JP2004012785A - Conductive roller - Google Patents

Conductive roller Download PDF

Info

Publication number
JP2004012785A
JP2004012785A JP2002165791A JP2002165791A JP2004012785A JP 2004012785 A JP2004012785 A JP 2004012785A JP 2002165791 A JP2002165791 A JP 2002165791A JP 2002165791 A JP2002165791 A JP 2002165791A JP 2004012785 A JP2004012785 A JP 2004012785A
Authority
JP
Japan
Prior art keywords
rubber
conductive
phosphonium salt
quaternary phosphonium
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002165791A
Other languages
Japanese (ja)
Other versions
JP3917011B2 (en
Inventor
Daisuke Tano
太野 大介
Masayuki Hashimoto
橋本 正幸
Ryuta Urano
浦野 竜太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2002165791A priority Critical patent/JP3917011B2/en
Publication of JP2004012785A publication Critical patent/JP2004012785A/en
Application granted granted Critical
Publication of JP3917011B2 publication Critical patent/JP3917011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive roller which is free from contamination of a photoreceptor and with uniform low volume resistivity. <P>SOLUTION: In the conductive roller provided with at least a conductive elastic layer on an outer circumference of a conductive shaft body, the conductive elastic layer has a rubber composition consisting of mainly polar rubber containing quaternary class phosphonium salt. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術用分野】
本発明は、導電性ゴムローラに関し、特に電子複写機等の感光体周りの帯電ローラや転写ローラ等として好適な導電性ローラに関する。
【0002】
【従来の技術】
電子写真複写機又は電子写真印刷機等の電子写真装置は、感光体外周面上に均一に帯電させ、次に感光ドラム表面上に印刷パターンの静電潜像を形成し、この静電潜像にトナーを付着させてトナー像を形成し、これを熱により記録用紙上に転写する方式のものが知られている。この方式の中で、感光体表面上への帯電方法としては一般的にコロナ放電方式が用いられている。しかし、コロナ放電方式は人体に有害なオゾンが多量に発生するほか、装置の小型化が難しい問題を有している。
【0003】
近年、コロナ放電方式よりも小型化が容易で人体に有毒なオゾンを発生させない接触帯電方式が検討され、一部で実用化されている。この接触帯電方式は、感光体表面に導電性を有する弾性ローラを所定の押圧力で当接させるものであり、帯電部材は感光ドラムとの均一密着性が必要なために、適度な弾性が求められる。従って、前記帯電部材にはゴム弾性を有する弾性層が使用され、更には前記弾性層が感光体を汚染しないことが要求される。
【0004】
また、帯電部材に用いられるゴムローラの体積抵抗率は1×10〜1×1010Ω・cmの所定の半導電性領域が必要である。従来の帯電部材は、ゴム材料にフィラー系の導電性充填材、一般的には導電性カーボンを添加して所定の体積抵抗率に調整してきた。
【0005】
しかしながら、このような導電性部材を用いた導電性ローラにおいては、カーボンブラックの配合量のわずかな変化やゴムの分散状態によって、材料ロットで体積抵抗率が大きくばらつき、導電性ローラ内においてもゴム中の微妙な分散状態の違いにより局所的抵抗のバラツキが生じる。更には、印加電圧への依存性も大きく、安定した体積抵抗率を得ることが困難である。そこで、安定した体積抵抗率を得る方法としては、帯電部材のゴム組成物に極性ゴムであるエピクロルヒドリン系ゴム又はアクリロニトリル−ブタジエンゴム共重合体ゴムを用いる方法が知られている。エピクロルヒドリン系ゴムやアクリロニトリル−ブタジエン共重合ゴム等の極性ゴムは一般的に体積抵抗率のばらつきが小さく、印加電圧の依存性も小さい長所を有している。
【0006】
また、アクリロニトリル−ブタジエン共重合体ゴムは1×10〜1×1011Ω・cmの体積抵抗率を有し、汎用ゴムで価格も安いことから導電性ローラの材料として多く用いられている。エピクロルヒドリン系ゴムは1×10〜1×10Ω・cmの電気抵抗範囲であり、アクリロニトリル−ブタジエンゴムより体積抵抗率が低いことから、半導電領域の中でもアクリロニトリル−ブタジエンゴムで補えない低体積抵抗率領域をエピクロルヒドリン系ゴムは補うことができるが、価格的に不利になる。
【0007】
1×10〜1×1010Ω・cmの範囲では、アクリロニトリル−ブタジエン共重合体ゴムとエピクロルヒドリン系ゴムをブレンドする方法も従来から提案されている。この方法では、1×10〜1×1010Ω・cmに調整する場合、安価で体積抵抗率を調整することができるが、1×10Ω・cm程度に調整する場合、エピクロルヒドリン系ゴムのブレンド比を上げる必要があり、価格的に利点が少なくなる。また、最も低体積抵抗率の調整が可能なエピクロヒドリン系ゴムでも10Ω・cm以下に調整することができない。従って、前記抵抗調整法では帯電部材に求められる1×10〜1×1010Ω・cm電気抵抗範囲の全てに適応することはできない。
【0008】
そこで、10Ω・cm以下への体積抵抗率制御が可能で、かつ低コストで体積抵抗率を調整する方法としては、ゴム中にイオン導電付与剤を添加する方法が提案されている。そこで、これまでにリチウム塩等のイオン導電付与剤を極性ゴムに含有する方法も検討されてきた。この場合、半導電性ゴムとしての抵抗値は低下するが、体積抵抗率の環境変動が大きくなる問題がある。この問題を解決するために、ゴム組成物に第4級アンモニウム塩をイオン導電付与剤として含有する方法も提案されている(特開平4−177368号公報、特開平4−232980号公報、特開平11−209633号公報及び特開平2001−19843号公報)。この方法は、体積抵抗率が1×10〜1×10Ω・cmの範囲で調整可能、かつ、環境条件の変化によっても安定した体積抵抗率を得られる。しかし、導電性に優れる第4級アンモニウム塩は液体であり、ローラ表面にブリードアウトし、感光体汚染を起こす問題を解決していない。ブリードアウトを防止するためにローラ上に表面層を形成させる方法があるが、この場合、表面層に第4級アンモニウム塩が移行し、ローラの導電性が低下する問題がある。
【0009】
【発明が解決しようとする課題】
本発明の目的は、前記問題に鑑みなされたもので、感光体汚染がなく、かつ、均一な低体積抵抗率性の導電性ローラを提供することにある。
【0010】
【課題を解決するための手段】
本発明に従って、導電性軸体の外周上に少なくとも導電性弾性層を有する導電性ローラにおいて、該導電性弾性層が極性ゴムを主体とするゴム組成物に第4級ホスホニウム塩を含有したことを特徴とする導電性ローラが提供される。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態について詳細に説明する。
【0012】
本発明の導電性ローラは、導電性軸体の外周上に少なくとも導電性弾性層を有する導電性ローラであり、該導電性弾性層の極性ゴムを含有するゴム組成物に、イオン導電付与剤として第4級ホスホニウム塩を含有することにより、第4級アンモニウム塩含有系と比べてゴム表面への染み出しが少なく、かつ、第4級アンモニウム塩含有系と同等に体積抵抗率を調整することができる。ゴム組成物中には、第4級ホスホニウム塩のみを含有させてもよいし、他の導電付与剤と共に第4級ホスホニウム塩を含有してもよい。
【0013】
前記第4級ホスホニウム塩を構成するカチオンとアニオンにはそれぞれ多くの種類があり、それらの組合せにより多数の塩が得られる。それらは何れも本発明において使用することができるが、燐原子に結合した官能基が少なくとも3つが、フェニル基からなりアニオンが4フッ化ホウ素、4フェニルホウ素及び6フッ化燐からなる群から選ばれた一種で、前記カチオンとアニオンのいずれか一方又は両方を有する条件を満足する第4ホスホニウム塩が特に好ましい。これらの塩は少量の添加で低体積抵抗率を実現でき、前記極性ゴムに溶解して均一な複合体を形成することを見出し、本発明を完成させた。
【0014】
カチオンが燐原子に結合した少なくとも3個のフェニル基を有する第4級ホスホニウム塩としては、テトラフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、エチルトリフェニルホスホニウム塩、プロピルフェニルホスホニウム塩及びブチルフェニルホスホニウム塩等が挙げられる。
【0015】
アニオンが4フッ化ホウ素、4フェニルホウ素及び6フッ化燐からなる群から選ばれた一種で、前記カチオンとアニオンのいずれか一方又は両方の条件を満足する第4ホスホニウムとして、例えばテトラフェニルホスホニウム・テトラフェニルボレート、メチルトリフェニルホスホニウム・テトラフルオロボレート、エチルトリフェニルホスホニウム・テトラフルオロボレート、プロピルトリフェニルホスホニウム・テトラフルオロボレート、ブチルトリフェニルホスホニウム・テトラフルオロボレート、オクチルトリフェニルホスホニウム・テトラフルオロボレート及びテトラブチルホスホニウム・ヘキサフルオロフォスフェート等が挙げられる。前記第4級ホスホニウム塩の少なくとも1種又は2種以上の混合物を本発明において使用することができる。
【0016】
本発明で用いるゴム組成物としては、エピクロルヒドリンゴム、アクリロニトリル−ブタジエン共重合体ゴム、ニトリルゴム、ウレタンゴム、クロロプレンゴム及びアクリルゴム等の極性ゴムが挙げられるが、これら何れも本発明で使用することができるが、特にはイオン導電性を示すアクリロニトリル−ブタジエン共重合体ゴム、エピクロルヒドリン系ゴムの極性ゴムの少なくとも一方を含有するゴム組成物を用いることが好ましい。前記ゴム組成物と第4級ホスホニウム塩との相溶性により、ゴム組成物中にホスホニウム塩が均一に分散することができ、カーボン分散の電子伝導系と比べて電気抵抗バラツキを小さくすることができる。
【0017】
前記ゴム組成物中に含有するアクリロニトリル−ブタジエン共重合体ゴムは、アクリロニトリル結合量の違いにより多くの種類があるが、それらは何れも本発明において使用することができる。しかしながら、アクリロニトリル結合量が18質量%〜25質量%を使用することにより、高温高湿での体積抵抗率と低温低湿との体積抵抗率の環境変動幅を小さくすることができ好ましい。前記アクリロニトリル結合量範囲より高い場合、分子運動が活発なブタジエン成分が少なくなるために、低温での分子運動が悪くなり、温度の影響を受け易くなるために環境変動が大きくなり好ましくない。また、前記アクリロニトリル結合量範囲より低い場合、キャリヤーの配位サイトであるニトリル基が少ないために、体積抵抗率が高くなり、半導電性領域の抵抗を得ることができず好ましくない。
【0018】
前記ゴム組成物中に含有するエピクロルヒドリン系ゴムは、エチレンオキサイドエチレンオキサイド結合量の違いにより多くの種類があるが、それらは何れも本発明において使用することができる。しかしながら、エチレンオキサイド結合量が25モル%〜56モル%を使用することにより、10Ω・cm程度の低体積抵抗率を得ることができ好ましい。これは、エピクロルヒドリン系ゴムの1成分であるエチレンオキサイドが25モル%〜56モル%の範囲では、イオンが配位するための部位を適度に保有し、同時にゴムの分子運動性も活発であり、多量のイオンを活発に移動させることができるためであると考えられる。25モル%未満の場合、イオンが配位するための部位が少なく、体積抵抗率が高く、また、中ニトリル結合量のアクリロニトリル−ブタジエン共重合体ゴムの体積抵抗率と同等であり、アクリロニトリル−ブタジエン共重合体ゴムより高価であることから、エピクロルヒドリン系ゴムを用いる有用性はなく好ましくない。また、56モル%を超えるとエピクロルヒドリン系ゴムのエチレンオキサイド部位の局所的な結晶化が起こるため分子運動性が悪くなり、満足する低体積抵抗率が得られず好ましくない。
【0019】
前記導電性ローラにおけるゴム組成物中の第4級ホスホニウム塩の配合割合は、原料ゴム100質量部に対して、0.1〜10質量部の第4級ホスホニウム塩を含有するゴム組成物からなるものが好ましい。0.1質量部未満ではイオン導電性付与効果を得られず、第4級ホスホニウム塩10質量部を超えて含有しても、これ以上の導電性の効果は望めない。
【0020】
前記ゴム組成物に含有する第4級ホスホニウム塩は固体であることが好ましい。第4級ホスホニウム塩が液体の場合、ブリードアウトし易く、ポリウレタン等の表層を設けて感光体汚染を防止しても、表層まで第4級ホスホニウム塩が移行する可能性が生じるため、移行が生じた場合には、ローラの体積抵抗率が低下する等の不具合が生じて好ましくない。
【0021】
本発明のゴム組成物には、加硫剤及び必要に応じて加硫促進剤を適宜配合することができる。
【0022】
本発明の導電性ローラは、次のように製造される。帯電部材に用いられるゴム組成物を構成する各成分を所定量配合し、混練りしてゴム組成物を製造した後、ゴムを円柱状に押出し成形し、次いで加硫する。加硫方法としては加硫缶が好ましいが、その他の加硫方法であってもよい。加硫条件は使用する原料ゴムや各成分に応じて変化するが、通常は140℃〜180℃で5分〜60分間程度で行うのが好ましい。加硫後芯部材を圧入、研削して製造されるのが一般的であるが、特にこれに限定されるものではない。
【0023】
【実施例】
以下に実施例及び比較例を挙げて、本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
【0024】
(ゴム組成物及びローラの作製)
各実施例及び比較例について、表1及び表2に示すゴム組成物をチューブ状に押出した。その成形物を160℃で30分間蒸気加硫した後、芯金を圧入し、砥石GC80、回転速度2000rpm、送り速度500m/分の条件で、外形15mm、長さ250mmに表面研磨を行い、ローラを作製した。
【0025】
各実施例及び比較例で使用した材料は、以下の通りである。
【0026】
アクリロニトリル−ブタジエン共重合体ゴムには、日本ゼオン(株)製「ニポールDN401L」(アクリロニトリル結合量18質量%)を、アクリロニトリル共重合体には、日本ゼオン(株)製「ニポールDN407」(アクリロニトリル結合量22質量%)を、エピクロルヒドリン系ゴム1には日本ゼオン(株)製「ゼクロン G−3106」(エチレンオキサイド結合量56モル%)を、エピクロルヒドリン系ゴム2には日本ゼオン(株)製「ゼクロン G−3100」(エチレンオキサイド結合量25モル%)を、エチレンプロピレンジエンゴムには日本合成ゴム(株)製「EP342」(エチレン結合量53質量%)を、酸化亜鉛にはハイテック(株)製「酸化亜鉛2種」を、ステアリン酸には花王(株)製「ステアリン酸S」を、炭酸カルシウムには白石カルシウム(株)製「シルバーW」を使用した。第4級ホスホニウム塩には日本化学工業(株)製「ヒシコーリンETPP−FB」を、過塩素酸リチウムには東京化成(株)製を、第4級アンモニウム塩には花王(株)製「KS−555」を、カーボンブラックにはライオン(株)製「ケッチェンEC」を、加硫促進剤であるMDB、TETD、DPTTには大内新興化学工業(株)製の「ノクセラーMDB」、「ノクセラーTET」、「ノクセラーTRA」を使用した。
【0027】
また、表1及び表2に示すローラ抵抗、抵抗ムラ、環境変動幅及び感光体汚染は、以下の方法で測定した。
【0028】
<ローラ抵抗及び抵抗ムラ>
ローラ抵抗測定は、L/L環境(15℃/10%RH)、N/N環境(23℃/50%RH)、H/H環境(32.5℃/80%RH)の3環境下において、当該ゴムローラ試験片を両端部に荷重500gで芯金端部より200Vの直流電圧を印加、回転速度30rpmでの1分間のローラ抵抗値を採用し、抵抗値の最大値と最小値の平均値をローラ抵抗とした。また、N/N環境下でのローラ抵抗の最大値と最小値の抵抗差を周ムラとした。
【0029】
<ローラ抵抗値の環境変動幅>
ローラ抵抗の環境変動幅は、L/L環境(15℃/10%)におけるローラ抵抗(T)及びH/H環境(32.5℃/80%)におけるローラ抵抗(T)の対数の差と定めた。式:log10(T)−log10(T)で算出した。
【0030】
<感光ドラム汚染性>
当該ゴムローラをヒューレットパッカード製の「レーザープリンターレーザージェット4000N」に使用される感光体に接触させ、両端に1000gの荷重を加え、40℃/95%RHの環境下に一日間放置した。放置後、荷重を外し、感光体を顕微鏡にて付着物を確認した後、使用した感光体を前記カートリッジに組み込み、ベタ黒で30枚印字し、得られた画像を目視にて評価した。感光体に付着物が無く、得られた画像も良好なものを〇とし、感光体に付着物があるが、得られた画像が実用可であるものを△とし、感光体に付着物があり、得られた画像が不良のものを×とした。
【0031】
<画像評価>
感光ドラム汚染性評価に使用した感光体を前記カートリッジに組み込み、ベタ黒で30枚印字し、得られた画像を目視にて評価した。得られた画像が優秀なものを〇とし、良好なものを△とし、不良のものを×とした。
【0032】
【表1】

Figure 2004012785
【0033】
【表2】
Figure 2004012785
【0034】
極性ゴムであるアクリロニトリル−ブタジエン共重合体ゴムもしくはエピクロルヒドリン系ゴムに第4級ホスホニウム塩を含有した実施例1〜9は、非極性ゴムであるエチレン−プロピレンゴム/カーボンブラック系比較例1と比べて、周ムラが少なく、導電均一性に優れている。
【0035】
極性ゴムであるアクリロニトリル−ブタジエン共重合体ゴムもしくはエピクロルヒドリン系ゴムに第4級ホスホニウム塩を含有した実施例1〜9は、非極性ゴムであるエチレン−プロピレンゴムに第4級ホスホニウム塩を含有した比較例2及び3と比べて、第4級ホスホニウム塩による低体積抵抗率への制御効果が大きいことが分かる。従って、アクリロニトリル−ブタジエン共重合体ゴムやエピクロルヒドリン系ゴムの極性ゴムに第4級ホスホニウム塩を含有することが好ましい。
【0036】
また、極性ゴムであるアクリロニトリル−ブタジエン共重合体ゴムもしくはエピクロルヒドリン系ゴムに固体の第4級ホスホニウム塩を含有した実施例1〜8は、感光体に付着物が全くなく、画像も良好であった。実施例9は、感光体に付着物があるが、得られた画像は実用可能であった。非極性ゴムであるエチレン−プロピレンゴムに第4級ホスホニウム塩を含有した比較例2及び3は、感光体に多量の付着物が観察され、得られた画像は実用不可であった。従って、アクリロニトリル−ブタジエン共重合体ゴムやエピクロルヒドリン系ゴムの極性ゴムに第4級ホスホニウム塩を含有することが好ましい。
【0037】
アクリロニトリル−ブタジエン共重合体ゴムに第4級ホスホニウム塩を含有した実施例1、3、5、6及び9は、感光体汚染が無く、かつ環境変動も低いのに対し、アクリロニトリル−ブタジエン共重合体ゴムに過塩素酸リチウムを加えた比較例4には感光体に多量の付着物が確認され、環境変動も大きくなっている。感光体汚染、環境変動の面から過塩素酸リチウムより第4級ホスホニウム塩の方が好ましい。
【0038】
極性ゴムであるアクリロニトリル−ブタジエン共重合体ゴムもしくはエピクロルヒドリン系ゴムに第4級ホスホニウム塩を含有した実施例1〜9は、第4級アンモニウム塩を含有した比較例4と比べて、感光体非汚染性に優れている。従って、前記極性ゴムに第4級ホスホニウム塩を含有することにより感光体汚染を防止できる。
【0039】
2種類の前記極性ゴムをブレンドしたゴム組成物に第4級ホスホニウム塩を含有した実施例8は、前記極性ゴム単体のゴム組成物に第4級ホスホニウム塩を含有した実施例1〜7及び9と同様に感光体非汚染性に優れている。しかし、エピクロルヒドリン系ゴムのブレンド比を上げる場合、価格的に利点が少なくなる。
【0040】
前記ゴム組成物に含有する第4級ホスホニウム塩が固体である実施例1〜8は、第4級ホスホニウム塩が液体である実施例9と比較して、感光体非汚染性に優れている。実施例9は感光体に若干付着物があるが、得られた画像が実用可能である。しかし、第4級ホスホニウム塩が固体であることがより好ましい。
【0041】
【発明の効果】
本発明によれば導電性軸体の外周上に少なくとも導電性弾性層を有する導電性ローラにおいて、該導電性弾性層が極性ゴムを主体とするゴム組成物に第4級ホスホニウム塩を含有することにより、感光体等の被帯電部材への汚染がなく、均一な導電性を有する導電性ローラを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive rubber roller, and more particularly to a conductive roller suitable as a charging roller or a transfer roller around a photoconductor such as an electronic copying machine.
[0002]
[Prior art]
2. Description of the Related Art An electrophotographic apparatus such as an electrophotographic copying machine or an electrophotographic printing machine uniformly charges an outer peripheral surface of a photoreceptor, and then forms an electrostatic latent image of a printing pattern on the surface of a photosensitive drum. There is known a system in which a toner image is formed by adhering a toner to a recording medium, and the toner image is transferred onto recording paper by heat. In this method, a corona discharge method is generally used as a method for charging the surface of the photoreceptor. However, the corona discharge method has a problem in that a large amount of ozone harmful to the human body is generated and it is difficult to reduce the size of the device.
[0003]
In recent years, a contact charging system that is easier to reduce in size than a corona discharge system and does not generate toxic ozone to the human body has been studied, and some of them have been put to practical use. In this contact charging method, a conductive elastic roller is brought into contact with the surface of the photoreceptor with a predetermined pressing force. The charging member needs to have a uniform elasticity with the photosensitive drum. Can be Therefore, an elastic layer having rubber elasticity is used for the charging member, and it is required that the elastic layer does not contaminate the photoreceptor.
[0004]
Also, the rubber roller used for the charging member needs to have a predetermined semiconductive region of 1 × 10 5 to 1 × 10 10 Ω · cm. Conventional charging members have been adjusted to a predetermined volume resistivity by adding a filler-based conductive filler, generally conductive carbon, to a rubber material.
[0005]
However, in a conductive roller using such a conductive member, the volume resistivity greatly varies among material lots due to a slight change in the amount of carbon black and the dispersion state of the rubber. Variations in local resistance occur due to the subtle differences in the dispersion state. Further, the dependence on the applied voltage is large, and it is difficult to obtain a stable volume resistivity. Therefore, as a method for obtaining a stable volume resistivity, a method is known in which an epichlorohydrin rubber or an acrylonitrile-butadiene rubber copolymer rubber, which is a polar rubber, is used for the rubber composition of the charging member. Polar rubbers such as epichlorohydrin-based rubber and acrylonitrile-butadiene copolymer rubber generally have the advantages of a small variation in volume resistivity and a small dependence on applied voltage.
[0006]
In addition, acrylonitrile-butadiene copolymer rubber has a volume resistivity of 1 × 10 9 to 1 × 10 11 Ω · cm, and is widely used as a material for a conductive roller because it is a general-purpose rubber and inexpensive. Epichlorohydrin-based rubber has an electric resistance range of 1 × 10 7 to 1 × 10 9 Ω · cm, and has a lower volume resistivity than acrylonitrile-butadiene rubber, and therefore has a low volume that cannot be compensated for by acrylonitrile-butadiene rubber even in the semiconductive region. Epichlorohydrin rubber can compensate for the resistivity region, but is disadvantageous in terms of cost.
[0007]
In the range of 1 × 10 7 to 1 × 10 10 Ω · cm, a method of blending an acrylonitrile-butadiene copolymer rubber with an epichlorohydrin rubber has been conventionally proposed. In this method, when the volume resistivity is adjusted to 1 × 10 8 to 1 × 10 10 Ω · cm, the volume resistivity can be adjusted at a low cost, but when the volume resistivity is adjusted to about 1 × 10 7 Ω · cm, the epichlorohydrin rubber can be adjusted. It is necessary to increase the blending ratio, and the advantage in price is reduced. In addition, even an epichlorohydrin rubber capable of adjusting the lowest volume resistivity cannot be adjusted to 10 6 Ω · cm or less. Therefore, the above-described resistance adjustment method cannot be applied to the entire electric resistance range of 1 × 10 5 to 1 × 10 10 Ω · cm required for the charging member.
[0008]
Therefore, as a method of controlling the volume resistivity to 10 6 Ω · cm or less and adjusting the volume resistivity at low cost, a method of adding an ionic conductivity imparting agent to rubber has been proposed. Therefore, a method of containing an ionic conductivity imparting agent such as a lithium salt in a polar rubber has been studied. In this case, the resistance value of the semiconductive rubber decreases, but there is a problem that environmental fluctuation of the volume resistivity increases. In order to solve this problem, a method has also been proposed in which a rubber composition contains a quaternary ammonium salt as an ionic conductivity imparting agent (JP-A-4-177368, JP-A-4-232980, JP-A-4-232980). 11-209633 and JP-A-2001-19843. According to this method, the volume resistivity can be adjusted within a range of 1 × 10 5 to 1 × 10 9 Ω · cm, and a stable volume resistivity can be obtained even when environmental conditions change. However, the quaternary ammonium salt having excellent conductivity is a liquid, and does not solve the problem of bleeding out to the roller surface and causing contamination of the photoreceptor. There is a method of forming a surface layer on a roller in order to prevent bleed-out. However, in this case, there is a problem that a quaternary ammonium salt migrates to the surface layer and the conductivity of the roller is reduced.
[0009]
[Problems to be solved by the invention]
An object of the present invention has been made in view of the above problems, and has as its object to provide a conductive roller which is free from contamination of a photoreceptor and has a uniform low volume resistivity.
[0010]
[Means for Solving the Problems]
According to the present invention, in a conductive roller having at least a conductive elastic layer on the outer periphery of a conductive shaft, the conductive elastic layer contains a quaternary phosphonium salt in a rubber composition mainly composed of a polar rubber. An electrically conductive roller is provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0012]
The conductive roller of the present invention is a conductive roller having at least a conductive elastic layer on the outer periphery of a conductive shaft, and a rubber composition containing a polar rubber of the conductive elastic layer, as an ionic conductivity imparting agent. By containing a quaternary phosphonium salt, the amount of bleeding onto the rubber surface is smaller than that of a quaternary ammonium salt-containing system, and the volume resistivity can be adjusted to be equal to that of a quaternary ammonium salt-containing system. it can. The rubber composition may contain only a quaternary phosphonium salt, or may contain a quaternary phosphonium salt together with another conductivity-imparting agent.
[0013]
There are many types of cations and anions constituting the quaternary phosphonium salt, and a large number of salts can be obtained by combining them. Any of them can be used in the present invention, but at least three functional groups bonded to the phosphorus atom are selected from the group consisting of boron tetrafluoride, 4 phenyl boron and phosphorus hexafluoride, and the anion is selected from the group consisting of phenyl group and phosphorus anion. Particularly preferred is a quaternary phosphonium salt that satisfies the condition of having one or both of the cation and the anion. It has been found that these salts can realize a low volume resistivity with a small amount of addition and dissolve in the polar rubber to form a uniform composite, thereby completing the present invention.
[0014]
Examples of quaternary phosphonium salts having at least three phenyl groups in which a cation is bonded to a phosphorus atom include tetraphenylphosphonium salts, methyltriphenylphosphonium salts, ethyltriphenylphosphonium salts, propylphenylphosphonium salts, and butylphenylphosphonium salts. Is mentioned.
[0015]
The fourth phosphonium whose anion is selected from the group consisting of boron tetrafluoride, 4phenylboron and phosphorus hexafluoride, and which satisfies one or both of the cation and the anion is, for example, tetraphenylphosphonium. Tetraphenylborate, methyltriphenylphosphonium / tetrafluoroborate, ethyltriphenylphosphonium / tetrafluoroborate, propyltriphenylphosphonium / tetrafluoroborate, butyltriphenylphosphonium / tetrafluoroborate, octyltriphenylphosphonium / tetrafluoroborate and tetra Butylphosphonium hexafluorophosphate and the like. At least one or a mixture of two or more of the above quaternary phosphonium salts can be used in the present invention.
[0016]
Examples of the rubber composition used in the present invention include polar rubbers such as epichlorohydrin rubber, acrylonitrile-butadiene copolymer rubber, nitrile rubber, urethane rubber, chloroprene rubber, and acrylic rubber, all of which may be used in the present invention. In particular, it is preferable to use a rubber composition containing at least one of an acrylonitrile-butadiene copolymer rubber and an epichlorohydrin-based polar rubber exhibiting ion conductivity. Due to the compatibility between the rubber composition and the quaternary phosphonium salt, the phosphonium salt can be uniformly dispersed in the rubber composition, and the electric resistance variation can be reduced as compared with a carbon-dispersed electron conductive system. .
[0017]
The acrylonitrile-butadiene copolymer rubber contained in the rubber composition includes many types depending on the difference in the amount of acrylonitrile, and any of them can be used in the present invention. However, by using the acrylonitrile bond amount of 18% by mass to 25% by mass, it is possible to reduce the environmental fluctuation range of the volume resistivity at high temperature and high humidity and the volume resistivity at low temperature and low humidity. If the acrylonitrile bond amount is higher than the above range, the amount of butadiene that is active in molecular motion is reduced, so that the molecular motion at low temperature is deteriorated, and the temperature is easily affected by the temperature. On the other hand, when the acrylonitrile bond amount is lower than the above range, the volume resistivity increases because the number of nitrile groups which are the coordination sites of the carrier is small, and the resistance of the semiconductive region cannot be obtained.
[0018]
There are many types of epichlorohydrin rubbers contained in the rubber composition depending on the difference in the amount of ethylene oxide bonded to ethylene oxide, and any of them can be used in the present invention. However, by using an ethylene oxide bond amount of 25 mol% to 56 mol%, a low volume resistivity of about 10 7 Ω · cm can be obtained, which is preferable. This is because in the range of 25 mol% to 56 mol% of ethylene oxide, which is one component of the epichlorohydrin rubber, it has an appropriate site for coordinating ions, and at the same time the rubber has a high molecular mobility. It is considered that a large amount of ions can be actively moved. When the amount is less than 25 mol%, the number of sites for coordinating ions is small, the volume resistivity is high, and the volume resistivity of the acrylonitrile-butadiene copolymer rubber having a medium nitrile bond amount is equivalent to that of acrylonitrile-butadiene. Since it is more expensive than a copolymer rubber, the use of epichlorohydrin rubber is not preferable because it is not useful. On the other hand, if it exceeds 56 mol%, local crystallization of the ethylene oxide site of the epichlorohydrin rubber occurs, so that the molecular mobility deteriorates and a satisfactory low volume resistivity cannot be obtained, which is not preferable.
[0019]
The compounding ratio of the quaternary phosphonium salt in the rubber composition in the conductive roller is a rubber composition containing a quaternary phosphonium salt in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the raw rubber. Are preferred. If the amount is less than 0.1 part by mass, the effect of imparting ionic conductivity cannot be obtained. Even if the quaternary phosphonium salt is contained in an amount exceeding 10 parts by mass, no further effect of conductivity can be expected.
[0020]
The quaternary phosphonium salt contained in the rubber composition is preferably a solid. When the quaternary phosphonium salt is a liquid, it easily bleeds out, and even if a surface layer of polyurethane or the like is provided to prevent contamination of the photoreceptor, there is a possibility that the quaternary phosphonium salt migrates to the surface layer. In such a case, disadvantages such as a decrease in the volume resistivity of the roller occur, which is not preferable.
[0021]
The rubber composition of the present invention may appropriately contain a vulcanizing agent and, if necessary, a vulcanization accelerator.
[0022]
The conductive roller of the present invention is manufactured as follows. After a predetermined amount of each component constituting the rubber composition used for the charging member is blended and kneaded to produce a rubber composition, the rubber is extruded into a cylindrical shape and then vulcanized. The vulcanization method is preferably a vulcanizer, but other vulcanization methods may be used. The vulcanization conditions vary depending on the raw rubber used and each component, but it is usually preferable to perform the vulcanization at 140 ° C. to 180 ° C. for about 5 minutes to 60 minutes. It is generally manufactured by press-fitting and grinding a core member after vulcanization, but it is not particularly limited to this.
[0023]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.
[0024]
(Production of rubber composition and roller)
For each Example and Comparative Example, the rubber compositions shown in Tables 1 and 2 were extruded into a tube. After steam vulcanization of the molded product at 160 ° C. for 30 minutes, a core metal was press-fitted, and the surface was polished to an outer diameter of 15 mm and a length of 250 mm under the conditions of a grindstone GC80, a rotation speed of 2000 rpm, and a feed speed of 500 m / min. Was prepared.
[0025]
Materials used in each example and comparative example are as follows.
[0026]
For the acrylonitrile-butadiene copolymer rubber, "Nipol DN401L" (acrylonitrile bond amount: 18% by mass) manufactured by Zeon Corporation, and for the acrylonitrile copolymer, "Nipol DN407" (acrylonitrile bond manufactured by Zeon Corporation) is used. 22% by mass), "Zeklon G-3106" (56% by mole of ethylene oxide) manufactured by Zeon Corporation for epichlorohydrin-based rubber 1, and "Zeklon" manufactured by Zeon Corporation for epichlorohydrin-based rubber 2. G-3100 "(ethylene oxide bond amount 25 mol%)," EP342 "(ethylene bond amount 53 mass%) manufactured by Nippon Synthetic Rubber Co., Ltd. for ethylene propylene diene rubber, and Hitec Co., Ltd. for zinc oxide. "Two kinds of zinc oxide", for stearic acid, "Stearic acid S" manufactured by Kao Corporation, The calcium was used as the "Silver W" manufactured by Shiraishi Calcium Co., Ltd.. "Hishicolin ETPP-FB" manufactured by Nippon Chemical Industry Co., Ltd. for quaternary phosphonium salts, Tokyo Chemical Industry Co., Ltd. for lithium perchlorate and "KS" manufactured by Kao Corporation for quaternary ammonium salts. -555 "," Ketjen EC "manufactured by Lion Corporation for carbon black, and" Noxeller MDB "and" Noxeller "manufactured by Ouchi Shinko Chemical Co., Ltd. for vulcanization accelerators MDB, TETD, and DPTT. TET "and" Noxeller TRA "were used.
[0027]
Further, the roller resistance, resistance unevenness, environmental fluctuation width, and photoreceptor contamination shown in Tables 1 and 2 were measured by the following methods.
[0028]
<Roller resistance and resistance unevenness>
Roller resistance was measured in three environments: L / L environment (15 ° C / 10% RH), N / N environment (23 ° C / 50% RH), and H / H environment (32.5 ° C / 80% RH). Applying a DC voltage of 200 V from the end of the cored bar with a load of 500 g to both ends of the rubber roller test piece and adopting a roller resistance value for 1 minute at a rotation speed of 30 rpm, and averaging the maximum value and the minimum value of the resistance value Is the roller resistance. Further, the difference in resistance between the maximum value and the minimum value of the roller resistance under the N / N environment was defined as circumferential unevenness.
[0029]
<Environmental fluctuation range of roller resistance value>
The environmental fluctuation range of the roller resistance is the logarithm of the roller resistance (T 1 ) in the L / L environment (15 ° C./10%) and the logarithm of the roller resistance (T 2 ) in the H / H environment (32.5 ° C./80%). The difference was determined. Calculated by the formula: log 10 (T 1 ) −log 10 (T 2 ).
[0030]
<Contamination of photosensitive drum>
The rubber roller was brought into contact with a photoreceptor used for "Laser Printer Laser Jet 4000N" manufactured by Hewlett-Packard, a load of 1000 g was applied to both ends, and left for one day in an environment of 40 ° C./95% RH. After the standing, the load was removed, and the photoreceptor was checked for deposits with a microscope. Then, the used photoreceptor was incorporated in the cartridge, and 30 sheets were printed in solid black, and the obtained image was visually evaluated. If there is no deposit on the photoreceptor and the obtained image is also good, the result is marked with 〇, and if the obtained image is practical, the result is marked as 、. , And those with poor images obtained were evaluated as x.
[0031]
<Image evaluation>
The photoreceptor used for the evaluation of the contamination of the photosensitive drum was assembled in the cartridge, and 30 sheets were printed in solid black, and the obtained image was visually evaluated. An excellent image was evaluated as “〇”, an excellent image was evaluated as “△”, and a poor image was evaluated as “X”.
[0032]
[Table 1]
Figure 2004012785
[0033]
[Table 2]
Figure 2004012785
[0034]
Examples 1 to 9 in which a quaternary phosphonium salt was contained in an acrylonitrile-butadiene copolymer rubber or an epichlorohydrin rubber as a polar rubber were compared with Comparative Example 1 in an ethylene-propylene rubber / carbon black system as a nonpolar rubber. , Peripheral unevenness is small, and the conductive uniformity is excellent.
[0035]
Examples 1 to 9 in which a quaternary phosphonium salt was contained in an acrylonitrile-butadiene copolymer rubber or an epichlorohydrin rubber as a polar rubber were compared with those in which a quaternary phosphonium salt was contained in an ethylene-propylene rubber as a nonpolar rubber. It can be seen that the control effect on the low volume resistivity by the quaternary phosphonium salt is greater than in Examples 2 and 3. Therefore, it is preferable that the quaternary phosphonium salt is contained in the polar rubber such as acrylonitrile-butadiene copolymer rubber or epichlorohydrin rubber.
[0036]
Further, in Examples 1 to 8 in which a solid quaternary phosphonium salt was contained in an acrylonitrile-butadiene copolymer rubber or an epichlorohydrin rubber which was a polar rubber, there was no deposit on the photoreceptor and the image was good. . In Example 9, although there was a deposit on the photosensitive member, the obtained image was practical. In Comparative Examples 2 and 3, in which the quaternary phosphonium salt was contained in ethylene-propylene rubber which was a non-polar rubber, a large amount of deposits were observed on the photoreceptor, and the obtained image was not practical. Therefore, it is preferable that the quaternary phosphonium salt is contained in the polar rubber such as acrylonitrile-butadiene copolymer rubber or epichlorohydrin rubber.
[0037]
In Examples 1, 3, 5, 6, and 9 in which the acrylonitrile-butadiene copolymer rubber contained a quaternary phosphonium salt, the acrylonitrile-butadiene copolymer was free from photoconductor contamination and environmental fluctuation was low. In Comparative Example 4 in which lithium perchlorate was added to rubber, a large amount of deposits was confirmed on the photoreceptor, and the environmental fluctuation was large. A quaternary phosphonium salt is more preferable than lithium perchlorate from the viewpoint of photoconductor contamination and environmental fluctuation.
[0038]
In Examples 1 to 9 in which a quaternary phosphonium salt was contained in an acrylonitrile-butadiene copolymer rubber or epichlorohydrin rubber which was a polar rubber, the photoconductor was less contaminated than in Comparative Example 4 in which a quaternary ammonium salt was contained. Excellent in nature. Therefore, contamination of the photoreceptor can be prevented by including a quaternary phosphonium salt in the polar rubber.
[0039]
Example 8 in which the rubber composition obtained by blending the two types of polar rubbers contained a quaternary phosphonium salt was used in Examples 1 to 7 and 9 in which the rubber composition of the polar rubber alone contained a quaternary phosphonium salt. It is excellent in non-contamination of photoreceptor as well. However, when the blend ratio of the epichlorohydrin rubber is increased, the cost is less advantageous.
[0040]
Examples 1 to 8 in which the quaternary phosphonium salt contained in the rubber composition is a solid are superior in non-contamination of the photoreceptor as compared with Example 9 in which the quaternary phosphonium salt is a liquid. In Example 9, although the photoreceptor slightly adhered, the obtained image was practical. However, it is more preferred that the quaternary phosphonium salt is a solid.
[0041]
【The invention's effect】
According to the present invention, in a conductive roller having at least a conductive elastic layer on the outer periphery of a conductive shaft, the conductive elastic layer contains a quaternary phosphonium salt in a rubber composition mainly composed of a polar rubber. Accordingly, it is possible to provide a conductive roller having uniform conductivity without causing contamination of a member to be charged such as a photoconductor.

Claims (6)

導電性軸体の外周上に少なくとも導電性弾性層を有する導電性ローラにおいて、該導電性弾性層が極性ゴムを主体とするゴム組成物に第4級ホスホニウム塩を含有したことを特徴とする導電性ローラ。A conductive roller having at least a conductive elastic layer on the outer periphery of a conductive shaft body, wherein the conductive elastic layer contains a quaternary phosphonium salt in a rubber composition mainly composed of a polar rubber. Sex roller. 前記極性ゴムがアクリロニトリル−ブタジエン共重合体ゴム、エピクロルヒドリン系ゴムの少なくとも一方を含有する請求項1に記載の導電性ローラ。The conductive roller according to claim 1, wherein the polar rubber contains at least one of an acrylonitrile-butadiene copolymer rubber and an epichlorohydrin rubber. 前記アクリロニトリル−ブタジエン共重合体ゴムのアクリロニトリル結合量が18質量%〜25質量%である請求項1又は2に記載の導電性ローラ。3. The conductive roller according to claim 1, wherein the acrylonitrile-butadiene copolymer rubber has an acrylonitrile bond amount of 18% by mass to 25% by mass. 前記エピクロルヒドリン系ゴムのエチレンオキサイド結合量が25モル%〜56モル%である請求項1〜3のいずれかに記載の導電性ローラ。The conductive roller according to any one of claims 1 to 3, wherein the epichlorohydrin rubber has an ethylene oxide bond amount of 25 mol% to 56 mol%. 前記導電性弾性層が前記極性ゴム100質量部に対して、0.1〜10質量部の第4級ホスホニウム塩を含有するゴム組成物を有する請求項1に記載の導電性ローラ。The conductive roller according to claim 1, wherein the conductive elastic layer has a rubber composition containing a quaternary phosphonium salt in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polar rubber. 前記ゴム組成物に含有する第4級ホスホニウム塩が常温で固体である請求項1〜5のいずれかに記載の導電性ローラ。The conductive roller according to claim 1, wherein the quaternary phosphonium salt contained in the rubber composition is solid at normal temperature.
JP2002165791A 2002-06-06 2002-06-06 Conductive roller Expired - Fee Related JP3917011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165791A JP3917011B2 (en) 2002-06-06 2002-06-06 Conductive roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165791A JP3917011B2 (en) 2002-06-06 2002-06-06 Conductive roller

Publications (2)

Publication Number Publication Date
JP2004012785A true JP2004012785A (en) 2004-01-15
JP3917011B2 JP3917011B2 (en) 2007-05-23

Family

ID=30433549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165791A Expired - Fee Related JP3917011B2 (en) 2002-06-06 2002-06-06 Conductive roller

Country Status (1)

Country Link
JP (1) JP3917011B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030649A (en) * 2004-07-16 2006-02-02 Canon Chemicals Inc Conductive rubber roller
JP2006343717A (en) * 2005-05-09 2006-12-21 Canon Chemicals Inc Electroconductive rubber roller
JP2008224739A (en) * 2007-03-08 2008-09-25 Ricoh Co Ltd Conductive member, process cartridge using this conductive member, and image forming apparatus using this process cartridge
WO2019003739A1 (en) * 2017-06-29 2019-01-03 住友理工株式会社 Charging member for electrophotographic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030649A (en) * 2004-07-16 2006-02-02 Canon Chemicals Inc Conductive rubber roller
JP4514116B2 (en) * 2004-07-16 2010-07-28 キヤノン化成株式会社 Conductive rubber roller
JP2006343717A (en) * 2005-05-09 2006-12-21 Canon Chemicals Inc Electroconductive rubber roller
JP2008224739A (en) * 2007-03-08 2008-09-25 Ricoh Co Ltd Conductive member, process cartridge using this conductive member, and image forming apparatus using this process cartridge
WO2019003739A1 (en) * 2017-06-29 2019-01-03 住友理工株式会社 Charging member for electrophotographic equipment
JP2019012108A (en) * 2017-06-29 2019-01-24 住友理工株式会社 Charging member for electrophotographic apparatus

Also Published As

Publication number Publication date
JP3917011B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
KR100949644B1 (en) Conductive rubber roller and transfer roller
JP5998472B2 (en) Conductive roll, image forming apparatus, and process cartridge
US7727135B2 (en) Conductive rubber roller
JP3829877B2 (en) Charging member
JP5687135B2 (en) Conductive rubber composition for electrophotographic equipment and charging roll for electrophotographic equipment using the same
JP4117830B2 (en) Conductive roller
EP1031888B1 (en) Charging member, process cartridge, and image forming apparatus
JP2008250101A (en) Conductive roll
JPH01142569A (en) Electroconductive roll
JP3917011B2 (en) Conductive roller
JP6082622B2 (en) Conductive rubber composition for electrophotographic equipment and charging roll for electrophotographic equipment using the same
JP4534693B2 (en) Semiconductive member and image forming apparatus
JP2002132020A (en) Rubber composition for conductive roller
EP1271261A2 (en) Charging member
JP2013071965A (en) Rubber composition and charged roll
JP2006235519A (en) Rubber composition, conductive rubber roll and transfer roll
CN100430834C (en) Conductive rubber roller
JP2018197791A (en) Electrically semiconductive roller
JP2003015403A (en) Developing roll
JP3852393B2 (en) Charging roll
KR20210112817A (en) Charging member and electrophotographic imaging apparatuses employing the same
JP2001279104A (en) Polymeric elastomer composition
JP2003345090A (en) Conductive roller
JP2004012530A (en) Conductive roller
JP3852392B2 (en) Charging roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees