JP2004018799A - Heat insulation material for building material and manufacturing process for it - Google Patents

Heat insulation material for building material and manufacturing process for it Download PDF

Info

Publication number
JP2004018799A
JP2004018799A JP2002179392A JP2002179392A JP2004018799A JP 2004018799 A JP2004018799 A JP 2004018799A JP 2002179392 A JP2002179392 A JP 2002179392A JP 2002179392 A JP2002179392 A JP 2002179392A JP 2004018799 A JP2004018799 A JP 2004018799A
Authority
JP
Japan
Prior art keywords
starch
heat insulating
insulating material
building materials
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002179392A
Other languages
Japanese (ja)
Inventor
Takashi Ueda
上田 隆
Shigeki Kio
木尾 茂樹
Shinichi Kimura
木村 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUJO LUMBER CO Ltd
Nippon Starch Chemical Co Ltd
Original Assignee
JUJO LUMBER CO Ltd
Nippon Starch Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUJO LUMBER CO Ltd, Nippon Starch Chemical Co Ltd filed Critical JUJO LUMBER CO Ltd
Priority to JP2002179392A priority Critical patent/JP2004018799A/en
Publication of JP2004018799A publication Critical patent/JP2004018799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulation material for a building material that solves the problem of safety in construction, eliminates effects of sick-house and the like, is biodegradable and has no effect on the human body. <P>SOLUTION: A wall material, which is strong and has a high degree of thermal insulation and freedom of forming, is manufactured by preparing expanded beads mainly comprising wood pulp and starch which are natural substances being biodegradable and having no effect on the human body through an extruder and heat-bonding them with a hot-melt type adhesive by microwave heating and/or induction heating in a time as short as 1-3 min. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は建築及び自動車等の乗り物に使用する断熱材に関する。さらに詳しくは生分解性を有し人体に影響のない天然物である木材パルプ、植物性デンプンを主体とした発泡ビーズを調製しこれを1分〜3分の短時間で強固な硬度の断熱性を持つ成形の自由度の高い壁材、そしてこれを製造する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、省エネルギーの観点から住宅の保温性を改善するために壁材、天井、及び床に空気の断熱層を持つ住宅が増えてきた。これらの断熱材は、通常、空気層を保つ綿状のガラス繊維や石綿やセルロース綿又は石油系の発泡体が使用される。ガラス繊維、石綿(ロックウール)は、本質的に発ガン性の危険を持つ。(『せきめん読本』(社)日本石綿協会編)石油系発泡材としては、ポリスチレン発泡体、ポリウレタン発泡体、ポリエチレン発泡体、ポリエチレンテレフタレート発泡体が使用される。ポリスチレン発泡体は発泡後少量のモノマーが残り、発ガン性を示す。IARC(国際がん研究機関)はスチレンモノマーを2B(人に対し発ガン性の可能性が有る物質)と指定している。ポリウレタン発泡体は燃えると有害なガスが発生する。そのモノマーはIARCで3(人に対し発ガン性を評価するには十分な証拠が得られていない物質)である。モノマー(イソシアネート)は容易に加水分解されるが、分解生成物である芳香族ジアミンはACGIH(米国産業専門家会議)評価でA2(人に対する発ガン性が、限られた疫学調査又は動物実験にて疑われる物質)である。ポリエチレン発泡体、ポリエチレンテレフタレート発泡体は今のところ発ガン性の報告はないが生分解されないため、廃棄されると分解されずゴミとして永久に残る。またガラスウールの熱伝導率 0.043kcal/mh℃に比較し、ポリエチレン発泡体は0.035kcal/mh℃、ポリエチレンテレフタレート発泡体は0.033kcal/mh℃と低い値である。また熱により容易に変形するためこの断熱性が変化する可能性がある。
【0003】
そしてこれらの断熱材を施工するには壁や天井裏等の狭い場所に綿状物質を接着剤と共に吹き込み、接着させる必要がある。その際、作業員は労働災害や健康のためマスクや防塵のための重装備をする必要がある。また、施工後も断熱材のモノマーや接着剤が部屋の中にこもり、シックハウス症候群の原因をつくっている。これらの課題を解決するために、一部(特願2000−289590号公報)多孔質の炭をこれまでの断熱材に混合しモノマーガスや接着剤のアルデヒド等を吸着する試みもなされているが本質的には解決していない。また、発泡プラスチックは引火性が大きく施工現場の火災の原因となり易い。
【0004】
上記の課題を解決するためおよび古紙の供給が過多でありその用途開発のために、パルプの発泡ビーズを用いる方法が検討されている。例えば、特許第3240676号公報、特許第3240664号公報には、パルプを増粘剤と共に分解型発泡剤の存在下で加熱発泡させ同時に接着剤で接着成形する方法が記載されている。この方法は、発泡を開始させるために加熱温度が180〜200℃と高くパルプ及び増粘剤を劣化させる。また、加熱が枠型の外部よりなされるため建材など比較的大きな成型物を得ようとした場合は、内部まで充分な熱が行き届かないという問題点がある。特開2000−248106号公報に少なくとも澱粉を含む発泡ビーズの表面に有機溶媒を内包したマイクロカプセルを含む熱可塑性樹脂層を設けたものを加熱発泡させ接着成形する方法が記載されている。この方法は、前述の2つの公報に記載された課題だけでなく、マイクロカプセルに含まれる有機溶媒が引火性および/または毒性が強いものが使用されているという問題点がある。さらに熱可塑性樹脂層に難生分解性のポリマーが使用されており廃棄の際の分解性に問題がある。上記のように安全かつ生分解性が良好で成型性の良い建材用の断熱材がないのが現状である。
【0005】
【課題を解決するための手段】
本発明者等は、前記課題を解決できる建材用断熱材について鋭意検討した結果、エクストルーダーにより発泡押し出されたセルロースと澱粉を主剤とするビーズを、澱粉を主剤とする加熱溶融型接着剤を用いてマイクロ波加熱および/または誘電加熱により加圧下で加熱成形したものが良好に使用できること見い出し、本発明を完成するに至った。
【0006】
【発明の実施の形態】
本発明に使用出来るビーズは、セルロースおよび澱粉をエクストルーダーで押し出すことで製造される。本発明に使用出来るセルロースはバージンパルプでも良いが、古紙、鋸屑、キノコ培地に使用したオガクスでも良い。これらのセルロースは、単独または混合して使用することが出来る。均一なビーズを得るためにエクストルーダーに供給する際は、微粉末に粉砕されたセルロースが望ましい。粒度は、50〜1000μm(好ましくは100〜500μm)である。セルロースの粉砕方法は、湿式、乾式のどちらでも良い。
【0007】
ビーズを製造するのに使用出来る澱粉は、馬鈴薯澱粉、トウモロコシ澱粉、ワキシトウモロコシ澱粉、タピオカ澱粉、サゴ澱粉、緑豆澱粉等の生澱粉およびそれらをエステル化、エーテル化等の誘導体化したもの、それらをアルファー化したもの、さらにそれらを酸化、酸処理、デキストリン化等の低粘度化したもの等が挙げられる。これらは、単独又は組み合わせて使用することができる。澱粉とセルロースの混合比率は2:8〜9:1(好ましくは3:7〜5:5)である。
【0008】
エクストルーダーのスクリューの形状によっては、滑り剤を添加しても良い。使用可能な滑り剤としては、グリセリン、エチレングライコール等の多価アルコール、ポリビニールアルコール(PVA)、ポリプロピレン(PP)、ポリエチレングライコール(PEG)等のポリマー、アルキルグリコシド、シュガーエステル、グリセリン脂肪酸エステル等である。添加量は1〜30%(好ましくは1〜10%)である。ポリプロピレン等を使用した場合でも、これらは生分解性ではないが、添加量が少量であるために廃棄時に良好な崩壊性を示す。発泡により表面積が広くなり分解しやすくなっていると思われる。これらの原料は、エクストルーダーに供給される前にミキサー等であらかじめ充分に混合しておく。
【0009】
混合された原料は、フィーダー等を用いてエクストルーダーに供給される。スクリューの回転数は、50〜300rpmである。フィード量および回転数は、目的のビーズの大きさにより適時選択される。バレル温度は搬送バレルでは常温、圧縮バレルでは80〜100℃、圧力80Mpa〜200Mpaが良く ダイ温度は100〜200℃(好ましくは120〜160℃)が安定した発泡ビーズを製造できる。ダイ直後にはカッターを備え付けてダイより出た高温の発泡体を高速でカットし、ビーズに整形する。カッターの回転数は膨化径と同じ長さになるように速度を調整しカットする事で球形の発泡ビーズが出来る。
【0010】
エクストルーダーにより調製された発泡ビーズを加熱溶融型接着剤を用いて加圧下で加熱接着成型して建材用断熱材を得る。加熱溶融型接着剤としては、PVA等も使用できるが、生分解性を考慮すれば澱粉系のものが好適に用いられる。水を添加した澱粉および重合度が10以下の糖類が挙げられる。使用できる澱粉としては、馬鈴薯澱粉、トウモロコシ澱粉、ワキシトウモロコシ澱粉、タピオカ澱粉、サゴ澱粉、緑豆澱粉等の生澱粉およびそれらをエステル化、エーテル化等の誘導体化したもの、それらをアルファー化したもの、さらにそれらを酸化、酸処理、デキストリン化等の低粘度化したもの等が挙げられる。これらは、単独又は組み合わせて使用することができる。糊化のし易さおよびペレットに対する流動性から低粘度化したものが好適に用いられる。使用できる重合度が10以下の糖類としては、グルコース、ガラクトース等の単糖類、蔗糖、麦芽糖等のニ糖類、マルトトリオース、マルトテトラオース等のオリゴ糖類が挙げられる。水は澱粉が本来含有する水分にさらに糊化するのに必要な量が加えられる。その添加量としては、澱粉に対して2〜20%、好ましくは5〜15%である。水の添加方法としては、あらかじめビーズに水を含浸させておく、水を澱粉に含浸させてからペレットに分散させる、ペレットに澱粉を分散させてから水を噴霧する等が挙げられる。重合度が10以下の糖類の場合も澱粉と同様に水が加えられる。
【0011】
次に澱粉可塑剤を含有する澱粉系の加熱溶融型接着剤が挙げられる。これは、澱粉を澱粉可塑剤と共に一度糊化したものを噴霧乾燥、凍結乾燥などの乾燥工程を経て粉末状にしたものである。使用できる澱粉原料は生澱粉、各種澱粉誘導体等が挙げられるが、接着剤としたときに加熱溶融時の粘度の低い澱粉が被着体への流動性が良く接着性が良い。低粘度の澱粉としては焙焼デキストリン、酸処理澱粉、酸化澱粉等があげられるがこれに限定されるものではない。
【0012】
澱粉可塑剤としては、澱粉を糊化出来、かつ糊化物に可塑性を付与できるものであれば特に制限はなく、たとえば尿素類、チオ尿素、グアニジン類、パラトルエンスルホンアミド、メラミン等や、ポリオール類ではエチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、ヘキサメチレングリコール、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、マンニトール等の多価アルコール類が挙げられる。これらの中では尿素類およびポリグリセリン等が好ましい。
可塑剤の使用量は、澱粉100重量部当たり10〜100重量部の可塑剤を用いることが、澱粉を充分に糊化させ、かつ糊化物に充分な流動性を付与できるという観点から適当である。さらに、好ましくは、澱粉100重量部当たり20〜70重量部である。また、必要に応じてアラビアガム等の水溶性糊剤を添加しても差し支えない。
【0013】
加熱溶融型の接着剤の添加量は、ビーズの表面を覆う程度の量すなわちビーズ重量の1〜5%(好ましくは2〜3%)が好適に用いられる。これらは、粉体の状態で添加される。ビーズが油分を含んでいる場合は、処理なしにまぶせるが、油分がない場合はビーズ表面を軽く水で濡らす等の処理が必要である。
【0014】
加熱は、マイクロ波および/または誘電加熱により行われる。マイクロ波は、実験的には電子レンジを用いて行った。加熱時間は、目的とする大きさ、澱粉可塑剤の有無により異なるが、例えば消費電力800Wで5秒から10分である。5秒以下だと接着が充分でなく、10分以上だと焦げが生じて好ましくない。目安としてビーズ70gの場合には、水を添加した澱粉では3分間、澱粉可塑剤を含む低粘度化澱粉では2分30秒である。澱粉可塑剤を含む方が加熱時間は短く好適である。
誘電加熱は、発泡ビーズに加熱溶融型の接着剤を添加し電極を有するリテイナーにいれ、これに電流を流す。電気が流れる間、発熱し加熱溶融型の接着剤が溶融し接着が開始する。水分が蒸発すると電流が流れなくなる。電流計を用いて電流が流れなくなったところで通電を終了する。使用する電流は商用で使用される100V、50/60Hzのものでよい。
【0015】
リテイナーとしては、任意の形状および大きさのものが使用可能である。材質は、マイクロ波加熱が可能なものであれば特に制限はないが、例えば、ポリプロピレン等の合成樹脂、木材、厚紙およびセラミックス等が挙げられる。接着を強固にするために蓋などで簡易に加圧しても良い。また、リテイナーからの脱着を容易にするためシリコン層等の離形層をもうけても良い。また、水を添加した場合には、蒸気を抜くための小孔を開けておいても良い。
誘電加熱の場合は、プラスチック、セラミックス等の絶縁性の高い材質を用いる。また、両端に電極を設けておく必要がある。
【0016】
以下、本発明を実施例にて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0017】
実施例1
〔ビーズの調製〕
各セルロース原料を粉砕機を用いて100〜300μmに調整した。ミキサーを用いてセルロースおよび澱粉、必要ならば滑り剤を混合した。これを下記の条件で押し出し発泡させ高速カッターで切断してビーズを得た。
〔発泡条件〕
エクストルーダー:スエヒロEPM製 アルファー100
原料供給量:150kg/hr
温度条件:送りバレル 50℃、加熱バレル 80℃、加熱ダイ 120℃
スクリューパターン:all forward 組
加水量:2L/hr
バレルリード:送りバレル L/D80 圧縮バレル L/D50、 L/D40、 L/D30
加圧方式:順送り加圧 ダイ圧力 120ba ダイ孔径 3mm 発泡長さ 平均8mm(カッターの回転スピードにて調整した。)
スクリュー回転数:120rpm
【0018】
表1に嵩密度、成形適性、発泡の状態を示した。なお、表中における記載については以下の通りである。
HP化:ヒドロキシプロピルエーテル化、OSA化:オクテニルコハク酸エステル化、ハイアミ:ハイアミロースコーンスターチ、モノグリ:グリセリンモノステアレート。
成型適性については以下の通りである。
圧縮する際割れる:×、部分的に割れる:△、30%圧縮しても割れない:○、50%圧縮可能:◎。
【0019】
【表1】

Figure 2004018799
【0020】
表1より澱粉単品の添加ではアラレ状の堅い発泡体になるが、これにグリセリンやPEG、PP等の滑り剤を入れると腰のある圧縮しても壊れないビーズが得られる。滑剤の発泡効果をPPで確認した。PPは生分解緩衝剤に多用されている。使用した結果が8、9である。澱粉を減らしPPを多量に添加しても発泡しないことがわかる。この結果澱粉を約30%添加すれば発泡し軽いビーズが得られる。すなわちセルロース澱粉混合物を用いたビーズには最低30%の澱粉が必要なことが解る。
【0021】
〔断熱材の調製〕
参考例1
酸化澱粉200質量部に尿素60質量部、ポリグリセリン#310(阪本薬品工業(株)製)10質量部および水880質量部を加え攪拌した。80〜95℃でスラリーが完全に糊になるまで加熱した。糊液を60℃で保温しながらスプレー乾燥機を用いて噴霧乾燥して粉末加熱溶融型接着剤を得た。
参考例2
尿素の代わりに炭酸グアニジンを使用する以外は、参考例1と同様にして粉末加熱溶融型接着剤を得た。
【0022】
実施例2
実施例1で調製されたビーズ70gに水を5〜7g噴霧し吸着させた。これに表2記載の各種澱粉を2.1g粉末で添加混合し1/5の量をリテイナー(木製120×38×20mm)に入れた。厚み方向に30%圧縮されるように蓋をして電子レンジを用いて800Wで150秒間加熱し、室温まで冷却後リテイナーから取り出し成型物を得た。
【0023】
実施例3
参考例1および参考例2により得られた粉末加熱溶融型接着剤を用いて加熱時間を120秒間とする以外は実施例2と同様にして成型物を得た。
【0024】
実施例4
澱粉2.1gの代わりに蔗糖2.5gを用いる以外は実施例2と同様にして成型物を得た。
【0025】
実施例5
PVA(URM−10M ユニチカ(株)製)を用いる以外は実施例3と同様にして成型物を得た。
【0026】
実施例6
噴霧する水の量を0.7gにする以外は、実施例3と同様にして成型物を得た。
【0027】
比較例1
噴霧する水の量を0.7gにする以外は、実施例2と同様に成型したが、リテイナーから取り出す際に崩れた。
【0028】
実施例7
実施例1で調製されたビーズ70gに水を5〜7g噴霧し吸着させた。これに表2記載の各種澱粉を2.1g粉末で添加混合し絶縁性リテイナー(120×38×20mm)に入れ上下をチタン電極で厚み方向に30%圧縮されるように蓋をした。家庭用の100V、50Hzの交流電流を直接電極につなぎ通電した。通電は電流計を用いて電流が流れなくなるまで行った。室温まで冷却後リテイナーから取り出し成型物を得た。
【0029】
実施例8
参考例1および参考例2により得られた粉末加熱溶融型接着剤を用いる以外は実施例7と同様にして成型物を得た。
【0030】
実施例9
澱粉2.1gの代わりに蔗糖2.5gを用いる以外は実施例7と同様にして成型物を得た。
【0031】
実施例10
PVA(URM―10M ユニチカ(株)製)を用いる以外は実施例7と同様にして成型物を得た。
【0032】
実施例11
噴霧する水の量を0.7gにする以外は、実施例8と同様にして成型物を得た。
【0033】
比較例2
噴霧する水の量を0.7gにする以外は、実施例7と同様に成型したが、リテイナーから取り出す際に崩れた。
【0034】
実施例12
実施例2〜11で得られた成型物について曲げ試験を行い、5回平均の結果を表2に示した。曲げ試験条件は、支点間距離が60mm、クロスヘッド移動速度が50mm/minであった。
【0035】
実施例13
実施例2〜11で得られた成型物について熱伝導率をJIS K6900により測定し表2に示した。
【0036】
【表2】
Figure 2004018799
【0037】
表2よりエクストルーダーにより発泡押し出されたセルロースと澱粉を主剤とするビーズを、澱粉を主剤とする加熱溶融型接着剤を用いてマイクロ波加熱および/または誘電加熱により加圧下で加熱成形したものが充分な強度を有し、住宅用ガラス繊維の熱伝導率は0.03〜0.04kcal/mh℃であることからこれとほぼ同程度の断熱性を示していることがわかる。充分に建材用断熱材として使用できることがわかった。
【0038】
【発明の効果】
以上のように、本発明の建材用断熱材は、施工時の有害性もなく廃棄時には天然物を主剤としているので生分解性も良好である。成形に必要な加熱時間も比較的短時間である。強度、断熱性も充分に使用できる範囲である。また、古紙も使用できるので古紙リサイクルにも有効である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat insulating material used for vehicles such as buildings and automobiles. More specifically, wood pulp, which is a natural product that is biodegradable and has no effect on the human body, is prepared from foamed beads mainly composed of vegetable starch. The present invention relates to a wall material having a high degree of freedom of molding having a shape, and a method of manufacturing the same.
[0002]
Problems to be solved by the prior art and the invention
In recent years, from the viewpoint of energy saving, in order to improve the heat insulation of the house, the number of houses having an air insulating layer on the wall material, ceiling, and floor has increased. These heat insulating materials are usually made of flocculent glass fiber, asbestos, cellulosic cotton or petroleum-based foam that maintains an air layer. Fiberglass, asbestos (rockwool), has an inherent carcinogenic risk. ("Sekimen Yomihon" (edited by Japan Asbestos Association)) As the petroleum-based foam, polystyrene foam, polyurethane foam, polyethylene foam, and polyethylene terephthalate foam are used. The polystyrene foam has a small amount of monomer remaining after foaming and exhibits carcinogenicity. The IARC (International Agency for Research on Cancer) has designated styrene monomer as 2B (a substance that has potential carcinogenicity to humans). Polyurethane foams emit harmful gases when burned. The monomer is 3 in IARC (a substance for which sufficient evidence has not been obtained to evaluate carcinogenicity in humans). Although the monomer (isocyanate) is easily hydrolyzed, the degradation product, aromatic diamine, is evaluated as A2 (according to ACGIH (American Association of Industry Experts)). Suspected substance). Polyethylene foams and polyethylene terephthalate foams have not been reported to be carcinogenic at present, but are not biodegradable, so they do not decompose when discarded and remain permanently as waste. Further, compared to the thermal conductivity of glass wool of 0.043 kcal / mh ° C., the polyethylene foam has a low value of 0.035 kcal / mh ° C. and the polyethylene terephthalate foam has a low value of 0.033 kcal / mh ° C. Further, the heat insulating property may be changed because the heat is easily deformed by heat.
[0003]
In order to construct these heat insulating materials, it is necessary to blow a cotton-like substance together with an adhesive into a narrow place such as a wall or a space above a ceiling and bond them. At that time, workers need to wear masks and dustproof heavy equipment for occupational accidents and health. In addition, even after the construction, the monomer and adhesive of the heat insulating material remain in the room, creating the cause of sick house syndrome. In order to solve these problems, some attempts have been made to mix a part of porous charcoal (Japanese Patent Application No. 2000-289590) with a conventional heat insulating material to adsorb monomer gas and aldehyde as an adhesive. Essentially not resolved. In addition, foamed plastic has a high flammability and is likely to cause a fire at a construction site.
[0004]
In order to solve the above-mentioned problems and to supply waste paper excessively and to develop uses thereof, a method using foamed beads of pulp is being studied. For example, Japanese Patent Nos. 3,240,676 and 3,240,664 describe a method in which pulp is heated and foamed together with a thickening agent in the presence of a decomposable foaming agent, and simultaneously bonded and formed with an adhesive. In this method, the heating temperature is as high as 180 to 200 ° C. to start foaming, and deteriorates the pulp and the thickener. Further, since heating is performed from the outside of the frame mold, when a relatively large molded product such as a building material is to be obtained, there is a problem that sufficient heat does not reach the inside. Japanese Patent Application Laid-Open No. 2000-248106 describes a method in which a foamed bead containing at least a starch and a thermoplastic resin layer containing a microcapsule containing an organic solvent is provided on the surface, and then heated and foamed to form an adhesive. This method has not only the problems described in the above two publications but also a problem that the organic solvent contained in the microcapsules has high flammability and / or toxicity. Furthermore, a hardly biodegradable polymer is used for the thermoplastic resin layer, and there is a problem in degradability at the time of disposal. As described above, at present, there is no heat insulating material for building materials that is safe, has good biodegradability, and has good moldability.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a heat insulating material for building materials that can solve the above-mentioned problems, and as a result, using a bead mainly composed of cellulose and starch foamed and extruded by an extruder, using a hot-melt adhesive mainly composed of starch. As a result, it has been found that a material molded by heating under pressure by microwave heating and / or dielectric heating can be used favorably, and the present invention has been completed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The beads that can be used in the present invention are produced by extruding cellulose and starch with an extruder. The cellulose that can be used in the present invention may be virgin pulp, but may also be used paper, sawdust, or ogacus used in a mushroom medium. These celluloses can be used alone or in combination. When supplying to an extruder to obtain uniform beads, cellulose pulverized into fine powder is desirable. The particle size is 50-1000 μm (preferably 100-500 μm). The method of pulverizing cellulose may be either a wet method or a dry method.
[0007]
Starch that can be used to produce beads are potato starch, corn starch, waxy corn starch, tapioca starch, sago starch, raw starch such as mung bean starch, and their derivatized products such as esterification, etherification, etc. And those having a reduced viscosity such as oxidation, acid treatment, dextrin and the like. These can be used alone or in combination. The mixing ratio of starch and cellulose is 2: 8-9: 1 (preferably 3: 7-5: 5).
[0008]
A slipping agent may be added depending on the shape of the extruder screw. Examples of usable slip agents include polyhydric alcohols such as glycerin and ethylene glycol, polymers such as polyvinyl alcohol (PVA), polypropylene (PP) and polyethylene glycol (PEG), alkyl glycosides, sugar esters, and glycerin fatty acid esters. And so on. The addition amount is 1 to 30% (preferably 1 to 10%). Even when polypropylene or the like is used, they are not biodegradable, but show good disintegration at the time of disposal due to the small amount of addition. It seems that foaming increases the surface area and facilitates decomposition. These raw materials are sufficiently mixed in advance by a mixer or the like before being supplied to the extruder.
[0009]
The mixed raw materials are supplied to an extruder using a feeder or the like. The rotation speed of the screw is 50 to 300 rpm. The feed amount and the number of rotations are appropriately selected depending on the size of the target beads. The barrel temperature is usually room temperature for the transport barrel, 80 to 100 ° C. for the compression barrel, and the pressure is 80 to 200 Mpa. The die temperature is 100 to 200 ° C. (preferably 120 to 160 ° C.). Immediately after the die, a high-temperature foam coming out of the die is cut at high speed with a cutter, and shaped into beads. The rotational speed of the cutter is adjusted to the same length as the expansion diameter, and the speed is adjusted to cut the spherical beads.
[0010]
The foam beads prepared by the extruder are heat-bonded and molded under pressure using a heat-melt adhesive to obtain a heat insulating material for building materials. As the heat-melt adhesive, PVA or the like can be used, but starch-based adhesives are preferably used in consideration of biodegradability. Examples include starch to which water has been added and saccharides having a degree of polymerization of 10 or less. Starches that can be used include potato starch, corn starch, waxy corn starch, tapioca starch, sago starch, raw starch such as mung bean starch, and those obtained by derivatization such as esterification and etherification, and those obtained by pre-gelatinization. And those having reduced viscosity such as oxidation, acid treatment, dextrin and the like. These can be used alone or in combination. What reduced viscosity from the ease of gelatinization and the fluidity with respect to a pellet is used suitably. Examples of the saccharides having a polymerization degree of 10 or less include monosaccharides such as glucose and galactose, disaccharides such as sucrose and maltose, and oligosaccharides such as maltotriose and maltotetraose. Water is added in an amount necessary to further gelatinize the water originally contained in the starch. The amount added is 2 to 20%, preferably 5 to 15%, based on the starch. Examples of the method of adding water include pre-impregnating the beads with water, impregnating the starch with water and then dispersing the pellets, and dispersing the starch in the pellets and spraying water. In the case of a saccharide having a degree of polymerization of 10 or less, water is added as in the case of starch.
[0011]
Next, a starch-based hot-melt adhesive containing a starch plasticizer is exemplified. In this method, starch is gelatinized once together with a starch plasticizer and then powdered through a drying step such as spray drying or freeze drying. Raw starch materials that can be used include raw starch and various starch derivatives. Starch having a low viscosity upon heating and melting when used as an adhesive has good fluidity to an adherend and good adhesion. Examples of the low-viscosity starch include, but are not limited to, roasted dextrin, acid-treated starch, and oxidized starch.
[0012]
The starch plasticizer is not particularly limited as long as it can gelatinize the starch and can impart plasticity to the gelatinized product, and examples thereof include ureas, thioureas, guanidines, paratoluenesulfonamide, melamine, and polyols. Examples include polyhydric alcohols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, hexamethylene glycol, glycerin, diglycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol, and mannitol. Among these, ureas and polyglycerin are preferred.
The amount of the plasticizer to be used is preferably from 10 to 100 parts by weight per 100 parts by weight of starch from the viewpoint that the starch can be sufficiently gelatinized and sufficient fluidity can be imparted to the gelatinized product. . More preferably, it is 20 to 70 parts by weight per 100 parts by weight of starch. If necessary, a water-soluble paste such as gum arabic may be added.
[0013]
The amount of the hot-melt adhesive to be added is such that the surface of the beads is covered, that is, 1 to 5% (preferably 2 to 3%) of the weight of the beads. These are added in a powder state. If the beads contain oil, they can be sprayed without treatment, but if there is no oil, treatment such as lightly wetting the bead surface with water is required.
[0014]
Heating is performed by microwave and / or dielectric heating. Microwaves were experimentally performed using a microwave oven. The heating time varies depending on the target size and the presence or absence of the starch plasticizer, but is, for example, 5 seconds to 10 minutes at 800 W of power consumption. If it is less than 5 seconds, the adhesion is not sufficient, and if it is more than 10 minutes, scorching occurs, which is not preferable. As a guide, in the case of 70 g of beads, the time is 3 minutes for starch to which water is added, and 2 minutes and 30 seconds for low-viscosity starch containing a starch plasticizer. It is preferable to include a starch plasticizer because the heating time is short.
In the dielectric heating, an adhesive of a heat melting type is added to the foamed beads, and the foamed beads are placed in a retainer having electrodes, and an electric current is supplied to the retainer. During the flow of electricity, heat is generated and the heat-melt adhesive melts to start bonding. When the water evaporates, the current stops flowing. The energization is terminated when the current stops flowing using the ammeter. The electric current used may be 100 V, 50/60 Hz used in commerce.
[0015]
Any shape and size can be used as the retainer. The material is not particularly limited as long as it can be heated by microwaves. Examples thereof include synthetic resins such as polypropylene, wood, cardboard, and ceramics. The pressure may be simply applied with a lid or the like to strengthen the adhesion. In addition, a release layer such as a silicon layer may be provided to facilitate detachment from the retainer. When water is added, a small hole for removing steam may be opened.
In the case of dielectric heating, a material having high insulation properties such as plastics and ceramics is used. In addition, it is necessary to provide electrodes at both ends.
[0016]
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0017]
Example 1
(Preparation of beads)
Each cellulose raw material was adjusted to 100 to 300 μm using a crusher. The cellulose and starch and, if necessary, the slip agent were mixed using a mixer. This was extruded and foamed under the following conditions, and cut with a high-speed cutter to obtain beads.
(Foaming conditions)
Extruder: Suehiro EPM Alpha 100
Raw material supply: 150 kg / hr
Temperature conditions: feed barrel 50 ° C, heating barrel 80 ° C, heating die 120 ° C
Screw pattern: all forward Combined water content: 2 L / hr
Barrel lead: Feed barrel L / D80 Compression barrel L / D50, L / D40, L / D30
Pressurization method: progressive press die pressure 120ba die hole diameter 3mm foaming length average 8mm (adjusted by the rotation speed of cutter)
Screw rotation speed: 120 rpm
[0018]
Table 1 shows the bulk density, moldability, and foamed state. The description in the table is as follows.
HP conversion: hydroxypropyl etherification, OSA conversion: octenyl succinate esterification, hiami: high amylose corn starch, monoglyc: glycerin monostearate.
The molding suitability is as follows.
Cracking during compression: ×, partial cracking: Δ, no cracking even after 30% compression: 、, 50% compression possible: ◎.
[0019]
[Table 1]
Figure 2004018799
[0020]
Table 1 shows that the addition of starch alone results in a hard foam in the form of an arale, but when a slipping agent such as glycerin, PEG, or PP is added to the foam, beads that do not break even when compressed firmly can be obtained. The foaming effect of the lubricant was confirmed by PP. PP is frequently used in biodegradation buffers. The results used are 8,9. It can be seen that foaming does not occur even when starch is reduced and PP is added in a large amount. As a result, if about 30% of starch is added, foamed and light beads can be obtained. That is, it is understood that at least 30% of starch is required for beads using the cellulose starch mixture.
[0021]
(Preparation of heat insulating material)
Reference Example 1
To 200 parts by mass of oxidized starch, 60 parts by mass of urea, 10 parts by mass of polyglycerin # 310 (manufactured by Sakamoto Pharmaceutical Co., Ltd.) and 880 parts by mass of water were added and stirred. Heat at 80-95 ° C. until the slurry is completely glued. The paste liquid was spray-dried using a spray drier while maintaining the temperature at 60 ° C. to obtain a powder heat-melt adhesive.
Reference Example 2
A powder heat-melt adhesive was obtained in the same manner as in Reference Example 1 except that guanidine carbonate was used instead of urea.
[0022]
Example 2
5 to 7 g of water was sprayed onto 70 g of the beads prepared in Example 1 and adsorbed. Each of the starches shown in Table 2 was added and mixed in 2.1 g powder, and 1/5 was put in a retainer (wooden 120 × 38 × 20 mm). It was heated at 800 W for 150 seconds using a microwave oven, cooled to room temperature, and taken out of the retainer to obtain a molded product.
[0023]
Example 3
A molded product was obtained in the same manner as in Example 2 except that the heating time was set to 120 seconds using the powder heat-melt adhesive obtained in Reference Example 1 and Reference Example 2.
[0024]
Example 4
A molded product was obtained in the same manner as in Example 2 except that 2.5 g of sucrose was used instead of 2.1 g of starch.
[0025]
Example 5
A molded product was obtained in the same manner as in Example 3 except that PVA (URM-10M manufactured by Unitika Ltd.) was used.
[0026]
Example 6
A molded product was obtained in the same manner as in Example 3, except that the amount of water to be sprayed was 0.7 g.
[0027]
Comparative Example 1
Molding was carried out in the same manner as in Example 2 except that the amount of water to be sprayed was 0.7 g, but it collapsed when it was taken out of the retainer.
[0028]
Example 7
5 to 7 g of water was sprayed onto 70 g of the beads prepared in Example 1 and adsorbed. Each of the various starches shown in Table 2 was added and mixed in 2.1 g powder, put into an insulating retainer (120 × 38 × 20 mm), and the top and bottom were covered with titanium electrodes so as to be compressed by 30% in the thickness direction. An AC current of 100 V, 50 Hz for home use was directly connected to the electrodes and energized. Energization was performed using an ammeter until the current stopped flowing. After cooling to room temperature, it was taken out of the retainer to obtain a molded product.
[0029]
Example 8
A molded product was obtained in the same manner as in Example 7, except that the powder heat-melt adhesive obtained in Reference Examples 1 and 2 was used.
[0030]
Example 9
A molded product was obtained in the same manner as in Example 7, except that 2.5 g of sucrose was used instead of 2.1 g of starch.
[0031]
Example 10
A molded product was obtained in the same manner as in Example 7, except that PVA (URM-10M manufactured by Unitika Ltd.) was used.
[0032]
Example 11
A molded product was obtained in the same manner as in Example 8, except that the amount of water to be sprayed was 0.7 g.
[0033]
Comparative Example 2
Molding was carried out in the same manner as in Example 7, except that the amount of water to be sprayed was 0.7 g, but it collapsed when it was taken out of the retainer.
[0034]
Example 12
Bending tests were performed on the molded products obtained in Examples 2 to 11, and the results of averaging five times are shown in Table 2. The bending test conditions were that the distance between the fulcrums was 60 mm and the crosshead moving speed was 50 mm / min.
[0035]
Example 13
The thermal conductivity of the molded products obtained in Examples 2 to 11 was measured according to JIS K6900, and is shown in Table 2.
[0036]
[Table 2]
Figure 2004018799
[0037]
Table 2 shows that beads extruded and extruded with an extruder and formed mainly of cellulose and starch are heat-molded under pressure by microwave heating and / or dielectric heating using a hot-melt adhesive mainly made of starch. It has sufficient strength, and the heat conductivity of the glass fiber for a house is 0.03 to 0.04 kcal / mh ° C., which indicates that the glass fiber shows almost the same heat insulation. It was found that it can be sufficiently used as a heat insulating material for building materials.
[0038]
【The invention's effect】
As described above, the heat insulating material for building materials of the present invention has no harm at the time of construction and has good biodegradability because it is mainly composed of natural products at the time of disposal. The heating time required for molding is also relatively short. The strength and the heat insulation are also within the range where they can be used sufficiently. Also, since used paper can be used, it is also effective for used paper recycling.

Claims (14)

エクストルーダーを用いて発泡成形した生分解性ビーズを2次的に接着することを特徴とする建材用断熱材。A heat insulating material for building materials, characterized by secondary bonding of biodegradable beads foamed and formed using an extruder. 該生分解性発泡ビーズがセルロースとデンプンを主成分とする発泡体である特許請求項1記載の建材用断熱材。The heat insulating material for building materials according to claim 1, wherein the biodegradable foam beads are a foam mainly composed of cellulose and starch. 加熱溶融型接着剤を用いて加熱接着することを特徴とする請求項1記載の建材用断熱材。2. The heat insulating material for building materials according to claim 1, wherein the heat bonding is performed by using a heat melting type adhesive. 該接着剤が澱粉に対して水を新たに2〜20%好ましくは5〜15%添加した澱粉である請求項3記載の建材用断熱材。The heat insulating material for building materials according to claim 3, wherein the adhesive is a starch obtained by adding 2 to 20%, preferably 5 to 15% of water to starch. 該接着剤が澱粉可塑剤を含有した低粘度化澱粉である請求項3記載の建材用断熱材。The heat insulating material for building materials according to claim 3, wherein the adhesive is a low-viscosity starch containing a starch plasticizer. 該澱粉可塑剤が尿素・グアニジン類および/または多価アルコール類である請求項5記載の建材用断熱材。The heat insulating material for building materials according to claim 5, wherein the starch plasticizer is urea / guanidine and / or polyhydric alcohol. 該加熱方法がマイクロ波加熱および/または誘電加熱である請求項3記載の建材用断熱材。The heat insulating material for building materials according to claim 3, wherein the heating method is microwave heating and / or dielectric heating. エクストルーダーを用いて発泡成形した生分解性ビーズを2次的に接着することを特徴とする建材用断熱材の製造方法。A method for producing a heat insulating material for building materials, characterized in that biodegradable beads foam-molded using an extruder are secondarily bonded. 加熱溶融型接着剤を用いて加熱接着することを特徴とする請求項8記載の建材用断熱材の製造方法。The method for producing a heat insulating material for building materials according to claim 8, wherein the heat bonding is performed by using a heat melting type adhesive. 該接着剤が澱粉に対して水を新たに2〜20%好ましくは5〜15%添加した澱粉である請求項9記載の建材用断熱材の製造方法。The method for producing a heat insulating material for building materials according to claim 9, wherein the adhesive is starch obtained by adding 2 to 20%, preferably 5 to 15% of water to starch. 該接着剤が澱粉可塑剤を含有した低粘度化澱粉である請求項9記載の建材用断熱材の製造方法。The method according to claim 9, wherein the adhesive is a low-viscosity starch containing a starch plasticizer. 該澱粉可塑剤が尿素・グアニジン類および/または多価アルコール類である請求項11記載の建材用断熱材の製造方法。The method according to claim 11, wherein the starch plasticizer is a urea / guanidine and / or a polyhydric alcohol. 該加熱方法がマイクロ波加熱および/または誘電加熱である請求項9記載の建材用断熱材の製造方法。The method according to claim 9, wherein the heating method is microwave heating and / or dielectric heating. 加圧できるリテイナーを用いることを特徴とする請求項13記載の建材用断熱材の製造方法。The method according to claim 13, wherein a retainer that can be pressurized is used.
JP2002179392A 2002-06-20 2002-06-20 Heat insulation material for building material and manufacturing process for it Pending JP2004018799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179392A JP2004018799A (en) 2002-06-20 2002-06-20 Heat insulation material for building material and manufacturing process for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179392A JP2004018799A (en) 2002-06-20 2002-06-20 Heat insulation material for building material and manufacturing process for it

Publications (1)

Publication Number Publication Date
JP2004018799A true JP2004018799A (en) 2004-01-22

Family

ID=31176795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179392A Pending JP2004018799A (en) 2002-06-20 2002-06-20 Heat insulation material for building material and manufacturing process for it

Country Status (1)

Country Link
JP (1) JP2004018799A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226898A (en) * 2008-03-25 2009-10-08 Panasonic Electric Works Co Ltd Humidity-adjustable panel
WO2023017842A1 (en) * 2021-08-11 2023-02-16 ソニーグループ株式会社 Packing material and method for producing packing material
WO2024080233A1 (en) * 2022-10-14 2024-04-18 ソニーグループ株式会社 Packing material and method for producing packing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226898A (en) * 2008-03-25 2009-10-08 Panasonic Electric Works Co Ltd Humidity-adjustable panel
WO2023017842A1 (en) * 2021-08-11 2023-02-16 ソニーグループ株式会社 Packing material and method for producing packing material
WO2024080233A1 (en) * 2022-10-14 2024-04-18 ソニーグループ株式会社 Packing material and method for producing packing material

Similar Documents

Publication Publication Date Title
JP2628936B2 (en) Process for producing biologically degradable polymer foams, biologically degradable polymer foams and polymer mixtures suitable for producing said polymer foams
TWI304407B (en) Superabsorbents, preparation thereof and use thereof
CN109312096B (en) Foam compositions comprising polylactic acid polymers, polyvinyl acetate polymers, and plasticizers, articles, and methods of making and using the same
EP0696612A2 (en) Biodegradable foamed articles and process for the preparation thereof
KR20130106397A (en) Improved adhesive having insulative properties
KR101878994B1 (en) Biodegradable pellets foamed by irradiation
CA2313516C (en) Biodegradable mouldings
ITMI940228A1 (en) EXPANDED ITEMS OF BIODEGRADABLE PLASTIC MATERIAL AND PROCEDURE FOR THEIR PREPARATION
WO2009140456A1 (en) Combined boards without corrugated medium having enhanced surface properties
WO1992008759A1 (en) Expandable and expanded (foamed) solid products
CN111491992A (en) Composite particles, compositions and foam compositions comprising composite particles, articles, and methods of making and using the same
CN108676227A (en) A kind of energy-conserving fire retardant Wood plastic wall board and preparation method thereof
JP2004018799A (en) Heat insulation material for building material and manufacturing process for it
CN105153473A (en) Biomass-based sponge-like foaming filler and preparation method thereof
Mitrus Starch protective loose-fill foams
CA2231229C (en) Biodegradable molded packing
JP7141820B2 (en) Resin foam composite plate and structure including the same
JP2005029603A (en) Foamed molded article and method for producing the same
JP5102241B2 (en) Pellet for foam and manufacturing method thereof
NL1006079C2 (en) Biodegradable foam moldings of thermoplastic starch.
KR100514054B1 (en) A Product made from starch foam and adhesive mixture and its preparing method
JP4277347B2 (en) Pulp molding
JP2003276094A (en) Foam molding and production device therefor
JP2000248106A (en) Starch molding and its production
JP3965532B2 (en) Pulp beads and pulp moldings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061218