JP2004016846A - Nozzle - Google Patents

Nozzle Download PDF

Info

Publication number
JP2004016846A
JP2004016846A JP2002171780A JP2002171780A JP2004016846A JP 2004016846 A JP2004016846 A JP 2004016846A JP 2002171780 A JP2002171780 A JP 2002171780A JP 2002171780 A JP2002171780 A JP 2002171780A JP 2004016846 A JP2004016846 A JP 2004016846A
Authority
JP
Japan
Prior art keywords
hole
main
nozzle
sub
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171780A
Other languages
Japanese (ja)
Inventor
Yoshinari Iwamura
岩村 吉就
Katsunori Okimoto
沖本 勝則
Masao Osame
納 雅夫
Koichi Tsutsumi
堤 康一
Atsushi Kubota
久保田 淳
Toru Isogawa
五十川 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
H Ikeuchi and Co Ltd
Original Assignee
JFE Steel Corp
H Ikeuchi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, H Ikeuchi and Co Ltd filed Critical JFE Steel Corp
Priority to JP2002171780A priority Critical patent/JP2004016846A/en
Publication of JP2004016846A publication Critical patent/JP2004016846A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To widen the jetting angle of a nozzle, which has a wide jetting angle in the width direction, also in the thickness direction perpendicular to the width direction. <P>SOLUTION: A flow channel is formed from a flow inlet at one end toward the jetting side at the other end along the center axial line of a nozzle main body and the tip end of the flow channel in the jetting side is made to be an arc-like main hole. On the other hand, a slit in the diameter direction is formed in the flat face of the tip end of the nozzle main body in the jetting side and the slit is made slanting in the depth direction toward the center from both ends in the longitudinal direction and the center part of the slit is communicated with the tip end of the main hole so as to form a main jetting hole with long width. Further, a deflector parallel to the slit direction is installed in the base part of the main hole in such a manner that the deflector transversely crosses a flow channel on the opposite to the main jetting hole, so that a fluid flowing in from the flow inlet side comes into collision against the deflector and is divided in the thickness direction perpendicular to the width direction of the main jetting hole and thus the jetting angle in the thickness direction is widened. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はノズルに関し、詳しくは、水と空気からなる気液混合の二流体を厚幅で噴霧させるもので、連続鋳造装置の二次冷却帯に連続的に引き出される鋳片に対して冷却水噴霧用として好適に用いられるものである。
【0002】
従来、連続鋳造装置の二次冷却帯では並設されたロール間に多数ノズルを間隔をあけて並設し、噴霧範囲をラップさせて鋳片全面に冷却ミストを噴射して未冷却部分の発生をなくすと共に、冷却ムラを発生しないようにしている。
【0003】
この種の鋳片冷却用のノズルとしては、本出願人は先に特開平5−329402号において、図12に示す二流体ノズルを提供している。
該ノズル1はノズル本体1の中心軸線にそった気液混合流路の先端を円弧形状として主孔2を設けると共に、その両側に副孔3を設け、噴射側頂面に直径方向に設けた切り込み4を主孔2および副孔3と連通させて噴射孔5を設けている。
【0004】
【発明が解決しようとする課題】
上記ノズルでは、噴霧パターンが両側のスソ引き部分が短い台形状となり、噴射範囲がラップした部分とラップしていない部分の流量、打力および粒子径の均等化が図られる。かつ、流量制御範囲のターンダウン比を1:20以上の広い範囲に変動しても、上記ラップした部分とラップしていない部分との流量、打力、粒子径の変動が抑制できる利点を有するものである。
【0005】
一般に二流体ノズルでは、空気量の割合を増大させると、厚さ方向の噴霧範囲を広がる一方、空気量の割合を減少させると噴霧範囲が狭くなる。
図12に示すノズルでは、空気量の割合を減少させると、噴射孔5の幅方向Xに対して直交する厚さ方向Yの噴霧角度が狭くなる傾向がある。
近時、冷却速度をスピード化と省エネルギーの観点より、高圧空気の使用量を減少させることが要望されており、上記二流体ノズルにおいて空気量の割合を減少させても厚さ方向の噴霧角度を減少させないことが課題となる。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ノズル本体の中心軸線に沿って、一端の流入口より他端の噴射側に向けて流路を設け、該流路の噴射側先端を円弧状の主孔とする一方、
上記ノズル本体の噴射側先端の平坦面に直径方向の切り込みを設けると共に、該切り込みは長さ方向の両端より中心に向けて深さ方向に傾斜させ、該切り込みの中央部を上記主孔の先端と連通させて幅の長い主噴射孔を設け、
かつ、上記主孔の基部に、上記切り込み方向と平行なデフレクタを上記主噴射孔と対向させて流路を横断させて取り付け、
上記流入口側より流入する流体を上記デフレクタと衝突させて上記主噴射孔の幅方向と直交する厚さ方向に分流させ、厚さ方向の噴霧角度を増大させる構成としていることを特徴とするノズルを提供している。
【0007】
上記構成によれば、主孔の基部にデフレクタを設置し、流体がデフレクタと衝突して噴射孔の幅方向と直交する厚さ方向に分流され、厚さ方向へ拡がりを持たせた後に、主噴射孔より噴射させているため、主噴射孔の幅方向と直交する厚さ方向の噴射角度を広げることができる。
よって、気液混合の二流体の空気量の割合を減少させても、上記デフレクタを取り付けていることにより、厚さ方向の噴射角度を減少させず、かつ、水量の割合が増加することにより、冷却効果を高めることができる。
【0008】
上記ノズルでは、頂面の切り込み方向と直交方向の上記主孔の両側に副孔を連通させて形成し、これら副孔を上記切り込みの対向する両側面に開口させ、上記主噴射孔の両側に副噴射孔を連通させて設けている。
上記のように主孔の両側に副孔を設けると、切込の両側面に開口する副噴射孔が幅方向に長い主噴射孔項の中央部で直交方向両側に連通することより、厚さ方向の噴射角度をより広げることができる。
【0009】
具体的には、上記ノズル本体の噴射側先端を段状に縮径させ、該縮径部より噴射側の中央に上記主孔を設けると共にその両側に上記副孔を設け、かつ、上記段状縮径部に上記デフレクタを配置して、デフレクタより噴射側に副孔を設けている。
上記構成とすると、デフレクタにより分流された流体は副孔側へと流入して厚さ方向に膨らみ、該副孔を通して副噴射孔より噴射させることができるため、厚さ方向の噴霧の厚みをより確実に拡大させることができる。
【0010】
上記直径方向の切り込みは、直交方向の寸法を一定とすると共に、その対向する両側面を切り込み底面に対して垂直あるいは所要角度で開口側に向けて外側に傾斜させ、かつ、上記直径方向の切り込みは中央部に向けて直線状あるいは円弧形状に傾斜させている。
【0011】
上記切込の両側面は10゜〜30゜、好ましくは14゜〜15゜の範囲で面取りして傾斜させることが好ましいが、垂直としてもよい。
また、切り込みは中心部に向けて25°〜70゜の傾斜角で直線状に切り込んでも良いし、中心部に向けて円弧状に切り込んでもよい。いずれも場合も主噴射孔からの幅方向の噴射角度を切り込みの形状に沿わせて広角度とすることができる。
【0012】
上記デフレクタは大略細長い板状とし、その両端をノズル本体の内周面に取り付けて流路中心軸線と直交させて取り付けている。デフレクタはノズル本体に固定してもよいし、着脱自在に交換できるようにしてもよい。
詳しくは、細長い板状の両側に円弧状の取付部を設け、該円弧状の取付部をノズル本体の内周面に密嵌させて取り付けている。
【0013】
上記デフレクタの断面形状は、厚肉の矩形状、噴射孔側に向けて小径となる断面台形状あるいは断面三角形状、噴射孔側に向けて大径となる断面台形状あるいは断面三角形状、断面円形あるいは楕円形状のいずれでも良い。また、これらの形状の異なるデフレクタを用意し、噴霧条件に応じて選択して取り付けてもよい。
【0014】
上記流路を横断して直径方向に配置するデフレクタは、直径方向と直交方向の寸法を上記主噴射孔の厚さ寸法と同等或いは若干大きくしている。
上記デフレクタの寸法を噴射孔の厚さよりも狭くすると、副孔への流入量が減少して副噴射孔からの噴霧量が減少して厚さ方向の噴霧量が減少すると共に噴霧角度をあまり広げることはできない。よって、デフレクタを主噴射孔の厚さ寸法よりも大きくすることが好ましいが、大きすぎると主噴射孔からの噴射量が減少する。従って、上記デフレクタの寸法は主孔の直径よりは小さくして、デフレクタで分流された流体が主孔と副孔の両方に流入させ、主噴射孔と副噴射孔の両方から適度のバランスで噴射されるように設定している。
【0015】
上記主孔の両側に設ける副孔は、その先端を主孔の先端と略同一位置まで延在させ、該副孔先端を円弧状、平坦状、下孔部へ向かって傾斜するテーパ状、あるいはV形状とし、かつ、
上記副孔の先端を下孔の先端と平行あるいは下孔に寄せている。
上記のように副孔の先端形状を変えることにより、副噴射孔からの噴射量、噴射角度を任意に設定することができる。
【0016】
上記ノズル本体の流路には液体とエアの気液混合の二流体を供給し、連続鋳造装置の二次冷却帯においてロール間に並設する冷却水噴射用として噴霧し、上記ロールによって連続的に引き出される鋳片の全面に対して噴射液が厚幅で噴射されるように配置している。
【0017】
本発明のノズルは、幅の長い主噴射孔からの噴射で幅方向の噴射角度を広くしていると共に、デフレクタを配置することにより、直交方向の厚さ方向の噴射角度も広げているため、空気量の割合を減少させても厚さ方向の噴射角度が減少せず、かつ、水量の割合が増加することで、冷却速度を速めることができる。よって、鋳片冷却用として上記ノズルを配置した時に、各ノズルへの供給空気量の割合を低減して、エネルギーの省力化を図ることができ、大幅なランニングコストの削減を図ることができると同時に、冷却速度も早くすることができる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1乃至図3に示すように、ノズル本体10は中心軸線Lに沿った形成した流路11の基端を気液混合液の流入口12とし、該流入口12の先端に段状縮径部13を設け、該段状縮径部13より噴射側先端に先端を円弧形状に収険した主孔14を設けると共に、その対向する両側に一対の副孔15(15A、15B)を設けている。
【0019】
上記主孔14の両側に設ける副孔15は、上記中心軸線Lに直交する断面を円形とし、断面大円形の主孔14の両側に断面小円形の副孔15がラップして連通した形状としている。また、副孔15の噴射側の先端部15aは円弧状とすると共に、主孔14の噴射側先端と略同一位置まで平行に延在させている。
【0020】
ノズル本体10の噴射側先端の平坦面10aに直径方向の切り込み16を同一幅で設け、該切り込み16は長さ方向の両端より中心に向けて深さ方向に直線状に傾斜さている。即ち、切り込み16の底面16aはテーパ面16aとすると共に、幅方向に対向する両側面16b、16cは開口側に向けて外開き方向に若干傾斜させている。
【0021】
上記切り込み16により主孔14の先端部と副孔15A、15Bの主孔側が切り込まれて、切り込み16の底面16aに幅方向Xが長い主噴射孔18が形成されると共に、切り込み16の両側面16b、16cに開口して主噴射孔18の中央部に厚さ方向Yの一対の副噴射孔19が主噴射孔18と連通して形成される。
【0022】
ノズル本体10の内部には、主孔14と副孔15の基部にあたる上記段状縮径部にデフレクタ20を嵌合させて取り付けている。該デフレクタ20は主噴射孔18の幅方向Xと平行方向として流路中央を横断するように配置している。
【0023】
上記デフレクタ20は図4に示す形状で、流路の直径方向に延在する細長い板状で、その両端に外周縁を円弧状とした取付部20bを突設し、該取付部20bの外周縁をノズル本体の流路内周面に当接させて取り付けている。
両側の取付部20bに挟まれた分流板部20aは厚肉矩形状とし、該分流板部20aの両側面に沿って流体を分流させている。
上記分流板部の横幅W1は主噴射孔18の厚さ方向Yの寸法よりは大とすると共に主孔14の直径よりは小さくし、流入口から流入する流体をデフレクタ20に衝突させて主噴射孔18の厚さ方向Yに分流させ、この分流させた流体を主孔14と副孔15とに流入させている。
【0024】
上記形状としたノズルでは、ノズル本体10の流路に流入する気液混合流体はデフレクタ20に衝突し、2分割されて、主孔14の両側部と両側の副孔15A、15Bへと流入する。分流されて主孔14の両側に流入した流体は主孔14を円弧状に収険していることにより主孔16の中央部へと流れ込んで主噴射孔18より噴射される。その際、主噴射孔18を幅方向Xに広がった横長形状とし、かつ、主噴射孔18が開口する切り込み16を幅方向Xに貫通した形状としているため、この切り込み16に沿って噴射され、幅方向Xの噴射角度が広い噴霧となる。
【0025】
さらに、主噴射孔18の幅方向Xと直交する厚さ方向Yでは、対向する副孔15A、15Bに連通する副噴射孔19A、19Bが主噴射孔18の中央部両側と連通して開口し、これら副噴射孔19A、19Bより厚さ方向Yの噴霧がなされるため、厚さ方向の噴射角度も拡げることができる。
【0026】
上記ノズルは連続鋳造装置の二次冷却帯のロール(図示せず)の間に幅方向Xおよび厚さ方向Yとも間隔をあけて配置され、主噴射孔18の幅方向Xと対応する噴霧範囲の両側をラップさせると共に厚さ方向Yの噴射範囲の両側をラップさせている。上記ノズル10は噴霧の厚さ方向Yの噴霧角度が従来のノズルよりも拡げられているため、言わば、厚幅ノズルとなる。
このように、デフレクタを配置して、幅方向と直交する厚さ方向に分流させた後に噴射させて、構造的に厚幅な噴射ができる構成としているため、気液混合流体の空気量の割合を低減しても、幅方向の噴射角度が低減せず、空気量の割合の低減化で省エネルギー化を図ることができる共に、水量の割合の増加で冷却速度を早めることができる。
【0027】
図5はデフレクタを備えた本発明のノズルと、デフレクタを備えていない前記図12に示す従来のノズルとを用いて、厚さ方向の流量分布を測定して噴射角度をを求めた測定結果を示すグラフである。
測定条件は空気量は75NL/minと一定とし、 水量を1L/min→5L/min→15L/minと段階的に増加させ、 空気の割合(気水比)を段階的に低下させた。
【0028】
図5に示すグラフより明らかなように、水量が1L/minで空気の混合比が大きくなる場合は、デフレクタを設けていない従来のノズルでは厚さ方向の噴射角度が39°、デフレクタを設けた本発明のノズルでは37°でデフレクタを設けていない方が若干噴射角度が広がっていた。一方、水量を5L/minと増加して空気の混合比を低下させると、厚さ方向の噴射角度は逆転し、従来のノズルでは25°、本発明では32°となった。さらに、水量を15L/minと増加して空気の混合比をさらに低下させると、従来ノズルでは18°、本発明のノズルでは33°となった。
この結果より、デフレクタを設けた本発明のノズルでは、デフレクタを設けていない場合と比較して、空気量の割合を低減しても厚さ方向の噴霧角度は急減せず、かつ、空気量の減少割合を増加させていっても厚さ方向の噴霧角度を略一定の保持できることが確認できた。
【0029】
また、上記デフレクタを設けた本発明のノズルと、デフレクタを設けていない従来のノズルとにおいて、厚さ方向と直交する幅方向の流量分布と噴霧角度を、上記厚さ方向の噴射角度の測定と同様に、空気量を一定とし、水量を段階的に増大させて測定した。その結果を図6のグラフに示す。
【0030】
図6のグラフに示すように、幅方向の噴射角度は空気量の混合割合の増減にかかわらず、本発明のノズルは従来のノズルよりも若干広くなっていた。かつ、隣接配置したノズルの噴霧範囲が干渉するラップ部分においても、ラップしていない部分の同等な流量分布となり、流量分布の均一化が図れることが確認できた。
【0031】
図7(A)〜(F)はデフレクター20の変形例を示す。
図7(A)では、ノズル本体の内周面と当接する両端20bを拡大させず、両端外周を円弧形状といる。
上記実施形態では、デフレクタ20の流路軸線方向の断面を矩形状としているが、図7(B)では噴射側に向けて縮径させた断面三角形状と、図7(C)では台形状としている。図7(D)は図7(B)と、図7(E)は図7(C)と逆転させている。図7(F)では断面楕円形状としている。
上記図7(B)〜(F)に示すデフレクタ20の断面形状により、分流される流体の方向が制御でき、特に厚さ方向の噴霧角度を任意に変えることができる。よって、断面形状が相違するデフレクタ20を用意しておき、噴射条件に応じて選択して用いてもよい。
【0032】
図8(A)〜(C)は副孔15の先端部の変形例を示す。
図8(A)では副孔15の先端を平坦形状としている。このように平坦形状とすると、エンドミルにより副孔を加工することができる。
図8(B)は副孔15の先端をV形状としている。
図8(C)は副孔15の軸線を先端側で主孔14側に寄せている。
【0033】
図9(A)(B)では、主孔14の両側に設ける副孔15Aと15Bを主孔14を横断する断面楕円形状の両側部として形成している。
図10では、主孔14の両側にそれぞれ2個の副孔15A−1、15A−2と、15B−1、15B−2を設けている。
また、図示していないが、噴霧条件によっては、主孔14の片側にのみ副孔を設けてもよい。
【0034】
上記図8〜図10に示すように副孔の形状を相違させることにより、ノズル本体の頂面の切り込により開口する副噴射孔の形状を相違させて、副噴射孔からの噴射角度、噴霧流量を調整することができる。
【0035】
図11はノズル本体の頂面に設ける直径方向に切り込み16の変形例を示し、上記実施形態では、ノズル本体の中央部に向けて直線状の傾斜させて切り込んでいるが、変形例では円弧形状に傾斜させて切り込んでいる。
【0036】
なお、本発明は上記実施形態に限定されず、副孔を設けることが好ましいが、必ずしも副孔を設ける必要はなく、デフレクタを設けて厚さ方向に分流させた後に主噴射孔より噴射させた場合においても、厚さ方向の噴射角度をデフレクタを設けていない場合と比較して拡げることができる。
さらに、上記ノズルは空気と水とを混合した二流体ノズルとして好適に用いられるが、空気量の割合を減少を減少しても厚み方向の噴射角度が低減しないことより、空気量の割合をゼロとして水のみによる一流体ノズルとしても使用できる。この場合には冷却効果をより高めることが出来ると共に、高圧空気を不要とできるため、ランニングコストを大幅に低減することができる。
また、冷却用に限定されず、各種用途に使用できることは言うまでもない。
【0037】
【発明の効果】
以上の説明より明らかなように、本発明のノズルによれば、主孔の基部にデフレクタを設置し、流体をデフレクタと衝突して主噴射孔の幅方向と直交する厚さ方向に分流させ、厚さ方向へ拡がりを持たせた後に、主噴射孔より噴射させているため、主噴射孔の幅方向と直交する厚さ方向の噴射角度を広げることができる。 よって、気液混合の二流体の空気量の割合を減少させても、上記デフラクタを取り付けていることにより、厚さ方向の噴射角度を減少させず、かつ、水量の割合が増加することにより、冷却効果を高めることができる。
【0038】
さらに、上記主噴射孔の厚さ方向側において、主孔の両側に副孔を設け、該副孔に連通する副噴射孔を主噴射孔の中央両側に連通させて開口すると、デフレクタで分流された流体の一部が副孔を通して副噴射孔より噴射されるため、厚さ方向の噴射角度をより広げることができる。
【図面の簡単な説明】
【図1】本発明の実施形態のノズルを示し、(A)が噴射側の側面図、(B)は反対側の流入口側の側面図である。
【図2】上記ノズルの斜視図である。
【図3】(A)は図1(A)のA−A線断面図、(B)はB−B線断面図である。
【図4】(A)はノズル本体内に取り付けるデフレクタの斜視図、(B)は(A)のC−C線断面図である。
【図5】本発明のデフレクタを取り付けたノズルと、従来のデフレクタを取り付けていないノズルとにおける厚さ方向の噴霧角度を測定した結果を示すグラフである。
【図6】本発明のデフレクタを取り付けたノズルと、従来のデフレクタを取り付けていないノズルとにおける幅さ方向の噴霧角度およびラップ状態を測定した結果を示すグラフである。
【図7】(A)乃至(F)はデフレクタの変形例を示す図面である。
【図8】(A)乃至(C)は副孔の先端形状の変形例を示す図面である。
【図9】(A)(B)は副孔の他の変形例を示す図面である。
【図10】副孔の他の変形例を示す図面である。
【図11】ノズル本体の頂面の切り込みの変形例を示す断面図である。
【図12】(A)乃至(C)は従来例のノズルを示す図面である。
【符号の説明】
10 ノズル本体
12 流入口
13 縮径段部
14 主孔
15(15A、15B) 副孔
15a 先端部
16 切り込み
16a 底面
16b、16c 側面
18 主噴射孔
19(19A、19B) 副噴射孔
20 デフレクタ
20a 分流板部
20b 取付部
X 幅方向
Y 厚さ方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nozzle, and more specifically, to spray two fluids of gas-liquid mixture consisting of water and air in a thick width, and to apply cooling water to a slab continuously drawn out to a secondary cooling zone of a continuous casting apparatus. It is preferably used for spraying.
[0002]
Conventionally, in the secondary cooling zone of continuous casting equipment, multiple nozzles are juxtaposed at intervals between rolls that are juxtaposed, the spray area is wrapped, cooling mist is sprayed on the entire slab, and uncooled parts are generated And eliminates cooling unevenness.
[0003]
As a nozzle for cooling a slab of this type, the present applicant has previously provided a two-fluid nozzle shown in FIG. 12 in Japanese Patent Application Laid-Open No. 5-329402.
The nozzle 1 has a main hole 2 having an arc-shaped tip of a gas-liquid mixing channel along the center axis of the nozzle body 1, sub holes 3 provided on both sides thereof, and a diametrical direction provided on the top surface of the injection side. An injection hole 5 is provided so that the cut 4 communicates with the main hole 2 and the sub hole 3.
[0004]
[Problems to be solved by the invention]
In the above-mentioned nozzle, the spray pattern has a trapezoidal shape in which the sewn-pulling portions on both sides are short, and the flow rate, the impact force, and the particle diameter of the wrapped portion and the non-wrapped portion are equalized. In addition, even if the turndown ratio of the flow control range is changed to a wide range of 1:20 or more, there is an advantage that the fluctuation of the flow rate, hitting force, and particle diameter between the wrapped portion and the non-wrapped portion can be suppressed. Things.
[0005]
In general, in a two-fluid nozzle, when the proportion of the air amount is increased, the spray range in the thickness direction is widened, while when the proportion of the air amount is decreased, the spray range is narrowed.
In the nozzle shown in FIG. 12, when the proportion of the air amount is reduced, the spray angle in the thickness direction Y orthogonal to the width direction X of the injection hole 5 tends to be narrow.
Recently, from the viewpoint of speeding up the cooling rate and energy saving, it has been demanded to reduce the amount of high-pressure air used, and even if the proportion of air in the two-fluid nozzle is reduced, the spray angle in the thickness direction can be reduced. The challenge is not to reduce it.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, the present invention provides a flow path from the inflow port at one end to the injection side at the other end along the central axis of the nozzle body, and the tip of the injection side of the flow path has a circular arc shape. While the hole
A notch in the diameter direction is provided on the flat surface of the tip on the injection side of the nozzle body, and the notch is inclined in the depth direction from both ends in the length direction toward the center, and the center of the notch is the tip of the main hole. To provide a main injection hole with a long width,
And, at the base of the main hole, a deflector parallel to the cutting direction is attached so as to face the main injection hole and traverse the flow path,
A nozzle having a configuration in which a fluid flowing from the inlet side collides with the deflector to split the fluid in a thickness direction orthogonal to a width direction of the main injection hole, thereby increasing a spray angle in the thickness direction. Is provided.
[0007]
According to the above configuration, the deflector is installed at the base of the main hole, and the fluid collides with the deflector and is diverted in the thickness direction orthogonal to the width direction of the injection hole, and after the fluid is expanded in the thickness direction, Since the injection is performed from the injection hole, the injection angle in the thickness direction orthogonal to the width direction of the main injection hole can be widened.
Therefore, even if the ratio of the air amount of the two fluids of the gas-liquid mixture is reduced, by installing the deflector, the injection angle in the thickness direction is not reduced, and the ratio of the water amount is increased. The cooling effect can be enhanced.
[0008]
In the nozzle, sub-holes are formed so as to communicate with both sides of the main hole in a direction orthogonal to the cut direction of the top surface, and these sub-holes are opened on opposite side surfaces of the cut, and on both sides of the main injection hole. The sub injection holes are provided so as to communicate with each other.
When the sub-holes are provided on both sides of the main hole as described above, the sub-injection holes opened on both side surfaces of the cut communicate with both sides in the orthogonal direction at the central portion of the main injection hole term long in the width direction, so that the thickness is small. The spray angle in the direction can be broadened.
[0009]
Specifically, the injection-side tip of the nozzle body is reduced in diameter stepwise, the main hole is provided at the center of the injection side from the reduced diameter portion, and the sub-holes are provided on both sides thereof, and the stepped shape is provided. The deflector is disposed in the reduced diameter portion, and a sub hole is provided on the injection side of the deflector.
With the above configuration, the fluid diverted by the deflector flows into the sub-hole side, swells in the thickness direction, and can be ejected from the sub-injection hole through the sub-hole, so that the thickness of the spray in the thickness direction can be increased. It can be reliably expanded.
[0010]
The notch in the diametric direction has a constant dimension in the orthogonal direction, and the opposite side surfaces are inclined outwardly toward the opening at a required angle or perpendicular to the notch bottom surface, and the notch in the diametric direction. Are inclined linearly or arcuately toward the center.
[0011]
It is preferable that both sides of the cut are chamfered and inclined in a range of 10 ° to 30 °, preferably 14 ° to 15 °, but may be vertical.
Further, the cut may be made linearly at a tilt angle of 25 ° to 70 ° toward the center, or may be cut in an arc toward the center. In any case, the injection angle in the width direction from the main injection hole can be set to a wide angle along the shape of the cut.
[0012]
The deflector is formed in a substantially elongated plate shape, and both ends thereof are attached to the inner peripheral surface of the nozzle body, and are attached so as to be orthogonal to the central axis of the flow path. The deflector may be fixed to the nozzle body or may be detachably replaceable.
Specifically, arc-shaped mounting portions are provided on both sides of the elongated plate shape, and the arc-shaped mounting portions are closely fitted to the inner peripheral surface of the nozzle main body.
[0013]
The cross-sectional shape of the deflector is a thick rectangular shape, a trapezoidal or triangular cross-section having a smaller diameter toward the injection hole side, a trapezoidal or triangular cross-section having a larger diameter toward the injection hole side, and a circular cross-section. Alternatively, the shape may be elliptical. Alternatively, deflectors having different shapes may be prepared and selected and attached according to spray conditions.
[0014]
The deflector arranged in the diameter direction across the flow path has a dimension in a direction perpendicular to the diameter direction equal to or slightly larger than a thickness dimension of the main injection hole.
When the size of the deflector is made smaller than the thickness of the injection hole, the amount of inflow into the sub-hole decreases, the amount of spray from the sub-injection hole decreases, the amount of spray in the thickness direction decreases, and the spray angle becomes too wide. It is not possible. Therefore, it is preferable to make the deflector larger than the thickness dimension of the main injection hole, but if it is too large, the injection amount from the main injection hole decreases. Therefore, the size of the deflector is made smaller than the diameter of the main hole, and the fluid diverted by the deflector flows into both the main hole and the sub-hole, and is injected from both the main injection hole and the sub-injection hole in an appropriate balance. It is set to be.
[0015]
The sub-holes provided on both sides of the main hole extend the tip to substantially the same position as the tip of the main hole, and the tip of the sub-hole is arc-shaped, flat, or tapered toward the lower hole, or V-shaped, and
The tip of the sub-hole is parallel to or close to the tip of the pilot hole.
By changing the tip shape of the sub-hole as described above, the injection amount and the injection angle from the sub-injection hole can be arbitrarily set.
[0016]
The fluid path of the nozzle body is supplied with two fluids of gas and liquid mixture of liquid and air, and is sprayed as a cooling water jet for juxtaposed between rolls in a secondary cooling zone of a continuous casting apparatus, and continuously sprayed by the rolls. It is arranged so that the spray liquid is sprayed in a thick width over the entire surface of the cast slab drawn out.
[0017]
Since the nozzle of the present invention has a wide jetting angle in the width direction by jetting from the long main jetting hole, and by arranging the deflector, the jetting angle in the thickness direction in the orthogonal direction is also widened. Even if the ratio of the air amount is decreased, the injection angle in the thickness direction does not decrease, and the cooling rate can be increased by increasing the ratio of the water amount. Therefore, when the nozzles are arranged for cooling the slab, the ratio of the amount of air supplied to each nozzle can be reduced, energy can be saved, and the running cost can be significantly reduced. At the same time, the cooling rate can be increased.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the nozzle body 10 has a base end of a flow path 11 formed along a central axis L as an inlet 12 for a gas-liquid mixture, and a stepped diameter at the tip of the inlet 12. A main hole 14 having an arc-shaped tip is provided at the injection-side tip of the stepped reduced diameter portion 13 and a pair of sub-holes 15 (15A, 15B) are provided on opposite sides thereof. I have.
[0019]
The sub-holes 15 provided on both sides of the main hole 14 have a circular cross section orthogonal to the central axis L, and the sub-holes 15 having a small circular cross section are connected to both sides of the main hole 14 having a large circular cross section. I have. Further, the tip 15a on the ejection side of the sub hole 15 is formed in an arc shape, and extends in parallel to substantially the same position as the tip on the ejection side of the main hole 14.
[0020]
A cut 16 in the diametric direction is provided in the flat surface 10a at the injection end of the nozzle body 10 with the same width, and the cut 16 is linearly inclined in the depth direction toward the center from both ends in the length direction. That is, the bottom surface 16a of the cut 16 is a tapered surface 16a, and both side surfaces 16b and 16c opposed in the width direction are slightly inclined in the outward opening direction toward the opening side.
[0021]
The notch 16 cuts the tip of the main hole 14 and the main hole side of the sub holes 15A and 15B, so that a main injection hole 18 having a long width direction X is formed on the bottom surface 16a of the notch 16, and both sides of the notch 16 are formed. A pair of sub-injection holes 19 in the thickness direction Y are formed at the center of the main injection hole 18 so as to communicate with the main injection hole 18 and open to the surfaces 16b and 16c.
[0022]
Inside the nozzle body 10, a deflector 20 is fitted and attached to the stepped reduced diameter portion corresponding to the base of the main hole 14 and the sub hole 15. The deflector 20 is disposed so as to cross the center of the flow path as a direction parallel to the width direction X of the main injection hole 18.
[0023]
The deflector 20 has a shape shown in FIG. 4 and has an elongated plate shape extending in the diameter direction of the flow path. At both ends thereof, mounting portions 20b each having an outer peripheral edge formed in an arc shape are protruded, and the outer peripheral edge of the attaching portion 20b is formed. Is mounted in contact with the inner peripheral surface of the flow path of the nozzle body.
The flow dividing plate portion 20a sandwiched between the mounting portions 20b on both sides has a thick rectangular shape, and divides the fluid along both side surfaces of the flow dividing plate portion 20a.
The width W1 of the flow dividing plate portion is larger than the dimension of the main injection hole 18 in the thickness direction Y and smaller than the diameter of the main hole 14, so that the fluid flowing from the inflow port collides with the deflector 20 so that the main injection is performed. The flow is diverted in the thickness direction Y of the hole 18, and the diverted fluid flows into the main hole 14 and the sub hole 15.
[0024]
In the nozzle having the above-described shape, the gas-liquid mixed fluid flowing into the flow path of the nozzle body 10 collides with the deflector 20, is divided into two, and flows into both sides of the main hole 14 and the sub holes 15A and 15B on both sides. . The diverted fluid that flows into both sides of the main hole 14 flows into the center of the main hole 16 and is ejected from the main injection hole 18 because the main hole 14 is collected in an arc shape. At this time, the main injection hole 18 is formed in a horizontally long shape extending in the width direction X, and the cut 16 opening in the main injection hole 18 is formed in a shape penetrating in the width direction X, so that the fuel is injected along the cut 16. The spray has a wide spray angle in the width direction X.
[0025]
Further, in the thickness direction Y orthogonal to the width direction X of the main injection hole 18, the sub injection holes 19A and 19B communicating with the opposing sub holes 15A and 15B communicate with and open to both sides of the central portion of the main injection hole 18. Since the spray in the thickness direction Y is performed from the sub injection holes 19A and 19B, the spray angle in the thickness direction can be widened.
[0026]
The nozzle is disposed between the rolls (not shown) of the secondary cooling zone of the continuous casting apparatus at intervals in the width direction X and the thickness direction Y, and the spray area corresponding to the width direction X of the main injection hole 18. Are wrapped, and both sides of the ejection range in the thickness direction Y are wrapped. Since the spray angle in the thickness direction Y of the spray is wider than that of the conventional nozzle, the nozzle 10 is a so-called thick-width nozzle.
As described above, since the deflector is arranged and divided and diverted in the thickness direction orthogonal to the width direction and then jetted, the jet can be jetted in a thick and wide structure. Even if the number is reduced, the jetting angle in the width direction is not reduced, the energy saving can be achieved by reducing the proportion of the air amount, and the cooling rate can be increased by increasing the proportion of the water amount.
[0027]
FIG. 5 shows a measurement result obtained by measuring a flow rate distribution in a thickness direction to obtain a spray angle using a nozzle of the present invention having a deflector and the conventional nozzle shown in FIG. 12 without a deflector. It is a graph shown.
The measurement conditions were as follows: the air amount was constant at 75 NL / min, the water amount was increased stepwise from 1 L / min → 5 L / min → 15 L / min, and the air ratio (air-water ratio) was decreased stepwise.
[0028]
As is clear from the graph shown in FIG. 5, when the mixing ratio of air is increased when the amount of water is 1 L / min, the conventional nozzle without a deflector has a jetting angle in the thickness direction of 39 ° and a deflector. In the nozzle of the present invention, the jetting angle was slightly wider at 37 ° without the deflector provided. On the other hand, when the amount of water was increased to 5 L / min to lower the mixing ratio of air, the injection angle in the thickness direction was reversed, and was 25 ° in the conventional nozzle and 32 ° in the present invention. Further, when the mixing ratio of air was further decreased by increasing the amount of water to 15 L / min, the angle was 18 ° for the conventional nozzle and 33 ° for the nozzle of the present invention.
From this result, in the nozzle of the present invention provided with the deflector, the spray angle in the thickness direction does not sharply decrease even if the ratio of the air amount is reduced, and the air amount is smaller than when the deflector is not provided. It was confirmed that the spray angle in the thickness direction could be kept substantially constant even when the decrease ratio was increased.
[0029]
Further, in the nozzle of the present invention provided with the deflector and the conventional nozzle not provided with the deflector, the flow rate distribution and the spray angle in the width direction orthogonal to the thickness direction are measured by measuring the injection angle in the thickness direction. Similarly, the measurement was performed with the air amount kept constant and the water amount increased stepwise. The results are shown in the graph of FIG.
[0030]
As shown in the graph of FIG. 6, the nozzle of the present invention was slightly wider than the conventional nozzle regardless of the increase or decrease in the mixing ratio of the air amount in the width direction. In addition, even in the lap portion where the spray ranges of the nozzles arranged adjacently interfere with each other, the flow rate distribution becomes the same as that of the unwrapped portion, and it can be confirmed that the flow rate distribution can be made uniform.
[0031]
FIGS. 7A to 7F show modified examples of the deflector 20.
In FIG. 7A, both ends 20b that are in contact with the inner circumferential surface of the nozzle body are not enlarged, and the outer circumferences of both ends are arc-shaped.
In the above-described embodiment, the cross section of the deflector 20 in the direction of the flow channel axis is rectangular. However, in FIG. 7B, the cross section is reduced in diameter toward the injection side, and in FIG. I have. FIG. 7 (D) is reversed from FIG. 7 (B), and FIG. 7 (E) is reversed from FIG. 7 (C). FIG. 7F shows an elliptical cross section.
The direction of the diverted fluid can be controlled by the cross-sectional shape of the deflector 20 shown in FIGS. 7B to 7F, and the spray angle in the thickness direction can be arbitrarily changed. Therefore, deflectors 20 having different cross-sectional shapes may be prepared, and selected and used according to the injection conditions.
[0032]
FIGS. 8A to 8C show modified examples of the distal end of the sub hole 15.
In FIG. 8A, the tip of the sub hole 15 has a flat shape. With such a flat shape, the sub-hole can be machined by the end mill.
In FIG. 8B, the tip of the sub hole 15 is V-shaped.
In FIG. 8C, the axis of the sub hole 15 is shifted toward the main hole 14 at the front end.
[0033]
9A and 9B, sub-holes 15A and 15B provided on both sides of the main hole 14 are formed as both side portions having an elliptical cross section which crosses the main hole 14.
In FIG. 10, two sub holes 15A-1, 15A-2 and 15B-1, 15B-2 are provided on both sides of the main hole 14, respectively.
Although not shown, a sub-hole may be provided only on one side of the main hole 14 depending on spray conditions.
[0034]
By changing the shape of the sub-hole as shown in FIGS. 8 to 10 above, the shape of the sub-injection hole that is opened by cutting the top surface of the nozzle body is changed, and the injection angle from the sub-injection hole and the spray The flow rate can be adjusted.
[0035]
FIG. 11 shows a modified example of the cut 16 in the diameter direction provided on the top surface of the nozzle body. In the above embodiment, the cut is made linearly inclined toward the center of the nozzle body. It is cut at an angle.
[0036]
In addition, the present invention is not limited to the above embodiment, and it is preferable to provide a sub hole, but it is not always necessary to provide a sub hole, and a deflector is provided and divided in a thickness direction, and then the liquid is injected from the main injection hole. Also in this case, the ejection angle in the thickness direction can be expanded as compared with the case where the deflector is not provided.
Further, the above-mentioned nozzle is preferably used as a two-fluid nozzle in which air and water are mixed, but the jetting angle in the thickness direction does not decrease even if the proportion of air is reduced, so that the proportion of air is reduced to zero. As a one-fluid nozzle using only water. In this case, the cooling effect can be further improved, and high-pressure air can be eliminated, so that the running cost can be significantly reduced.
Needless to say, it is not limited to cooling but can be used for various purposes.
[0037]
【The invention's effect】
As is clear from the above description, according to the nozzle of the present invention, a deflector is installed at the base of the main hole, and the fluid collides with the deflector and is diverted in the thickness direction orthogonal to the width direction of the main injection hole, Since the fuel is injected from the main injection hole after having been spread in the thickness direction, the injection angle in the thickness direction orthogonal to the width direction of the main injection hole can be increased. Therefore, even if the ratio of the air amount of the two fluids of the gas-liquid mixture is reduced, by attaching the deflector, the injection angle in the thickness direction is not reduced, and the ratio of the water amount is increased. The cooling effect can be enhanced.
[0038]
Furthermore, on the thickness direction side of the main injection hole, sub-holes are provided on both sides of the main hole, and the sub-injection holes communicating with the sub-holes are opened to communicate with both sides of the center of the main injection hole. Since a part of the fluid is ejected from the sub-injection hole through the sub-injection, the ejection angle in the thickness direction can be further widened.
[Brief description of the drawings]
1A and 1B show a nozzle according to an embodiment of the present invention, in which FIG. 1A is a side view of an injection side, and FIG. 1B is a side view of an opposite inlet side.
FIG. 2 is a perspective view of the nozzle.
3A is a sectional view taken along line AA of FIG. 1A, and FIG. 3B is a sectional view taken along line BB of FIG.
FIG. 4A is a perspective view of a deflector mounted in a nozzle body, and FIG. 4B is a cross-sectional view taken along line CC of FIG.
FIG. 5 is a graph showing the results of measuring the spray angle in the thickness direction of the nozzle equipped with the deflector of the present invention and the conventional nozzle without the deflector.
FIG. 6 is a graph showing the results of measuring the spray angle and the lap state in the width direction of the nozzle equipped with the deflector of the present invention and the conventional nozzle without the deflector.
FIGS. 7A to 7F are views showing modified examples of the deflector.
FIGS. 8A to 8C are views showing a modification of the tip shape of the sub-hole.
FIGS. 9A and 9B are diagrams showing another modified example of the sub hole.
FIG. 10 is a view showing another modification of the sub hole.
FIG. 11 is a cross-sectional view illustrating a modified example of the cut in the top surface of the nozzle body.
FIGS. 12A to 12C are views showing a conventional nozzle.
[Explanation of symbols]
Reference Signs List 10 Nozzle body 12 Inlet 13 Reduced diameter step 14 Main hole 15 (15A, 15B) Sub hole 15a Tip 16 Notch 16a Bottom surface 16b, 16c Side surface 18 Main injection hole 19 (19A, 19B) Sub injection hole 20 Deflector 20a Plate part 20b Mounting part X Width direction Y Thickness direction

Claims (7)

ノズル本体の中心軸線に沿って、一端の流入口より他端の噴射側に向けて流路を設け、該流路の噴射側先端を円弧状の主孔とする一方、
上記ノズル本体の噴射側先端の平坦面に直径方向の切り込みを設けると共に、該切り込みは長さ方向の両端より中心に向けて深さ方向に傾斜させ、該切り込みの中央部を上記主孔の先端と連通させて幅の長い主噴射孔を設け、
かつ、上記主孔の基部に、上記切り込み方向と平行なデフレクタを上記主噴射孔と対向させて流路を横断させて取り付け、
上記流入口側より流入する流体を上記デフレクタと衝突させて上記主噴射孔の幅方向と直交する厚さ方向に分流させ、厚さ方向の噴霧角度を増大させる構成としていることを特徴とするノズル。
Along the center axis of the nozzle body, a flow path is provided from the inflow port at one end toward the injection side at the other end, while the injection side end of the flow path is an arc-shaped main hole,
A notch in the diameter direction is provided on the flat surface of the tip on the injection side of the nozzle body, and the notch is inclined in the depth direction from both ends in the length direction toward the center, and the center of the notch is the tip of the main hole. Provide a long main injection hole by communicating with
And, at the base of the main hole, a deflector parallel to the cutting direction is attached so as to face the main injection hole and traverse the flow path,
A nozzle having a configuration in which a fluid flowing from the inlet side collides with the deflector to split the fluid in a thickness direction orthogonal to a width direction of the main injection hole, thereby increasing a spray angle in the thickness direction. .
上記切り込み方向と直交方向の上記主孔の両側に副孔を連通させて形成し、これら副孔を上記切り込みの対向する両側面に開口させ、上記主噴射孔の両側に副噴射孔を連通させて設けている請求項1に記載のノズル。Sub-holes are formed so as to communicate with both sides of the main hole in a direction orthogonal to the cutting direction, and these sub-holes are opened on opposite side surfaces of the cut, and sub-injection holes are communicated with both sides of the main injection hole. The nozzle according to claim 1, wherein the nozzle is provided. 上記ノズル本体の噴射側先端を段状に縮径させ、該縮径部より噴射側の中央に上記主孔を設けると共にその両側に上記副孔を設け、かつ、上記段状縮径部に上記デフレクタを配置して、デフレクタより噴射側に副孔を設けている請求項2に記載のノズル。The injection-side tip of the nozzle body is stepwise reduced in diameter, the main hole is provided at the center of the injection side from the reduced diameter portion, and the sub-holes are provided on both sides thereof, and the stepped reduced diameter portion is provided. 3. The nozzle according to claim 2, wherein a deflector is arranged, and a sub-hole is provided on an ejection side of the deflector. 上記直径方向の切り込みは、該切り込み方向と直交方向の寸法を一定とすると共に、その対向する両側面を切り込み底面に対して垂直あるいは所要角度で開口側に向けて外側に傾斜させ、かつ、
上記直径方向の切込は中央部に向けて直線状あるいは円弧形状に傾斜させている請求項1乃至請求項3のいずれか1項に記載のノズル。
The cut in the diameter direction, while keeping the dimension in the direction perpendicular to the cut direction constant, and inclining outwardly facing the opening side at a required angle or perpendicular to the cut bottom, and,
The nozzle according to any one of claims 1 to 3, wherein the cut in the diameter direction is inclined in a linear or arc shape toward the center.
上記デフレクタは大略細長い板状とし、その両端をノズル本体の内周面に当接させて流路中心軸線と直交させて取り付け、
上記デフレクタの軸線方向の断面形状を、厚肉の矩形状、噴射孔側に向けて小径となる断面台形状あるいは断面三角形状、噴射孔側に向けて大径となる断面台形状あるいは断面三角形状、断面円形あるいは楕円形状とし、これらの形状の異なるデフレクタを噴霧条件に応じて選択して取り付けている請求項1乃至請求項3のいずれか1項に記載のノズル。
The deflector is formed in a substantially elongated plate shape, and its both ends are abutted on the inner peripheral surface of the nozzle body and are mounted orthogonal to the flow path central axis,
The cross-sectional shape in the axial direction of the deflector is a thick rectangular shape, a trapezoidal cross section or a triangular cross section having a smaller diameter toward the injection hole side, and a trapezoidal or triangular cross section having a larger diameter toward the injection hole side. The nozzle according to any one of claims 1 to 3, wherein the nozzle has a circular or elliptical cross section, and deflectors having different shapes are selected and attached according to spraying conditions.
上記主孔の両側に設ける副孔は、その先端を主孔の先端と略同一位置まで延在させ、該副孔先端を円弧状、平坦状、下孔部へ向かって傾斜するテーパ状、あるいはV形状とし、かつ、
上記副孔の先端を下孔の先端と平行あるいは下孔に寄せている請求項2乃至請求項5のいずれか1項に記載のノズル。
The sub-holes provided on both sides of the main hole extend the tip to substantially the same position as the tip of the main hole, and the tip of the sub-hole is arc-shaped, flat, or tapered toward the lower hole, or V-shaped, and
The nozzle according to any one of claims 2 to 5, wherein a tip of the sub-hole is parallel to or close to a tip of the pilot hole.
上記ノズル本体の流路には液体とエアの二流体を供給し、連続鋳造装置の二次冷却帯においてロール間に並設する冷却水噴射用として噴霧し、上記ロールによって連続的に引き出される鋳片の全面に対して噴射液が厚幅で噴射されるように配置している請求項1乃至請求項6のいずれか1項に記載のノズル。Two fluids, liquid and air, are supplied to the flow path of the nozzle body, and sprayed as cooling water jets juxtaposed between rolls in a secondary cooling zone of a continuous casting apparatus, and casting is continuously drawn by the rolls. The nozzle according to any one of claims 1 to 6, wherein the nozzle is disposed so as to be sprayed with a thick width over the entire surface of the piece.
JP2002171780A 2002-06-12 2002-06-12 Nozzle Pending JP2004016846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171780A JP2004016846A (en) 2002-06-12 2002-06-12 Nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171780A JP2004016846A (en) 2002-06-12 2002-06-12 Nozzle

Publications (1)

Publication Number Publication Date
JP2004016846A true JP2004016846A (en) 2004-01-22

Family

ID=31171547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171780A Pending JP2004016846A (en) 2002-06-12 2002-06-12 Nozzle

Country Status (1)

Country Link
JP (1) JP2004016846A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237086A (en) * 2006-03-09 2007-09-20 Jfe Steel Kk Nozzle
JP2008296197A (en) * 2007-06-04 2008-12-11 Jfe Steel Kk Nozzle
JP2011067781A (en) * 2009-09-28 2011-04-07 Kyoritsu Gokin Co Ltd Deflector, and jetting nozzle using the same
CN103691585A (en) * 2013-12-24 2014-04-02 大连理工大学 Universal combined jet nozzle
WO2015198834A1 (en) * 2014-06-26 2015-12-30 株式会社いけうち Spray nozzle
CN110038739A (en) * 2019-04-28 2019-07-23 南京高速齿轮制造有限公司 The adjustable Lubricating oil nozzle of spray angle
CN113123770A (en) * 2020-01-16 2021-07-16 中国石油化工股份有限公司 Fixed-face hydraulic jet fracturing nozzle, jet pipe string and application of fixed-face hydraulic jet fracturing nozzle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237086A (en) * 2006-03-09 2007-09-20 Jfe Steel Kk Nozzle
JP2008296197A (en) * 2007-06-04 2008-12-11 Jfe Steel Kk Nozzle
JP2011067781A (en) * 2009-09-28 2011-04-07 Kyoritsu Gokin Co Ltd Deflector, and jetting nozzle using the same
CN103691585A (en) * 2013-12-24 2014-04-02 大连理工大学 Universal combined jet nozzle
WO2015198834A1 (en) * 2014-06-26 2015-12-30 株式会社いけうち Spray nozzle
JP2016007602A (en) * 2014-06-26 2016-01-18 株式会社いけうち Spray nozzle
US10183300B2 (en) 2014-06-26 2019-01-22 H. Ikeuchi & Co., Ltd. Spray nozzle
CN110038739A (en) * 2019-04-28 2019-07-23 南京高速齿轮制造有限公司 The adjustable Lubricating oil nozzle of spray angle
CN110038739B (en) * 2019-04-28 2024-04-09 南京高速齿轮制造有限公司 Lubricating oil nozzle with adjustable injection angle
CN113123770A (en) * 2020-01-16 2021-07-16 中国石油化工股份有限公司 Fixed-face hydraulic jet fracturing nozzle, jet pipe string and application of fixed-face hydraulic jet fracturing nozzle

Similar Documents

Publication Publication Date Title
US6783085B2 (en) Fuel injector swirl nozzle assembly
US4646977A (en) Spray nozzle
JP2710398B2 (en) Two-fluid nozzle
JP2006192360A (en) Slit nozzle for two fluids
US20080131828A1 (en) All primary combustion burner
JP5547802B2 (en) nozzle
CA2308507A1 (en) Slit nozzle for spraying a continuous casting product with a cooling liquid
KR102623646B1 (en) Orifice plates and valves
JP2004016846A (en) Nozzle
JP6089006B2 (en) spray nozzle
JP4972326B2 (en) nozzle
JP2005106006A (en) Jetting hole member and fuel injection valve using the same
JPH1054203A (en) Constituent element
JP4447726B2 (en) Fluid injection nozzle
JP5405865B2 (en) Injection nozzle
JP4766622B2 (en) Gas-liquid mixed flow injection device
JP5580565B2 (en) Spray nozzle with deflector
JP5048394B2 (en) nozzle
JP2006167601A (en) Two-fluid nozzle
JPH05329402A (en) Spray nozzle
JP4452093B2 (en) Injection nozzle and injection method
JP4766623B2 (en) Gas-liquid mixed flow injection device
JP2651308B2 (en) Liquid injection nozzle
TW200904544A (en) Reversible air-assisted airless spray tip
JP2588803Y2 (en) Liquid injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106