JP2004018819A - Soil conditioner - Google Patents

Soil conditioner Download PDF

Info

Publication number
JP2004018819A
JP2004018819A JP2002179961A JP2002179961A JP2004018819A JP 2004018819 A JP2004018819 A JP 2004018819A JP 2002179961 A JP2002179961 A JP 2002179961A JP 2002179961 A JP2002179961 A JP 2002179961A JP 2004018819 A JP2004018819 A JP 2004018819A
Authority
JP
Japan
Prior art keywords
fertilizer
exchange resin
soil conditioner
resin
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002179961A
Other languages
Japanese (ja)
Inventor
Eiichi Kono
河野 映一
Tokuyuki Sawada
澤田 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOTO HIRYO KK
Nippon Rensui Co
Original Assignee
RYOTO HIRYO KK
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOTO HIRYO KK, Nippon Rensui Co filed Critical RYOTO HIRYO KK
Priority to JP2002179961A priority Critical patent/JP2004018819A/en
Publication of JP2004018819A publication Critical patent/JP2004018819A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil conditioner capable of reducing effluence of a nitrogen component caused by nitrate ions (NO<SB>3</SB><SP>-</SP>), by effectively utilizing a strongly-basic anion-exchange resin which is discharged from various processes using ion exchange resins and is treated as waste, and capable of supplying crops with the nitrogen component effective for growth thereof. <P>SOLUTION: This soil conditioner contains the strongly-basic anion-exchange resin as an active ingredient, wherein the anion-exchange resin has a neutral salt decomposition capacity of 0.6-1.3 meq/mL of a wet resin volume or of 1.6-3.5 meq/g of a dry resin weight. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、土壌改良剤に関し、詳しくは、例えば水処理プロセスから排出される使用済み強塩基性アニオン交換樹脂を有効に利用した土壌改良剤に関する。
【0002】
【従来の技術】
周知の通り、窒素肥料は、アンモニウムイオン(NH )又は硝酸イオン(NO )の形で土壌に供給されるが、アンモニウムイオンは、土壌中の硝酸化成菌により硝酸イオンに変換される。ところで、土壌は、陽イオン交換能を有するが、一般的に植物の生育に好適な土壌のpH5〜6.5の領域においては、陰イオン交換能をほとんど有していない。従って、アンモニウムイオンは土壌に保持され易いが、硝酸イオンは、土壌に保持されず、降雨により地下に浸透したり河川に流出する。そこで、従来より、窒素肥料成分の地下や河川への流出を抑制し、作物への利用効率を高めるための検討が種々行われている。
【0003】
例えば、「日本土壌肥料学雑誌」(Vol.50,No.1,p5−9(1979))には、土壌からの塩類の溶脱を抑制する一方法として、陰イオン交換樹脂添加の影響が検討され、強塩基性陰イオン交換樹脂の添加によって溶脱が抑制されたとの結果が得られている。
【0004】
一方、強塩基性陰イオン交換樹脂は、強塩基性陽イオン交換樹脂と共に水処理プロセスを始めとする各種の分野で利用されている。そして、上記のイオン交換樹脂は、薬剤による再生工程を経て繰り返し使用された後に廃棄されるが、使用済みイオン交換樹脂の処理(土壌埋設など)は社会的な問題となっている。
【0005】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、イオン交換樹脂を使用した各種のプロセスから排出され、廃棄物として取り扱われている強塩基性アニオン交換樹脂を有効に利用し、硝酸イオン(NO )によるチッソ成分の流亡を低減すると共に作物の生育に効果的にチッソ成分を供給することの出来る土壌改良剤を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、特定範囲の中性塩分解容量を有する強廃強塩基性アニオン交換樹脂ならば、土壌改良剤として効果的に利用し得るとの知見を得、本発明の完成に至った。
【0007】
すなわち、本発明の要旨は、中性塩分解容量が湿潤樹脂容量当たり0.6〜1.3meq/ml−R又は乾燥樹脂重量当たり1.6〜3.5meq/g−Rの強塩基性陰イオン交換樹脂を有効成分とすることを特徴とする土壌改良剤に存する。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の土壌改良剤は、イオン交換樹脂を使用した各種のプロセスから排出される使用済み強塩基性陰イオン交換樹脂を有効成分とする。
【0009】
強塩基性陰イオン交換樹脂の具体例としては、例えば三菱化学(株)製の商品「ダイヤイオン」(登録商標)がある。そして、「ダイヤイオン」シリーズには、I型樹脂として分類されている「SA10A」、「SA12A」、「SA11A」、「PA300」シリーズ、「HPA25」、II型樹脂として分類されている「SA20A」、「SA21A」、「PA400」シリーズ、「HPA75」がある。
【0010】
上記のI型樹脂は以下の化学式(a)に示すトリメチルアンモニウム基をイオン交換基として有し、上記のII型樹脂は以下の化学式(b)に示すジメチルエタノールアンモニウム基をイオン交換基として有する。強塩基性陰イオン交換樹脂は、塩素型(R−Cl)、つまり、イオン交換基の第4級アンモニウム(≡N−)の対イオンが塩素イオン(Cl)となった型が基準型である。
【0011】
【化1】

Figure 2004018819
【0012】
イオン交換樹脂を使用したプロセスとしては、例えば、発電プラントにおける例えば復水脱塩プロセス、半導体製造工程における超純水製造プロセス等の水処理プロセスが挙げられる。一般的に言えば、水処理プロセスは、強酸性陽イオン交換樹脂(SK)及び強塩基性陰イオン交換樹脂(SA)による各処理の他、必要に応じ、脱炭酸(DG)処理や弱塩基性陰イオン交換樹脂(WA)による処理を含む。具体的には、SK/SA(2床2塔)、SK/DG/SA(2床3塔)、SK/DG/WA/SA(3床4塔)等のプロセスがある。
【0013】
上記のプロセスでは、一般的に塩素型(R−Cl)の強塩基性陰イオン交換樹脂はNaOH水溶液で処理され、水酸基型(R−OH)に変換して使用される。そして、水酸基型(R−OH)は、イオン交換平衡関係に従って、水中の各種の陰イオン(Cl、SO 2−、HCO 等)とイオン交換により脱イオン化を行い、交換基は、塩素型(R−Cl)、硫酸型(R−SO)、炭酸型(R−CO)等の各種の付加型に変換される。
【0014】
イオン交換樹脂を使用したプロセスは、上記の水処理プロセスに限定されず、甘蔗糖、甜菜糖などの蔗糖液の脱色精製プロセスが挙げられる。斯かる脱色精製プロセスにも、塩素型(R−Cl)の強塩基性陰イオン交換樹脂が使用される。
【0015】
本発明の土壌改良剤は、上記の様なプロセスから排出される使用済み強塩基性陰イオン交換樹脂であって、中性塩分解容量が湿潤樹脂容量当たり0.6〜1.3meq/ml−R又は乾燥樹脂重量当たり1.6〜3.5meq/g−Rの強塩基性陰イオン交換樹脂を有効成分とする。因に、新品の強塩基性陰イオン交換樹脂の中性塩分解容量は、1.3meq/ml−R又は3.5meq/g−Rである。斯かる中性塩分解容量の低下は、繰り返し使用中における強塩基性陰イオン交換基の減少として生じる。
【0016】
要するに、本発明においては、前記の様な水処理やそ他のイオン交換樹脂を使用する工業プロセスから、土壌中の硝酸イオン(NO )を保持するのに必要な中性塩分解容量を残した段階の強塩基性陰イオン交換樹脂を取り出し、土壌改良剤として利用する。中性塩分解容量が0.6meq/ml−R未満または1.6meq/g−Rの強塩基性陰イオン交換樹脂では、土壌中の硝酸イオン(NO )の保持能力が不十分である。本発明で使用する強塩基性陰イオン交換樹脂の好ましい中性塩分解容量は1.0〜1.3meq/ml−R又は2.7〜3.5meq/g−Rである。
【0017】
本発明の土壌改良剤の作用は、概念的には例えば次の化学式で表される。土壌中の硝酸イオン(NO )は、イオン交換基の第4級アンモニウム(≡N−)の対イオンとして保持される。そして、土壌中において、イオン交換平衡に従って徐々に放出され、作物に吸収される。
【0018】
【化2】
Figure 2004018819
【0019】
使用済み強塩基性陰イオン交換樹脂は、前述の通り、種々の塩型で存在する。本発明で使用する強塩基性陰イオン交換樹脂の塩型は、必ずしも制限されない。しかしながら、水酸基型(R−OH)は、イオン交換により放出される水酸基イオン(OH)により土壌のpHが高められる恐れがあり、塩素型(R−Cl)は、放出させる塩素イオン(Cl)により植物の生育が阻害される恐れがある。
【0020】
従って、使用する強塩基性陰イオン交換樹脂中の全イオン交換基に対する水酸基型(R−OH)及び塩素型(R−Cl)の割合は、10重量%以下、好ましくは5重量%以下、更に好ましくは1重量%以下にするのが好ましい。
【0021】
本発明においては、特に炭酸型(R−CO)の強塩基性陰イオン交換樹脂が好ましい。斯かる強塩基性陰イオン交換樹脂は、前述の脱炭酸(DG)処理を含む水処理プロセスにおいて、脱炭酸(DG)処理後の段階から排出される。
【0022】
本発明の土壌改良剤は、土壌に施用され、土壌に供給された硝酸イオン(NO )及びアンモニウムイオン(NH )の変換によって生成してくる硝酸イオンを補足した後に徐々に放出する作用を有する。
【0023】
従って、本発明の土壌改良剤は、肥料が施用される土壌(圃場)に対して肥料の施用の前後または同時に施用される。
【0024】
また、本発明の土壌改良剤は、肥料と複合化し、肥料含有土壌改良剤とすることも出来る。この場合、複合化される肥料は、少なくともチッソ肥料を含む限り、必要に応じ、リン酸肥料などの他の肥料を含んでいてもよい。
【0025】
上記のチッソ肥料としては、硫酸アンモニウム:(NHSO、塩化アンモニウム:NHCl、硝酸アンモニウム:NHNO、リン酸アンモニウム:(NHHPO等が挙げられる。これらのチッソ肥料は、施肥されると土壌中の水に容易に溶解し解離し、アンモニウムイオン(NH )及び硝酸イオン(NO )を含む水溶液となり、作物に吸収される。そして、前述の通り、アンモニウムイオンは、大半が土壌に陽イオン交換吸着され、徐々に土壌中の硝酸化成菌により硝酸イオンに変換される。また、上記以外のチッソ肥料、例えば、尿素や有機肥料の場合は、土壌微生物により
アンモニウムイオンを経て硝酸イオンに変換される。
【0026】
本発明の土壌改良剤(使用済み強塩基性陰イオン交換樹脂)と肥料(少なくともチッソ肥料を含む)との複合化は、両者を単に混合する方法であっても両者を造粒する方法であってもよい。本発明においては造粒法が推奨される。混合法の場合は、混合物調製時の他、施用時において、樹脂と肥料が別々に偏在する恐れがあるが、造粒法によれば、斯かる危惧は解消される。
【0027】
上記の造粒法は、例えば皿型造粒機を使用し、適当なバインダーの存在下、造粒水をスプレーしつつ強塩基性陰イオン交換樹脂と肥料との混合物を転動させることによって行なわれる。
【0028】
上記のバインダーとしては、ベントナイト、粘土などのコロイド状無機バインダーが好ましい。斯かる無機バインダーによれば、強塩基性陰イオン交換樹脂の有する細孔が閉塞されず、樹脂内部への水分の進入が容易に行われ、硝酸イオン(NO )の補足と放出とが効率的に行なわれる。
【0029】
上記の肥料含有土壌改良剤において、土壌改良剤中の合計チッソ成分に対する樹脂の交換容量(化学当量)の比率は、配合当初からの硝酸態チッソ(NO )とアンモニア態チッソの変換によって生成してくる硝酸態チッソの両者を強塩基性陰イオン交換樹脂に保持させる観点から決定される。また、土壌中の硝酸態チッソの濃度を作物の生育に好適な範囲(一般的には10〜400mg/L)に保持する観点からも決定される。
【0030】
上記の比率が余りに少ない場合は、アンモニア態チッソから生成してくる硝酸態チッソを殆ど保持することが出来ず、土壌中の硝酸態チッソの濃度が高くなり過ぎるのを抑制する効果が少ない。また、上記の比率が余りに多い場合は、アンモニア態チッソから生成してくる硝酸態チッソが樹脂に多量に保持されるため、土壌中の硝酸態チッソの濃度が極めて低くなり、その結果、作物に対する施肥効果が遅れ、作物の順調な生育に支障を来すおそれがある。本発明において、上記の比率は5〜150%の範囲から適宜選択するのがよい。
【0031】
バインダー及び造粒水の量は、特に制限されないが、配合される原材料の合計量に対し、バインダーの量は、通常30〜70重量%、好ましくは40〜60重量%であり、造粒水の量は、通常1〜20重量%、好ましくは5〜15重量%である。通常、造粒は常温で行われ、皿型造粒機における原料の滞留時間は通常1〜20分である。造粒物(肥料含有土壌改良剤)の粒径は、通常1〜5mm、好ましくは2〜4mmである。造粒後の乾燥は常法によって行なうことが出来る。
【0032】
次に、本発明の土壌改良剤(肥料含有土壌改良剤を含む)の施用方法について説明するが、それに先立ち、一般的な施肥について説明する。施肥は、作物の播種または定植前に基肥として、また、栽培期間中の肥料の不足を補うための追肥として行なわれる。そして、チッソ肥料の場合、10a当たり、基肥の施肥量は、N分として10〜30kg、追肥の施肥量は、N分として約5kgである。施肥量の目安は、作物によっても異なるが、チッソ肥料の場合、通常、施肥後の土壌のチッソ濃度が100〜300mg/土壌1Lとなる様に行われているとみなせる。
【0033】
本発明の土壌改良剤は、強塩基性陰イオン交換樹脂の交換容量が土壌1L当たり2〜14ミリグラム当量(meq)となる様な割合で施用される。斯かる施用量は、土壌1L当たりに約30〜200mgの硝酸態チッソ(N分として)を保持可能な量に相当する。
【0034】
上記の2meqの交換容量は、硝酸態チッソの保持量に換算して28mgとなり、施肥後の合計チッソ施肥量の10〜20%に相当する。従って、土壌改良剤の施用量が土壌1L当たり2meq交換容量となる様な量より少ない場合は、硝酸態チッソのアンモニア態チッソの硝酸化による増加、および、作物の吸収による減少に対応した濃度変化を緩和する効果、ならびに、硝酸態チッソの流出を削減する効果が不十分となる。
【0035】
上記の14meqの交換容量は、硝酸態チッソの保持量に換算して196mgとなり、施肥後の合計チッソ施肥量の60〜130%に相当する。従って、土壌改良剤の施用量が土壌1L当たり14meq交換容量となる様な量より多い場合は、上記の濃度変化を緩和する効果ならびに硝酸態チッソの流出を削減する効果は十分であるが、経済的ではなく、また、植物の生育に支障を来す恐れがある。
【0036】
本発明の土壌改良剤(使用済み強塩基性陰イオン交換樹脂)は、樹脂の土壌中での劣化によるイオン交換能の低下はあり得るが、少なくとも数年間は有効であると判断される。従って、上記の範囲において、1回当たりの施用量が少ない場合であっても複数回の施用で土壌中の量が増加し、結果的に土壌中のイオン交換容量が高まる。従って、累積施用によって交換容量が上限の14meqに達した場合、次回の施肥時にはチッソ肥料のみを施肥しても硝酸態チッソの濃度変化緩和効果や流出削減効果を得ることが出来る。
【0037】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0038】
<使用済み樹脂>
発電プラントにおける水処理プロセスから回収したII型強塩基性陰イオン交換樹脂(三菱化学社製「SA20A」)を1.5mol/Lの炭酸ナトリウム水溶液で炭酸型(R−CO)に変換して使用した。この樹脂の総交換容量は1.24meq/ml−R(3.08meq/g−R)であった。
【0039】
<肥料含有土壌改良剤(I)の製造>
皿形造粒機を使用し、表1の原料割合にて、常温にて造粒水をスプレーしつつ、約5分間、混合物を転動させることにより造粒を行った。造粒後の乾燥は自然乾燥にて行った。乾燥後の造粒物の水分は3.8重量%であり、粒径は1〜5mm程度であった。
また、肥料含有土壌改良剤(I)の合計チッソ成分に対する強塩基性陰イオン交換樹脂の交換容量の割合は7%であった。
【0040】
【表1】
Figure 2004018819
【0041】
<肥料含有土壌改良剤(II)の製造>
表2の原料割合にて、前記と同様の方法で造粒・乾燥を行った。ただし、原料中の水分量で造粒が十分可能であったため、造粒水は使用しなかった。乾燥後の造粒物の水分は6.4重量%であり、粒径は1〜5mm程度であった。また、肥料含有土壌改良剤(II)の合計チッソ成分に対する強塩基性陰イオン交換樹脂の交換容量の割合は21%であった。
【0042】
【表2】
Figure 2004018819
【0043】
実施例1〜2及び比較例1〜3
チッソ成分として、肥料含有土壌改良剤(・)、肥料含有土壌改良剤(II)、硝酸アンモニウム、硫酸アンモニウムを使用し、リン酸成分として、よう成リン肥および過リン酸石灰(3:1重量比)、カリ成分として硫酸カリウムを使用した。
【0044】
1/2000aワグネルポットに、上記の各成分を施肥した土壌10Lを充填し、以下の表3に示す試験区を形成した。チッソ成分の施肥量は200mg/土壌1L、リン酸成分の施肥量(P)は2000mg/土壌1L、カリ成分の施肥量(KO)は200mg/土壌1Lとした。
【0045】
そして、平成13年9月10日にホウレンソウの種(5粒)を播種、9月25日に間引して3株を残し、11月5日に収穫調査を行った。各試験区毎にホウレンソウ3株について地上部(重量、草丈および葉柄長)並びに地上部の乾燥重量の測定を行った。なお、地上部重量及び地上部乾燥重量については、平均値を算出し、草丈および葉柄長については、最大値を測定した。これらの結果を表3に示す。
【0046】
また、上記のホウレンソウの生育の間に1回/日の灌水毎にポット底部より水を流出させることにより、硝酸態チッソ(NO )の流出試験を実施した。各試験区における流出水中の硝酸態チッソ(NO )濃度測定の結果を表4に示す。
【0047】
【表3】
Figure 2004018819
【0048】
【表4】
Figure 2004018819
【0049】
表3から明らかな様に、ホウレンソウの生育については、実施例1は比較例1及び2に比較して非常に優れており、作物の生育に対して効果的にチッソ成分を供給する効果が認められた。実施例2についても、比較例1に比較して優れており、比較例2とはほぼ同等であった。
【0050】
また、表4から明らかな様に、流出水中の硝酸態チッソ濃度については、実施例1及び2は、比較例1に比較して約35%、比較例2に比較して約18%の流亡を抑制し、樹脂の陰イオン交換容量分以上の効果が見られた。これは、植物による硝酸態チッソの吸収が促進された結果によるものと考えられる。
【0051】
参考例1〜3
強塩基性陰イオン交換樹脂に吸着保持された硝酸態チッソの肥効を確認するため、次の試験を行なった。すなわち、チッソ成分として、前記の使用済みのII型樹脂を硝酸型(R−NO)に変換したもの(硝酸態チッソ吸着樹脂)と硝酸アンモニウムを使用した以外は、前記と同様にN、P、Kを含む土壌を調製し、以下の表5に示す試験区を形成した。そして、平成13年11月21日にホウレンソウの種(5粒)を播種、12月6日に間引して3株残し、平成14年1月28日に前記と同様の収穫調査を行った。結果を表5に示す。
【0052】
また、上記のホウレンソウの生育の間に1回/5日の灌水を行なったが、ポット底部より水が流出しない様に行った。そして、ホウレンソウの収穫終了後、土壌に灌水を行い、各試験区における土壌溶液中の硝酸態チッソ(NO3−)濃度を測定した。結果を表6に示す。
【0053】
【表5】
Figure 2004018819
【0054】
【表6】
Figure 2004018819
【0055】
表5及び表6から明らかな様に、参考例1は、参考例2に比較し、土壌溶液中の硝酸態チッソ濃度が約20mg/Lと低いものの、生育はやや劣る程度であり、また、参考例3よりは非常に優れていた。すなわち、樹脂に吸着保持されている硝酸態チッソは、土壌溶液中に徐々に放出され、植物に吸収利用されることが確認出来た。
【0056】
【発明の効果】
以上説明した本発明によれば、イオン交換樹脂を使用した各種のプロセスから排出され、廃棄物として取り扱われている強塩基性アニオン交換樹脂を有効に利用し、硝酸イオン(NO )によるチッソ成分の流亡を低減すると共に作物の生育に効果的にチッソ成分を供給することの出来る土壌改良剤が提供され、本発明の工業的価値は顕著である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soil conditioner, and more particularly, to a soil conditioner that effectively uses a used strong basic anion exchange resin discharged from, for example, a water treatment process.
[0002]
[Prior art]
As is well known, nitrogen fertilizers are supplied to soil in the form of ammonium ions (NH 4 + ) or nitrate ions (NO 3 ), which are converted to nitrate ions by nitrifying bacteria in the soil. . By the way, soil has a cation exchange ability, but generally has almost no anion exchange ability in a pH range of pH 5 to 6.5, which is suitable for plant growth. Therefore, ammonium ions are easily retained in the soil, but nitrate ions are not retained in the soil, but penetrate underground or flow out into rivers by rainfall. Therefore, various studies have been made in the past to suppress the outflow of nitrogen fertilizer components into underground and rivers and to increase the efficiency of use for crops.
[0003]
For example, “Journal of Soil Fertilizer Science” (Vol. 50, No. 1, p5-9 (1979)) examines the effect of the addition of an anion exchange resin as one method of suppressing leaching of salts from soil. It has been found that leaching was suppressed by the addition of a strong basic anion exchange resin.
[0004]
On the other hand, a strong basic anion exchange resin is used in various fields including a water treatment process together with a strong basic cation exchange resin. The above-mentioned ion-exchange resin is discarded after being repeatedly used through a regeneration step using a chemical. However, treatment of used ion-exchange resin (such as burying in soil) is a social problem.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its purpose is to effectively utilize a strongly basic anion exchange resin discharged from various processes using an ion exchange resin and treated as waste, It is an object of the present invention to provide a soil conditioner capable of reducing runoff of nitrogen components due to nitrate ions (NO 3 ) and effectively supplying nitrogen components to the growth of crops.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and, as a result, have obtained the finding that a strongly discarded strongly basic anion exchange resin having a specific range of neutral salt decomposition capacity can be effectively used as a soil conditioner, The present invention has been completed.
[0007]
That is, the gist of the present invention is that the neutral salt decomposition capacity is 0.6 to 1.3 meq / ml-R per wet resin volume or 1.6 to 3.5 meq / g-R per dry resin weight. A soil conditioner comprising an ion exchange resin as an active ingredient.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The soil conditioner of the present invention contains a used strong basic anion exchange resin discharged from various processes using an ion exchange resin as an active ingredient.
[0009]
Specific examples of the strong basic anion exchange resin include, for example, “Diaion” (registered trademark) manufactured by Mitsubishi Chemical Corporation. The “Diaion” series includes “SA10A”, “SA12A”, “SA11A”, “PA300” series, “HPA25” classified as an I-type resin, and “SA20A” classified as a II-type resin. , “SA21A”, “PA400” series, and “HPA75”.
[0010]
The type I resin has a trimethylammonium group represented by the following chemical formula (a) as an ion exchange group, and the type II resin has a dimethylethanol ammonium group represented by the following chemical formula (b) as an ion exchange group. The strongly basic anion exchange resin has a chlorine type (R-Cl), that is, a type in which a counter ion of a quaternary ammonium ion (≡N + −) of an ion exchange group is a chlorine ion (Cl ). It is.
[0011]
Embedded image
Figure 2004018819
[0012]
Examples of the process using an ion exchange resin include a water treatment process such as a condensate desalination process in a power plant and an ultrapure water production process in a semiconductor manufacturing process. Generally speaking, the water treatment process includes, in addition to each treatment with a strongly acidic cation exchange resin (SK) and a strongly basic anion exchange resin (SA), a decarboxylation (DG) treatment and a weak base if necessary. And treatment with a water-soluble anion exchange resin (WA). Specifically, there are processes such as SK / SA (two beds, two towers), SK / DG / SA (two beds, three towers), and SK / DG / WA / SA (three beds, four towers).
[0013]
In the above process, generally, a chlorine type (R-Cl) strongly basic anion exchange resin is treated with an aqueous NaOH solution and converted to a hydroxyl group type (R-OH) for use. Then, the hydroxyl group type (R-OH) performs deionization by ion exchange with various anions (Cl , SO 4 2− , HCO 3 − and the like) in water according to the ion exchange equilibrium relationship, and the exchange group is chlorine type (R-Cl), sulfate type (R-SO 4), and converted to various additional types such as carbonic acid-type (R-CO 3).
[0014]
The process using the ion exchange resin is not limited to the above-mentioned water treatment process, and includes a decolorization purification process of a sucrose solution such as cane sugar and beet sugar. In such a decolorizing purification process, a strongly basic anion exchange resin of a chlorine type (R-Cl) is used.
[0015]
The soil conditioner of the present invention is a used strongly basic anion exchange resin discharged from the above process, and has a neutral salt decomposition capacity of 0.6 to 1.3 meq / ml- R or a strongly basic anion exchange resin of 1.6 to 3.5 meq / g-R per dry resin weight is used as an active ingredient. Incidentally, the neutral salt decomposition capacity of a new strong basic anion exchange resin is 1.3 meq / ml-R or 3.5 meq / g-R. Such a reduction in the neutral salt decomposition capacity occurs as a decrease in strongly basic anion exchange groups during repeated use.
[0016]
In short, in the present invention, the neutral salt decomposition capacity required to retain nitrate ions (NO 3 ) in soil is reduced by the water treatment and other industrial processes using ion exchange resins as described above. The remaining strong basic anion exchange resin is taken out and used as a soil conditioner. The strongly basic anion exchange resin of neutral salt decomposition capacity is 0.6 meq / ml-R, or less than 1.6meq / g-R, nitrate ions in soil - is insufficient holding capacity of (NO 3) . The preferred neutral salt decomposition capacity of the strongly basic anion exchange resin used in the present invention is 1.0 to 1.3 meq / ml-R or 2.7 to 3.5 meq / g-R.
[0017]
The effect of the soil conditioner of the present invention is conceptually represented, for example, by the following chemical formula. The nitrate ion (NO 3 ) in the soil is retained as a counter ion of the quaternary ammonium (ΔN + −) of the ion exchange group. Then, it is gradually released in the soil in accordance with the ion exchange equilibrium and is absorbed by the crop.
[0018]
Embedded image
Figure 2004018819
[0019]
Used strong basic anion exchange resins exist in various salt forms as described above. The salt type of the strongly basic anion exchange resin used in the present invention is not necessarily limited. However, the hydroxyl type (R-OH) has a possibility that the pH of the soil may be increased by hydroxyl ions (OH ) released by ion exchange, and the chlorine type (R-Cl) may release chlorine ions (Cl −). ) May inhibit plant growth.
[0020]
Therefore, the ratio of the hydroxyl group type (R-OH) and chlorine type (R-Cl) to all ion exchange groups in the strongly basic anion exchange resin used is 10% by weight or less, preferably 5% by weight or less, and more preferably 5% by weight or less. Preferably, it is not more than 1% by weight.
[0021]
In the present invention, a carbonate type (R-CO 3 ) strong basic anion exchange resin is particularly preferred. Such a strongly basic anion exchange resin is discharged from the stage after the decarboxylation (DG) treatment in the water treatment process including the above-mentioned decarboxylation (DG) treatment.
[0022]
The soil conditioner of the present invention is applied to soil, gradually releases nitrate ions generated by the conversion of nitrate ions (NO 3 ) and ammonium ions (NH 4 + ) supplied to the soil, and then gradually releases them. Has an action.
[0023]
Therefore, the soil conditioner of the present invention is applied to the soil (field) to which the fertilizer is applied before, after, or simultaneously with the application of the fertilizer.
[0024]
Further, the soil conditioner of the present invention can be compounded with a fertilizer to obtain a fertilizer-containing soil conditioner. In this case, the fertilizer to be compounded may include another fertilizer such as a phosphate fertilizer as needed, as long as it includes at least a nitrogen fertilizer.
[0025]
Examples of the nitrogen fertilizer include ammonium sulfate: (NH 4 ) 2 SO 4 , ammonium chloride: NH 4 Cl, ammonium nitrate: NH 4 NO 3 , and ammonium phosphate: (NH 4 ) 2 HPO 4 . These fertilizers, when fertilized, easily dissolve and dissociate in water in the soil, become aqueous solutions containing ammonium ions (NH 4 + ) and nitrate ions (NO 3 ), and are absorbed by crops. As described above, most of the ammonium ions are cation-exchanged and adsorbed on the soil, and are gradually converted into nitrate ions by nitrifying bacteria in the soil. In the case of nitrogen fertilizers other than those described above, for example, urea and organic fertilizers, they are converted into nitrate ions via ammonium ions by soil microorganisms.
[0026]
The compounding of the soil conditioner of the present invention (used strong basic anion exchange resin) and fertilizer (including at least nitrogen fertilizer) is a method of granulating both, even if they are simply mixed. You may. In the present invention, a granulation method is recommended. In the case of the mixing method, there is a possibility that the resin and the fertilizer are unevenly distributed separately at the time of application as well as at the time of preparing the mixture. However, according to the granulation method, such fear is solved.
[0027]
The above-mentioned granulation method is performed, for example, by using a dish-type granulator and tumbling a mixture of a strongly basic anion exchange resin and a fertilizer while spraying granulation water in the presence of a suitable binder. It is.
[0028]
As the binder, a colloidal inorganic binder such as bentonite and clay is preferable. According to such an inorganic binder, the pores of the strong basic anion exchange resin are not blocked, moisture can easily enter the inside of the resin, and the capture and release of nitrate ions (NO 3 ) are prevented. Performed efficiently.
[0029]
In the above fertilizer-containing soil conditioner, the ratio of the exchange capacity (chemical equivalent) of the resin to the total nitrogen component in the soil conditioner is determined by conversion of nitrate nitrogen (NO 3 ) and ammonia nitrogen from the beginning of the compounding. It is determined from the viewpoint of keeping both of the nitric acid-containing nitrogen to be retained in the strongly basic anion exchange resin. It is also determined from the viewpoint of keeping the concentration of nitrate nitrogen in the soil in a range suitable for growing crops (generally 10 to 400 mg / L).
[0030]
If the above ratio is too small, the nitrate nitrogen generated from the ammonia nitrogen can hardly be retained, and the effect of suppressing the concentration of the nitrate nitrogen in the soil from becoming too high is small. Further, if the above ratio is too large, the nitrate nitrogen generated from the ammonia nitrogen is retained in a large amount in the resin, the concentration of the nitrate nitrogen in the soil becomes extremely low, and as a result, Fertilization effect may be delayed, which may hinder the successful growth of crops. In the present invention, the above ratio may be appropriately selected from the range of 5 to 150%.
[0031]
The amounts of the binder and the granulation water are not particularly limited, but the amount of the binder is usually 30 to 70% by weight, preferably 40 to 60% by weight, based on the total amount of the raw materials to be mixed. The amount is usually from 1 to 20% by weight, preferably from 5 to 15% by weight. Usually, granulation is carried out at normal temperature, and the residence time of the raw material in the dish granulator is usually 1 to 20 minutes. The particle size of the granulated product (fertilizer-containing soil conditioner) is usually 1 to 5 mm, preferably 2 to 4 mm. Drying after granulation can be performed by a conventional method.
[0032]
Next, a method for applying the soil conditioner of the present invention (including a fertilizer-containing soil conditioner) will be described. Prior to this, general fertilization will be described. Fertilization is performed as a base fertilizer before sowing or planting of a crop, and as a top fertilizer to compensate for a shortage of fertilizer during the cultivation period. In the case of nitrogen fertilizer, the amount of base fertilizer applied per 10a is 10 to 30 kg as N, and the amount of top fertilizer is about 5 kg as N. Although the standard of the amount of fertilization varies depending on crops, in the case of nitrogen fertilizer, it can be generally considered that the fertilization is performed such that the nitrogen concentration of the soil after fertilization is 100 to 300 mg / L of soil.
[0033]
The soil conditioner of the present invention is applied at a rate such that the exchange capacity of the strongly basic anion exchange resin is 2 to 14 milligram equivalents (meq) per liter of soil. Such application rates correspond to an amount capable of holding about 30 to 200 mg of nitrate nitrogen (as N) per liter of soil.
[0034]
The exchange capacity of 2 meq is 28 mg in terms of the amount of nitrate nitrogen stored, which is equivalent to 10 to 20% of the total nitrogen application after fertilization. Therefore, when the application rate of the soil conditioner is less than the amount that gives 2 meq exchange capacity per liter of soil, the concentration change corresponding to the increase of nitrate nitrogen by nitration of ammonia nitrogen and the decrease corresponding to the decrease by crop absorption. And the effect of reducing the outflow of nitrate nitrogen becomes insufficient.
[0035]
The above exchange capacity of 14 meq is 196 mg in terms of the amount of nitrate nitrogen retained, which is equivalent to 60 to 130% of the total nitrogen application after fertilization. Therefore, when the application rate of the soil conditioner is larger than the amount that gives 14 meq exchange capacity per liter of soil, the effect of alleviating the above concentration change and the effect of reducing the outflow of nitrate nitrogen are sufficient, but the economy is low. It is not a target and may hinder plant growth.
[0036]
The soil conditioner of the present invention (used strong basic anion exchange resin) may decrease the ion exchange capacity due to deterioration of the resin in the soil, but is considered to be effective for at least several years. Therefore, in the above range, even when the application rate per application is small, the amount in the soil increases by a plurality of applications, and as a result, the ion exchange capacity in the soil increases. Accordingly, when the exchange capacity reaches the upper limit of 14 meq due to the cumulative application, the effect of reducing the change in the concentration of nitrate nitrogen and the effect of reducing runoff can be obtained even when only the nitrogen fertilizer is applied at the next fertilization.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0038]
<Used resin>
Type II strongly basic anion exchange resin (“SA20A” manufactured by Mitsubishi Chemical Corporation) recovered from the water treatment process in the power plant is converted to a carbonate type (R-CO 3 ) with a 1.5 mol / L sodium carbonate aqueous solution. used. The total exchange capacity of this resin was 1.24 meq / ml-R (3.08 meq / g-R).
[0039]
<Manufacture of fertilizer-containing soil conditioner (I)>
Using a dish granulator, the mixture was tumbled for about 5 minutes while spraying granulation water at room temperature at the raw material ratios in Table 1 to perform granulation. Drying after granulation was performed by natural drying. The water content of the dried granules was 3.8% by weight, and the particle size was about 1 to 5 mm.
The ratio of the exchange capacity of the strongly basic anion exchange resin to the total nitrogen component of the fertilizer-containing soil conditioner (I) was 7%.
[0040]
[Table 1]
Figure 2004018819
[0041]
<Manufacture of fertilizer-containing soil conditioner (II)>
Granulation and drying were performed at the raw material ratios shown in Table 2 in the same manner as described above. However, granulation water was not used because granulation was sufficiently possible with the amount of water in the raw material. The water content of the dried granules was 6.4% by weight, and the particle size was about 1 to 5 mm. The ratio of the exchange capacity of the strongly basic anion exchange resin to the total nitrogen component of the fertilizer-containing soil conditioner (II) was 21%.
[0042]
[Table 2]
Figure 2004018819
[0043]
Examples 1-2 and Comparative Examples 1-3
Fertilizer-containing soil conditioner (•), fertilizer-containing soil conditioner (II), ammonium nitrate, ammonium sulfate are used as nitrogen components, and phosphoric acid components are iodine phosphorus fertilizer and superphosphate lime (3: 1 weight ratio). Potassium sulfate was used as a potassium component.
[0044]
A 1 / 2000a Wagner pot was filled with 10 L of soil fertilized with each of the above components to form test plots shown in Table 3 below. The fertilization amount of the nitrogen component was 200 mg / L of soil, the fertilization amount of the phosphoric acid component (P 2 O 5 ) was 2000 mg / L of soil, and the fertilization amount of the potassium component (K 2 O) was 200 mg / L of soil.
[0045]
Then, spinach seeds (5 grains) were sown on September 10, 2001, thinned out on September 25 to leave three plants, and a harvest survey was conducted on November 5. For each of the test plots, the above-ground part (weight, plant height and petiole length) and the dry weight of the above-ground part were measured for three spinach strains. In addition, about the above-ground part weight and the above-ground part dry weight, the average value was calculated, and about the plant height and the petiole length, the maximum value was measured. Table 3 shows the results.
[0046]
In addition, an outflow test of nitrate nitrogen (NO 3 ) was carried out by draining water from the bottom of the pot every time of irrigation once a day during the growth of the above spinach. Table 4 shows the results of measuring the nitrate nitrogen (NO 3 ) concentration in the effluent water in each test section.
[0047]
[Table 3]
Figure 2004018819
[0048]
[Table 4]
Figure 2004018819
[0049]
As is clear from Table 3, with respect to the growth of spinach, Example 1 is much superior to Comparative Examples 1 and 2, and the effect of effectively supplying nitrogen components to the growth of the crop was recognized. Was done. Example 2 was also superior to Comparative Example 1, and was almost equivalent to Comparative Example 2.
[0050]
As is clear from Table 4, the nitrate nitrogen concentration in the effluent was about 35% in Examples 1 and 2 compared to Comparative Example 1 and about 18% in Comparative Example 2. And an effect more than the anion exchange capacity of the resin was obtained. This is considered to be due to the promotion of nitrate nitrogen absorption by plants.
[0051]
Reference Examples 1-3
The following test was conducted to confirm the fertilizing effect of nitrate nitrogen adsorbed and held on a strongly basic anion exchange resin. That is, N, P, and N were used in the same manner as described above except that the used type II resin was converted to nitric acid type (R-NO 3 ) (nitrate-type nitrogen adsorption resin) and ammonium nitrate were used as nitrogen components. A soil containing K was prepared, and test plots shown in Table 5 below were formed. On November 21, 2001, spinach seeds (5 grains) were sown, thinned out on December 6, leaving three plants, and the same harvest survey was conducted on January 28, 2002. . Table 5 shows the results.
[0052]
In addition, watering was performed once / 5 days during the growth of the above spinach, but water was not leaked from the bottom of the pot. Then, after the harvest of spinach, the soil was irrigated, and the nitrate nitrogen ( NO3- ) concentration in the soil solution in each test plot was measured. Table 6 shows the results.
[0053]
[Table 5]
Figure 2004018819
[0054]
[Table 6]
Figure 2004018819
[0055]
As is clear from Tables 5 and 6, in Reference Example 1, although the nitrate nitrogen concentration in the soil solution was as low as about 20 mg / L, the growth was slightly inferior compared to Reference Example 2. It was much better than Reference Example 3. In other words, it was confirmed that the nitric acid nitrogen adsorbed and held on the resin was gradually released into the soil solution and was absorbed and utilized by the plants.
[0056]
【The invention's effect】
According to the present invention described above, a strong basic anion exchange resin discharged from various processes using an ion exchange resin and treated as waste is effectively used, and nitrous ion (NO 3 ) nitrogen is used. The present invention provides a soil conditioner capable of reducing the runoff of components and effectively supplying nitrogen components to the growth of crops, and the industrial value of the present invention is remarkable.

Claims (4)

中性塩分解容量が湿潤樹脂容量当たり0.6〜1.3meq/ml−R又は乾燥樹脂重量当たり1.6〜3.5meq/g−Rの強塩基性陰イオン交換樹脂を有効成分とすることを特徴とする土壌改良剤。The active ingredient is a strongly basic anion exchange resin having a neutral salt decomposition capacity of 0.6 to 1.3 meq / ml-R per wet resin capacity or 1.6 to 3.5 meq / g-R per dry resin weight. A soil conditioner characterized by the following. 請求項1に記載の強塩基性陰イオン交換樹脂に肥料を配合して成る肥料含有土壌改良剤であって、土壌改良剤中の合計チッソ成分に対する樹脂の交換容量(化学当量)の比率が5〜150%である肥料含有土壌改良剤。A fertilizer-containing soil conditioner obtained by mixing a fertilizer with the strongly basic anion exchange resin according to claim 1, wherein the ratio of the exchange capacity (chemical equivalent) of the resin to the total nitrogen component in the soil conditioner is 5%. Fertilizer-containing soil conditioner that is ~ 150%. 強塩基性陰イオン交換樹脂と肥料とが造粒されている請求項2に記載の肥料含有土壌改良剤。The fertilizer-containing soil conditioner according to claim 2, wherein the strongly basic anion exchange resin and the fertilizer are granulated. 造粒がコロイド状無機バインダーの存在下、造粒水をスプレーしつつ強塩基性陰イオン交換樹脂と肥料との混合物を転動させることによって行なわれる請求項3に記載の肥料含有土壌改良剤。The fertilizer-containing soil conditioner according to claim 3, wherein granulation is performed by rolling a mixture of a strongly basic anion exchange resin and a fertilizer while spraying granulation water in the presence of a colloidal inorganic binder.
JP2002179961A 2002-06-20 2002-06-20 Soil conditioner Withdrawn JP2004018819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179961A JP2004018819A (en) 2002-06-20 2002-06-20 Soil conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179961A JP2004018819A (en) 2002-06-20 2002-06-20 Soil conditioner

Publications (1)

Publication Number Publication Date
JP2004018819A true JP2004018819A (en) 2004-01-22

Family

ID=31177235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179961A Withdrawn JP2004018819A (en) 2002-06-20 2002-06-20 Soil conditioner

Country Status (1)

Country Link
JP (1) JP2004018819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587560B2 (en) 2007-11-26 2013-11-19 Japan Display West Inc. Display apparatus
JP2018071870A (en) * 2016-10-27 2018-05-10 オルガノ株式会社 Drying method of ion exchange resin, drying apparatus and strong basic anion exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587560B2 (en) 2007-11-26 2013-11-19 Japan Display West Inc. Display apparatus
JP2018071870A (en) * 2016-10-27 2018-05-10 オルガノ株式会社 Drying method of ion exchange resin, drying apparatus and strong basic anion exchange resin

Similar Documents

Publication Publication Date Title
US6656382B1 (en) Use of layered double hydroxides (LDHs), which reversibly bind (exchange) nitrate
Munson et al. Movement of applied potassium in soils
JPH049482B2 (en)
CN105272720A (en) Compound fertilizer capable of restoring soil and reducing crop cadmium absorption and application
CN101348401B (en) Preparation of calcium ammonium nitrate coated fertilizer
CN107915548A (en) Agricultural water conservation loosens the soil soil conditioner and preparation method thereof
US20030205072A1 (en) Soil improving and fertilising composition
CN111066802A (en) Hymexazol and metalaxyl-M composite granules and preparation method thereof
Choudhary et al. Management of sodic waters in agriculture
Brown et al. Source and placement of zinc and phosphorus for corn (Zea mays L.)
KR20140148030A (en) A Soil Conditioner Comprising Ion Exchange Resin and manufacturing method thereof
US11952319B2 (en) Selecting and applying metal oxides and clays for plant growth
JP2004018819A (en) Soil conditioner
JPH0823013B2 (en) Soil amendment activator and method for producing the same
CA2382856A1 (en) Improvements in and relating to fertilisers
Mortvedt Crop response to applied zinc in ammoniated phosphate fertilizers
JP2000044376A (en) Fertilizer sensitive to acidification of soil, and its production
Ravikovitch Effects of brackish irrigation water and fertilizers on millet and corn
CN1371345A (en) Fertilizers containing ammonium thiosulfate
KR101376192B1 (en) Bed soil for horticultural purpose using the illite and method of manufacturing the same
GIANNOULIS et al. The use of urease inhibitor fertilizers (Agrotain) and their effect on cereal crops and cotton yield
CN109467489A (en) A kind of rice field ammonia volatilization discharge-reducing method based on clinoptilolite
JP3004630B1 (en) Soil disease control materials
US20240199503A1 (en) Selecting and applying metal oxides and clays for plant growth
JP3005439B2 (en) Seedling cultivation soil and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906