JP2004014014A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium Download PDF

Info

Publication number
JP2004014014A
JP2004014014A JP2002166191A JP2002166191A JP2004014014A JP 2004014014 A JP2004014014 A JP 2004014014A JP 2002166191 A JP2002166191 A JP 2002166191A JP 2002166191 A JP2002166191 A JP 2002166191A JP 2004014014 A JP2004014014 A JP 2004014014A
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
underlayer
recording medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166191A
Other languages
Japanese (ja)
Other versions
JP4535666B2 (en
Inventor
Shunji Takenoiri
竹野入 俊司
Yasushi Sakai
酒井 泰志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002166191A priority Critical patent/JP4535666B2/en
Publication of JP2004014014A publication Critical patent/JP2004014014A/en
Application granted granted Critical
Publication of JP4535666B2 publication Critical patent/JP4535666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical magnetic recording medium reduced in medium noise and improved in reproduced output characteristics by improving the orientability of a magnetic recording layer, reducing the crystal grain size of the magnetic recording layer and improving the coercive force of the magnetic recording layer. <P>SOLUTION: The vertical recording medium successively having a ground surface layer and the magnetic recording layer on a nonmagnetic substrate is formed with the ground surface layer including a "Permalloy" material selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism and is provided with an intermediate layer preferably including pure Ru or an Ru-base alloy added with at least one kind selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V to Ru between the ground surface layer and the magnetic recording layer, by which the vertical magnetic recording medium is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は各種磁気記録装置に搭載される垂直磁気記録媒体に関する。
【0002】
【従来の技術】
磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。垂直磁気記録方式による媒体(以下、「垂直磁気記録媒体」と称す)は、主に、ガラスなどの基体上に、磁気記録層を目的の方向に配向させるための下地層、硬質磁性材料の磁気記録層、および磁気記録層の表面を保護する保護膜が順次形成された概略構成を有する。垂直磁気記録媒体には、磁気記録層への記録に用いられる磁気ヘッドから発生する磁束を集中させる目的で、基体と下地層との間に軟磁性材料からなる裏打ち層を設けることもある。通常、軟磁性裏打ち層を持たない媒体を単層垂直磁気記録媒体、軟磁性裏打ち層を有する媒体を二層垂直磁気記録媒体と呼ぶ。さらに、磁気記録層の配向性の向上および結晶欠陥を抑制するために、下地層と磁気記録層の間に中間層を設ける場合もある。
【0003】
近年、磁気記録媒体において磁気記録をより高密度化する要望はますます高くなっている。垂直磁気記録媒体において磁気記録をより高密度化するためには、出力−ノイズ比(SNR)特性をより向上させることが必要である。すなわち、媒体の高密度記録化を達成するためには、媒体ノイズを低減化し、再生出力を向上させることが必要となる。
【0004】
再生出力の低下および媒体ノイズ増加の原因の1つに、磁気記録層の磁性の配向分散(配向のバラツキ)が大きくなることによる磁気記録層の配向性の悪化がある。垂直磁気記録媒体では磁気記録層の磁化容易軸を媒体面と垂直に配向させる必要があるが、該磁化容易軸の配向分散が大きくなると、垂直方向の磁束が低下するため再生出力が低下し、また記録ビットの遷移がシャープでなくなり媒体ノイズが増加する。したがって、垂直磁気記録媒体の高出力化・低ノイズ化のためには、磁気記録層の磁化容易軸の配向分散をできる限り小さくする必要がある。
【0005】
また、磁気記録層の結晶粒径の低減により、磁気記録媒体の低ノイズ化を図ることができる。磁気記録層の結晶粒径が大きくなると、ビットの遷移領域の形状がギザギザになり、遷移ノイズ(媒体ノイズ)が増加する。そのため、遷移ノイズを低下させるためには、磁気記録層の結晶粒径を低減し、ビットの遷移領域を直線的にすることが必要となる。
【0006】
さらに、面内磁気記録媒体と同様、垂直磁気記録媒体においても媒体の保磁力(Hc)を向上させることにより媒体の再生出力特性を向上させることができる。
【0007】
以上から、垂直磁気記録媒体において、磁気記録層の配向分散の低減(配向性の向上)、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力向上により、媒体ノイズを低減化し、再生出力を向上させ、磁気記録の高密度化を実現することができる。
【0008】
【発明が解決しようとする課題】
磁気記録層の配向分散の低減化(磁気記録層の配向性向上)を図るためには、下地層(および中間層)の役割が重要となる。その理由は、(1)配向性が良好な下地層(および中間層)を用いることにより磁気記録層の配向性が改善され、さらに(2)下地層(および中間層)と磁気記録層との格子定数のマッチングを良くすることにより、下地層(または中間層)上に磁気記録層をエピタキシャル成長させることができ、その結果、良好な下地層−磁気記録層界面(中間層がある場合には中間層−磁気記録層界面の接合)となり、磁気特性の悪い磁気記録層における初期成長層の形成を抑制でき、磁気記録層の配向性が改善されるからである。
【0009】
また、磁気記録層の結晶粒径の低減化を図るためにも、下地層(および中間層)の役割が重要となる。その理由は、磁気記録層を下地層(および中間層)上にエピタキシャル成長させた場合、磁気記録層の結晶粒径が下地層(および中間層)の結晶粒径に従うため、下地層(および中間層)の結晶粒径を低減することにより、磁気記録層の結晶粒径を低減できるからである。
【0010】
従来、垂直磁気記録媒体における下地層としては、TiやTiCrなどのTi系合金が用いられてきた。その理由は、Ti系合金が、磁気記録層としてしばしば用いられるCo系合金と同じ結晶構造であるhcp(六方最密充填)構造をとり、Ti系合金とCo系合金の格子定数のマッチングも比較的良いために磁気記録層での磁化容易軸を適切な方位に配向(この場合はc軸配向)させることができると考えられるためである。しかしながら、Ti系合金から成る下地層上に磁気記録層を形成する場合、下地層のTi系合金が該下地層表面に吸着した酸素や水と反応して酸化物を作り易いため、磁気記録層の膜成長初期に磁気特性および配向性の悪いアモルファス層(初期成長層)を生じ、該アモルファス層の影響で磁気記録層の配向分散が大きくなり磁気記録層の配向性が悪化するという問題点があった。また、下地層中のTiが磁気記録層中のCoと相互拡散しやすいため、TiがCo中に拡散すると、上記と同様、磁気記録層においてアモルファス初期成長層を生じ、磁気記録層の配向性が悪化するという問題点もあった。したがって、下地層にTi系合金を用いた従来の垂直磁気記録媒体では、Ti系合金に起因する媒体ノイズの増加および再生出力特性の低減を享受していた。
【0011】
本発明者らは、上記課題を解決するために、非磁性NiFeCrの下地層を用いたり、NiFe、NiFeCr、NiFeNb、NiFeMo、またはNiFeNbMoから選択される軟磁性パーマロイ系材料を含む下地層とCoCr、CoCrB、Ru、またはPdから選択される非磁性材料を含む中間層とを用いること等により、磁気記録層の配向分散の低減化、磁気記録層における初期成長層の低減、あるいは磁気記録層の結晶粒の低減化して、Ti系合金を下地層に用いた従来の磁気記録垂直媒体よりも高再生出力化および媒体ノイズの低減化が達成できることを報告している(特願2001−162638号および特願2001−310628号)。
【0012】
本発明は、磁気記録層の配向分散の低減化、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力の向上を図ることにより、本発明者らの上記特許出願の目的と同様、媒体ノイズを低減化し、再生出力特性を向上させた垂直磁気記録媒体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者は、上記課題を解決するために、非磁性基体上に下地層および磁気記録層を順次有する垂直記録媒体において、特に下地層、さらに中間層の構成について検討した結果、磁気記録層の配向分散の低減化、磁気記録層の結晶粒径の低減化、磁気記録層の保磁力の向上を図ることにより、従来の垂直磁気記録媒体よりも低ノイズ化され、高再生出力を有する垂直磁気記録媒体を作製できることが判明した。
【0014】
すなわち、本発明は、非磁性基体上に下地層と磁気記録層とを順次有する垂直記録媒体において、前記下地層が軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含むことを特徴とする垂直磁気記録媒体を提供する。
【0015】
前記本発明の垂直磁気記録媒体において、前記パーマロイ系材料中のFe含有率が12〜15at%であることが好ましい。
【0016】
前記本発明の垂直磁気記録媒体において、前記パーマロイ系材料が面心立方格子(fcc)構造であることが好ましい。
【0017】
前記本発明の垂直磁気記録媒体において、前記磁気記録層がCoおよびCrを含む合金を含むことが好ましい。
【0018】
前記本発明の垂直磁気記録媒体において、前記非磁性基体と前記下地層との間に軟磁性裏打ち層をさらに有することが好ましい。
【0019】
前記本発明の垂直磁気記録媒体において、前記下地層と前記磁気記録層との間に中間層をさらに有することが好ましい。
【0020】
前記本発明の垂直磁気記録媒体において、前記中間層が、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を含むことが好ましい。
【0021】
【発明の実施の形態】
以下、図面を用いて、本発明の垂直磁気記録媒体について説明する。
【0022】
図1は、本発明の一実施形態に係る垂直記録媒体の断面概略図である。該垂直磁気記録媒体は、非磁性基体1上に、軟磁性裏打ち層2、下地層3、中間層4、磁気記録層5、保護層6、及び液体潤滑材層7とを順次形成したものである。ただし、図1に示される垂直磁気記録媒体は本発明を例示したものであって、本発明をこれらの構成を有するものに限定するものではない。例えば、図1に示される垂直磁気記録媒体において、軟磁性裏打ち層2、中間層4、保護膜6、および液体潤滑材層7は任意選択であるが好適に設けることができる層である。
【0023】
非磁性基体1は、好ましくはNiPメッキを施したAl基体、強化ガラスおよび結晶化ガラスなどのガラス基体、単結晶シリコン基体、セラミックス基体、ポリカーボネート基体、高分子樹脂基体などの非金属基体とすることができるが、低価格と高剛性の観点から、ガラス基体またはセラミックス基体が好ましい。非磁性基体1の表面には研磨などの平滑化処理を行うことが望ましい。
【0024】
非磁性基体1と下地層3との間には軟磁性裏打ち層2を設けることが好ましい。軟磁性裏打ち層2は、磁気記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる機能を有し、その結果、媒体の磁気特性をさらに向上させることができる。軟磁性裏打ち層2の材料は、このような機能を発揮できる慣用の軟磁性材料を用いることができ、例えば結晶性のFeTaC、センダスト(FeSiAl)合金等、また非晶質のCo合金であるCoZrNb、CoTaZrなどを用いることができる。軟磁性裏打ち層2の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、生産性との兼ね合いから、約10nm〜500nm以下であることが好ましい。
【0025】
下地層3は、磁気記録層の磁性を基体に対して垂直に配向させる機能を有し、下地層がないとランダムな方向に該磁性が配向してしまう。本発明の磁気記録媒体では、下地層3は、軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含む。下地層3に軟磁性材料を用いることにより、非磁性材料の場合と比較して、ヘッドと軟磁性層2との間の距離を短縮することができ、ヘッドの書き込み性能を向上できる。上記パーマロイ材料を用いたのは、パーマロイ系下地層材料の磁性の配向性が良好であるゆえ、下地層の上に形成される磁気記録層の磁性を基体に対して良好に垂直配向させることができること、これらのパーマロイ系下地層材料と磁気記録層材料との格子定数のマッチングが良くなることにより下地層上に磁気記録層をエピタキシャル成長させることができるゆえ、磁気特性の悪い磁気記録層の初期成長層の形成を抑制して磁気記録層の配向性が改善できること、さらに、これらの下地層材料の結晶粒径は小さいゆえ、下地層の結晶粒系に従って磁気記録層の結晶粒径を低減でき、遷移ノイズ(媒体ノイズ)を低減化することができるためである。なお、磁気記録層の磁化容易軸の配向分散低減により、結晶磁気異方性が向上する結果、磁気記録層の熱安定性が向上し、媒体の信頼性が向上する利点もある。
【0026】
上記軟磁性パーマロイ系材料中のFe含有量は、12〜15at%以下であることが好ましい。パーマロイ系材料中のFe含有量が12at%以上にすることにより、パーマロイ材料の飽和磁化の減少および磁歪の増加による軟磁気特性が低減するのを抑制して良好な磁気記録層の磁性の配向性を得ることができる一方、Fe含有量を15at%以下にすることにより、パーマロイ材料と磁気記録層材料との格子定数の良好なマッチングが得られることにより、中間層や磁気記録層の配向性を向上させ、磁気特性をより改善することができる。
【0027】
さらに、下地層3に含まれるパーマロイ系材料は面心立方格子(fcc)構造であることが好ましい。パーマロイ系下地層材料が面心立方格子(fcc)構造である場合、記録層5の構成材料の結晶配向を基板に対し垂直方向に良好に維持する。より詳細に説明すれば、例えば磁気記録層5の構成材料としてhcp構造をとるCo基合金を用いた場合、下地層3におけるfcc構造(111)面と磁気記録層5におけるhcp構造(002)面は原子配置が全く同じであるため、格子定数のマッチングが適当であれば、fcc構造(111)面上にhcp構造(002)面をエピタキシャルに成長させることができ、Co基合金の結晶配向をc軸方向に配向させることができる。hcp構造をとるRu系材料を含む中間層4を用いた場合にはより良好な配向性が得られる。また、磁気記録層5の構成材料がhcp構造以外の結晶構造(例えば、fcc構造)をとっても同様に良好な垂直磁性が得られる。一方、下地層3のパーマロイ材料が体心立方格子(bcc)構造やアモルファス構造をとると、磁気記録層5の結晶配向が低下し、磁気特性や記録・再生特性の低下を招いてしまう。なお、下地層3の膜厚としては、媒体ノイズの低減化および高再生出力を達成するのに好適な膜厚を適宜選択することができる。
【0028】
下地層3と磁気記録層5との間には中間層4を設けることが好ましい。中間層4は、磁気記録層の配向性を向上させ、磁気記録層の初期成長膜を抑制するという機能を有する。好適な中間層4の材料として、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を好適に用いることができる。これらのRuまたはRu基合金を含む中間層4が下地層3上に形成された場合、RuまたはRu基合金の配向性が良いゆえに、磁気記録層の配向性を向上させることができること、RuまたはRu基合金の中間層材料と磁気記録層材料とが格子定数のマッチングが良好であるゆえに、両者の接合が良好となり、磁気記録層における初期成長層の形成を抑制して、磁気記録層の配向性を向上させることができる。また、上記下地層3に含まれるパーマロイ材料の結晶粒径に従ってRuまたはRu基合金の結晶粒径を小さくできるゆえ、磁気記録層の結晶粒径を微細化して媒体ノイズの低減化を図ることができる。
【0029】
垂直磁気記録媒体では、ヘッドの記録磁界を確保してシャープな磁場分布を得るため、軟磁性裏打ち層と磁気記録層の間の非磁性層膜厚をできる限り薄くすることが求められる(ヘッドと軟磁性層の距離が広がると、磁束が広がり、記録されるトラックやビットが広がって、媒体の遷移ノイズの増加や記録分解能の低下といった問題が起こる)一方、軟磁性裏打ち層と磁気記録層とが接触すると、両者の相互作用により媒体ノイズが急増する。したがって、できる限り薄い膜厚で結晶性と配向性とを維持することが要求される。Ti系合金を用いた下地層を有する従来の垂直磁気記録媒体では、Ti系下地層の膜厚が非磁性層膜厚となるが、薄い膜厚で結晶性と配向性とを維持するのは実際には困難であるのに対し、本発明の垂直磁気記録媒体では、パーマロイ系下地層3およびRu系中間層4で磁気記録層5の配向性を制御でき、非磁性層であるRu系中間層4を薄膜化できるため、シャープなヘッド磁界を得ることができ、ヘッドの書き込み能力を確保できるとともに、媒体の遷移ノイズを低減化できる。また、下地層3に結晶性および配向性の良い上記のパーマロイ系材料を用いることで、中間層4の膜厚が薄くても、磁気記録層において優れた結晶性や配向性が得られる。なお、中間層の膜厚は媒体ノイズの低減化および高再生出力を達成するのに好適な膜厚を適宜選択することができ、3〜5nmとすることが好ましいがこれに限定するものではない。
【0030】
磁気記録層(磁性層)5は情報を記録する層であるが、垂直磁気記録媒体においては磁気記録層5を構成する材料の磁性が膜面に垂直方向に配向していることが垂直磁気記録媒体として用いるために必要である。磁気記録層5を構成する材料として、前述の機能を発揮する慣用の強磁性材料を用いることができるが、Co基合金を好適に用いることができ、より好ましくはCoCrPt、CoCrTa、CoCrPtB、CoCrPtNb、CoCrPtTaなどのCoおよびCrを含む合金材料や、CoPt−SiO、CoCrPt−SiO、CoPt−Crなどのグラニュラー材料を用いることができる。磁気記録層5の膜厚として、記録層5の膜厚が小さくなれば、媒体ノイズを低減化することができ、また記録再生のときに磁気ヘッドとの距離が狭くなり出力再生に好ましいが、記録層5の体積が減少して記録磁化状態の熱的安定化が悪くなるゆえ、5nm以上50nm以下とすることが好ましいが、これに限定するものではない。
【0031】
必要に応じて、磁気記録層5上に保護層6を形成することができる。保護膜15は、記録層を形成する磁性膜をヘッドの衝撃、外界の腐食性などの腐食から保護する機能を有する。このような機能を提供できる慣用のいかなる材料を用いてもよく、例えば、炭素、窒素含有炭素、水素含有炭素、酸化シリコン等を使用することができる。保護層6の膜厚は0.5〜5nmとするのが好ましい。
【0032】
また、必要に応じて、保護層6上に潤滑層7を形成することができる。潤滑層7は、ヘッドが媒体上を滑空する機能を高めたり、ヘッドのアンロード機構を用いないドライブでの運転停止時のヘッド吸着防止や耐環境特性向上という機能を有する。パーフルオロポリエーテル等のフッ素系液体潤滑剤など、上記機能を有する慣用の潤滑材を用いることができる。
【0033】
上述の通り、図1に示される垂直磁気記録媒体は本発明を例示したものであって、本発明をこれらの構成を有するものに限定するものではない。成膜される各層は単層でもあっても多層であってもよく、多層の場合は多層中の各層は異なる材料や膜厚であってもよいし、同じ材料や膜厚であってもよい。また、必要であれば、非磁性基体1と軟磁性裏打ち層2との間にシード層などの任意の層を加えることができる。シード層とは、配向性悪化の一因となる基体表面の凹凸を低減し、かつ保磁力を向上せしめる機能を有し、このような機能を有するTiまたはTaなどの慣用の材料を用いることができる。
【0034】
上記本発明の垂直磁気記録媒体の製造において、非磁性基体1の上に積層される各層は、磁気記録媒体の分野で通常用いられる種々の成膜技術によって形成することが可能である。軟磁性裏打ち層2、下地層3、中間層4、磁気記録層5、任意選択によるシード層、保護層6、および潤滑層7の形成には、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、真空蒸着法を用いることができる。潤滑層7は、ディップ法、スピンコート法などの慣用の塗布方法等で形成することができる。
【0035】
【実施例】
以下に、本発明の垂直磁気記録媒体について実施例により詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0036】
(実施例1)
本実施例は、非磁性基体上に軟磁性NiFeB下地層、Ru中間層、CoCrPt磁気記録層、保護膜、および潤滑層を順次有する本発明に係る二層垂直磁気記録媒体に関する。具体的には、以下のようにして上記垂直磁気記録媒体を得た。
【0037】
非磁性基体として表面が平滑な化学強化ガラス基体(HOYA社製N−10ガラス基体)を用い、これを洗浄後スパッタ装置内に導入し、Co8Zr5Nbターゲットを用いてCoZrNb非晶質軟磁性裏打ち層を200nmの膜厚として成膜した。次に、軟磁性パーマロイ系合金であるNi12Fe6Bターゲットを用いてNiFeB下地層を3nmの膜厚として成膜した。続いて、ランプヒータを用いて基体表面温度が30℃になるように加熱を行なった後、Ruターゲットを用いて、Arガス圧4.0Pa下でRu中間層を5nmの膜厚として成膜した。続いて、Co20Cr10Ptターゲットを用いてCoCrPt磁気記録層を20nmの膜圧として成膜した。最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、媒体を真空装置から取り出した。ヒータ加熱およびRu中間層の成膜を除く上記成膜はすべてArガス圧0.67Pa下で行い、ヒータ加熱を除く上記成膜はDCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、本発明に係る垂直磁気記録媒体とした。また、磁気特性を比較するために、膜厚が5nm、10nm、15nm、30nmであるNiFeB下地層を形成したことを除き、上記と同様にして、層構成が同じ本発明に係る二層垂直磁気記録媒体を製造した。
【0038】
(実施例2)
本実施例では、パーマロイ系軟磁性下地層をNiFeNbBとしたことを除き、実施例1と同様にして、本発明に係る二層垂直磁気記録媒体を製造した。なお、本実施例においても、磁気特性を比較するために、膜厚が3nm、5nm、10nm、15nm、30nmであるNiFeNbB下地層の膜厚を形成したことを除き、実施例1と同様にして、層構成が同じ各垂直磁気記録媒体を製造した。
【0039】
(比較例1)
本比較例では、パーマロイ系軟磁性下地層をNi17Fe4Nb1Moとしたことを除き、実施例1と同様にして、層構成が同じ二層垂直磁気記録媒体を製造した。本比較例においても、磁気特性を比較するために、膜厚が3nm、5nm、10nm、15nm、30nmであるNiFeNbMo下地層の膜厚を形成したことを除き、実施例1と同様にして、層構成が同じ各垂直磁気記録媒体を製造した。なお、Ni17Fe4Nb1Moを下地層とする該垂直磁気記録媒体は、特願2001−310628号で開示した本発明者による特許発明である。該垂直磁気記録媒体は、Ti系合金を下地層として用いた従来の垂直磁気記録媒体よりも媒体ノイズの低減化および高再生出力を達成したものである。
【0040】
上述のようにして得られた二層媒体について、磁気カー効果により保磁力Hcを、TEMにより結晶粒径を、X線回折装置を用いたロッキングカーブ法により配向分散(△θ50)を測定した。さらに、リード・ライトテスタを用いて、記録密度を変化させた場合のノイズを測定した。
【0041】
図2は、本発明および比較例に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示す。図中、四角(実線)が実施例1に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示し、丸(実線)が実施例2に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示し、菱形(点線)は比較例1に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示している。実施例1のNiFeB下地層を用いた媒体と比較例1のNiFeNbB下地層を使用した媒体のHcを比較すると、下地層膜厚3〜5nmにおいて実施例1の媒体の方が高いHcが得られていることが分かる。また、実施例2のNiFeNbB下地層を用いた媒体と比較例1の媒体を比較すると、下地層膜厚5nm以上において高いHcが得られていることが分かる。このように、下地層組成により最適な膜厚は変化するものの、実施例1および2の何れの場合にも比較例と比べて高いHcが得られた。
【0042】
表1は、上記実施例1、2および比較例1においてそれぞれ得られた本発明および比較例に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表中、媒体1はNi12Fe6Bから成り、かつ膜厚5nmである下地層を有する実施例1の垂直磁気記録媒体を示し、媒体2はNi12Fe6N3Bから成り、かつ膜厚5nmである下地層を有する実施例2の垂直磁気記録媒体を示し、媒体3はNi17Fe4Nb1Moから成り、かつ膜厚5nmである下地層を有する比較例1の垂直磁気記録媒体を示す。表1の結果より、いずれの媒体の保磁力(Hc)はほぼ同じであるが、本発明に係る垂直磁気記録媒体(媒体1および媒体2)では、比較例の垂直磁気記録媒体(媒体3)と比べて、△θ50に関しては改善されており、また、結晶粒径に関しても粒径の微細化が進んでいることが分かる。
【0043】
【表1】

Figure 2004014014
【0044】
図3は、表1中に示される本発明および比較例に係る垂直磁気記録媒体の媒体ノイズの線記録密度依存性を示す。図から明らかなように、本発明に係る垂直磁気記録媒体(媒体1および媒体2)は、比較例の垂直磁気記録媒体(媒体3)よりも低ノイズ化が達成されていることが分かる。この低ノイズ化には、配向性の向上(△θ50の低下)および結晶粒径の低減が寄与しているものと考えられる。
【0045】
表2は、上記実施例1および実施例2において得られた別の態様の本発明に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表中、媒体4はNi12Fe6Bから成り、かつ膜厚3nmである下地層を有する実施例1の垂直磁気記録媒体を示し、媒体5はNi12Fe6N3Bから成り、かつ膜厚10nmである下地層を有する実施例2の垂直磁気記録媒体を示す。表2の結果は、表1の結果と同様、本発明に係る垂直磁気記録媒体(媒体4および5)では良好な△θ50が得られ、結晶粒径の微細化が進んでいることが分かる。
【0046】
【表2】
Figure 2004014014
【0047】
図4は、表2に示される本発明に係る垂直磁気記録媒体および上記媒体3の媒体ノイズの線記録密度依存性を示す。図4から明らかなように、本発明に係る垂直磁気記録媒体(媒体4および媒体5)においても、比較例(媒体3)に比べ、良好な低ノイズ化が達成されていることが分かる。この低ノイズ化も、配向性の向上(△θ50の低下)および結晶粒径の低減が寄与しているものと考えられる。
【0048】
(実施例3)
本実施例は、非磁性基体上に軟磁性NiFeB下地層、Ru中間層、グラニュラー磁気記録層、保護膜、および潤滑層を順次有する本発明に係る二層垂直磁気記録媒体に関する。具体的には、以下のようにして上記垂直磁気記録媒体を得た。
【0049】
非磁性基体として表面が平滑な化学強化ガラス基板(HOYA社製N−10ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Co8Zr5Nbターゲットを用いてCoZrNb非晶質軟磁性裏打ち層200nmを成膜した。次に、軟磁性パーマロイ系合金であるNi12Fe6Bターゲットを用いてNiFeB下地層を3nmの膜厚として成膜した。続いて、Ruターゲットを用いて、Arガス圧4.0Pa下でRu中間層5nmを成膜した。次に、92(Co8Cr16Pt)−8SiOターゲットを用いて、Arガス圧4.0Pa下でCoCrPt−SiOグラニュラー磁気記録層20nmを成膜した。最後にカーボンターゲットを用いてカーボンからなる保護膜10nmを成膜後、真空装置から取り出した。これらの成膜は全て室温下で行い、Ru中間層およびCoCrPt−SiOグラニュラー磁気記録層の成膜を除く上記成膜はArガス圧0.67Pa下で行った。また上記成膜は全てDCマグネトロンスパッタリング法により行なった。その後、パープルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、本発明に係る二層垂直磁気記録媒体(媒体6)を製造した。また、NiFeB下地層を5nmの膜厚として成膜したことを除き、上記と同様にして、本発明に係る二層垂直磁気記録媒体(媒体7)を製造した。
【0050】
(比較例2)
本比較例では、膜厚5nmのNi22Feから成る軟磁性下地層としたことを除き、実施例3と同様にして、二層垂直磁気記録媒体(媒体8)を製造した。
【0051】
上述のようにして得られた二層媒体について、磁気カー効果により保磁力Hcを、TEMにより結晶粒径を、X線回折装置を用いたロッキングカーブ法により配向分散(△θ50)を測定した。表3は、上記実施例3および比較例2においてそれぞれ得られた本発明および比較例に係る垂直磁気記録媒体の保磁力Hc、結晶粒径、配向分散(△θ50)を示したものである。表3から分かるように、B成分の添加により、本発明に係る垂直磁気記録媒体(媒体6および7)と比べて比較例の垂直磁気記録媒体(媒体8)では、保磁力は大きく向上し、△θ50に関しても改善され、粒径の微細化が進んでいることが分かる。このように、通常のCoCrPtのような加熱成膜を必要とする磁気記録層だけでなく、全ての層を非加熱で成膜する必要があるグラニュラー磁気記録層を有する媒体においても、本発明の下地層を用いることにより、保磁力の増大、配向性の向上、結晶粒径の微細化といった媒体の基本特性の向上が達成されることがわかった。
【0052】
【表3】
Figure 2004014014
【0053】
【発明の効果】
以上述べたように、本発明によれば、配向性および結晶粒径微細化に優れた軟磁性パーマロイ系材料を下地層として用い、配向性および接合性に優れたRuまたはRu基合金材料を中間層として用いたことにより、磁気記録層の保磁力が増大し、磁化容易軸の配向分散が低減されると同時に、磁気記録層の結晶粒径が低減される。その結果、垂直磁気記録媒体の再生出力を増大させ、媒体ノイズを低減することができる。また、磁気記録層の磁化容易軸の配向分散低減により、結晶磁気異方性が向上する結果、磁気記録層の熱安定性が向上し、媒体の信頼性が向上する。
【図面の簡単な説明】
【図1】本発明に係る二層垂直磁気記録媒体の概略図である。
【図2】本発明および比較例に係る垂直磁気記録媒体の下地層膜厚を変化させたときの保磁力Hcの変化を示す図である。
【図3】本発明および比較例に係る二層垂直磁気記録媒体における媒体ノイズの線記録密度依存性を示す図である。
【図4】本発明および比較例に係る二層垂直磁気記録媒体における媒体ノイズの線記録密度依存性を示す図である。
【符号の説明】
1 非磁性基体
2 軟磁性裏打ち層
3 下地層
4 中間層
5 磁気記録層
6 保護膜
7 液体潤滑材層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium mounted on various magnetic recording devices.
[0002]
[Prior art]
As a technique for realizing a higher density of magnetic recording, a perpendicular magnetic recording method is attracting attention instead of a conventional longitudinal magnetic recording method. Perpendicular magnetic recording media (hereinafter referred to as "perpendicular magnetic recording media") mainly include a base layer such as glass, a base layer for orienting a magnetic recording layer in a desired direction, and a hard magnetic material. It has a schematic configuration in which a recording layer and a protective film for protecting the surface of the magnetic recording layer are sequentially formed. In a perpendicular magnetic recording medium, a backing layer made of a soft magnetic material may be provided between a base and an underlayer for the purpose of concentrating a magnetic flux generated from a magnetic head used for recording on a magnetic recording layer. Usually, a medium having no soft magnetic underlayer is called a single-layer perpendicular magnetic recording medium, and a medium having a soft magnetic underlayer is called a two-layer perpendicular magnetic recording medium. Further, an intermediate layer may be provided between the underlayer and the magnetic recording layer in order to improve the orientation of the magnetic recording layer and suppress crystal defects.
[0003]
In recent years, there has been an increasing demand for higher density magnetic recording in magnetic recording media. In order to increase the density of magnetic recording in a perpendicular magnetic recording medium, it is necessary to further improve the output-to-noise ratio (SNR) characteristics. That is, in order to achieve high-density recording on a medium, it is necessary to reduce medium noise and improve reproduction output.
[0004]
One of the causes of a decrease in the reproduction output and an increase in the medium noise is a deterioration in the orientation of the magnetic recording layer due to an increase in the magnetic orientation dispersion (orientation variation) of the magnetic recording layer. In a perpendicular magnetic recording medium, the easy axis of magnetization of the magnetic recording layer needs to be oriented perpendicular to the medium surface.However, if the orientation dispersion of the easy axis increases, the magnetic flux in the perpendicular direction decreases, and the reproduction output decreases. Further, the transition of the recording bit is not sharp, and the medium noise increases. Therefore, in order to increase the output and reduce noise of the perpendicular magnetic recording medium, it is necessary to minimize the orientation dispersion of the easy axis of the magnetic recording layer.
[0005]
Further, the noise of the magnetic recording medium can be reduced by reducing the crystal grain size of the magnetic recording layer. When the crystal grain size of the magnetic recording layer increases, the shape of the bit transition region becomes jagged, and transition noise (medium noise) increases. Therefore, in order to reduce the transition noise, it is necessary to reduce the crystal grain size of the magnetic recording layer and make the bit transition region linear.
[0006]
Further, as in the case of the longitudinal magnetic recording medium, in the perpendicular magnetic recording medium, the reproduction output characteristics of the medium can be improved by improving the coercive force (Hc) of the medium.
[0007]
As described above, in the perpendicular magnetic recording medium, the medium noise is reduced by reducing the orientation dispersion of the magnetic recording layer (improving the orientation), reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer. It is possible to improve the reproduction output and realize a higher density of the magnetic recording.
[0008]
[Problems to be solved by the invention]
In order to reduce the orientation dispersion of the magnetic recording layer (improve the orientation of the magnetic recording layer), the role of the underlayer (and the intermediate layer) is important. The reason is that (1) the orientation of the magnetic recording layer is improved by using an underlayer (and an intermediate layer) having good orientation, and (2) the orientation between the underlayer (and the intermediate layer) and the magnetic recording layer is improved. By improving the lattice constant matching, the magnetic recording layer can be epitaxially grown on the underlayer (or the intermediate layer). As a result, a good interface between the underlayer and the magnetic recording layer (the intermediate This is because the formation of the initial growth layer in the magnetic recording layer having poor magnetic properties can be suppressed, and the orientation of the magnetic recording layer is improved.
[0009]
In addition, the role of the underlayer (and the intermediate layer) is important for reducing the crystal grain size of the magnetic recording layer. The reason is that when the magnetic recording layer is epitaxially grown on the underlayer (and the intermediate layer), the crystal grain size of the magnetic recording layer follows the crystal grain size of the underlayer (and the intermediate layer). This is because the crystal grain size of the magnetic recording layer can be reduced by reducing the crystal grain size of (a).
[0010]
Conventionally, a Ti-based alloy such as Ti or TiCr has been used as an underlayer in a perpendicular magnetic recording medium. The reason is that the Ti-based alloy has an hcp (hexagonal close-packed) structure, which is the same crystal structure as the Co-based alloy often used as a magnetic recording layer, and also compares the lattice constant matching between the Ti-based alloy and the Co-based alloy. This is because it is considered that the axis of easy magnetization in the magnetic recording layer can be oriented in an appropriate azimuth (c-axis orientation in this case). However, when a magnetic recording layer is formed on an underlayer made of a Ti-based alloy, the Ti-based alloy of the underlayer easily reacts with oxygen or water adsorbed on the surface of the underlayer to form an oxide. An amorphous layer (initial growth layer) having poor magnetic properties and orientation is generated in the initial stage of film growth, and the orientation dispersion of the magnetic recording layer is increased due to the influence of the amorphous layer, thereby deteriorating the orientation of the magnetic recording layer. there were. In addition, since Ti in the underlayer easily interdiffuses with Co in the magnetic recording layer, when Ti diffuses into Co, an amorphous initial growth layer is generated in the magnetic recording layer as described above, and the orientation of the magnetic recording layer is changed. There was also a problem that it became worse. Therefore, a conventional perpendicular magnetic recording medium using a Ti-based alloy for the underlayer enjoys an increase in medium noise and a reduction in reproduction output characteristics caused by the Ti-based alloy.
[0011]
The present inventors have solved the above problem by using a nonmagnetic NiFeCr underlayer, or an underlayer containing a soft magnetic permalloy-based material selected from NiFe, NiFeCr, NiFeNb, NiFeMo, or NiFeNbMo, and CoCr, By using an intermediate layer containing a nonmagnetic material selected from CoCrB, Ru, or Pd, the orientation dispersion of the magnetic recording layer can be reduced, the initial growth layer of the magnetic recording layer can be reduced, or the crystal of the magnetic recording layer can be reduced. It has been reported that the grain size can be reduced to achieve higher reproduction output and lower media noise than conventional magnetic recording perpendicular media using a Ti-based alloy as an underlayer (Japanese Patent Application No. 2001-162638 and Japanese Patent Application Publication No. Application 2001-310628).
[0012]
The present invention achieves the same object as the above-mentioned patent application by reducing the orientation dispersion of the magnetic recording layer, reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer. It is another object of the present invention to provide a perpendicular magnetic recording medium in which medium noise is reduced and reproduction output characteristics are improved.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied the configuration of the underlayer and the intermediate layer in a perpendicular recording medium having an underlayer and a magnetic recording layer sequentially on a nonmagnetic substrate. By lowering the orientation dispersion, reducing the crystal grain size of the magnetic recording layer, and improving the coercive force of the magnetic recording layer, the perpendicular magnetic recording has lower noise than conventional perpendicular magnetic recording media and has a high reproduction output. It turned out that a recording medium can be manufactured.
[0014]
That is, the present invention provides a perpendicular recording medium having a base layer and a magnetic recording layer sequentially on a nonmagnetic substrate, wherein the base layer is selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism. A perpendicular magnetic recording medium comprising a permalloy-based material is provided.
[0015]
In the perpendicular magnetic recording medium of the present invention, it is preferable that the Fe content in the permalloy-based material is 12 to 15 at%.
[0016]
In the perpendicular magnetic recording medium of the present invention, the permalloy-based material preferably has a face-centered cubic lattice (fcc) structure.
[0017]
In the perpendicular magnetic recording medium of the present invention, it is preferable that the magnetic recording layer contains an alloy containing Co and Cr.
[0018]
In the perpendicular magnetic recording medium of the present invention, it is preferable that the perpendicular magnetic recording medium further includes a soft magnetic underlayer between the nonmagnetic substrate and the underlayer.
[0019]
In the perpendicular magnetic recording medium of the present invention, it is preferable that an intermediate layer is further provided between the underlayer and the magnetic recording layer.
[0020]
In the perpendicular magnetic recording medium of the present invention, the intermediate layer is made of pure Ru or Ru and a material selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V. It is preferable to include a Ru-based alloy to which at least one is added.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the perpendicular magnetic recording medium of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a schematic sectional view of a perpendicular recording medium according to an embodiment of the present invention. The perpendicular magnetic recording medium has a soft magnetic backing layer 2, an underlayer 3, an intermediate layer 4, a magnetic recording layer 5, a protective layer 6, and a liquid lubricant layer 7 sequentially formed on a nonmagnetic substrate 1. is there. However, the perpendicular magnetic recording medium shown in FIG. 1 is an example of the present invention, and the present invention is not limited to those having these configurations. For example, in the perpendicular magnetic recording medium shown in FIG. 1, the soft magnetic underlayer 2, the intermediate layer 4, the protective film 6, and the liquid lubricant layer 7 are optional layers, but can be suitably provided.
[0023]
The nonmagnetic substrate 1 is preferably a nonmetallic substrate such as a NiP-plated Al substrate, a glass substrate such as tempered glass and crystallized glass, a single crystal silicon substrate, a ceramic substrate, a polycarbonate substrate, and a polymer resin substrate. However, from the viewpoint of low cost and high rigidity, a glass substrate or a ceramic substrate is preferable. It is desirable to perform a smoothing process such as polishing on the surface of the nonmagnetic substrate 1.
[0024]
It is preferable to provide a soft magnetic underlayer 2 between the non-magnetic substrate 1 and the underlayer 3. The soft magnetic underlayer 2 has a function of concentrating a magnetic flux generated by a magnetic head used for recording on the magnetic recording layer, and as a result, the magnetic properties of the medium can be further improved. As the material of the soft magnetic underlayer 2, a conventional soft magnetic material capable of exhibiting such a function can be used. For example, crystalline FeTaC, sendust (FeSiAl) alloy, or the like, or an amorphous Co alloy, CoZrNb, is used. , CoTaZr or the like can be used. The optimum thickness of the soft magnetic underlayer 2 varies depending on the structure and characteristics of the magnetic head used for recording, but is preferably about 10 nm to 500 nm or less from the viewpoint of productivity.
[0025]
The underlayer 3 has a function of orienting the magnetism of the magnetic recording layer perpendicular to the substrate, and without the underlayer, the magnetism is oriented in a random direction. In the magnetic recording medium of the present invention, the underlayer 3 includes a permalloy-based material selected from the group consisting of soft magnetic NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB. By using a soft magnetic material for the underlayer 3, the distance between the head and the soft magnetic layer 2 can be reduced as compared with the case of a non-magnetic material, and the write performance of the head can be improved. The permalloy material is used because the magnetic orientation of the permalloy-based underlayer material is good, so that the magnetism of the magnetic recording layer formed on the underlayer can be well oriented perpendicular to the substrate. Because the magnetic recording layer can be epitaxially grown on the underlayer by improving the lattice constant matching between the permalloy-based underlayer material and the magnetic recording layer material, the initial growth of the magnetic recording layer having poor magnetic properties can be achieved. It is possible to improve the orientation of the magnetic recording layer by suppressing the formation of the layer, and since the crystal grain size of these underlayer materials is small, the crystal grain size of the magnetic recording layer can be reduced according to the crystal grain system of the underlayer. This is because transition noise (medium noise) can be reduced. The crystal magnetic anisotropy is improved by reducing the orientation dispersion of the easy axis of the magnetic recording layer. As a result, there is an advantage that the thermal stability of the magnetic recording layer is improved and the reliability of the medium is improved.
[0026]
The Fe content in the soft magnetic permalloy material is preferably 12 to 15 at% or less. By setting the Fe content in the permalloy-based material to 12 at% or more, it is possible to suppress a decrease in the saturation magnetization of the permalloy material and a decrease in soft magnetic characteristics due to an increase in magnetostriction, thereby providing good magnetic orientation of the magnetic recording layer. On the other hand, when the Fe content is 15 at% or less, good matching of the lattice constant between the permalloy material and the magnetic recording layer material can be obtained, and the orientation of the intermediate layer and the magnetic recording layer can be improved. And the magnetic properties can be further improved.
[0027]
Further, the permalloy-based material contained in the underlayer 3 preferably has a face-centered cubic lattice (fcc) structure. When the permalloy-based underlayer material has a face-centered cubic lattice (fcc) structure, the crystal orientation of the constituent material of the recording layer 5 is favorably maintained perpendicular to the substrate. More specifically, for example, when a Co-based alloy having an hcp structure is used as a constituent material of the magnetic recording layer 5, the fcc structure (111) surface in the underlayer 3 and the hcp structure (002) surface in the magnetic recording layer 5 are used. Are exactly the same in atomic arrangement. If the lattice constants are properly matched, the hcp (002) plane can be epitaxially grown on the fcc (111) plane, and the crystal orientation of the Co-based alloy can be changed. It can be oriented in the c-axis direction. When the intermediate layer 4 containing a Ru-based material having an hcp structure is used, better orientation can be obtained. Also, when the constituent material of the magnetic recording layer 5 has a crystal structure other than the hcp structure (for example, fcc structure), good perpendicular magnetism can be obtained similarly. On the other hand, if the permalloy material of the underlayer 3 has a body-centered cubic lattice (bcc) structure or an amorphous structure, the crystal orientation of the magnetic recording layer 5 is reduced, and the magnetic characteristics and the recording / reproducing characteristics are reduced. The thickness of the underlayer 3 can be appropriately selected so as to reduce medium noise and achieve high reproduction output.
[0028]
It is preferable to provide an intermediate layer 4 between the underlayer 3 and the magnetic recording layer 5. The intermediate layer 4 has a function of improving the orientation of the magnetic recording layer and suppressing an initial growth film of the magnetic recording layer. As a suitable material for the intermediate layer 4, at least one material selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V is added to pure Ru or Ru. Ru-based alloys can be suitably used. When the intermediate layer 4 containing these Ru or Ru-based alloys is formed on the underlayer 3, the orientation of the magnetic recording layer can be improved because Ru or the Ru-based alloy has good orientation. Since the matching of the lattice constant between the intermediate layer material of the Ru-based alloy and the magnetic recording layer material is good, the joining between them is good, the formation of the initial growth layer in the magnetic recording layer is suppressed, and the orientation of the magnetic recording layer is adjusted. Performance can be improved. In addition, since the crystal grain size of Ru or the Ru-based alloy can be reduced according to the crystal grain size of the permalloy material contained in the underlayer 3, the crystal grain size of the magnetic recording layer can be reduced to reduce medium noise. it can.
[0029]
In a perpendicular magnetic recording medium, in order to secure a recording magnetic field of the head and obtain a sharp magnetic field distribution, it is required that the thickness of the nonmagnetic layer between the soft magnetic underlayer and the magnetic recording layer be as small as possible (the head and the When the distance between the soft magnetic layers is increased, the magnetic flux is expanded, and the tracks and bits to be recorded are expanded, causing problems such as an increase in transition noise of the medium and a decrease in the recording resolution.) When they come in contact with each other, the interaction between them causes a sudden increase in medium noise. Therefore, it is required to maintain crystallinity and orientation with the smallest possible film thickness. In a conventional perpendicular magnetic recording medium having an underlayer using a Ti-based alloy, the thickness of the Ti-based underlayer is the thickness of the non-magnetic layer, but it is difficult to maintain the crystallinity and orientation at a small thickness. While it is actually difficult, in the perpendicular magnetic recording medium of the present invention, the orientation of the magnetic recording layer 5 can be controlled by the permalloy-based underlayer 3 and the Ru-based intermediate layer 4, and the Ru-based intermediate Since the layer 4 can be made thinner, a sharp head magnetic field can be obtained, the write performance of the head can be secured, and the transition noise of the medium can be reduced. Also, by using the above-described permalloy-based material having good crystallinity and orientation for the underlayer 3, excellent crystallinity and orientation can be obtained in the magnetic recording layer even if the thickness of the intermediate layer 4 is small. The thickness of the intermediate layer can be appropriately selected so as to reduce the medium noise and achieve a high reproduction output, and is preferably 3 to 5 nm, but is not limited thereto. .
[0030]
The magnetic recording layer (magnetic layer) 5 is a layer on which information is recorded. In a perpendicular magnetic recording medium, it is determined that the magnetism of the material constituting the magnetic recording layer 5 is perpendicular to the film surface. Necessary for use as a medium. As a material constituting the magnetic recording layer 5, a conventional ferromagnetic material exhibiting the above-described functions can be used, but a Co-based alloy can be preferably used, and more preferably CoCrPt, CoCrTa, CoCrPtB, CoCrPtNb, Alloy materials containing Co and Cr, such as CoCrPtTa, and CoPt-SiO 2 , CoCrPt-SiO 2 , CoPt-Cr 2 O 3 And other granular materials. As the film thickness of the magnetic recording layer 5, if the film thickness of the recording layer 5 is small, medium noise can be reduced, and the distance from the magnetic head at the time of recording and reproduction is small, which is preferable for output reproduction. Since the volume of the recording layer 5 decreases and thermal stabilization of the recording magnetization state deteriorates, the thickness is preferably 5 nm or more and 50 nm or less, but is not limited thereto.
[0031]
If necessary, a protective layer 6 can be formed on the magnetic recording layer 5. The protective film 15 has a function of protecting the magnetic film forming the recording layer from corrosion such as head impact and external corrosiveness. Any conventional material that can provide such a function may be used. For example, carbon, nitrogen-containing carbon, hydrogen-containing carbon, silicon oxide, and the like can be used. The thickness of the protective layer 6 is preferably set to 0.5 to 5 nm.
[0032]
Further, a lubricating layer 7 can be formed on the protective layer 6 as needed. The lubrication layer 7 has a function of enhancing the function of the head glide on the medium, a function of preventing the head from being attracted when the operation is stopped by a drive that does not use a head unloading mechanism, and an improvement in environmental resistance. A conventional lubricant having the above function, such as a fluorinated liquid lubricant such as perfluoropolyether, can be used.
[0033]
As described above, the perpendicular magnetic recording medium shown in FIG. 1 illustrates the present invention, and does not limit the present invention to those having these configurations. Each layer to be formed may be a single layer or a multilayer. In the case of a multilayer, each layer in the multilayer may have a different material or film thickness, or may have the same material or film thickness. . If necessary, an optional layer such as a seed layer can be added between the nonmagnetic substrate 1 and the soft magnetic underlayer 2. The seed layer has a function of reducing irregularities on the surface of the base and causing an improvement in coercive force, which causes deterioration of the orientation, and a conventional material such as Ti or Ta having such a function may be used. it can.
[0034]
In the manufacture of the perpendicular magnetic recording medium of the present invention, each layer laminated on the non-magnetic substrate 1 can be formed by various film forming techniques usually used in the field of magnetic recording media. The soft magnetic backing layer 2, underlayer 3, intermediate layer 4, magnetic recording layer 5, optional seed layer, protective layer 6, and lubricating layer 7 are formed by, for example, DC magnetron sputtering, RF magnetron sputtering, vacuum An evaporation method can be used. The lubricating layer 7 can be formed by a conventional coating method such as a dipping method and a spin coating method.
[0035]
【Example】
Hereinafter, the perpendicular magnetic recording medium of the present invention will be described in detail with reference to examples, but the present invention is not limited thereto, and it is needless to say that various modifications can be made without departing from the gist of the present invention. .
[0036]
(Example 1)
The present embodiment relates to a two-layer perpendicular magnetic recording medium according to the present invention having a soft magnetic NiFeB underlayer, a Ru intermediate layer, a CoCrPt magnetic recording layer, a protective film, and a lubricating layer on a nonmagnetic substrate in this order. Specifically, the above-described perpendicular magnetic recording medium was obtained as follows.
[0037]
As a non-magnetic substrate, a chemically strengthened glass substrate (N-10 glass substrate manufactured by HOYA) having a smooth surface was introduced into a sputtering apparatus after washing, and a CoZrNb amorphous soft magnetic underlayer was formed using a Co8Zr5Nb target. The film was formed to have a thickness of 200 nm. Next, a NiFeB underlayer was formed to a thickness of 3 nm using a Ni12Fe6B target which is a soft magnetic permalloy alloy. Subsequently, after heating was performed using a lamp heater so that the substrate surface temperature became 30 ° C., a Ru intermediate layer was formed to a thickness of 5 nm under an Ar gas pressure of 4.0 Pa using a Ru target. . Subsequently, a CoCrPt magnetic recording layer was formed using a Co20Cr10Pt target with a film pressure of 20 nm. Finally, after forming a protective film made of carbon with a thickness of 10 nm using a carbon target, the medium was taken out of the vacuum apparatus. All of the above film formation except for the heating of the heater and the formation of the Ru intermediate layer were performed under an Ar gas pressure of 0.67 Pa, and the above film formation except for the heating of the heater was performed by a DC magnetron sputtering method. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by a dipping method to obtain a perpendicular magnetic recording medium according to the present invention. Further, in order to compare the magnetic characteristics, a two-layer perpendicular magnetic layer according to the present invention having the same layer structure was formed in the same manner as described above, except that a NiFeB underlayer having a film thickness of 5 nm, 10 nm, 15 nm, and 30 nm was formed. A recording medium was manufactured.
[0038]
(Example 2)
In this example, a two-layer perpendicular magnetic recording medium according to the present invention was manufactured in the same manner as in Example 1, except that the permalloy-based soft magnetic underlayer was made of NiFeNbB. In this example, too, in order to compare the magnetic characteristics, in the same manner as in Example 1, except that the film thickness of the NiFeNbB underlayer having a film thickness of 3 nm, 5 nm, 10 nm, 15 nm, and 30 nm was formed. Each perpendicular magnetic recording medium having the same layer configuration was manufactured.
[0039]
(Comparative Example 1)
In this comparative example, a two-layer perpendicular magnetic recording medium having the same layer configuration was manufactured in the same manner as in Example 1 except that the permalloy-based soft magnetic underlayer was Ni17Fe4Nb1Mo. Also in this comparative example, in order to compare the magnetic characteristics, the layers were formed in the same manner as in Example 1 except that the thicknesses of the NiFeNbMo underlayers having the thicknesses of 3 nm, 5 nm, 10 nm, 15 nm, and 30 nm were formed. Each perpendicular magnetic recording medium having the same configuration was manufactured. The perpendicular magnetic recording medium using Ni17Fe4Nb1Mo as a base layer is a patented invention disclosed by the present inventors in Japanese Patent Application No. 2001-310628. The perpendicular magnetic recording medium achieves a reduction in medium noise and a higher reproduction output than a conventional perpendicular magnetic recording medium using a Ti-based alloy as an underlayer.
[0040]
For the two-layered medium obtained as described above, the coercive force Hc by the magnetic Kerr effect, the crystal grain size by TEM, and the orientation dispersion (カ ー ブ θ) by the rocking curve method using an X-ray diffractometer. 50 ) Was measured. Further, noise was measured when the recording density was changed using a read / write tester.
[0041]
FIG. 2 shows a change in coercive force Hc when the thickness of the underlayer of the perpendicular magnetic recording medium according to the present invention and the comparative example is changed. In the figure, a square (solid line) indicates a change in the coercive force Hc when the thickness of the underlayer of the perpendicular magnetic recording medium according to the first embodiment is changed, and a circle (solid line) indicates the perpendicular magnetic recording medium according to the second embodiment. Shows the change of the coercive force Hc when the thickness of the underlayer is changed, and the diamond (dotted line) shows the change of the coercive force Hc when the thickness of the underlayer of the perpendicular magnetic recording medium according to Comparative Example 1 is changed. Is shown. When the Hc of the medium using the NiFeB underlayer of Example 1 and the Hc of the medium using the NiFeNbB underlayer of Comparative Example 1 are higher, the Hc of the medium of Example 1 is higher when the underlayer thickness is 3 to 5 nm. You can see that. Also, comparing the medium using the NiFeNbB underlayer of Example 2 with the medium of Comparative Example 1, it can be seen that high Hc is obtained when the underlayer thickness is 5 nm or more. As described above, although the optimum film thickness varies depending on the composition of the underlayer, a higher Hc was obtained in each of Examples 1 and 2 than in the comparative example.
[0042]
Table 1 shows the coercive force Hc, crystal grain size, and orientation dispersion (△ θ) of the perpendicular magnetic recording media according to the present invention and the comparative example obtained in Examples 1 and 2 and Comparative Example 1, respectively. 50 ). In the table, the medium 1 shows the perpendicular magnetic recording medium of Example 1 having an underlayer made of Ni12Fe6B and having a thickness of 5 nm, and the medium 2 made of Ni12Fe6N3B and having an underlayer having a thickness of 5 nm. 2 shows a perpendicular magnetic recording medium, and Medium 3 shows a perpendicular magnetic recording medium of Comparative Example 1 which is made of Ni17Fe4Nb1Mo and has an underlayer with a thickness of 5 nm. From the results shown in Table 1, the coercive force (Hc) of each medium is almost the same, but the perpendicular magnetic recording medium (medium 1 and medium 2) according to the present invention has the perpendicular magnetic recording medium (medium 3) of the comparative example. △ θ 50 It can be seen that the crystal grain size has been improved, and the grain size has also been reduced.
[0043]
[Table 1]
Figure 2004014014
[0044]
FIG. 3 shows the linear recording density dependence of medium noise of the perpendicular magnetic recording media according to the present invention and the comparative example shown in Table 1. As is clear from the figure, the perpendicular magnetic recording medium (medium 1 and medium 2) according to the present invention achieves lower noise than the perpendicular magnetic recording medium (medium 3) of the comparative example. To reduce the noise, it is necessary to improve the orientation (△ θ 50 It is considered that the reduction of the crystal grain diameter and the reduction of the crystal grain size contribute.
[0045]
Table 2 shows the coercive force Hc, crystal grain size, and orientation dispersion (△ θ) of the perpendicular magnetic recording medium according to another aspect of the present invention obtained in Example 1 and Example 2 above. 50 ). In the table, the medium 4 shows the perpendicular magnetic recording medium of Example 1 having an underlayer made of Ni12Fe6B and having a thickness of 3 nm, and the medium 5 made of Ni12Fe6N3B and having an underlayer having a thickness of 10 nm. 2 shows a perpendicular magnetic recording medium 2; The results in Table 2 show that the perpendicular magnetic recording media (mediums 4 and 5) according to the present invention have good Δθ, as in the case of Table 1. 50 It can be seen that the crystal grain size has been refined.
[0046]
[Table 2]
Figure 2004014014
[0047]
FIG. 4 shows the linear recording density dependence of medium noise of the perpendicular magnetic recording medium according to the present invention and the medium 3 shown in Table 2. As is clear from FIG. 4, the perpendicular magnetic recording medium (medium 4 and medium 5) according to the present invention also achieves better noise reduction than the comparative example (medium 3). This lowering of the noise also improves the orientation (配 向 θ 50 It is considered that the reduction of the crystal grain diameter and the reduction of the crystal grain size contribute.
[0048]
(Example 3)
The present embodiment relates to a two-layer perpendicular magnetic recording medium according to the present invention having a soft magnetic NiFeB underlayer, a Ru intermediate layer, a granular magnetic recording layer, a protective film, and a lubricating layer on a nonmagnetic substrate in that order. Specifically, the above-described perpendicular magnetic recording medium was obtained as follows.
[0049]
A chemically strengthened glass substrate (N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the nonmagnetic substrate, and after washing, introduced into a sputtering apparatus, and a CoZrNb amorphous soft magnetic underlayer 200 nm using a Co8Zr5Nb target. Was formed. Next, a NiFeB underlayer was formed to a thickness of 3 nm using a Ni12Fe6B target which is a soft magnetic permalloy alloy. Subsequently, a Ru intermediate layer was formed to a thickness of 5 nm under an Ar gas pressure of 4.0 Pa using a Ru target. Next, 92 (Co8Cr16Pt) -8SiO 2 Using a target, CoCrPt-SiO under Ar gas pressure of 4.0 Pa 2 A 20 nm granular magnetic recording layer was formed. Finally, a protective film made of carbon having a thickness of 10 nm was formed using a carbon target, and then removed from the vacuum apparatus. All of these films were formed at room temperature, and a Ru intermediate layer and CoCrPt-SiO 2 The above film formation except for the formation of the granular magnetic recording layer was performed under an Ar gas pressure of 0.67 Pa. All of the above film formation was performed by a DC magnetron sputtering method. Thereafter, a liquid lubricating material layer of purple fluoropolyether having a thickness of 2 nm was formed by a dipping method to manufacture a two-layer perpendicular magnetic recording medium (medium 6) according to the present invention. Further, a two-layer perpendicular magnetic recording medium (medium 7) according to the present invention was manufactured in the same manner as above, except that the NiFeB underlayer was formed to have a thickness of 5 nm.
[0050]
(Comparative Example 2)
In this comparative example, a two-layer perpendicular magnetic recording medium (medium 8) was manufactured in the same manner as in Example 3, except that the soft magnetic underlayer was made of Ni22Fe having a thickness of 5 nm.
[0051]
For the two-layered medium obtained as described above, the coercive force Hc by the magnetic Kerr effect, the crystal grain size by TEM, and the orientation dispersion (カ ー ブ θ) by the rocking curve method using an X-ray diffractometer. 50 ) Was measured. Table 3 shows the coercive force Hc, crystal grain size, and orientation dispersion (△ θ) of the perpendicular magnetic recording media obtained in Example 3 and Comparative Example 2 according to the present invention and Comparative Example, respectively. 50 ). As can be seen from Table 3, the coercive force of the perpendicular magnetic recording medium (medium 8) of the comparative example was significantly improved as compared with the perpendicular magnetic recording medium (mediums 6 and 7) according to the present invention due to the addition of the component B. △ θ 50 Is also improved, and it can be seen that the particle size is becoming finer. As described above, the present invention can be applied not only to a magnetic recording layer such as a normal CoCrPt which requires heating film formation but also to a medium having a granular magnetic recording layer in which all layers need to be formed without heating. It has been found that the use of the underlayer achieves improvements in the basic characteristics of the medium, such as an increase in coercive force, an improvement in orientation, and a reduction in crystal grain size.
[0052]
[Table 3]
Figure 2004014014
[0053]
【The invention's effect】
As described above, according to the present invention, a soft magnetic permalloy-based material having excellent orientation and crystal grain size reduction is used as an underlayer, and Ru or a Ru-based alloy material having excellent orientation and bonding properties is used as an intermediate layer. By using it as a layer, the coercive force of the magnetic recording layer is increased, the orientation dispersion of the easy axis is reduced, and the crystal grain size of the magnetic recording layer is reduced. As a result, the reproduction output of the perpendicular magnetic recording medium can be increased, and the medium noise can be reduced. In addition, the crystal magnetic anisotropy is improved by reducing the orientation dispersion of the easy axis of the magnetic recording layer, so that the thermal stability of the magnetic recording layer is improved and the reliability of the medium is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a two-layer perpendicular magnetic recording medium according to the present invention.
FIG. 2 is a diagram showing a change in coercive force Hc when the thickness of an underlayer of a perpendicular magnetic recording medium according to the present invention and a comparative example is changed.
FIG. 3 is a diagram showing the linear recording density dependence of medium noise in a two-layer perpendicular magnetic recording medium according to the present invention and a comparative example.
FIG. 4 is a diagram showing the linear recording density dependence of medium noise in a two-layer perpendicular magnetic recording medium according to the present invention and a comparative example.
[Explanation of symbols]
1 Non-magnetic substrate
2 Soft magnetic underlayer
3 Underlayer
4 Middle class
5 Magnetic recording layer
6 Protective film
7 Liquid lubricant layer

Claims (7)

非磁性基体上に下地層と磁気記録層とを順次有する垂直記録媒体において、前記下地層が軟磁性を有するNiFeB、NiFeNbB、NiFeMoB、NiFeCrB、NiFeNbMoBからなる群から選択されるパーマロイ系材料を含むことを特徴とする垂直磁気記録媒体。In a perpendicular recording medium having an underlayer and a magnetic recording layer sequentially on a nonmagnetic substrate, the underlayer contains a permalloy-based material selected from the group consisting of NiFeB, NiFeNbB, NiFeMoB, NiFeCrB, and NiFeNbMoB having soft magnetism. A perpendicular magnetic recording medium characterized by the above-mentioned. 前記パーマロイ系材料中のFe含有率が12〜15at%であることを特徴とする請求項1に記載の垂直磁気記録媒体。2. The perpendicular magnetic recording medium according to claim 1, wherein the Fe content in the permalloy-based material is 12 to 15 at%. 前記パーマロイ系材料が面心立方格子(fcc)構造であることを特徴とする請求項1または2に記載の垂直磁気記録媒体。3. The perpendicular magnetic recording medium according to claim 1, wherein the permalloy-based material has a face-centered cubic lattice (fcc) structure. 前記磁気記録層がCoおよびCrを含む合金を含むことを特徴とする請求項1から3のいずれか1項に記載の垂直磁気記録媒体。4. The perpendicular magnetic recording medium according to claim 1, wherein the magnetic recording layer includes an alloy containing Co and Cr. 5. 前記非磁性基体と前記下地層との間に軟磁性裏打ち層をさらに有することを特徴とする請求項1から4のいずれか1項に記載の垂直磁気記録媒体。5. The perpendicular magnetic recording medium according to claim 1, further comprising a soft magnetic underlayer between the non-magnetic substrate and the underlayer. 前記下地層と前記磁気記録層との間に中間層をさらに有することを特徴とする請求項1から5のいずれか1項に記載の垂直磁気記録媒体。The perpendicular magnetic recording medium according to any one of claims 1 to 5, further comprising an intermediate layer between the underlayer and the magnetic recording layer. 前記中間層が、純RuまたはRuにC、Cu、W、Mo、Cr、Ir、Pt、Re、Rh、Ta、およびVからなる群から選択される材料を少なくとも1種添加したRu基合金を含むことを特徴とする請求項5に記載の垂直磁気記録媒体。The intermediate layer is a pure Ru or Ru-based alloy obtained by adding at least one material selected from the group consisting of C, Cu, W, Mo, Cr, Ir, Pt, Re, Rh, Ta, and V to Ru. 6. The perpendicular magnetic recording medium according to claim 5, comprising:
JP2002166191A 2002-06-06 2002-06-06 Perpendicular magnetic recording medium Expired - Lifetime JP4535666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166191A JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166191A JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004014014A true JP2004014014A (en) 2004-01-15
JP4535666B2 JP4535666B2 (en) 2010-09-01

Family

ID=30433845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166191A Expired - Lifetime JP4535666B2 (en) 2002-06-06 2002-06-06 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4535666B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099951A (en) * 2004-09-06 2006-04-13 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
KR100773546B1 (en) 2006-03-09 2007-11-07 삼성전자주식회사 Magnetic recording media
US7833640B2 (en) 2005-08-19 2010-11-16 Hitachi Global Storage Technologies Netherlands B.V. Intermediate tri-layer structure for perpendicular recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099951A (en) * 2004-09-06 2006-04-13 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
US7833640B2 (en) 2005-08-19 2010-11-16 Hitachi Global Storage Technologies Netherlands B.V. Intermediate tri-layer structure for perpendicular recording media
KR100773546B1 (en) 2006-03-09 2007-11-07 삼성전자주식회사 Magnetic recording media

Also Published As

Publication number Publication date
JP4535666B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7235314B2 (en) Inter layers for perpendicular recording media
JP4761224B2 (en) Perpendicular magnetic recording medium
US8592060B2 (en) Perpendicular magnetic recording media having low medium noise and systems using the same
JP3755449B2 (en) Perpendicular magnetic recording medium
JP2005044464A (en) Perpendicular magnetic recording medium
JP2009116930A (en) Vertical magnetic recording medium and magnetic recording and reproducing device using the same
JP2009059402A (en) Vertical magnetic recording medium and magnetic recording/reproducing system using the same
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2008034060A (en) Perpendicular magnetic recording medium and magnetic storage device
JP4707265B2 (en) Perpendicular magnetic recording medium
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4534711B2 (en) Perpendicular magnetic recording medium
JP5105332B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2006302426A (en) Perpendicular magnetic recording medium and its manufacturing method
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US7919201B2 (en) Method of making a multilayered magnetic structure
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
JP2007234164A (en) Perpendicular magnetic recording medium, its manufacturing method and magnetic storage apparatus
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
JP4478834B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term