was dried, and the raw material powder obtained by crushing was heated to 100 ° C. to 400 ° C. at which the resin in the raw material powder could be fused. After attaching to the surface of a steel base material, degreasing and sintering are performed.
[0012]
A second feature of the present invention is that the spherical particles have a size of 15 to 45 μm.
[0013]
A third feature of the present invention is that the alloy has a composition by weight of B: 0.6 to 3.2%, Si: 0.5 to 8%, Mo: 5 to 37%, the balance being Ni and It consists of unavoidable impurities, in which Ni boride and Mo boride are dispersed in the Ni-based binder phase.
[0014]
A fourth feature of the present invention is that the alloy has a composition by weight of B: 1.1 to 2.5%, Mo: 11 to 20%, Si: 4.0 to 6.5%, and the balance Ni 5. An Ni-based corrosion-resistant and wear-resistant alloy comprising Ni-Mo double borides dispersed in a Ni-based binder phase and comprising an unavoidable impurity, wherein the ratio of the Mo content to the B content is 6. 5 to 13.
[0015]
According to a fifth feature of the present invention, the alloy has a composition by weight of B: 1.1 to 2.5%, Si: 4.0 to 6.5%, Mo: 8.0 to 17%, Cr: a Ni-based corrosion-resistant wear-resistant alloy comprising 2 to 12%, the balance being Ni and unavoidable impurities, wherein a Ni-Mo double boride is dispersed in a Ni-based binder phase, and which contains Cr and Mo. The sum of the amounts is 13 to 20% by weight based on the whole alloy, and the ratio of the Mo content to the B content (Mo / B) is 5.5 to 9.0 in weight ratio. .
[0016]
A sixth feature of the present invention is a part for aluminum die casting or a part for a plastic molding machine manufactured by the method for manufacturing a corrosion-resistant and abrasion-resistant member.
[0017]
As described above, the present invention provides a raw powder obtained by drying and crushing a slurry obtained by mixing spherical particles of the following composition alloy produced by the atomizing method with a resin and a solvent as a binder, Provided is a method for manufacturing a composite member obtained by attaching a resin in a raw material powder to a surface of a steel base material heated to 100 ° C. to 400 ° C. and then degreased and sintered. Here, the particle composition of the composition alloy (hereinafter, referred to as a development alloy) is as follows.
a) In the case of a Ni-B-Si-Mo-based alloy (patented by the applicant of the present invention: Japanese Patent Application No. 6-277941), by weight%, B: 0.6 to 3.2%, Si: 0.5 to 8%, Mo: 5 to 37%, the balance being Ni and unavoidable impurities. Ni boride and Mo boride are dispersed in the Ni-based bonding phase.
[0018]
b) In the case of a Ni-B-Si-Mo alloy (application by the present applicant: Japanese Patent Application No. 2001-367043), B: 1.1 to 2.5%, Mo: 11 to 20%, Si: 4 by weight%. 0.0-6.5%, with the balance being Ni and unavoidable impurities, a Ni-based wear-resistant alloy in which a Ni-Mo double boride is dispersed in a Ni-based binder phase, wherein Mo is contained with respect to B content. The ratio of the quantities is 6.5 to 13 by weight.
[0019]
c) In the case of a Ni-B-Si-Mo-Cr alloy (application by the present applicant: Japanese Patent Application No. 2001-355052), B: 1.1 to 2.5% by weight, Si: 4.0 to 6.0%. 5%, Mo: 8.0 to 17%, Cr: 2 to 12%, the balance being Ni and unavoidable impurities, Ni-Mo double borides dispersed in the Ni-based binder phase. An alloy in which the sum of the Cr content and the Mo content is 13 to 20% by weight with respect to the entire alloy, and the ratio of the Mo content to the B content is 5.5 to 9.5 by weight. 0.
[0020]
Incidentally, it is known that the developed alloy (alloy powder) is excellent in corrosion resistance and wear resistance. Further, the developed alloy is a corrosion-resistant and wear-resistant alloy having excellent corrosion resistance to molten aluminum (melting resistance) and corrosion resistance to acid (corrosion resistance). Further, in the alloy composition of the present invention, it is possible to produce spherical particles by an atomizing method. Here, the reasons for selecting the atomizing method for the production of spherical particles are as follows: (1) High sphericity (roundness) accuracy and stability; (2) Wide particle size distribution; And (3) a dense alloy powder can be obtained, (4) an alloy powder having a fine crystal structure can be obtained, and (5) a high packing density. Thus, a fine and spherical powder can be obtained by the developed alloy. A slurry obtained by mixing this powder with a resin as a binder and a solvent is dried, and the raw material powder obtained by crushing is heated to 100 ° C. to 400 ° C. where the resin in the raw material powder can be fused. After being attached to the surface of the steel base material, a layer having a high alloy density can be obtained by degreasing and sintering. On the other hand, the adhesion layer of the raw material powder obtained using the powder other than the spherical powder under exactly the same conditions as described above is a layer having a low alloy density. Remain. As a result, the coating layer has low strength. Spherical particles can also be obtained by a manufacturing method other than atomization, but this leads to a problem that a dense powder or a coating layer containing pores or the like cannot be obtained and an increase in cost due to an increase in steps.
[0021]
In addition, a dense coating layer may be obtained with powders other than the spherical powder. This is the case where ceramic particles (hard particles) having excellent corrosion resistance and abrasion resistance are very few or not included and a large amount of liquid phase is generated, and the performance (particularly abrasion resistance) of the obtained coating layer is low.
[0022]
The reason that the raw material powder (alloy powder + resin) is produced from the slurry (alloy powder + resin + solvent) is that the alloy powder and a small amount of resin can be uniformly blended at room temperature. Even if the alloy powder and the resin powder are mixed, segregation of the resin is liable to occur, and a uniform layer cannot be obtained even when the resin powder is filled in a heated base material. In addition, pores (where the resin was originally located) remain after sintering.
[0023]
On the other hand, a good quality coating layer may not be obtained depending on the particle size of the alloy powder used for the slurry. Experimental results show that, regardless of the type of binder, if the particle size of the alloy powder is large, it is difficult to obtain a uniform coating layer and the strength cannot be obtained. In consideration of the alloy strength and the homogeneity of the layer, it is preferable to use an alloy powder having a particle size of 150 μm or less. Further, by using a spherical alloy powder having a particle diameter of 45 μm or less (hereinafter, referred to as fine powder), coarse boride crystals are eliminated, and the alloy strength and toughness are further improved. However, when a large amount of fine powder having a smaller particle size with respect to the amount of the alloy powder used in the slurry is used in a large amount, a region having a low alloy density is generated, which causes a crack in the coating layer and a residual pore. Therefore, when a slurry is prepared using the developed alloy powder, dried, crushed and then adhered to a heated steel substrate to obtain a coating layer, it is necessary to limit the particle size distribution (particle size width). (Described later in Examples).
[0024]
According to the experimental results, the particle size range is 1 / 31 / to χμm, and 30 μm ≦ χ ≦ 150 μm, and particularly preferably 15 μm to 45 μm.
[0025]
Here, the reason why the particle size range is 1 / 3χ to χμm and 30 ≦ χ ≦ 150 μm is preferable will be described.
[0026]
Generally, in order to increase the packing density of the spherical particles, it is preferable that the large and small particle diameters have a size ratio of 7: 1. This is because the packing density is highest when small particles enter the gaps between the large particles. At this time, the weight ratio between the large and small particles is preferably 7: 3 (relative packing density 86%).
[0027]
According to the present invention, it is possible to obtain a packing density that enables dense sintering without having a large and small particle diameter of 7: 1. A large and small particle size of 3: 1 is sufficient. The reason is that the mixing ratio of the metal binding phase contained in the present alloy composition is large. If the particle size ratio is further increased, the packing density increases, but cracking and deformation due to segregation of the packing density occur, which is not preferable.
[0028]
Even at a packing density of 1: 1 (powder having a single particle diameter) (relative packing density of about 60%), dense sintering is possible. The reason is that highly accurate spherical particles obtained by the atomizing method are used. Further, it is a technique unique to the alloy of the present invention that a corrosion-resistant and wear-resistant alloy containing a large number of hard particles can be produced by an atomizing method. However, cracking due to sintering was confirmed at a packing density of 1: 1 (powder having a single particle diameter) smaller than 30 μm. It is known that the packing density of a particle diameter of 1: 1 (powder having a single particle diameter) becomes lower as the particle diameter becomes smaller, and that the handleability (fluidity) and the like deteriorate. According to the method of the present invention, the lower limit for the use of a particle diameter of 1: 1 (powder having a single particle diameter) was 30 μm.
[0029]
When the heating temperature of the base material is about 100 ° C. or less, the amount of adhesion due to fusion of the raw material powder is small and unstable. Further, when the heating temperature of the base material is 400 ° C. or higher, the adhesive force of the alloy powder is reduced due to thermal decomposition of the resin.
[0030]
This method can easily form a coating layer on the surface of a steel material without the need for a pressurizing device. Also, a mold for adding a shape to the alloy powder is not required. As a result, equipment required for coating is not required, and a composite member can be provided at low cost.
[0031]
Further, the adhesive strength between the coating layer obtained by the present invention and the base material (steel material) is high, and the bonding strength is as high as that of the coating layer by HIP or the like.
[0032]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0033]
Experiments were conducted on the following five manufacturing methods of Comparative Example 1, Comparative Example 2, Comparative Example 3, Example 1, and Example 2 as described below.
[0034]
Comparative Example 1 Ni-B-Si-Mo alloy coating (slurry drying, crushing, followed by heating to adhere the substrate), atomized powder 15 to 150 μm.
[0035]
Comparative Example 2 Ni-B-Si-Mo alloy coating (slurry drying, crushing, followed by heating to adhere the substrate), atomized powder 100 to 200 μm.
[0036]
Comparative Example 3 Ni-B-Si-Mo alloy coating (the base material was heated and adhered after mixing the alloy powder and the resin powder) Atomized powder 50 to 150 μm.
[0037]
Example 1 Ni-B-Si-Mo alloy coating (slurry drying, crushing and heating to adhere the substrate), particle size 50-150 μm.
[0038]
Example 2 Ni-B-Si-Mo alloy coating (slurry drying, crushing and then heating to adhere the substrate), particle size 15-45 μm.
[0039]
Here, the composition of the Ni-B-Si-Mo alloy powder is as follows: Ni: 3.1%, B: 4.6%, Si: 20%, remaining Mo, Comparative Examples 1, 2, 3, and Example 1. 2 have the same composition. After all were manufactured by the atomizing method, they were classified.
[0040]
[Table 1]
Figure 2004018886
Figure 2004018886
The result of Comparative Example 1 was such that defects (layer cracking) tended to occur during sintering. Comparative Example 2 had a result that the strength was not sufficient, pores remained in the coating layer, and coating was likely to be performed in an uneven state. In Comparative Example 3, a plurality of pores were confirmed in the coating layer. In Example 1, a dense coating layer was able to be obtained by adjusting the alloy particle size and preparing the raw material powder from the slurry. In Example 2, a high-strength coating layer could be obtained by reducing and adjusting the alloy particle size. Therefore, it can be seen that the performance and the production method of the composite member obtained by the production methods of Examples 1 and 2 are excellent.
[0041]
INDUSTRIAL APPLICABILITY The present invention can be applied to a core pin for die casting, a mold, a plunger tip, a plunger sleeve, and the like. In addition, it can also be applied to components that require corrosion resistance and abrasion resistance and strength, such as barrels and screws of injection molding machines and extrusion molding machines.
[0042]
As shown in FIG. 1 (a), a method for forming an adhesion layer of a raw material powder on the surface of a base material is to mix an alloy powder with a resin and a solvent as a binder, prepare a slurry, dry and crush the slurry. Then, the raw material powder P is manufactured. Next, the substrate T is heated to the temperature as described above with reference to FIG. Then, as shown in FIG. 1C, the raw material powder P is adhered to the base material T. Further, as shown in FIG. 2A, a slurry is prepared, dried and crushed to produce a raw material powder P. Next, the substrate T is heated in FIG. Then, as shown in FIGS. 2C and 2D, the base material T is buried in the raw material powder P, and the base material T to which the raw material powder P adheres is pulled out. In this way, the adhesion layer of the raw material powder can be formed without using a mold and without a pressurizing device. The adhesion layer may be processed to a predetermined thickness by shaving the surface after cooling and solidifying.
[0043]
【The invention's effect】
In the present invention, an alloy of spherical particles having a particle size distribution (grain size width) of 1 / 3χ to χμm, which is produced by an atomizing method and having a size of 30 ≦ χ ≦ 150 μm, and a resin and a solvent as a binder are mixed. The obtained slurry is dried and crushed, and the raw material powder obtained is adhered to a steel substrate surface heated to 100 ° C. to 400 ° C. to which the resin in the raw material powder can be fused, and then degreased and sintered. Therefore, it is possible to manufacture a mechanical member having excellent erosion resistance, abrasion resistance, and strength at a low cost even if the shape has a shape in which slurry application is difficult.
[Brief description of the drawings]
FIG. 1 is a view showing a procedure for forming an adhesion layer of raw material powder in the present invention.
FIG. 2 is a view showing another procedure for forming an adhesion layer of raw material powder in the present invention.
[Explanation of symbols]
P Raw material powder T Substrate

Claims (6)

鋼材表面へ耐食耐摩耗合金をコーティングする方法において、
アトマイズ法により製造され粒度分布(粒度幅)が1/3χ〜χμmで、30≦χ≦150μmとなる球状粒子の合金と結合剤としての樹脂および溶剤とを混合して得られるスラリーを、乾燥、破砕して得られる原料粉を、この原料粉中の樹脂が融着可能な100℃〜400℃に加熱した鋼製基材表面に付着させたのち、脱脂、焼結することを特徴とする耐食耐摩耗部材の製造方法。
In a method of coating a corrosion-resistant and wear-resistant alloy on a steel material surface,
A slurry obtained by mixing an alloy of spherical particles having a particle size distribution (particle size width) of 1 / 3χ to χμm and satisfying 30 ≦ χ ≦ 150 μm with a resin and a solvent as binders by an atomizing method is dried, Corrosion resistance characterized in that the raw material powder obtained by crushing is adhered to the surface of a steel substrate heated to 100 ° C. to 400 ° C. to which the resin in the raw material powder can be fused, and then degreased and sintered. Manufacturing method of wear resistant member.
前記球状粒子は、15〜45μmであることを特徴とする請求項1に記載の耐食耐摩耗部材の製造方法。The method of claim 1, wherein the spherical particles have a size of 15 to 45 μm. 前記合金は、組成が、重量%で、B:0.6〜3.2%、Si:0.5〜8%、Mo:5〜37%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi硼化物およびMo硼化物が分散していることを特徴とする、請求項1又は2に記載の耐食耐摩耗部材の製造方法。The alloy has a composition by weight of B: 0.6 to 3.2%, Si: 0.5 to 8%, Mo: 5 to 37%, with the balance being Ni and unavoidable impurities. 3. The method for producing a corrosion-resistant and abrasion-resistant member according to claim 1, wherein Ni boride and Mo boride are dispersed in the binder phase. 前記合金は、組成が、重量%でB:1.1〜2.5%、Mo:11〜20%、Si:4.0〜6.5%、残部Niおよび不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐食耐摩耗合金であって、B含有量に対するMoの含有量の比(Mo/B)が重量比で6.5〜13であることを特徴とする、請求項1又は2に記載の耐食耐摩耗部材の製造方法。The alloy has a composition by weight of B: 1.1 to 2.5%, Mo: 11 to 20%, Si: 4.0 to 6.5%, the balance being Ni and unavoidable impurities. A Ni-Mo double-boride dispersed in the binder phase of (1), wherein the ratio of the Mo content to the B content (Mo / B) is 6.5 to 13 by weight. The method for producing a corrosion-resistant and abrasion-resistant member according to claim 1, wherein the member is provided. 前記合金は、組成が、重量%でB:1.1〜2.5%、Si:4.0〜6.5%、Mo:8.0〜17%、Cr:2〜12%、残部Ni及び不可避的不純物からなり、Ni基の結合相にNi−Mo複硼化物が分散しているNi基耐食耐摩耗性合金であって、Cr含有量およびMo含有量の和が合金全体に対して13〜20重量%であり、かつ、B含有量に対するMoの含有量の比(Mo/B)が重量比で5.5〜9.0であることを特徴とする、請求項1又は2に記載の耐食耐摩耗部材の製造方法。The alloy has a composition by weight of B: 1.1 to 2.5%, Si: 4.0 to 6.5%, Mo: 8.0 to 17%, Cr: 2 to 12%, and the balance Ni. And a Ni-Mo double boride dispersed in a Ni-based binder phase, wherein the sum of the Cr content and the Mo content is based on the entire alloy. 3 to 20% by weight, and the ratio of the Mo content to the B content (Mo / B) is 5.5 to 9.0 in weight ratio, characterized in that: A method for producing the corrosion-resistant and abrasion-resistant member as described above. 請求項1ないし5のいずれかに記載の耐食耐摩耗部材の製造方法によって製造されたことを特徴とするアルミダイカスト用部品又はプラスチック成形機用部品。A part for an aluminum die casting or a part for a plastic molding machine, manufactured by the method for manufacturing a corrosion-resistant and abrasion-resistant member according to any one of claims 1 to 5.
JP2002171696A 2002-06-12 2002-06-12 Corrosion resistant and wear resistant member and method of producing the same Withdrawn JP2004018886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171696A JP2004018886A (en) 2002-06-12 2002-06-12 Corrosion resistant and wear resistant member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171696A JP2004018886A (en) 2002-06-12 2002-06-12 Corrosion resistant and wear resistant member and method of producing the same

Publications (1)

Publication Number Publication Date
JP2004018886A true JP2004018886A (en) 2004-01-22

Family

ID=31171485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171696A Withdrawn JP2004018886A (en) 2002-06-12 2002-06-12 Corrosion resistant and wear resistant member and method of producing the same

Country Status (1)

Country Link
JP (1) JP2004018886A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043595A1 (en) * 2010-09-28 2012-04-05 株式会社K・S・A Process for producing welding material, and welding material
CN103447504A (en) * 2013-08-21 2013-12-18 吉林大学 Preparation method of bionic coupling wear-resistant material
CN103949648A (en) * 2014-05-08 2014-07-30 吉林大学 Preparation method of high-strength high-toughness bionic-function surface wear resistance composite material
CN104878382A (en) * 2015-05-27 2015-09-02 机械科学研究总院先进制造技术研究中心 Alloy powder for laser cladding and method for laser cladding alloy powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043595A1 (en) * 2010-09-28 2012-04-05 株式会社K・S・A Process for producing welding material, and welding material
JP2012092357A (en) * 2010-09-28 2012-05-17 Ksa:Kk Method for producing welding material and welding material
US9248526B2 (en) 2010-09-28 2016-02-02 Ksa Co., Ltd. Method for manufacturing welding material and welding material
CN103447504A (en) * 2013-08-21 2013-12-18 吉林大学 Preparation method of bionic coupling wear-resistant material
CN103949648A (en) * 2014-05-08 2014-07-30 吉林大学 Preparation method of high-strength high-toughness bionic-function surface wear resistance composite material
CN104878382A (en) * 2015-05-27 2015-09-02 机械科学研究总院先进制造技术研究中心 Alloy powder for laser cladding and method for laser cladding alloy powder

Similar Documents

Publication Publication Date Title
US10562101B2 (en) Methods of making metal matrix composite and alloy articles
JP2008155206A (en) Method for coating metal matrix composite material
JPH05318085A (en) Method for incorporating hard wear resisting surface layer in metal article and article produced by said method
CN108103500A (en) A kind of stretching prestressing force cermet die casting and preparation method thereof
JP2022500551A (en) Methods and Compositions for Forming Hybrid Aluminum Composite Coatings
JP5165895B2 (en) Abrasion resistant material
JPH08120445A (en) Production of titanium-aluminum alloy target material
JP2021046610A (en) Coating source
CN1524037A (en) Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation
CN1169984C (en) Technology for making enhanced Al-base composition by spraying and codepositing crystalloid particles
CN110117727A (en) A method of particles reiforced metal-base composition is prepared based on 3D printing technique
JP4071843B2 (en) Method for producing composite alloy member
JP2004018886A (en) Corrosion resistant and wear resistant member and method of producing the same
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
EP3425072A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
SE519494C2 (en) Composite for coating piston rings, piston ring and method of making the composite
EP2407573A1 (en) Highly corrosion-resistant and wearing-resistant member with thermal-spraying deposit and powder for thermal-spraying deposit formation for forming the same
JP4334812B2 (en) Corrosion-resistant wear-resistant member and manufacturing method thereof
JP2004176136A (en) Method of producing corrosion resistant and wear resistant material
JP3130220B2 (en) Conductor roll for electroplating line and method of manufacturing the same
JPH11209863A (en) Production of wear resistant parts
JP2003155537A (en) High-toughness hard alloy and its manufacturing method
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP2004124259A (en) METHOD FOR PRODUCING W-Cu COMPOSITE MATERIAL THIN SHEET
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906