JP2004015339A - Method for designing optical network - Google Patents

Method for designing optical network Download PDF

Info

Publication number
JP2004015339A
JP2004015339A JP2002164774A JP2002164774A JP2004015339A JP 2004015339 A JP2004015339 A JP 2004015339A JP 2002164774 A JP2002164774 A JP 2002164774A JP 2002164774 A JP2002164774 A JP 2002164774A JP 2004015339 A JP2004015339 A JP 2004015339A
Authority
JP
Japan
Prior art keywords
optical
optical path
optical paths
node
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164774A
Other languages
Japanese (ja)
Other versions
JP3844221B2 (en
Inventor
Osao Ogino
荻野 長生
Masatoshi Suzuki
鈴木 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2002164774A priority Critical patent/JP3844221B2/en
Publication of JP2004015339A publication Critical patent/JP2004015339A/en
Application granted granted Critical
Publication of JP3844221B2 publication Critical patent/JP3844221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To decide the number of optical paths including a standby optical path on each routing candidate so as to minimize the installation cost while satisfying requirements of a fault recovery rate in an optical network wherein it is not required to newly set a bypassing optical path on the occurrence of a fault and the standby optical path is shared in common. <P>SOLUTION: Traffic communicated through an optical path 20 in which a fault takes place is bypassed through a plurality of the standby optical paths 21, 22 wherein no fault is caused. A linear programming problem including constraint conditions to attain a fault recovery rate designated through bypassing is solved by using a routing candidate and the number of request optical paths between node pairs as an input, thereby obtaining the number of optical paths including standby optical paths to be located on each routing candidate so as to minimize the installation cost. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光ネットワークの設計法に関し、特に、障害発生時に新たに迂回用光パスを設定する必要がなく、同時に障害が発生しない任意の光パス間で予備光パスを共用できるような光ネットワークにおいて、障害回復率を満足しつつ、設備コストが最小となるように各ルート候補上に配備すべき予備光パスを含めた光パス数を決定できる光ネットワークの設計法に関する。
【0002】
【従来の技術】
複数のノードが互いに光パスによって接続されて構成される光ネットワークにおいて、その信頼性を確保するために、従来、光パスに障害が発生した時、該障害が発生した光パスに流れていたトラヒックを、他の光パスを用いて迂回させる方式が提案されている。
【0003】
この方式として、例えば、現用の光パスに1対1に対応させて迂回用の光パスを設ける方式(専用プロテクション方式)、1対のノードペア間で迂回用の光パスを共用する方式(共用プロテクション方式)、任意のノードペア間で迂回用の光パスを共用する方式(レストレーション方式)等が知られており、これら方式において、現用の光パスと迂回用の光パスを含めて、設備コストを最小化するような光パスの配備が決定されている。
【0004】
【発明が解決しようとする課題】
しかしながら、プロテクション方式の場合には、ノードペア毎に迂回用光パスを設けるために、全体として光パス数が増加して、設備コストが大きい光ネットワークしか実現できないという問題がある。
【0005】
また、レストレーション方式の場合には、障害が発生した後に新たに迂回用光パスを設定するため、高速な障害回復が不可能な光ネットワークしか実現できないという問題がある。
【0006】
本発明の目的は、前記した従来技術の問題を解消し、障害発生時に新たに迂回用光パスを設定する必要がなく、同時に障害が発生しない任意の光パス間で予備光パスを共用できるような光ネットワークにおいて、障害回復率を満足しつつ、設備コストが最小となるように各ルート候補上に配備すべき予備光パスを含めた光パス数を決定できる光ネットワークの設計法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は、複数のノードが互いに光パスによって接続されており、光パスに障害が発生した時には障害が発生した光パスに流れていたトラヒックを複数の予備光パスを経由して迂回させ、しかも同時に障害にならない任意の光パスの間で予備光パスを共用できるような光ネットワークの設計法において、光ネットワークを構成する各ノードペア間のルート候補と要求光パス数を入力として、障害が発生した光パスに流れていたトラヒックを障害を受けていない複数の予備光パスを経由して迂回させることにより指定された障害回復率を達成できるような制約条件を含む線形計画法を解いて、設備コストが最小になるように各ルート候補上に配備すべき予備光パスを含めた光パス数を求める点に特徴がある。
【0008】
この特徴によれば、障害発生時に新たに迂回用光パスを設定する必要がないので高速な障害回復が可能であり、しかも同時に障害にならない任意の光パスの間で迂回用の予備光パスを共用することができ、必要な光パス数が少ない光ネットワークを、あらかじめ指定された障害回復率を満足しつつ、最小設備コストで実現することができる。
【0009】
【発明の実施の形態】
以下、本発明を図面を参照して詳細に説明する。図1は、本発明が適用される光ネットワークの一例を示す構成図であり、この光ネットワークは、ラベルスイッチルータ1A〜1Eと光クロス・コネクト装置(以下、コネクト装置と記す)2A〜2Eを有するノードA〜E間を光ファイバ10〜17で接続することにより構成されている。また、任意のラベルスイッチルータ間は、複数のコネクト装置と光ファイバを経由する光パスによって接続される。
【0010】
光ネットワーク上で伝送されるパケットには、ラベル(識別子)が挿入されており、各ラベルスイッチルータ1A〜1Eは、入力されたパケットを、それに挿入されているラベルに従って選択的に光パスに転送する。該光ネットワークの障害回復は、障害が発生した光パスに流れていたトラヒックを複数の予備光パスを経由して迂回させることにより行われる。
【0011】
例えば、図1に示すように、ノードAを発信ノードとし、ノードCを着信ノードとした、ノードA〜光ファイバ10〜コネクト装置2D〜光ファイバ13〜ノードCの現用光パス20に流れるトラヒックがあり、光ファイバ10に障害が発生した場合には、該トラヒックは、ノードA〜光パス(予備光パス)21〜ノードE〜光パス(予備光パス)22〜ノードCの2つの予備光パスから構成される光パス(迂回用光パス)30を通って迂回される。
【0012】
次に、本発明の光ネットワークの設計法の一実施形態について説明する。本実施形態は、前記したように、障害発生時に新たに迂回用光パスを設定する必要がなく、同時に障害が発生しない任意の光パス間で予備光パスを共用できるような光ネットワークにおいて、障害回復率を満足しつつ、設備コストが最小となるように各ルート候補上に配備すべき予備光パスを含めた光パス数を決定することを目標とする。
【0013】
本発明では、複数のノードが互いに光パスによって接続されており、光パスに障害が発生した時には障害が発生した光パスに流れていたトラヒックを複数の予備光パスを経由して迂回させ、しかも同時に障害にならない任意の光パスの間で予備光パスを共用できるような光ネットワークにおいて、各ノードペア間のルート候補と要求光パス数が与えられた場合に、線形計画法を用いて、指定された障害回復率を満足しつつ設備コストを最小化するような予備光パスを含めた光パスの配備を求める。
【0014】
このために、光ネットワークにおけるノードペアs,d間のルート候補rと要求光パス数Ds,dを入力とし、線形計画法を用いて、指定された障害回復率を満足しつつ設備コストを最小化するような予備光パスを含めた光パスの配備を求める。
【0015】
障害が発生した光パスに流れていたトラヒックを、障害を受けていない2本
までの予備光パスを経由して迂回させることにより、指定された障害回復率を
達成できるような線形計画法における制約条件は、以下の式で表される。

Figure 2004015339
ここで、上記の式中の各シンボルの意味は、次の通りである。
N:ノード集合、
s:発信ノード、
d:着信ノード、
TRs,d:発信ノードsから着信ノードdまでの迂回トラヒックが経由する迂回ノードの集合、
t:迂回ノード、
RTs,d:発信ノードsから着信ノードdまでのルート候補の集合、
r:ルート候補、
F:障害状態の集合、
f:障害状態、
FRf,s,d:障害状態fにおいて、障害となる発信ノードsから着信ノードdまでのルート候補の集合、
Rs,d,r:発信ノードsから着信ノードdまでのルートr上の光パスの障害回復率、
Ps,d,r:発信ノードsから着信ノードdまでのルートr上に設定される光パス数、
SPs,d,r:発信ノードsから着信ノードdまでのルートr上に設定される予備光パス数、
APs,d,r,t:発信ノードsから着信ノードdまでのルートr上のトラヒックのための迂回ノードtを経由する迂回用光パス数、
Ds,d:発信ノードsから着信ノードdまでの要求パス数。
【0016】
ここでは、2本までの予備光パス、すなわち1つまでの迂回ノードを経由する迂回用光パスのみを考える。t=dの時、APs,d,r,tは、迂回ノードを経由しない、発信ノードsと着信ノードdを直接接続する迂回用光パス数を表す。t=sの時、APs,d,r,tは常にゼロであるとみなす。Ps,d,r、SPs,d,rおよびAPs,d,r,tは、本来整数であるが、値の範囲が充分広い場合には、実数として扱うことにより、解精度の劣化を抑えつつ、高速に解を求めることができる。
【0017】
最小とすべき設備コストCostは、例えば以下の式で表される。
Figure 2004015339
ここで、上記の式中の各シンボルの意味は、次の通りである。
WPs,d,r,w:発信ノードsから着信ノードdまでのルートr上の波長wを使用する予備光パスも含めた光パス数、
UFl:リンクlにおける使用ファイバー数、
UCl:リンクlにおける使用チャネル数、
Mn:ノードnにおける使用スイッチサイズ、
UWn:ノードnにおける使用スイッチプレーン数、
PRn:ノードnにおけるコストの固定分、
UPn:ノードnを端点とする光パス数、
RFl:リンクlの単位距離当たりの故障率、
RFn:ノードnの故障率、
LRs,d,r:発信ノードsから着信ノードdまでのルートrに含まれるリンクの集合、
RLl:リンクlを含むルート(s,d,r)の集合、
NRs,d,r:発信ノードsから着信ノードdまでのルートrに含まれる中継ノードの集合、
RNn:ノードnを中継ノードとするルート(s,d,r)の集合、
MAXw:波長wについての最大値、
{w|論理式}:論理式を満足する波長wの集合
Card{ }:集合{ }の要素数、
α1:単位距離当たりのケーブルコスト、
α2:単位距離当たりのファイバーコスト、
α3:ファイバーコストの固定分、
α4:チャネルコスト、
β:ポート当たりのノードコスト、
γ:光パスを終端するために必要なコストの2分の1、
δ:光パス当たりの障害コスト。
【0018】
上記の制約条件や光ネットワークの最大容量を制約条件とし、設備コストを目的関数とする線形計画法を解いて、Ps,d,r及びSPs,d,rの値を求めることにより、指定された障害回復率を満足しつつ設備コストを最小化するような予備光パスを含めた光パス配備を決定することができる。
【0019】
【発明の効果】
以上の説明から明らかなように、本発明によれば、障害発生時に新たに迂回用光パスを設定する必要がないので高速な障害回復が可能であり、しかも同時に障害にならない任意の光パスの間で迂回用の予備光パスを共用することができ、必要な光パス数が少ない光ネットワークを、あらかじめ指定された障害回復率を満足しつつ、最小設備コストで実現することができる。
【図面の簡単な説明】
【図1】本発明が適用される光ネットワークの一例を示す構成図である。
【符号の説明】
10〜17・・・光ファイバ、20・・・光パス、21、22・・・予備光パス、30・・・迂回用光パス、A〜E・・・ノード、1A〜1E・・・ラベルスイッチルータ、2A〜2E・・・光クロス・コネクト装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for designing an optical network, and more particularly to an optical network in which it is not necessary to newly set up a detour optical path when a failure occurs, and at the same time a backup optical path can be shared between any optical paths that do not cause a failure. The present invention relates to a method for designing an optical network capable of determining the number of optical paths including a backup optical path to be deployed on each route candidate so as to minimize the equipment cost while satisfying a failure recovery rate.
[0002]
[Prior art]
In an optical network in which a plurality of nodes are connected to each other by an optical path, in order to ensure the reliability, when a failure occurs in the optical path, the traffic flowing through the failed optical path is conventionally used. Is detoured by using another optical path.
[0003]
As this method, for example, a method in which a detour optical path is provided in one-to-one correspondence with a working optical path (dedicated protection method), and a method in which a detour optical path is shared between a pair of node pairs (shared protection) Method), a method of sharing a detour optical path between arbitrary node pairs (restoration method), and the like. In these methods, the equipment cost including the current optical path and the detour optical path is reduced. The deployment of the optical path to minimize it has been decided.
[0004]
[Problems to be solved by the invention]
However, in the case of the protection method, since a detour optical path is provided for each node pair, the number of optical paths increases as a whole, and there is a problem that only an optical network with a large equipment cost can be realized.
[0005]
In addition, in the case of the restoration method, since a detour optical path is newly set after a failure occurs, there is a problem that only an optical network that cannot perform high-speed failure recovery can be realized.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problem of the related art, so that it is not necessary to newly set up a detour optical path when a failure occurs, and at the same time, a spare optical path can be shared between any optical paths that do not cause a failure. Provided is a method for designing an optical network that can determine the number of optical paths including a backup optical path to be deployed on each route candidate so as to minimize the equipment cost while satisfying the failure recovery rate in a simple optical network. It is in.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, the present invention provides a method in which a plurality of nodes are connected to each other by an optical path, and when a failure occurs in the optical path, the traffic flowing in the failed optical path is transferred to a plurality of backup optical paths. In a method of designing an optical network in which a spare optical path can be shared between arbitrary optical paths that do not cause a failure at the same time as a detour via a route, a route candidate and the number of required optical paths between each pair of nodes constituting the optical network are determined. As input, linear programming including constraints that can achieve the specified failure recovery rate by diverting the traffic flowing through the failed optical path through multiple non-failed backup optical paths The method is characterized in that the number of optical paths including the spare optical path to be deployed on each route candidate is determined so that the equipment cost is minimized by solving the method.
[0008]
According to this feature, it is not necessary to newly set a detour optical path when a fault occurs, so that high-speed fault recovery is possible, and at the same time, a detour spare optical path can be set between any optical paths that do not cause a fault. An optical network that can be shared and requires a small number of optical paths can be realized at a minimum facility cost while satisfying a failure recovery rate specified in advance.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of an optical network to which the present invention is applied. This optical network includes label switch routers 1A to 1E and optical cross connect devices (hereinafter, referred to as connect devices) 2A to 2E. The nodes A to E are connected by optical fibers 10 to 17. In addition, an arbitrary label switch router is connected to a plurality of connecting devices by an optical path via an optical fiber.
[0010]
A label (identifier) is inserted in a packet transmitted on the optical network, and each of the label switch routers 1A to 1E selectively transfers an input packet to an optical path according to the label inserted therein. I do. The recovery from the failure of the optical network is performed by diverting the traffic flowing in the failed optical path via a plurality of backup optical paths.
[0011]
For example, as shown in FIG. 1, traffic flowing through the working optical path 20 of the node A, the optical fiber 10, the connecting device 2 D, the optical fiber 13, and the node C, where the node A is the transmitting node and the node C is the receiving node. In the case where a failure occurs in the optical fiber 10, the traffic is transmitted through the two backup optical paths of the node A to the optical path (backup optical path) 21 to the node E to the optical path (backup optical path) 22 to the node C. Are detoured through an optical path (detour optical path) 30 composed of
[0012]
Next, an embodiment of an optical network designing method according to the present invention will be described. As described above, in the present embodiment, it is not necessary to newly set a detour optical path when a failure occurs, and at the same time, in an optical network in which a spare optical path can be shared between any optical paths where no failure occurs, a failure occurs. The goal is to determine the number of optical paths including backup optical paths to be deployed on each route candidate so as to minimize the equipment cost while satisfying the recovery rate.
[0013]
In the present invention, a plurality of nodes are connected to each other by an optical path, and when a failure occurs in an optical path, traffic flowing in the failed optical path is diverted through a plurality of backup optical paths, and In an optical network in which a backup optical path can be shared among arbitrary optical paths that do not simultaneously cause a failure, given a route candidate between each pair of nodes and the required number of optical paths, a designated path is specified using a linear programming method. An optical path including a backup optical path that minimizes the equipment cost while satisfying the failure recovery rate is required.
[0014]
For this purpose, the route candidate r between the node pairs s and d in the optical network and the required number of optical paths Ds and d are input, and the facility cost is minimized using a linear programming method while satisfying the specified failure recovery rate. It is required to provide an optical path including a backup optical path.
[0015]
Constraints in linear programming that can achieve a specified failure recovery rate by diverting traffic flowing through a failed optical path through up to two non-failed backup optical paths The condition is represented by the following equation.
Figure 2004015339
Here, the meaning of each symbol in the above equation is as follows.
N: node set,
s: originating node,
d: destination node,
TRs, d: a set of detour nodes through which detour traffic from the source node s to the destination node d passes;
t: detour node,
RTs, d: set of route candidates from the source node s to the destination node d,
r: route candidate,
F: set of failure states
f: failure state,
FRf, s, d: a set of route candidates from the source node s to the destination node d in the failure state f,
Rs, d, r: failure recovery rate of the optical path on the route r from the source node s to the destination node d,
Ps, d, r: the number of optical paths set on the route r from the source node s to the destination node d,
SPs, d, r: the number of backup optical paths set on the route r from the source node s to the destination node d,
APs, d, r, t: the number of detour optical paths via detour node t for traffic on route r from source node s to destination node d,
Ds, d: number of required paths from the source node s to the destination node d.
[0016]
Here, only up to two spare optical paths, that is, detour optical paths via up to one detour node are considered. When t = d, APs, d, r, and t represent the number of detour optical paths that directly connect the source node s and the destination node d without passing through the detour node. When t = s, APs, d, r, t are always assumed to be zero. Ps, d, r, SPs, d, r and APs, d, r, t are inherently integers, but when the range of values is sufficiently wide, they are treated as real numbers, thereby suppressing degradation of the solution accuracy. The solution can be found at high speed.
[0017]
The equipment cost Cost to be minimized is represented by, for example, the following equation.
Figure 2004015339
Here, the meaning of each symbol in the above equation is as follows.
WPs, d, r, w: the number of optical paths including the backup optical path using the wavelength w on the route r from the source node s to the destination node d,
UFl: Number of fibers used in link l,
UCl: Number of channels used in link 1
Mn: used switch size at node n,
UWn: number of used switch planes at node n,
PRn: fixed amount of cost at node n,
UPn: number of optical paths having node n as an end point
RFl: failure rate per unit distance of link l,
RFn: failure rate of node n,
LRs, d, r: a set of links included in a route r from the source node s to the destination node d,
RLl: set of routes (s, d, r) including link l,
NRs, d, r: a set of relay nodes included in the route r from the source node s to the destination node d,
RNn: set of routes (s, d, r) with node n as a relay node,
MAXw: maximum value for wavelength w,
{W | logical expression}: set of wavelengths w that satisfies the logical expression Card {}: number of elements of set {},
α1: cable cost per unit distance,
α2: fiber cost per unit distance,
α3: fixed fiber cost,
α4: channel cost,
β: node cost per port,
γ: 1/2 of the cost required to terminate the optical path,
δ: failure cost per optical path.
[0018]
The above-mentioned constraints and the maximum capacity of the optical network are used as constraints, and a linear programming method using the facility cost as an objective function is solved to obtain values of Ps, d, r and SPs, d, r. It is possible to determine an optical path arrangement including a backup optical path that minimizes the equipment cost while satisfying the failure recovery rate.
[0019]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is not necessary to newly set up a detour optical path when a failure occurs, so that high-speed failure recovery is possible, and at the same time, any optical path that does not cause a failure can be used. A spare optical path for detour can be shared between the optical networks, and an optical network with a small number of necessary optical paths can be realized at a minimum facility cost while satisfying a failure recovery rate specified in advance.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an example of an optical network to which the present invention is applied.
[Explanation of symbols]
10 to 17: optical fiber, 20: optical path, 21, 22: spare optical path, 30: detour optical path, A to E: node, 1A to 1E: label Switch router, 2A ~ 2E ... Optical cross connect device

Claims (1)

複数のノードが互いに光パスによって接続されており、光パスに障害が発生した時には障害が発生した光パスに流れていたトラヒックを複数の予備光パスを経由して迂回させ、しかも同時に障害にならない任意の光パスの間で予備光パスを共用できるような光ネットワークの設計法において、
光ネットワークを構成する各ノードペア間のルート候補と要求光パス数を入力として、障害が発生した光パスに流れていたトラヒックを障害を受けていない複数の予備光パスを経由して迂回させることにより指定された障害回復率を達成できるような制約条件を含む線形計画法を解いて、設備コストが最小になるように各ルート候補上に配備すべき予備光パスを含めた光パス数を求めることを特徴とする光ネットワークの設計法。
A plurality of nodes are connected to each other by an optical path, and when a failure occurs in an optical path, traffic flowing in the failed optical path is diverted through a plurality of backup optical paths, and the failure does not occur simultaneously. In a method for designing an optical network in which a backup optical path can be shared between arbitrary optical paths,
By inputting the route candidates between each pair of nodes constituting the optical network and the number of required optical paths, the traffic flowing through the failed optical path is bypassed through a plurality of non-failed backup optical paths. Solving a linear programming method that includes constraints that can achieve a specified disaster recovery rate, and finding the number of optical paths, including spare optical paths to be deployed on each route candidate, to minimize equipment costs An optical network design method characterized by the following.
JP2002164774A 2002-06-05 2002-06-05 Design method of optical network Expired - Fee Related JP3844221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164774A JP3844221B2 (en) 2002-06-05 2002-06-05 Design method of optical network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164774A JP3844221B2 (en) 2002-06-05 2002-06-05 Design method of optical network

Publications (2)

Publication Number Publication Date
JP2004015339A true JP2004015339A (en) 2004-01-15
JP3844221B2 JP3844221B2 (en) 2006-11-08

Family

ID=30432833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164774A Expired - Fee Related JP3844221B2 (en) 2002-06-05 2002-06-05 Design method of optical network

Country Status (1)

Country Link
JP (1) JP3844221B2 (en)

Also Published As

Publication number Publication date
JP3844221B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US20080304407A1 (en) Efficient Protection Mechanisms For Protecting Multicast Traffic in a Ring Topology Network Utilizing Label Switching Protocols
US6324162B1 (en) Path-based restoration mesh networks
US6728205B1 (en) Method and apparatus for automatic protection switching
JP4149680B2 (en) Detour route design method for communication network
CN1645840B (en) Fast rerouting of traffic in a circuit switched mesh network
CN100527702C (en) Method for rerouting MPLS traffic in ring networks and network node
EP1903725B1 (en) Packet communication method and packet communication device
US20040109687A1 (en) Fast rerouting method through generalized multi-protocol label switching
US8488963B2 (en) Link diversity and load balancing across digital and optical express-thru nodes
WO2010038624A1 (en) Communication system, node device, communication system communication method, and program
EP2624590B1 (en) Method, apparatus and system for interconnected ring protection
US20020194339A1 (en) Method and apparatus for allocating working and protection bandwidth in a telecommunications mesh network
US20030147344A1 (en) Scaleable line-based protection for connection oriented communications protocols
US20030169692A1 (en) System and method of fault restoration in communication networks
EP3813310A1 (en) Permitted network risks in diverse route determinations
JP4297636B2 (en) Transmission system
US7155120B1 (en) Link level network protection path calculation mechanism for use in optical networks
CN105207871B (en) Double-cut ring network protection method and device
US20050270979A1 (en) Method for establishing a substitute path in a network
US7620322B2 (en) Load sharing nodes in a network utilising shared optical protection
CN108924046B (en) Method and system for protecting GRE tunnel bearing service
JP4565483B2 (en) Optical network design method
JP3844221B2 (en) Design method of optical network
CN105656542B (en) Pretection switch method, system and node
KR101726264B1 (en) Network Management System of inter-operation between multivendor packet transport networks and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees