JP2004018670A - Vibration-damping coating material excellent in vibration-damping and moldability - Google Patents

Vibration-damping coating material excellent in vibration-damping and moldability Download PDF

Info

Publication number
JP2004018670A
JP2004018670A JP2002175302A JP2002175302A JP2004018670A JP 2004018670 A JP2004018670 A JP 2004018670A JP 2002175302 A JP2002175302 A JP 2002175302A JP 2002175302 A JP2002175302 A JP 2002175302A JP 2004018670 A JP2004018670 A JP 2004018670A
Authority
JP
Japan
Prior art keywords
vibration
particle size
damping
vibration damping
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175302A
Other languages
Japanese (ja)
Inventor
Bo Gushun
具舜 謨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRISM KK
Original Assignee
PRISM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRISM KK filed Critical PRISM KK
Priority to JP2002175302A priority Critical patent/JP2004018670A/en
Publication of JP2004018670A publication Critical patent/JP2004018670A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-damping coating material having effects of being environmentally-friendly because of containing none of organic solvent, being easy to carry out spray working although it has high viscosity, having good adhesivity with a metal face, being capable of exhibiting vibration-damping ability in a wide range of frequencies and minimizing the temperature dependency, and having an excellent moldability. <P>SOLUTION: The vibration-damping coating material is produced by filling 50-55 wt% of an inorganic filler, the whole particle size distribution of which is adjusted to 1-100 μm by controlling the average particle size and the void ratio of which is minimized, into a mixture comprising acrylic emulsions having glass transition temperature of -25 to 25°C in single or mixed with each other, a resin, a silane coupling agent, and a polymer additive such as polyvinyl alcohol. The vibration-damping coating material thus produced is a one-pack type aqueous coating material comprised of acrylic emulsions and a plate-shaped filler which satisfies both of a vibration-damping property and a sound-proofing property at the same time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野及びその分野の従来技術】
本発明は制振性と成形性に優れた制振塗料に関し、より詳しくは材料の伸縮変形により振動エネルギを熱エネルギに変換して振動を減衰し、音の発生を低減することができる制振塗料に関する。
最近、機械と電子製品の精密性が高くなり、作業者もより良い環境で働くことを望んでいるので、騒音を除去する方法に対する技術等が多く発展するようになった。日本のように狭い地域で多くの人たちと多くの機械がある場合には騒音の除去が必須であると言える。特に、機械的な強度を高めるために使用された金属物質等が振動と騒音の原因となっているので、かかる金属物質らの騒音を減らすことが関鍵であるといえる。
【0002】
振動を制御して騒音を減らす方法は、騒音を作り出す要素の振動エネルギを減らすことで、振動の速度を調節したり波動の干渉を用いたエネルギの相殺及び他のエネルギへの転換を通じて音の放出量が減るようにすることをいう。
このような目的のために使用される物質が制振物質であり、これを用いた騒音低減の方法は二つの類型に分けることができる。まず、表面に付着された状態に粘弾性の係数を高めて固形の堅い物体から生成される振動を相殺させる方法がある。他の一つの方法は二つの複合構造を有するようにすることで、鉄板やステンレスホイルの間に粘弾性の高分子で詰めて振動を取ることである。これを通常サンドイッチ形と呼ぶ。このようなサンドイッチ形は中間に詰められているレジンの粘弾性の特性によって振動を取る特性が決められると見られる。このような振動を取る特性は損失係数が最大値を有する温度周りで一番大きいのが一般である。
本発明と連関された分野として表面に処理し制振効果を発揮する材料としては、日本国特許出願公開第26492/1978号に開示されているビニルポリマーとセメント、球形状の砂(spheral sand)に形成された制振剤があるが、この材料は制振特性もよくないのみならず、製品として長く使用することもできず、常用化には更に問題が多いものと知られている。
日本国特許出願公開第52545/1978号には水溶性高分子量の高分子物質を用いたエマルジョン形として2次転移温度が0℃〜100℃に非常に狭い温度範囲で制振特性に優れた制振剤が開示されている。しかし、この制振剤もまた上記温度範囲を外れるようになると制振特性が急激に劣るので使用するのに多くの問題があった。
日本国特許出願公開第133238/1978号には焼却炉の灰、マイカ、有機・無機繊維の塗膜等を添加物として用いたレジンやゴム製品が開示されている。しかし、その製品の価格を低くすることができるが、製品の品質の均一性を維持することができないのみならず、制振特性と耐湿性が低くて常用化できない問題点があった。
日本国特許出願公開第32538/1979号にはマイカ粉末とシリカ砂を充填剤として使用した製品が開示されており、日本国特許出願公開第36341/1979号には水に分散されるレジンとポスペートの工程で生産されるスラジを用い、一種のフィルタを使用した製品が開示されている。しかし、この二つの特許文献に開示された製品等は何れも防振特性を表わす温度範囲が狭いという問題点があった。
米国特許第4,391,857号にはポリビニルアセテートエマルジョンとポリエチレン粉末、細かい無機物粉を充填剤として使用した製品が開示されているが、その製品は広い温度範囲に亘っても制振特性を発揮するというが、制振特性の経時変化が大きく、長期的な使用のため安定性が劣る問題点があった。
なお、米国特許第5,411,810号は低いTgと高いTgを有する水系形レジンを用いて制振特性の変化を供試したが、エチレングリコールを使用することによって防水特性がよくなく、制振剤の塗布後、乾燥及び硬化にかかる時間が長くなる問題点があった。
【0003】
【発明が達成しようとする技術的課題】
本発明は上述したような従来の技術が有する諸般の問題点を鑑みてこれを解決するために創出したもので、ガラス転移温度が−25℃〜25℃のアクリルエマルジョンを配合して基本樹脂とし、これに粒度分布が1〜100μmの無機充填物を50%以上充填して広い周波数と温度範囲で制振性能を発揮し、接着性、耐湿及び耐熱性が強く、成形時作業が容易な制振塗料を提供することにその目的がある。
本発明の上記目的は、ガラス転移温度が−25℃〜25℃の範囲にあるアクリルエマルジョンを単独又は互いに混合し、樹脂、シランカップリング剤、ポリビニルアルコール等の高分子添加剤と、平均粒度を調節して全体粒度分布を1〜100μmに合わせ、空隙率を最小とした無機充填物を50〜55重量%に充填して製造される制振性と成形性に優れた制振塗料を提供することによって達成される。
【0004】
【発明の構成】
以下、本発明の構成を更に詳細に説明する。
機械構造物において振動現像は、大抵の機械の寿命を短くするとか、機能を害する場合が多い。よって、機械の振動を抑制し、発生された振動は速く消滅させることが望ましい。また、生活環境の快適性に関わる求めが強くなることによって各分野において制振材料に関する関心を高められてきている。このような制振材料の一つとして使用される制振塗料は鉄道車両、自動車、エレベータ等に塗装されて振動による騒音を抑制する。
【0005】
制振材料には塗料を始めシート、制振板、ばね等、様々な種類があるが、この中でも塗料は他のものに比べて低廉な費用と便利な方法で効果を得ることができるという特徴がある。特に、シートや板の材料として使用されるゴムやアスファルト等は制振性能を発揮する温度範囲が狭く、外部環境により容易に老化されるという短所があり、凹凸や屈曲面には施工が不可能であるため、その使用範囲が非常に制限的である。従って、耐水性、耐熱性を増加させ、広い周波数及び温度範囲で制振性能を発揮しうる塗料の開発が急がれる実情である。塗料が制振性能を発揮するためには樹脂のガラス転移温度、樹脂と無機充填物の比率、無機充填物粒子の形態及び大きさ等が考慮されて適正に設計されなければならない。樹脂のガラス転移温度は制振性能を発揮する温度範囲を決める。従って、樹脂のガラス転移温度が常温に近いほど常温での制振性能を極大化することができる。しかし、樹脂のガラス転移温度が高くなると常温でこの樹脂はガラス状で非常に弱くて外部の衝撃により容易に砕け、低い接着強度と高い収縮率により容易に割れる反面、ガラス転移温度が低い場合には接着強度も優れ、非常に柔軟であるが、満足するほどの制振性能を表わすことはできない。即ち、制振性能のためには樹脂のガラス転移温度が高くなければならず、成形性のためにはガラス転移温度が低くなければならない。従って、この両者を何れも折衝できる、即ち、ガラス転移温度が高いながらも強度及び接着力に優れた成形性を満足させる樹脂の設計が求められる。このような樹脂と無機充填率の比率が適切である際、その制振性能は極大化される。
【0006】
無機充填物もまたその粒子大きさが小さすぎると(1μm以下)、塗料の流動性が劣って成形性が不良になり、大きすぎる場合(1mm以上)スプレイ作業時、ノズル孔を塞ぐ。よって、無機充填物の粒子大きさもまた適切でなければならず、一般的に粒子形態は板状の物質が制振効果があるものと知られているが、表面硬度が非常に低いのが短所である。
【0007】
本発明はガラス転移温度の高い樹脂が有している短所をガラス転移温度の低い樹脂で相互補完し、これらの間の相容性のためにアクリルスチレン系の樹脂のみを使用した。シランカップリング剤と水溶性高分子物質(ポリピロール、ポリビニルアセテート、ポリビニルアルコール、ポリスルポネート、ポリイミドのうち、2〜3つを選択的に添加)を一定量添加して接着力を強化し、乾燥時発生する樹脂の収縮を防止した。また、無機充填物の大きさを1〜100μmとし、この範囲で空隙率を最小化するために各充填物の平均粒度を異にしてこれを組み合わせた。充填剤の粒度分布のみならず充填剤の構造的な特性が板状に局限して防音特性まで向上できるようにした。従って、本制振塗料は常温はもとより、それ以上及び以下の温度で広範囲に制振性能を発揮し、接着性、成形性及び強度面て高いガラス転移温度の樹脂が有する短所を完全に解決することができた。本発明で使用された制振材料は経時変化にも安定された特性を示す。また、一定比に配合された無機充填物の自体の空隙率が少ないので制振性能を発揮しうる塗膜の厚さを最小化した。
【0008】
本発明では制振性能と成形性とを同時に満足させるように高い分子量の高分子の添加物を加え、この2つの特性を具現することができるようにした。高い分子量の添加物はエマルジョンと配合することができなければならず、樹脂が堅くて生じる欠陥を取ることができなければならない。様々な種類の添加物が使用され、例として記述されたのはビニルアルコール系の高い分子量の物質を基礎とした。それ以外にもスチレン誘導体のうち、水溶性として高分子量を有する物質及びポリビニルアセテートとアルコールの共重合体、ポリピロールの誘導体として水溶性から合成された物質、水溶性ポリイミドも添加剤として使用した。樹脂の種類によってこれらの添加剤を混ぜて使用したり、単独に一つだけを使用した。
なお、粒度分布を多様に調節して制振特性を有する周波数の領域を広げ、粒度分布の組合せによって成形性及び薄膜塗布時の問題点を除去しつつ、制振特性を示すことができる最小の厚さを薄くする膜を製作することである。本発明では1μmから100μmの粒度分布を有する粒子を組み合わせて上記の特性を示すことができる膜を製作した。また、振動により発生した熱エネルギを迅速に放出して制振性能の極大化はもとより、熱による塗膜の老化を防止することができるように熱伝導度の大きい酸化アルミニウムを5〜10重量部使用した。既存の制振塗料で使用されてきた充填剤であるガラスフラク(glass flake)、ガラスバルーン(glass balloon)、中空型シリカ等は高価でありながら自体の断熱特性のため発生した熱を迅速に放出できなくて塗膜はもとより、機械の寿命まで低下させる危険が大きい。本発明はこのような材料を全く含まないのでより低廉な値段で制振効果を得ることができる特徴がある。
【0009】
一方、高いガラス転移温度の樹脂による接着性の低下を改善するためにシランカップリング剤を使用して接着性を向上させ、無機物と有機物間の化学的結合を誘導し乾燥時発生する欠陥等を最小化した。このシランカップリング剤は2−アミノプロピルトリエトキシシラン(2−aminopropyltriethoxysilane)、3−グリシドキシプロピルトリメトキシシラン(3−glycidoxypropyltrimethoxysilane)を単独に又は互いに混合して使用することができる。塗料の流動性及び乾燥時間を調節してより安定された塗膜を形成することができるよう使用した可塑剤は、一般的に高分子チェーンに自由嵩(free volume)を与えるようになって樹脂のガラス転移温度を減少させる。可塑剤自体のガラス転移温度が低いので、僅かの可塑剤でもガラス転移温度を大きく低下させることができるので、可塑剤の含量は3%以内に制御されなければならない。可塑剤はDBP(dibutyl phthalate)、DOP(dooctyl phthalate)、DEP(diethyl phthalate)、DOA(di−2−ethylhexyladipate)等を使用することができる。一方、樹脂の特性が時間によって変ると、製品としての常用性が劣るようになる。従って、このような経時的変化に鈍感な試料を製作することが本発明の意図した目的である。
【0010】
以下、実施例1〜4及び比較例1〜2を通じて本発明をより詳細に説明するが、本発明はこれらによってそのカテゴリーが限定されることなく多様に変形可能である。
【0011】
実施例1
ガラス転移温度が−50℃であるアクリルエマルジョン28重量%と粒度分布を調節した無機充填物55重量%から構成し、残りの成分らを下記の表1のように組成して本発明の塗料を製造した。
【0012】
実施例2
ガラス転移温度が−25℃であるアクリルエマルジョン28重量%、粒度分布を調節した無機充填物55重量%、高分子添加剤から構成し、残りの成分らを下記の表1のように組成して本発明の塗料を製造した。
【0013】
実施例3
ガラス転移温度が−25℃であるアクリルエマルジョン28重量%と無機充填物55重量%から構成し、残りの成分らを下記の表1のように組成して本発明の塗料を製造した。
【0014】
実施例4
ガラス転移温度が−25℃であるアクリルエマルジョン5重量%、ガラス転移温度が9℃であるアクリルエマルジョン15重量%、ガラス転移温度が25℃であるアクリルエマルジョン10重量%、粒度分布を調節した無機充填物55重量%、シランカップリング剤、高分子添加剤から構成して本発明の塗料を製造した。
【0015】
比較例1
ガラス転移温度が−50℃であるアクリルエマルジョン43重量%と無機充填物35重量%から構成し、残りの成分らを下記の表1のように組成して一般的塗料を製造した。
【0016】
比較例2
ガラス転移温度が−25℃であるアクリルエマルジョン5重量%、ガラス転移温度が9℃であるアクリルエマルジョン15重量%、ガラス転移温度が25℃であるアクリルエマルジョン10重量%、粒度分布を調節した無機充填物55重量%から構成し、残りの成分らを下記の表1のように組成して一般的塗料を製造した。
【0017】
【表1】

Figure 2004018670
【0018】
上記表1のような組成によって製造された各々の塗料の制振性能はModal Methodを用いて評価した。厚さ1mm、幅30mm、長さ330mmの冷間圧延鋼板を塗料試験用の鉄板の製作方法(KSM5000−1111)によって洗浄し、これに各々の塗料を1mm厚さに塗布した後、48時間乾燥し試片を製作した後25℃と50℃で制振性能を測定した。
【0019】
T−peel剥離強度はJIS K−6854を基準として測定した。この際、50mm/minに引張試験をして測定された最大荷重を試片幅25mmたりの最大荷重に換算した。
上記のようにして測定した各々の試験結果を下記の表2に記載した。
【0020】
【表2】
Figure 2004018670
【0021】
上記表2からわかるように、無機充填物の含量を増加させた実施例1は比較例1に比べて内部損失係数の増加があり、各周波数帯において一定な制振性能を表わした。ガラス転移温度が−25℃であるアクリルエマルジョンを使用し、他の組成は実施例1と同じくした実施例2は実施例1に比べて3倍ぐらいの制振効果を発揮した。また、実施例2で充填物のうちマイカ含量を高めた実施例3は寧ろ性能が減少し、実施例2でガラス転移温度が−25℃、9℃、25℃であるアクリルエマルジョンを混合した実施例4は実施例2に比べて制振性能の向上があり、温度による偏差も非常に少なかった。
【0022】
剥離強度の場合、シランカップリング剤と高分子添加剤をともに用いた実施例4は添加剤を全く使用せず、他の組成は同一に組成した比較例2に比べて3倍以上の上昇があったことがわかる。
一方、本発明の制振塗料を製作して製品の表面に塗って2ヶ月経過後、膜の特性を測定したが、制振特性と防水、膜の機械的特性、吸着性等が全て膜を製作した直後と同等な結果を得ることができた。
【0023】
【発明の効果】
以上の説明からわかるように、本発明による制振塗料はアクリルエマルジョンと制振特性及び防音特性を同時に満足させる板状形の充填物から構成された一液形水系塗料であり、有機溶剤を含まなくて環境親和的であり、高粘度でありながらもスプレイ作業が容易であり、また金属面との接着性がよく、広い周波数の範囲で制振能力を発揮するとともに温度依存性を最小化することができる優れた効果を提供する。[0001]
TECHNICAL FIELD OF THE INVENTION AND PRIOR ART IN THE FIELD
The present invention relates to a vibration damping paint having excellent vibration damping properties and moldability, and more particularly, to vibration damping by converting vibration energy into heat energy by expansion and contraction of a material to attenuate vibration and reduce generation of sound. Regarding paint.
Recently, as the precision of machines and electronic products has increased and workers also want to work in a better environment, many techniques for noise reduction have been developed. If there are many people and many machines in a small area like Japan, it can be said that noise reduction is essential. In particular, since a metal material used to increase the mechanical strength causes vibration and noise, it can be said that reducing the noise of such metal materials is the key.
[0002]
The method of controlling vibration to reduce noise is to reduce the vibration energy of the noise-producing elements, thereby adjusting the speed of vibration or canceling the energy using wave interference and emitting sound through conversion to other energy. It means to reduce the amount.
The substance used for such a purpose is a vibration damping substance, and the noise reduction method using the substance can be divided into two types. First, there is a method of increasing the coefficient of viscoelasticity in a state of being attached to a surface to cancel vibration generated from a solid solid object. Another method is to have two composite structures, and fill it with a viscoelastic polymer between an iron plate and a stainless steel foil to take vibration. This is usually called a sandwich type. In such a sandwich type, it is considered that the characteristic of taking the vibration is determined by the viscoelastic characteristic of the resin packed in the middle. In general, the characteristic of taking such vibration is largest around a temperature at which the loss coefficient has a maximum value.
Materials related to the present invention that have a surface treatment and exhibit a vibration damping effect include vinyl polymer, cement, and spherical sand disclosed in Japanese Patent Application Publication No. 26492/1978. However, this material is not only poor in damping properties but also cannot be used as a product for a long time, and it is known that there are more problems in commercialization.
Japanese Patent Application Publication No. 52545/1978 discloses an emulsion form using a water-soluble high molecular weight polymer substance, which has excellent vibration damping characteristics in a very narrow temperature range of 0 ° C to 100 ° C as a secondary transition temperature. A shaker is disclosed. However, there are many problems in using this damping agent because the damping property is rapidly deteriorated when the temperature is out of the above temperature range.
Japanese Patent Application Publication No. 133238/1978 discloses a resin or rubber product using, as an additive, ash, mica, a coating film of organic or inorganic fibers, etc. of an incinerator. However, although the price of the product can be reduced, there is a problem that not only cannot the uniformity of the quality of the product be maintained, but also the vibration control characteristics and the moisture resistance are low, so that the product cannot be commonly used.
Japanese Patent Application Publication No. 32538/1979 discloses a product using mica powder and silica sand as a filler, and Japanese Patent Application Publication No. 36341/1979 discloses a resin and a resin which are dispersed in water. A product using a kind of filter using the sludge produced in the step (1) is disclosed. However, each of the products disclosed in these two patent documents has a problem that the temperature range representing the vibration isolation characteristics is narrow.
U.S. Pat. No. 4,391,857 discloses a product using polyvinyl acetate emulsion, polyethylene powder, and fine inorganic powder as fillers, but the product exhibits vibration damping properties over a wide temperature range. However, there is a problem in that the damping characteristics change greatly with time and the stability is poor due to long-term use.
In US Pat. No. 5,411,810, a change in vibration damping properties was tested using an aqueous resin having a low Tg and a high Tg. There was a problem that the time required for drying and curing after application of the vibration agent was prolonged.
[0003]
[Technical problems to be achieved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned various problems of the conventional technology, and has been created to solve the problem. The acrylic resin having a glass transition temperature of −25 ° C. to 25 ° C. is blended into a basic resin. It is filled with 50% or more of inorganic filler having a particle size distribution of 1 to 100 μm to exhibit vibration damping performance over a wide frequency and temperature range, and has strong adhesiveness, moisture resistance and heat resistance, and is easy to mold. There is an object in providing a vibration paint.
An object of the present invention is to provide an acrylic emulsion having a glass transition temperature in the range of −25 ° C. to 25 ° C. alone or mixed with each other, and forming a resin, a silane coupling agent, a polymer additive such as polyvinyl alcohol, and an average particle size. The present invention provides a vibration-damping paint having excellent vibration-damping properties and moldability, which is manufactured by adjusting the overall particle size distribution to 1 to 100 μm and filling the inorganic filler with a minimum porosity to 50 to 55% by weight. Is achieved by:
[0004]
Configuration of the Invention
Hereinafter, the configuration of the present invention will be described in more detail.
Vibration development in mechanical structures often shortens the life of most machines or impairs their function. Therefore, it is desirable that the vibration of the machine be suppressed and the generated vibration be eliminated quickly. In addition, interest in vibration damping materials has been increasing in various fields due to an increasing demand for comfort in living environments. The damping paint used as one of such damping materials is applied to railway vehicles, automobiles, elevators and the like to suppress noise due to vibration.
[0005]
There are various types of damping materials, such as paint, sheets, damping plates, springs, etc. Among them, paint can be obtained at a lower cost and a more convenient method than other materials. There is. In particular, rubber and asphalt used as a material for sheets and plates have the disadvantage that the temperature range in which they exhibit vibration damping performance is narrow, and they are easily aged by the external environment. Therefore, its use range is very limited. Therefore, the development of a paint capable of increasing water resistance and heat resistance and exhibiting vibration damping performance in a wide frequency and temperature range is urgently required. In order for the paint to exhibit vibration damping performance, it must be properly designed in consideration of the glass transition temperature of the resin, the ratio between the resin and the inorganic filler, and the shape and size of the inorganic filler particles. The glass transition temperature of the resin determines the temperature range in which the vibration damping performance is exhibited. Therefore, as the glass transition temperature of the resin is closer to room temperature, the vibration damping performance at room temperature can be maximized. However, when the glass transition temperature of the resin increases, at room temperature, the resin is glassy and very weak and easily breaks due to external impact, and easily breaks due to low adhesive strength and high shrinkage rate, but when the glass transition temperature is low Has excellent adhesive strength and is very flexible, but cannot exhibit satisfactory vibration damping performance. That is, the glass transition temperature of the resin must be high for vibration damping performance, and the glass transition temperature must be low for moldability. Therefore, there is a need for a resin that can negotiate both of them, that is, a resin that satisfies moldability excellent in strength and adhesive strength while having high glass transition temperature. When the ratio between the resin and the inorganic filling rate is appropriate, the vibration damping performance is maximized.
[0006]
If the particle size of the inorganic filler is too small (1 μm or less), the flowability of the coating material is inferior and the moldability is poor. If the particle size is too large (1 mm or more), the nozzle holes are blocked during spraying. Therefore, the particle size of the inorganic filler must also be appropriate. Generally, the particle form is known to be a plate-like substance having a vibration damping effect, but the disadvantage is that the surface hardness is very low. It is.
[0007]
In the present invention, the disadvantages of the resin having a high glass transition temperature are complemented by the resin having a low glass transition temperature, and only the acrylic styrene resin is used for compatibility between them. A certain amount of a silane coupling agent and a water-soluble polymer substance (selectively add two or three of polypyrrole, polyvinyl acetate, polyvinyl alcohol, polysulfonate, and polyimide) are added to enhance the adhesive strength and dry. Prevents the shrinkage of the resin that occurs when it occurs. In addition, the size of the inorganic filler was set to 1 to 100 μm, and in order to minimize the porosity in this range, the average particle size of each filler was changed and combined. The structural characteristics of the filler as well as the particle size distribution of the filler are limited to a plate-like shape so that the soundproofing characteristics can be improved. Therefore, the present damping paint exhibits a wide range of damping performance not only at room temperature but also at higher and lower temperatures, and completely solves the disadvantages of resins having high glass transition temperature in terms of adhesiveness, moldability and strength. I was able to. The vibration damping material used in the present invention shows stable characteristics even with aging. In addition, since the porosity of the inorganic filler compounded in a certain ratio is small, the thickness of the coating film that can exhibit the vibration damping performance is minimized.
[0008]
In the present invention, an additive of a high molecular weight polymer is added so as to satisfy both the vibration damping performance and the moldability, so that these two characteristics can be realized. High molecular weight additives must be able to be compounded with the emulsion and the resin must be able to remove the resulting stiffness. Various types of additives were used, and the ones described by way of example were based on high molecular weight substances based on vinyl alcohol. In addition, among the styrene derivatives, a substance having a high molecular weight as a water-soluble substance, a copolymer of polyvinyl acetate and alcohol, a substance synthesized from a water-soluble polypyrrole derivative, and a water-soluble polyimide were also used as additives. Depending on the type of resin, these additives were mixed or used alone.
It should be noted that the particle size distribution is variously adjusted to broaden the frequency range having the vibration damping characteristics, and the combination of the particle size distributions eliminates the problems of moldability and thin film application, and at the same time the smallest vibration damping characteristics can be exhibited. The purpose is to produce a thinner film. In the present invention, a film having the above characteristics was produced by combining particles having a particle size distribution of 1 μm to 100 μm. Also, 5-10 parts by weight of aluminum oxide having high thermal conductivity is used so that thermal energy generated by vibration can be quickly released to maximize the vibration damping performance and prevent aging of the coating film due to heat. used. Glass fillers, glass balloons, hollow silica, etc., which are fillers used in existing vibration damping paints, are expensive but quickly release the heat generated due to their thermal insulation properties. If it is not possible, there is a great risk of reducing the life of the machine as well as the coating film. Since the present invention does not include such a material at all, it has a feature that a vibration damping effect can be obtained at a lower price.
[0009]
On the other hand, silane coupling agents are used to improve the adhesion by improving the adhesion due to the high glass transition temperature of the resin, and induce the chemical bond between inorganic and organic substances to prevent defects that occur during drying. Minimized. As the silane coupling agent, 2-aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane may be used alone or as a mixture of two or more. The plasticizer used to form a more stable coating by controlling the fluidity and drying time of the coating material generally gives a free volume to the polymer chain and causes the resin to have a free volume. Reduce the glass transition temperature of Since the glass transition temperature of the plasticizer itself is low, even a small amount of the plasticizer can greatly reduce the glass transition temperature, so that the content of the plasticizer must be controlled within 3%. As the plasticizer, DBP (diethyl phthalate), DOP (doctyl phthalate), DEP (diethyl phthalate), DOA (di-2-ethylhexyldiate) and the like can be used. On the other hand, if the properties of the resin change with time, the usual use as a product becomes poor. Therefore, it is an intended object of the present invention to produce samples that are insensitive to such changes over time.
[0010]
Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 4 and Comparative Examples 1 and 2. However, the present invention can be variously modified without limiting the category.
[0011]
Example 1
The paint of the present invention was composed of 28% by weight of an acrylic emulsion having a glass transition temperature of -50 ° C. and 55% by weight of an inorganic filler having a controlled particle size distribution. The remaining components were formed as shown in Table 1 below. Manufactured.
[0012]
Example 2
It is composed of 28% by weight of an acrylic emulsion having a glass transition temperature of -25 ° C, 55% by weight of an inorganic filler having a controlled particle size distribution, and a polymer additive. The remaining components are composed as shown in Table 1 below. A paint according to the invention was produced.
[0013]
Example 3
The coating composition of the present invention was prepared by comprising 28% by weight of an acrylic emulsion having a glass transition temperature of -25 ° C and 55% by weight of an inorganic filler, and the remaining components as shown in Table 1 below.
[0014]
Example 4
5% by weight of an acrylic emulsion having a glass transition temperature of -25 ° C, 15% by weight of an acrylic emulsion having a glass transition temperature of 9 ° C, 10% by weight of an acrylic emulsion having a glass transition temperature of 25 ° C, and an inorganic filler having a controlled particle size distribution A coating material of the present invention was produced by using 55% by weight of a product, a silane coupling agent and a polymer additive.
[0015]
Comparative Example 1
A general paint was prepared by using 43% by weight of an acrylic emulsion having a glass transition temperature of -50 ° C and 35% by weight of an inorganic filler. The remaining components were formulated as shown in Table 1 below.
[0016]
Comparative Example 2
5% by weight of an acrylic emulsion having a glass transition temperature of -25 ° C, 15% by weight of an acrylic emulsion having a glass transition temperature of 9 ° C, 10% by weight of an acrylic emulsion having a glass transition temperature of 25 ° C, and an inorganic filler having a controlled particle size distribution The composition was composed of 55% by weight, and the remaining components were formulated as shown in Table 1 below to prepare a general paint.
[0017]
[Table 1]
Figure 2004018670
[0018]
The vibration damping performance of each of the paints manufactured according to the compositions shown in Table 1 was evaluated using Modal Method. A cold-rolled steel sheet having a thickness of 1 mm, a width of 30 mm, and a length of 330 mm is washed by a method for manufacturing an iron plate for paint test (KSM5000-1111), and each paint is applied to a thickness of 1 mm and dried for 48 hours. After preparing the test pieces, the vibration damping performance was measured at 25 ° C. and 50 ° C.
[0019]
T-peel peel strength was measured based on JIS K-6854. At this time, the maximum load measured by performing a tensile test at 50 mm / min was converted to a maximum load such as a specimen width of 25 mm.
Each test result measured as described above is shown in Table 2 below.
[0020]
[Table 2]
Figure 2004018670
[0021]
As can be seen from Table 2, Example 1 in which the content of the inorganic filler was increased had an increase in the internal loss coefficient as compared with Comparative Example 1, and exhibited constant vibration damping performance in each frequency band. Example 2 which used an acrylic emulsion having a glass transition temperature of -25 ° C. and had the same other composition as Example 1 exhibited about three times the vibration damping effect as compared with Example 1. Further, in Example 3, the mica content of the filler was increased in Example 3, but the performance was rather reduced. In Example 2, an acrylic emulsion having a glass transition temperature of −25 ° C., 9 ° C., and 25 ° C. was mixed. In Example 4, the vibration damping performance was improved as compared with Example 2, and the deviation due to temperature was very small.
[0022]
In the case of the peel strength, Example 4 using both the silane coupling agent and the polymer additive did not use any additive, and the other compositions increased more than three times as compared with Comparative Example 2 having the same composition. You can see that there was.
On the other hand, the properties of the membrane were measured two months after the anti-vibration paint of the present invention was manufactured and applied to the surface of the product. A result equivalent to that immediately after production was obtained.
[0023]
【The invention's effect】
As can be seen from the above description, the vibration damping paint according to the present invention is a one-part water-based paint composed of an acrylic emulsion and a plate-like filler that simultaneously satisfies vibration damping properties and soundproofing properties, and contains an organic solvent. It is environmentally friendly, has high viscosity, is easy to spray, has good adhesion to metal surfaces, exhibits vibration damping ability over a wide frequency range, and minimizes temperature dependence. Can provide excellent effects.

Claims (2)

ガラス転移温度が−25℃〜25℃の範囲にあるアクリルエマルジョンを単独又は互いに混合し、樹脂、シランカップリング剤、ポリビニルアルコール等の高分子添加剤と、平均粒度を調節し全体粒度分布を1〜100μmに合わせ、空隙率を最小とした無機充填物を50〜55重量%に充填して製造されることを特徴とする制振性と成形性に優れた制振塗料。Acrylic emulsions having a glass transition temperature in the range of −25 ° C. to 25 ° C. are used alone or mixed with each other, and the resin, silane coupling agent, polymer additives such as polyvinyl alcohol, and the average particle size are adjusted to obtain an overall particle size distribution of 1%. A vibration damping paint excellent in vibration damping properties and moldability, characterized in that it is produced by filling an inorganic filler with a minimum porosity of 50 to 55% by weight in accordance with a thickness of 100 to 100 μm. 第1項において、上記無機充填物は粒度分布が1〜20μmであり平均粒度が2μmと5μmであるCaCO 30〜32重量%、粒度分布が1〜10μmであり平均粒度が4μmであるSiO 10〜12重量%、粒度分布が1〜100μmであり平均粒度が20μmであるマイカ10〜12重量%、粒度分布が1〜100μmであり平均粒度が15μmである酸化アルミニウム5〜10重量%の成分等を含むことを特徴とする制振性と成形性に優れた制振塗料。In item 1, the inorganic filler has a particle size distribution of 1 to 20 μm, an average particle size of 2 to 5 μm, and 30 to 32% by weight of CaCO 3 , and a particle size distribution of 1 to 10 μm and an average particle size of SiO 2 of 4 μm. 10 to 12% by weight, 10 to 12% by weight of mica having a particle size distribution of 1 to 100 μm and an average particle size of 20 μm, and 5 to 10% by weight of aluminum oxide having a particle size distribution of 1 to 100 μm and an average particle size of 15 μm A vibration damping paint having excellent vibration damping properties and moldability, characterized by containing
JP2002175302A 2002-06-17 2002-06-17 Vibration-damping coating material excellent in vibration-damping and moldability Pending JP2004018670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175302A JP2004018670A (en) 2002-06-17 2002-06-17 Vibration-damping coating material excellent in vibration-damping and moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175302A JP2004018670A (en) 2002-06-17 2002-06-17 Vibration-damping coating material excellent in vibration-damping and moldability

Publications (1)

Publication Number Publication Date
JP2004018670A true JP2004018670A (en) 2004-01-22

Family

ID=31173995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175302A Pending JP2004018670A (en) 2002-06-17 2002-06-17 Vibration-damping coating material excellent in vibration-damping and moldability

Country Status (1)

Country Link
JP (1) JP2004018670A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526689A (en) * 2003-04-24 2006-11-24 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Acoustic damping coating composition
JP2007262220A (en) * 2006-03-28 2007-10-11 Cci Corp Method for producing damping coating
JP2009242707A (en) * 2008-03-31 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242450A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242452A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242706A (en) * 2008-03-31 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242451A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009249505A (en) * 2008-04-07 2009-10-29 Cci Corp Vibration damping paint composition
WO2009139314A1 (en) * 2008-05-09 2009-11-19 株式会社日本触媒 Emulsion composition for vibration damping material
JP2009270063A (en) * 2008-05-09 2009-11-19 Nippon Shokubai Co Ltd Emulsion composition for damping material
JP2010053210A (en) * 2008-08-27 2010-03-11 Nippon Shokubai Co Ltd Emulsion composition for vibration damping material and vibration damping material formulation
EP3118273A1 (en) * 2015-06-03 2017-01-18 Becchis Osiride S.r.l. Multilayer material usable particularly as damping material
JPWO2017010189A1 (en) * 2015-07-15 2018-04-19 株式会社村田製作所 Film-forming composition and electronic component
CN113105794A (en) * 2021-03-05 2021-07-13 广东美涂士建材股份有限公司 Porous art coating

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526689A (en) * 2003-04-24 2006-11-24 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Acoustic damping coating composition
JP4818908B2 (en) * 2003-04-24 2011-11-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Acoustic damping coating composition
JP2007262220A (en) * 2006-03-28 2007-10-11 Cci Corp Method for producing damping coating
JP2009242451A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242452A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242450A (en) * 2008-03-28 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242706A (en) * 2008-03-31 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009242707A (en) * 2008-03-31 2009-10-22 Cci Corp Vibration-proof coating composition
JP2009249505A (en) * 2008-04-07 2009-10-29 Cci Corp Vibration damping paint composition
WO2009139314A1 (en) * 2008-05-09 2009-11-19 株式会社日本触媒 Emulsion composition for vibration damping material
JP2009270063A (en) * 2008-05-09 2009-11-19 Nippon Shokubai Co Ltd Emulsion composition for damping material
JP2010053210A (en) * 2008-08-27 2010-03-11 Nippon Shokubai Co Ltd Emulsion composition for vibration damping material and vibration damping material formulation
EP3118273A1 (en) * 2015-06-03 2017-01-18 Becchis Osiride S.r.l. Multilayer material usable particularly as damping material
JPWO2017010189A1 (en) * 2015-07-15 2018-04-19 株式会社村田製作所 Film-forming composition and electronic component
CN113105794A (en) * 2021-03-05 2021-07-13 广东美涂士建材股份有限公司 Porous art coating

Similar Documents

Publication Publication Date Title
JP2004018670A (en) Vibration-damping coating material excellent in vibration-damping and moldability
KR920003021B1 (en) Sound proofing materials
US3056707A (en) Sound deadener and absorber
WO2007023821A1 (en) Emulsion for vibration damper
JP2019531512A5 (en)
JPH1060311A (en) Water-base vibration-damping coating material
JP3209499B2 (en) Water-based damping paint
JP5831133B2 (en) Cement composition, mortar composition, and cured mortar
CN102108258A (en) Aqueous polymer damping paint
JP4087459B2 (en) Rubber composition for seismic isolation laminate
JPH10264293A (en) Soundproofing material
KR20020053409A (en) Vibration-prevent paint with excellent vibration-prevention and formability
CN103436205B (en) Water base weathering resistance sound insulating seal agent of nano modification and preparation method thereof
EP3118273B1 (en) Multilayer material usable particularly as damping material
JPS61151227A (en) Vibration-damping material
JPS6040143A (en) Resin composition for vibration damping
JPS58141251A (en) Vibration-damping paint
JPS61190547A (en) Manufacture of vibration-controlling and sound-insulating high polymer material formed body
JP4416473B2 (en) Damping composition
JPH10202775A (en) Damping sheet
CN111621115B (en) Shock-absorbing damper
JPWO2003082972A1 (en) Damping composition and method for producing damping composition
JPH10141434A (en) Soundproof material
JP4585948B2 (en) Highly water-resistant adhesive composition
JPS61192753A (en) Vibration damper composed of vinyl chloride resin