JP2004018307A - Composite additive for concrete mortar and cement composition - Google Patents

Composite additive for concrete mortar and cement composition Download PDF

Info

Publication number
JP2004018307A
JP2004018307A JP2002174823A JP2002174823A JP2004018307A JP 2004018307 A JP2004018307 A JP 2004018307A JP 2002174823 A JP2002174823 A JP 2002174823A JP 2002174823 A JP2002174823 A JP 2002174823A JP 2004018307 A JP2004018307 A JP 2004018307A
Authority
JP
Japan
Prior art keywords
fine powder
silica fume
concrete
cement
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174823A
Other languages
Japanese (ja)
Other versions
JP4291978B2 (en
Inventor
Taido Kamishiro
神代 泰道
Yumiko Takase
高瀬 祐美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Fimatec Ltd
Original Assignee
Obayashi Corp
Fimatec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Fimatec Ltd filed Critical Obayashi Corp
Priority to JP2002174823A priority Critical patent/JP4291978B2/en
Publication of JP2004018307A publication Critical patent/JP2004018307A/en
Application granted granted Critical
Publication of JP4291978B2 publication Critical patent/JP4291978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite additive for concrete mortar wherein mixing workability is improved by preventing scattering of silica fumes when mixing with cement, and a cement composition using this additive. <P>SOLUTION: A calcium carbonate fine powder modified by coating its surface with cation polymers is mixed with a silica fume fine powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シリカフュームを用いたコンクリート・モルタル用複合混和材に関する。
【0002】
【従来の技術】
水:セメント比を小さくしても流動性を保ち、モルタル、コンクリートの圧縮強度を保つ手段としてシリカフューム微粉末を混和材としてセメントに混合する方法がある。シリカフューム微粉末の混合による流動性向上効果は、一般に、シリカフューム粒子が、セメント粒子より粒径が小さいため、セメント粒子間に充填し、その場所にある水が自由水となって流動性に寄与すること、並びに、シリカフューム粒子は球形であるため、ボールベアリング効果を生じさせることなどが考えられている。
【0003】
また、その強度向上効果は、シリカフュームがセメント粒子間を充填するため硬化体組織が緻密になることと、シリカフューム自体がポゾラン反応を生じるため、単なる充填効果だけでなく、硬化体強度を一層向上させる効果を持つものとされており、例えば特開平8−239249号公報などにシリカフュームを混和材として用いたプレミックスセメントが開示されている。
【0004】
【発明が解決しようとする課題】
ところで、シリカフュームは、粉体状、顆粒状及びスラリー状の3形態があるが、顆粒状では分散性に劣りコンクリートの流動性や強度性状の向上効果が劣るといった課題があり、スラリー状では沈澱しやすく濃度管理が難しいほか凍結の惧れがあるため、粉体状のものを使用することが実用上好ましいとされている。
【0005】
しかしながら、粉体状のシリカフュームは、その平均粒径が0.1μmと、たばこの煙と同様な超微粒子であるため飛散しやすく、実際の混合作業に際しては粉塵が発生するため作業環境の悪化を招来し、また粉塵の飛散量に応じてセメントに対する配合比が変ったり、均一な分散混合が困難となり、配合時の作業管理が容易ではなかった。
【0006】
このため、従来では、シリカフュームプレミックスセメントを使用するほかは、一般の生コン工場でシリカフューム微粉末をセメントに混合することは困難であった。
【0007】
本発明は、以上の課題を解決するものであり、混合時におけるシリカフューム微粉末の飛散を防止し、混合作業性の改善を図ったコンクリート・モルタル用複合混和材及びこの混和材を用いたセメント組成物を提供するものである。
【0008】
【課題を解決するための手段】
前記目的を達成するため本発明の複合混和材は、炭酸カルシウム微粉末と、シリカフューム微粉末とを混合したコンクリート・モルタル用複合混和材であって、前記炭酸カルシウム微粉末は、カチオンポリマー等を表面に処理して改質したものであることを特徴とするものである。本発明において、シリカフューム微粉末は、プラス側に帯電した炭酸カルシウム微粉末の表面に電気的に結合するため、両者の混合時及び該混合物のセメントへの配合時における飛散性が半減し、しかも水と接することにより、粒子間の電気的な付着力が弱まり、コンクリート練り混ぜ時の強制撹拌によってセメントマトリクス中で分散するので、一般の生コン工場であっても、簡単な管理下でセメントに混合することにより、高強度コンクリートを得ることが可能となる。
【0009】
また、本発明では、前記炭酸カルシウム微粉末10〜90重量部、前記シリカフューム微粉末10〜90重量部であって、合計量が100重量部以下であることにより、コンクリート・モルタルに対する改質効果を十分に発揮できる。
【0010】
さらに、本発明では、前記炭酸カルシウム微粉末は、前記シリカフューム微粉末の平均粒径の5〜10倍であることにより(例えば、平均粒径0.1μm)、最密充填を図ることが可能となり、かさ密度も大きくすることができ、輸送効率を向上することができる。さらに、最密充填により減水効果が得られ、高強度コンクリートにおいては、粘性が小さくなり、圧送ポンプの負荷を小さくすることができてコンクリート打設作業も容易となる。
【0011】
そして、本発明のセメント組成物は、セメント100重量部のうち5〜40重量部を、請求項1〜3のいずれかに記載の複合混和材で置換えてなることにより、セメント単体に比べて高強度、かつ高流動性のあるモルタル・コンクリートを得ることが可能となる。
【0012】
【発明の実施の形態】
本発明に用いられる炭酸カルシウム微粉末は、例えば、紙の抄造時における塗工用のものとして用いられる材料であり、平均粒径1μm程度に粒度が調整された粒度ばらつきの小さな白色微粉末である。また、この炭酸カルシウム微粉末の粒子表面には、予めカチオンポリマーがコーティングされ、これによって粒子個々の表面はプラス側に帯電する結果、粒子が互いに凝集するのを防止すべく改質されている。
【0013】
この改質された炭酸カルシウム微粉末と、平均粒径0.1μmのシリカフュームとを混合すると、シリカフューム微粉末との電位差により、該シリカフューム微粉末に対して微弱な電気的結合を生ずる(図1参照)。その結果、両者の混合時において、電気的な結合により、シリカフュームの飛散が抑制されるとともに、炭酸カルシウムの周囲に均等に凝集し、最密充填を図ることができ、シリカフューム単体を用いた場合に比べて混和材のかさ密度はその1.5〜2.5倍となる。
【0014】
以上の混和材は、その配合比を、炭酸カルシウム10〜90重量部、シリカフューム10〜90、合計100以下とすることが好ましい。炭酸カルシウムの重量が90を越えた場合には、シリカフュームの配合比が相対的に低くなり、この結果シリカフュームによるセメント強度向上及び流動性向上効果が低減する。その逆に10重量部を下回った場合には、電気的結合性が低下し、粉塵の発生が顕著となり、最密充填性も低下する。
【0015】
また、以上の混和材は、セメント100重量部のうち5〜40重量部をこれに置き換えることが好ましい。混和材の置換量が5重量部を下回った場合、またはその逆に40重量部を上回った場合には、得られるコンクリートまたはモルタルの強度向上効果が小さい。
【0016】
【実施例】
<実施例1>
モルタル及び超高強度コンクリートに対する混和材として従来のシリカフューム単体を用いた場合と、本発明の複合混和材を用いた場合とで比較実験したところ、図2に示す特性が得られた。なお、セメントに対する置換率はいずれも10重量部、また用いた複合混和材の配合比はシリカフューム50:改質炭酸カルシューム50である。
【0017】
図2より、JISA6207に準拠して測定した活性度指数は、本発明が炭酸カルシウムの混入により、シリカフューム単体に比べて若干低下するものの、高ビーライト系セメントを用いたW/P=20%の超高強度コンクリート(W/P:水/粉体比)で同一置換率とすると、シリカフューム単体より粘性が低く、圧縮強度はほぼ同等となることが確認された。このことは、本発明の複合混和材を用いることにより、同一強度を保持しつつ流動性がさらに向上することを示唆するものである。
【0018】
<実施例2>
以下の表1,2に示す配合及び調合によってA,Bの生コン工場において、室内試験練りによりコンクリート組成物を作製し、その性能を比較した。なお、工場Aにおいては、本発明の複合混和材と高ビーライト系セメントとの組合わせとし、工場Bにおいては比較のためにシリカフュームプリミックスセメントを用いた場合について検討した。
【0019】
【表1】

Figure 2004018307
【表2】
Figure 2004018307
【0020】
なお、工場Aでは結合材としてW/P=20〜25%、工場Bでは結合材としてW/C=17〜23%で検討した(W/C:水/セメント比)。粗骨材については容積で310リットル一定とした。スランプフロー及び空気量はそれぞれ60〜70cm,2±1パーセントに設定した。
【0021】
工場Aにおいて用いた複合混和材は、改質炭酸カルシウム50:シリカフューム50の組成比であり、この混和材のセメントあるいはモルタルに対する混合時における粉塵の飛散はわずかであり、作業環境への悪影響もなく、配合量の管理も容易なので、一般の生コン工場であっても十分に取扱いが可能であることを確認した。
【0022】
図3に水/粉体比とOロート流下時間の関係を示す。プロットしたデータは、練り上がり直後だけでなく、経時変化試験や、バッチの異なるものも包括している。この図3からは、水/粉体比が低くなるほどOロート流下時間は増大し、計測される流下時間の範囲も大きくなることが確認された。また、図4に水/粉体比と圧縮強度との関係を示す。この図からは、検討した水/粉体比の範囲内では、強度の頭打ちがないことを確認した。
【0023】
<実施例3>
次に、以上の室内試験練り結果を踏まえて、A,B生コン工場において実機試験練りを行った。室内試験練りの結果から、コンクリートの粘性がほぼ同程度(Oロート流下時間として20〜30sec)となる工場AのA2(W/P=22.5%)と、工場BのB1(W/C=17%)とした。
【0024】
またそれぞれ、W/P=20パーセントとしたA1及びB2についても行った。コンクリートの製造方法は、いずれも2軸強制練りミキサを使用し、工場Aではモルタル先行(モルタル120秒→粗骨材投入後90秒)であり、工場Bでは一括方式(B1→90秒、B2→60秒)で練り混ぜた。
【0025】
以上により得られたコンクリートの試験結果を表3に示す。
【0026】
【表3】
Figure 2004018307
【0027】
以上の表に示す結果からは、いずれも目標とするスランプフロー及び空気量が得られた。また、CFT技術指針(新都市ハウジング協会、CFT構造技術指針・同解説、2000)で規定される沈下量及びブリージング量についても同指針の範囲内であることが確認された。
【0028】
次に、圧縮強度発現の性状を図5に示す。図からはいずれの工場においてもFc=100N/mmに対応した超高強度コンクリートを製造できることを確認した。
【0029】
【発明の効果】
以上の説明により明らかなように、本発明によるコンクリート・モルタル用複合混和材にあっては、練り混ぜ時における粉塵の飛散がなく、管理が容易なので、一般の生コン工場でも取扱いが可能となる。また、本発明のセメント組成物は、シリカフューム単体を用いたものよりも流動性が高く、しかも得られるコンクリートまたはモルタルの圧縮強度はほぼ同等となるなどの利点がある。
【図面の簡単な説明】
【図1】本発明に係る改質炭酸カルシウムとシリカフュームとの電気的結合を示す模式図である。
【図2】本発明の複合混和材とシリカフューム単体との性能比較結果を示すグラフである。
【図3】水/粉体比とOロート流下時間との関係を示すグラフである。
【図4】粉体/水比と圧縮強度との関係を示すグラフである。
【図5】圧縮強度発現性状を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite admixture for concrete and mortar using silica fume.
[0002]
[Prior art]
As a means of maintaining the fluidity even when the water: cement ratio is reduced and maintaining the compressive strength of mortar and concrete, there is a method of mixing fine silica fume powder with cement as an admixture. The effect of improving the fluidity by mixing the silica fume fine powder is generally that the silica fume particles are smaller than the cement particles, so they are filled between the cement particles, and the water at that location becomes free water and contributes to the fluidity. In addition, since the silica fume particles are spherical, it is considered that a ball bearing effect is generated.
[0003]
The effect of improving the strength is that silica fume fills the space between the cement particles, so that the cured body structure becomes dense, and that the silica fume itself causes a pozzolan reaction, so that not only a simple filling effect, but also the cured body strength is further improved. For example, JP-A-8-239249 discloses a premix cement using silica fume as an admixture.
[0004]
[Problems to be solved by the invention]
By the way, silica fume has three forms of powder, granule, and slurry. However, there is a problem that the granular form is inferior in dispersibility and the effect of improving the fluidity and strength properties of concrete is inferior. It is considered practically preferable to use a powdered material because it is easy to control the concentration and there is a fear of freezing.
[0005]
However, the powdery silica fume has an average particle size of 0.1 μm and is ultra-fine particles similar to tobacco smoke, so it is easy to be scattered. In addition, the mixing ratio with respect to the cement changes depending on the amount of dust scattering, and uniform dispersion and mixing become difficult, and work management during compounding is not easy.
[0006]
For this reason, conventionally, it has been difficult to mix silica fume fine powder with cement at a general ready-mixed concrete plant except for using silica fume premix cement.
[0007]
The present invention has been made to solve the above problems, and a composite admixture for concrete and mortar, which prevents scattering of silica fume fine powder during mixing and improves mixing workability, and a cement composition using the admixture. It provides things.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the composite admixture of the present invention is a composite admixture for concrete and mortar obtained by mixing calcium carbonate fine powder and silica fume fine powder, wherein the calcium carbonate fine powder has a surface treated with a cationic polymer or the like. And modified. In the present invention, the silica fume fine powder is electrically bonded to the surface of the positively charged calcium carbonate fine powder, so that when mixed, and when the mixture is mixed with cement, the scattering property is reduced by half, and water The contact between the particles weakens the electrical adhesion between the particles and disperses them in the cement matrix due to forced agitation during kneading of the concrete. This makes it possible to obtain high-strength concrete.
[0009]
In the present invention, the calcium carbonate fine powder is 10 to 90 parts by weight and the silica fume fine powder is 10 to 90 parts by weight, and the total amount is 100 parts by weight or less. Can be fully demonstrated.
[0010]
Further, in the present invention, the calcium carbonate fine powder has a mean particle size of 5 to 10 times the average particle size of the silica fume fine powder (for example, an average particle size of 0.1 μm), so that close packing can be achieved. In addition, the bulk density can be increased, and the transport efficiency can be improved. Furthermore, a water-reducing effect is obtained by close-packing, and in high-strength concrete, the viscosity is reduced, the load of the pressure pump can be reduced, and the concrete placing operation becomes easy.
[0011]
The cement composition of the present invention has a higher content than the cement alone by replacing 5 to 40 parts by weight of the cement of 100 parts by weight with the composite admixture according to any one of claims 1 to 3. It is possible to obtain mortar concrete having strength and high fluidity.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The calcium carbonate fine powder used in the present invention is, for example, a material used for coating during papermaking, and is a white fine powder having a small particle size variation with an average particle size adjusted to about 1 μm. . The surface of the fine particles of calcium carbonate is coated in advance with a cationic polymer, whereby the surfaces of the individual particles are positively charged, so that the particles are modified so as to prevent the particles from aggregating with each other.
[0013]
When this modified calcium carbonate fine powder is mixed with silica fume having an average particle diameter of 0.1 μm, a weak electric connection is generated with the silica fume fine powder due to a potential difference between the silica fume fine powder (see FIG. 1). ). As a result, at the time of mixing the two, the scattering of the silica fume is suppressed by the electric coupling, and the silica fume is uniformly agglomerated around the calcium carbonate, and the closest packing can be achieved. In comparison, the bulk density of the admixture is 1.5 to 2.5 times the bulk density.
[0014]
It is preferable that the mixing ratio of the above-mentioned admixtures is 10 to 90 parts by weight of calcium carbonate and 10 to 90 parts by weight of silica fume, and the total is 100 or less. When the weight of calcium carbonate exceeds 90, the blending ratio of silica fume becomes relatively low, and as a result, the effects of silica fume on improving cement strength and fluidity are reduced. Conversely, when the amount is less than 10 parts by weight, the electrical coupling property is reduced, the generation of dust becomes remarkable, and the close packing property is also reduced.
[0015]
It is preferable that the admixture replaces 5 to 40 parts by weight of 100 parts by weight of cement. When the replacement amount of the admixture is less than 5 parts by weight, or conversely, when it exceeds 40 parts by weight, the effect of improving the strength of the obtained concrete or mortar is small.
[0016]
【Example】
<Example 1>
As a result of comparison between the case where the conventional silica fume alone was used as the admixture for mortar and ultra-high-strength concrete and the case where the composite admixture of the present invention was used, the characteristics shown in FIG. 2 were obtained. The replacement ratio with respect to the cement was 10 parts by weight, and the compounding ratio of the composite admixture used was silica fume 50: modified calcium carbonate 50.
[0017]
From FIG. 2, the activity index measured according to JIS A6207 is slightly lower than that of silica fume alone due to the mixing of calcium carbonate in the present invention, but the W / P = 20% using high belite cement is low. It was confirmed that when the same substitution ratio was used for ultra-high-strength concrete (W / P: water / powder ratio), the viscosity was lower than that of silica fume alone and the compressive strength was almost the same. This suggests that the use of the composite admixture of the present invention further improves the fluidity while maintaining the same strength.
[0018]
<Example 2>
In the ready-mixed concrete factories A and B, the concrete compositions were prepared by laboratory test kneading based on the blending and mixing shown in Tables 1 and 2 below, and their performances were compared. In the factory A, a combination of the composite admixture of the present invention and the high belite cement was used, and in the factory B, a case where silica fume premix cement was used for comparison was examined.
[0019]
[Table 1]
Figure 2004018307
[Table 2]
Figure 2004018307
[0020]
In the factory A, W / P = 20-25% as a binder, and in the factory B, W / C = 17-23% as a binder (W / C: water / cement ratio). The volume of the coarse aggregate was kept constant at 310 liters. Slump flow and air volume were set at 60-70 cm and 2 ± 1 percent, respectively.
[0021]
The composite admixture used in the factory A had a composition ratio of modified calcium carbonate 50: silica fume 50, and when the admixture was mixed with cement or mortar, the scattering of dust was slight and there was no adverse effect on the working environment. It was also confirmed that the control of the blending amount was easy, so that it could be handled sufficiently even in a general ready-mixed concrete plant.
[0022]
FIG. 3 shows the relationship between the water / powder ratio and the O funnel flow time. The plotted data includes not only immediately after kneading, but also a change test with time and data from different batches. From FIG. 3, it was confirmed that the lower the water / powder ratio, the longer the O funnel flow time, and the larger the range of the measured flow time. FIG. 4 shows the relationship between the water / powder ratio and the compressive strength. From this figure, it was confirmed that there was no peak in strength within the range of the water / powder ratio studied.
[0023]
<Example 3>
Next, based on the results of the above-mentioned laboratory test kneading, actual machine test kneading was performed at the A and B ready-mixed concrete factories. From the results of the laboratory test kneading, A2 (W / P = 22.5%) of the factory A where the viscosity of the concrete is approximately the same (20 to 30 seconds as the flow time of the O funnel) and B1 (W / C) of the factory B = 17%).
[0024]
In addition, A1 and B2 with W / P = 20% were also performed. The concrete production method uses a biaxial forcible kneading mixer, the mortar is precedent in the factory A (the mortar is 120 seconds → 90 seconds after the coarse aggregate is charged), and the factory B is the batch method (B1 → 90 seconds, B2 (→ 60 seconds).
[0025]
Table 3 shows the test results of the concrete obtained as described above.
[0026]
[Table 3]
Figure 2004018307
[0027]
From the results shown in the above table, target slump flows and air amounts were obtained in all cases. It was also confirmed that the amount of settlement and the amount of breathing specified in the CFT Technical Guide (New City Housing Association, CFT Structural Technical Guide / Commentary, 2000) are also within the range of the guideline.
[0028]
Next, the properties of the development of compressive strength are shown in FIG. From the figures, it was confirmed that ultra-high-strength concrete corresponding to Fc = 100 N / mm 2 can be manufactured in any of the factories.
[0029]
【The invention's effect】
As is clear from the above description, the composite admixture for concrete and mortar according to the present invention has no scattering of dust at the time of mixing and is easy to manage, so that it can be handled even in a general ready-mixed concrete factory. Further, the cement composition of the present invention has an advantage that the fluidity is higher than that using silica fume alone and that the obtained concrete or mortar has almost the same compressive strength.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an electrical connection between a modified calcium carbonate and silica fume according to the present invention.
FIG. 2 is a graph showing performance comparison results of the composite admixture of the present invention and silica fume alone.
FIG. 3 is a graph showing a relationship between a water / powder ratio and an O funnel flowing time.
FIG. 4 is a graph showing a relationship between a powder / water ratio and compressive strength.
FIG. 5 is a graph showing properties of developing compressive strength.

Claims (4)

炭酸カルシウム微粉末と、シリカフューム微粉末とを混合したコンクリート・モルタル用複合混和材であって、
前記炭酸カルシウム微粉末は、カチオンポリマー等により表面を処理して改質したものであることを特徴とするコンクリート・モルタル用複合混和材。
A composite admixture for concrete and mortar obtained by mixing calcium carbonate fine powder and silica fume fine powder,
The composite admixture for concrete and mortar, wherein the calcium carbonate fine powder is modified by treating the surface with a cationic polymer or the like.
前記炭酸カルシウム微粉末10〜90重量部、前記シリカフューム微粉末10〜90重量部であって、合計量が100重量部以下であることを特徴とする請求項1に記載のコンクリート・モルタル用複合混和材。The composite admixture for concrete and mortar according to claim 1, wherein the calcium carbonate fine powder is 10 to 90 parts by weight and the silica fume fine powder is 10 to 90 parts by weight, and the total amount is 100 parts by weight or less. Wood. 前記炭酸カルシウム微粉末は、前記シリカフューム微粉末の平均粒径の5〜10倍であることを特徴とする請求項1または2に記載のコンクリート・モルタル用複合混和材。3. The composite admixture for concrete and mortar according to claim 1, wherein the calcium carbonate fine powder has an average particle size of 5 to 10 times the silica fume fine powder. 4. セメント100重量部のうち5〜40重量部を、請求項1〜3のいずれかに記載の複合混和材で置換えてなることを特徴とするセメント組成物。A cement composition obtained by replacing 5 to 40 parts by weight of the cement of 100 parts by weight with the composite admixture according to any one of claims 1 to 3.
JP2002174823A 2002-06-14 2002-06-14 Composite admixture and cement composition for concrete and mortar Expired - Fee Related JP4291978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174823A JP4291978B2 (en) 2002-06-14 2002-06-14 Composite admixture and cement composition for concrete and mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174823A JP4291978B2 (en) 2002-06-14 2002-06-14 Composite admixture and cement composition for concrete and mortar

Publications (2)

Publication Number Publication Date
JP2004018307A true JP2004018307A (en) 2004-01-22
JP4291978B2 JP4291978B2 (en) 2009-07-08

Family

ID=31173697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174823A Expired - Fee Related JP4291978B2 (en) 2002-06-14 2002-06-14 Composite admixture and cement composition for concrete and mortar

Country Status (1)

Country Link
JP (1) JP4291978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522072A (en) * 2004-02-13 2007-08-09 エファージュ・テーペー Ultra-high performance self-compacting concrete, its production method and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522072A (en) * 2004-02-13 2007-08-09 エファージュ・テーペー Ultra-high performance self-compacting concrete, its production method and its use

Also Published As

Publication number Publication date
JP4291978B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
CN103664028B (en) The dispersing method of nano oxidized silica flour in cement-based material
JP6826789B2 (en) Manufacturing method of premix cement composition
JP5432431B2 (en) High strength grout material
JP2008302507A (en) Method for determining compounding ratio of fine shotcrete powder and method for determining addition ratio between shotcrete and thickener for shotcrete determined by the method
JP2008189491A (en) Composition for ultra-high strength mortar, composition for ultra-high strength concrete, and method for producing the composition for ultra-high strength mortar
CN107098613A (en) A kind of pulpous state metakaolin base concrete admixture and preparation method and application
JP2004018307A (en) Composite additive for concrete mortar and cement composition
JP2018087108A (en) Manufacturing method of premix cement composition
CN111039622A (en) Rapid-setting self-leveling mortar
JPS60129132A (en) Preparation of aqueous dispersion of silica fume
CN109912282A (en) 3D printing lightweight concrete soil material and preparation method thereof
JP6683905B1 (en) Construction method for ground improvement work
JP3684447B2 (en) Production method of high fluidity concrete and low water / powder ratio concrete using coal gasification fly ash
CN104829172B (en) A kind of walling is wiped one&#39;s face with dry-mixed material
JPH09118554A (en) High fluidity concrete
JP4516764B2 (en) Manufacturing method of high toughness FRC material
JP2006182645A (en) Binding material
KR102615391B1 (en) PCC composition for self-healing cracks
KR102615393B1 (en) Self-healing mortar with PCC
KR102615392B1 (en) PCC manufacturing method for self-healing cracks
JP3809427B2 (en) Manufacturing method of high fluidity concrete
JP5299758B2 (en) Fiber-reinforced cement composite material and its manufacturing method
JP3947743B2 (en) Method for producing concrete and apparatus used for the method
JP2661893B2 (en) Slurry silica fume for cement admixture
JP2005281040A (en) Fiber-reinforced plastic aggregate for concrete product, method of manufacturing the same and concrete product using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050428

A977 Report on retrieval

Effective date: 20080618

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Effective date: 20081217

Free format text: JAPANESE INTERMEDIATE CODE: A821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120410

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees