JP2004012415A - Temperature sensor and manufacturing method of temperature sensor - Google Patents

Temperature sensor and manufacturing method of temperature sensor Download PDF

Info

Publication number
JP2004012415A
JP2004012415A JP2002169904A JP2002169904A JP2004012415A JP 2004012415 A JP2004012415 A JP 2004012415A JP 2002169904 A JP2002169904 A JP 2002169904A JP 2002169904 A JP2002169904 A JP 2002169904A JP 2004012415 A JP2004012415 A JP 2004012415A
Authority
JP
Japan
Prior art keywords
sensor
temperature sensor
main body
seal portion
sensor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002169904A
Other languages
Japanese (ja)
Inventor
Shigeo Hirai
平井 茂雄
Tei Ito
伊藤 禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Niles Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niles Co Ltd filed Critical Niles Co Ltd
Priority to JP2002169904A priority Critical patent/JP2004012415A/en
Publication of JP2004012415A publication Critical patent/JP2004012415A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature sensor capable of reducing the cost of the whole body furthermore by molding a sensor body and a sealing part integrally. <P>SOLUTION: In this temperature sensor 10, a temperature sensing element 17 is built in the sensor body 11, and the temperature sensing element side of the sensor body 11 is inserted into an attaching hole 8b formed on an attaching body 8, and the sensor body 11 and the attaching hole 8b of the attaching body 8 are attached in the airtight state through the sealing part 16 provided on the sensor body side. In the sensor 10, the sensor body 11 is molded by a resin, and an annular recessed part 13a is molded integrally on the position facing the attaching hole 8b of the sensor body 11, and the sealing part 16 is molded integrally so as to project to the outside with rubber in the annular recessed part 13a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車のエンジン冷却水の水温を計測する際に用いて好適な水温センサ等の温度センサ及び該温度センサの製造方法に関する。
【0002】
【従来の技術】
この種の温度センサとして、図10及び図11に示すものがある。図10に示す水温センサ(温度センサ)1は、先端の閉塞部2a側に温度感知素子4を内包した略円筒状の金属ケース2と、この金属ケース2の基端側に一体成形された合成樹脂製で箱形のコネクタ3Fとを備えている。この金属ケース2の中央には雄ネジ部2bを一体形成してあると共に、該金属ケース2の基部には六角形状部2cを一体突出形成してある。尚、コネクタ3Fには一対の端子の各基部側を埋設してあり、この各端子の基部と温度感知素子4とは各リード線(いずれも図示省略)で接続してある。
【0003】
そして、金属ケース2の雄ネジ部2bを例えばエンジン外壁(被取付体)8に形成された取付ネジ孔(取付孔)8aに螺着して固定する際に、金属ケース2の六角形状部2cとエンジン外壁8の取付ネジ孔8aの周りの表面との間に円板環状の金属ガスケット5を介在させて気密状態にすることにより、エンジン外壁8内の冷却水9が取付ネジ孔8aと金属ケース2の隙間から外部に洩れるのを防止するようになっている。
【0004】
また、図11に示す水温センサ(温度センサ)1′は、合成樹脂製のセンサ本体3を備えている。このセンサ本体3は、先端側に温度感知素子4を内蔵した小径円柱部3aと、この小径円柱部3aに一体成形され、中央に環状凹部3cを有した大径円柱部3bと、この大径円柱部3bに対して直角に延びるように一体突出成形されたフランジ部3dと、このフランジ部3dの大径円柱部3bに対向する位置に一体突出成形された箱形のコネクタ部3fとを備えている。尚、このコネクタ3fには一対の端子の各基部側を埋設してあり、この各端子の基部と温度感知素子4とは各リード線(いずれも図示省略)で接続してある。
【0005】
そして、センサ本体3の大径円柱部3bを例えばエンジン外壁(被取付体)8に形成された取付孔8bに取り付ける際に、センサ本体3の大径円柱部3bの環状凹部3cに組み付けられたゴム製のOリング6を取付孔8b内に嵌合させると共に、取付ネジ7をセンサ本体3のフランジ部3dのネジ挿通孔3eを通してエンジン外壁8の取付ネジ穴8cに螺合させる。これにより、エンジン外壁8の取付孔8bとセンサ本体3の大径円柱部3bとの間がゴム製のOリング6を介して気密状態となり、エンジン外壁8内の冷却水9が取付孔8bとセンサ本体3の大径円柱部3bの隙間から外部に洩れるのを防止するようになっている。
【0006】
尚、温度センサ1に関する類似技術は、特開平9−264795号公報に開示されている。また、温度センサ1′に関する類似技術は、特開平9−50830号公報に開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来の各水温センサ1,1′では、冷却水9が外部に洩れるのを防ぐために金属ガスケット5やゴム製のOリング6が必要不可欠なため、その分部品点数が増えてコストが高くなった。また、前記従来の水温センサ1では、後付けの金属ガスケット5を金属ケース2側へ固定するための機構がないため、エンジン外壁8へ組み付けるまでに水温センサ1と金属ガスケット5を別々に管理する必要があり、その分管理工数が増えてコスト高になった。さらに、前記従来の水温センサ1′では、大径円柱部3bの環状凹部3c内にゴム製のOリング6を組み付ける際に、該環状凹部3cに傷やバリ等が発生していないか、或いは、異物が付着していないか等の製品管理が必要となり、その分管理工数が増えてコスト高になった。特に、上記ゴム製のOリング6を組み付ける大径円柱部3bの環状凹部3cの仕上面はシール性確保のためある程度の精度が求められており、この要求精度を維持、管理するにはレベルの高い製造技術が必要であり、かつ、高価格の設備や管理工数の増大に至る。
【0008】
そこで、本発明は、前記した課題を解決すべくなされたものであり、センサ本体とシール部を一体に成形して全体の低コスト化をより一段と図ることができる温度センサ及び該温度センサの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明は、センサ本体に温度感知素子を内蔵し、このセンサ本体の前記温度感知素子側を被取付体に形成された取付孔内に挿通させ、かつ、前記センサ本体と前記被取付体とを該センサ本体側に設けられたシール部を介して気密状態に取り付けた温度センサであって、前記センサ本体に前記シール部を弾性材で一体成形したことを特徴とする。
【0010】
この温度センサでは、センサ本体に弾性材よりなるシール部を一体成形したので、従来必要不可欠であったガスケットやOリング等の後付け部品が不要となる。これにより、部品点数が削減され、後付け部品の管理等が不要となり、低コスト化が図られる。
【0011】
請求項2の発明は、請求項1記載のセンサ本体であって、前記センサ本体を樹脂で成形すると共に、該センサ本体の前記被取付体の取付孔に対向する位置に環状凹部を形成し、この環状凹部内に前記シール部を外側に突出するように一体成形したことを特徴とする。
【0012】
この温度センサでは、樹脂でセンサ本体を成形すると共に、シール部を一体成形したので、センサ本体と被取付体の取付孔との気密状態が極めて低コストでかつ確実に得られる。
【0013】
請求項3の発明は、センサ本体に温度感知素子を内蔵し、このセンサ本体の前記温度感知素子側を被取付体に形成された取付孔内に挿通させ、かつ、前記センサ本体と前記被取付体とを該センサ本体側に設けられたシール部を介して気密状態に取り付けた温度センサの製造方法であって、一次成形用の型内に形成されるキャビティ内に前記温度感知素子をセットすると共に、該キャビティ内に前記型に設けられた前記シール部形成用のゲートピンをセットした状態で、前記キャビティ内に溶融材料を充填して前記シール部形成用のゲート及び該ゲートに連通する環状凹部を有する前記センサ本体を一次成形し、次に、二次成形用の型と前記一次成形したセンサ本体の環状凹部との間で形成されるキャビティ内に前記シール部形成用のゲートより溶融材料を充填して前記環状凹部内に前記シール部を二次成形したことを特徴とする。
【0014】
この温度センサの製造方法では、一次成形用の型と二次成形用の型から成る少ない数の成形用金型により、センサ本体とシール部とが短時間で一体に成形され、高精度の温度センサが大量生産される。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
【0016】
図1は本発明の一実施形態の温度センサを示す断面図、図2は同温度センサの取付状態を示す正面図、図3(a)は同温度センサの一次成形後のセンサ本体の正面図、図3(b)は同センサ本体の断面図、図4〜図9は同温度センサの射出成形工程を順を追って示す断面図である。
【0017】
図1,図2に示すように、水温センサ(温度センサ)10は合成樹脂製のセンサ本体11を備えている。このセンサ本体11は、先端側に例えば自動車のエンジン冷却水9の水温の温度変化を電気的な抵抗変化に変換するサーミスタ(温度感知素子)17を内蔵した小径円柱部12と、この小径円柱部12に段差状に一体成形され、中央に環状凹部13aを形成した大径円柱部13と、この大径円柱部13に対して直角に延びるように一体突出成形された取付フランジ部14と、この取付フランジ部14の大径円柱部13に対向する位置に一体突出成形された箱形のコネクタ部15とを備えている。
【0018】
図1,図2に示すように、センサ本体11の大径円柱部13の環状凹部13a内には、ゴム製でOリング状の弾性シール部(シール部)16を外側に円弧状に突出するように一体成形してある。また、センサ本体11の小径円柱部12からコネクタ部15にかけてサーミスタ17と該サーミスタ17に接続された一対のリード線18,18及び該一対のリード線18,18にそれぞれ接続された一対の端子19,19をそれぞれインサート成形してある。
【0019】
そして、図2に示すように、センサ本体11の大径円柱部13を例えばエンジン外壁(被取付体)8に形成された丸形の取付孔8bに取り付ける際に、センサ本体11の環状凹部13a内に一体成形された弾性シール部16を取付孔8b内面に圧接させると共に、取付ネジ7をセンサ本体11の取付フランジ部14のネジ挿通孔14aを通してエンジン外壁8の取付ネジ穴8cに螺合させることにより、エンジン外壁8の取付孔8bとセンサ本体11の大径円柱部13との間が弾性シール部16を介して気密状態となり、エンジン外壁8内の冷却水9が取付孔8bとセンサ本体11の隙間から外部に洩れるのを防止するようになっている。尚、弾性シール部16は取付孔8bに単に挿入されるだけでねじ込まれる訳ではないので、弾性シール部16の外表面は取付孔8b内面とのこすれにより傷付けられる可能性が低くシール性が充分確保される。
【0020】
次に、前記実施形態の水温センサ10の製造方法を図3(a),(b)及び図4〜図9に沿って順に説明する。尚、この水温センサ10を二色成形する射出成形用金型20は、一次成形と二次成形に共用する下型21となる固定下型22と一対の可動下型23,23、及び、上型25となる一次成形用の可動側上型26と二次成形用の可動側上型28とで構成されている。また、固定下型22の上面中央には一対の端子19,19を保持する各凹部22dを有したブロック22cを突設してある。さらに、可動下型23のキャビティ23aと一次成形用の可動側上型26の一対のスライドコア27,27との間にはシール部形成用のゲートピン24を進退動自在に設けてある。
【0021】
図4に示すように、固定下型22及び一対の可動下型23,23から成る下型21と一次成形用の可動側上型26及び一対のスライドコア27,27から成る上型25を閉じて水温センサ10のセンサ本体11を成形するキャビティ23a,26aを形成する。この閉型の直前に固定下型22のブロック22cの一対の凹部22d,22dに一対のリード線18,18を介してサーミスタ17を接続した一対の端子19,19を保持して上記キャビティ23a,26a内にサーミスタ17等をセットしておく。また、上記キャビティ23a,26a内には下型21に進退動自在に設けられたシール部形成用のゲートピン24をセットしておく。
【0022】
そして、この状態で、上記キャビティ23a,26a内に固定下型22のゲート22aより溶融樹脂Pを充填すると、図3(a)に示すように、樹脂製のセンサ本体11と環状凹部13aと該センサ本体11の取付フランジ部14から大径円柱部13にかけてシール部形成用のゲート14b及び該ゲート14bから環状凹部13aまで連通する内部経路13bがそれぞれ一次成形される。
【0023】
次に、図5に示すように、一次成形用の可動側上型26と一対のスライドコア27,27から成る上型25を開くと共に、シール部形成用のゲートピン24を後退させて下型21の可動下型23から引き抜く。そして、図6に示すように、下型21を一次成形用の可動側上型26が設けられているステーションから二次成形用の可動側上型28が設けられているステーションに移動させて二次成形用の可動側上型28と一対のスライドコア29,29から成る上型25に入れ換える。
【0024】
次に、図7に示すように、二次成形用の可動側上型28と一対のスライドコア29,29から成る上型25を閉じ、これら一対のスライドコア29,29及びセンサ本体11の環状凹部13aとの間で形成されるキャビティ29a内に固定下型22のシール部形成用のゲート22bより溶融ゴム(弾性材)Rを充填する。この際、図3(b)において矢印で示すように、溶融ゴムRはセンサ本体11の取付フランジ部14のシール部形成用のゲート14bから大径円柱部13の内部経路13bを経て環状凹部13a内に流れ込み、該環状凹部13a内に弾性シール部16が外側に円弧状に突出するように二次成形される。
【0025】
そして、図8に示すように、二次成形用の可動側上型28と一対のスライドコア29,29から成る上型25を開くと共に、図9に示すように、下型21の一対の可動下型23,23を開く(型割する)と、図1及び図9に示すように、樹脂製のセンタ本体11とゴム製の弾性シール部16を一体に二色成形して成る水温センサ10が完成する。
【0026】
このように、下型21と一次成形用の可動側上型26とで一次成形された樹脂製のセンサ本体11の大径円柱部13の環状凹部13aと、一対のスライドコア29,29との間で形成されるキャビティ29a内に、一次成形によりセンサ本体11に成形されたシール部形成用のゲート14bより溶融ゴムRを充填して環状凹部13a内に弾性シール部16を外側に円弧状に突出するように二次成形するようにしたので、一次成形用の可動側上型26と二次成形用の可動側上型28及び下型21から成る数の少ない成形用金型20によりセンサ本体11と弾性シール部16を短時間で一体に二色成形することができ、高精度の温度センサ10を大量生産することができる。
【0027】
また、大径円柱部13の中央に環状凹部13aを形成したセンサ本体11を樹脂で成形すると共に、この環状凹部13a内に弾性シール部16をゴムで外側に突出するように一体成形したので、従来必要不可欠であったガスケットやOリング等の後付け部品が不要となり、その分部品点数を削減することができると共に、後付け部品の管理等が不要となって低コスト化を図ることができる。特に、従来のOリングを組み付けるものに比較すると、Oリング取付部位の仕上げ面の加工精度維持や管理が不要となってその分管理工数を大幅に減らすことができ、水温センサ10の製造コストをより一段と低化させることができる。これらにより、図2に示すように、センサ本体11の大径円柱部13をエンジン外壁8の取付孔8b内に嵌め込んで取り付けた際に、センサ本体10の大径円柱部13とエンジン外壁8の取付孔8bとの気密状態を極めて低コストでかつ確実に得ることができる。
【0028】
尚、前記実施形態によれば、合成樹脂で一体成形したセンサ本体を用いたが、アルミニウム、マグネシウム等のダイキャスト製のセンサ本体を用いても良い。また、シール部はゴム製に限らず、エラストマー等の柔軟樹脂製でも良い。さらに、シール部形成用のゲートピンを下型に設けたが、これは、温度センサを取付けた時、ゲートが被取付体の外部側に位置し、被取付体8内部の例えばエンジン冷却水9側にゲートが位置しないので、ゲートを経由した被取付体8内外の通路が形成されず、水密上好ましいからであって、被取付体8内部の環境に応じてはゲートピンを上型に設けても良い。また、シール部を一体成形する二次成形部をセンサ本体の大径円柱部の中央に成形した環状凹部としたが、二次成形部の形状は環状凹部に限られるものではなく、例えば、センサ本体の大径円柱部に雄ネジ部を形成する取付フランジ部のないタイプ等のものでは、センサ本体の大径円柱部とコネクタ部との境部分の角部(従来のガスケットに対向する部分)をシール部の二次成形部としても良い。さらに、温度感知素子としてサーミスタを用いたが、熱電対等の他の温度感知素子でもよく、また、温度センサは、自動車のエンジン冷却水の水温を測定する水温センサに限られず、自動車のオイル系統の油温を測定する油温センサ等に前記実施形態を適用できることは勿論である。
【0029】
【発明の効果】
以上説明したように、請求項1の発明の温度センサによれば、センサ本体にシール部を弾性材で一体成形したので、従来必要不可欠であったガスケットやOリング等の後付け部品が不要となり、その分部品点数を削減することができると共に、後付け部品の管理等が不要となって低コスト化を図ることができる。
【0030】
請求項2の発明の温度センサによれば、センサ本体を樹脂で成形すると共に、該センサ本体の被取付体の取付孔に対向する位置に環状凹部を形成し、この環状凹部内にシール部を外側に突出するように一体成形したので、センサ本体と被取付体の取付孔との気密状態を極めて低コストでかつ確実に得ることができる。
【0031】
請求項3の発明の温度センサの製造方法によれば、一次成形用の型で一次成形された樹脂製のセンサ本体の環状凹部と二次成形用の型との間で形成されるキャビティ内に、一次成形によりセンサ本体に成形されたシール部形成用のゲートより溶融材料を充填して環状凹部内にシール部を二次成形するようにしたので、一次成形用の型と二次成形用の型から成る少ない数の成形用金型によりセンサ本体とシール部を短時間で一体に成形することができ、高精度の温度センサを大量生産することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の温度センサを示す断面図である。
【図2】上記温度センサの取付状態を示す正面図である。
【図3】(a)は上記温度センサの一次成形後のセンサ本体の正面図、(b)は同センサ本体の断面図である。
【図4】上記センサ本体を一次成形する前の型閉じ状態を示す成形用金型の断面図である。
【図5】上記センサ本体を一次成形した後の型開き状態を示す成形用金型の断面図である。
【図6】上記センサ本体を二次成形する前の型開き状態を示す成形用金型の断面図である。
【図7】上記センサ本体を二次成形する際の型閉じ状態を示す成形用金型の断面図である。
【図8】上記センサ本体を二次成形した後の型開き状態を示す成形用金型の断面図である。
【図9】上記センサ本体を二次成形した後の下型の型割状態を示す成形用金型の断面図である。
【図10】従来の温度センサの取付状態を示す説明図である。
【図11】他の従来の温度センサの取付状態を示す説明図である。
【符号の説明】
8 エンジン外壁(被取付体)
8b 取付孔
10 水温センサ(温度センサ)
11 センサ本体
13a 環状凹部(二次成形部)
16 弾性シール部(シール部)
17 サーミスタ(温度感知素子)
21 下型
23a キャビティ
24 シール部形成用のゲートピン
25 上型
26 一次成形用の可動側上型
26a キャビティ
28 二次成形用の可動側上型
28a キャビティ
P 溶融樹脂(樹脂)
R 溶融ゴム(弾性材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature sensor such as a water temperature sensor suitable for measuring the temperature of engine cooling water of an automobile, for example, and a method of manufacturing the temperature sensor.
[0002]
[Prior art]
FIGS. 10 and 11 show such a temperature sensor. A water temperature sensor (temperature sensor) 1 shown in FIG. 10 has a substantially cylindrical metal case 2 containing a temperature sensing element 4 on the side of a closed portion 2a at the distal end, and a synthetic case integrally formed on the base end side of the metal case 2. And a box-shaped connector 3F made of resin. A male screw portion 2b is integrally formed at the center of the metal case 2, and a hexagonal portion 2c is integrally formed at a base portion of the metal case 2 so as to protrude. The bases of the pair of terminals are embedded in the connector 3F, and the bases of the terminals and the temperature sensing element 4 are connected by lead wires (both not shown).
[0003]
When the male screw portion 2b of the metal case 2 is screwed and fixed to, for example, a mounting screw hole (mounting hole) 8a formed in the engine outer wall (attached body) 8, the hexagonal portion 2c of the metal case 2 is fixed. An annular disk-shaped metal gasket 5 is interposed between the mounting screw hole 8a of the engine outer wall 8 and the surface around the mounting screw hole 8a to make the airtight state. The case 2 is prevented from leaking outside through the gap.
[0004]
A water temperature sensor (temperature sensor) 1 'shown in FIG. 11 includes a sensor body 3 made of synthetic resin. The sensor body 3 has a small-diameter cylindrical portion 3a having a temperature sensing element 4 built-in at the distal end, a large-diameter cylindrical portion 3b integrally formed with the small-diameter cylindrical portion 3a and having an annular concave portion 3c in the center, and a large-diameter cylindrical portion. A flange portion 3d integrally formed so as to extend at right angles to the cylindrical portion 3b, and a box-shaped connector portion 3f integrally formed at a position facing the large-diameter cylindrical portion 3b of the flange portion 3d are provided. ing. The bases of the pair of terminals are embedded in the connector 3f, and the bases of the terminals and the temperature sensing element 4 are connected by lead wires (both not shown).
[0005]
When the large-diameter cylindrical portion 3b of the sensor main body 3 is attached to, for example, a mounting hole 8b formed in the engine outer wall (the body to be mounted) 8, the large-diameter cylindrical portion 3b of the sensor main body 3 is assembled into the annular concave portion 3c. The rubber O-ring 6 is fitted into the mounting hole 8b, and the mounting screw 7 is screwed into the mounting screw hole 8c of the engine outer wall 8 through the screw insertion hole 3e of the flange 3d of the sensor body 3. As a result, the space between the mounting hole 8b of the engine outer wall 8 and the large-diameter cylindrical portion 3b of the sensor body 3 becomes airtight via the rubber O-ring 6, and the cooling water 9 in the engine outer wall 8 is connected to the mounting hole 8b. The sensor body 3 is prevented from leaking outside through a gap between the large-diameter cylindrical portions 3b.
[0006]
Incidentally, a similar technique relating to the temperature sensor 1 is disclosed in Japanese Patent Application Laid-Open No. 9-264795. A similar technique relating to the temperature sensor 1 'is disclosed in Japanese Patent Application Laid-Open No. 9-50830.
[0007]
[Problems to be solved by the invention]
However, in each of the conventional water temperature sensors 1 and 1 ', the metal gasket 5 and the rubber O-ring 6 are indispensable to prevent the cooling water 9 from leaking to the outside. Got higher. Further, in the conventional water temperature sensor 1, since there is no mechanism for fixing the metal gasket 5 to be attached to the metal case 2 side, it is necessary to separately manage the water temperature sensor 1 and the metal gasket 5 before assembling to the engine outer wall 8. Therefore, the number of man-hours for management increased and the cost increased. Further, in the conventional water temperature sensor 1 ', when the rubber O-ring 6 is assembled in the annular concave portion 3c of the large-diameter cylindrical portion 3b, whether the annular concave portion 3c has no scratches or burrs, or In addition, it is necessary to control the product, such as whether or not foreign matter is attached, and the number of man-hours for management is increased accordingly, resulting in high cost. In particular, the finished surface of the annular concave portion 3c of the large-diameter cylindrical portion 3b to which the rubber O-ring 6 is assembled is required to have a certain degree of accuracy in order to secure the sealing property. High manufacturing technology is required, and high-priced equipment and management man-hours increase.
[0008]
Therefore, the present invention has been made to solve the above-described problems, and a temperature sensor capable of further reducing the overall cost by integrally molding a sensor body and a seal portion, and a method of manufacturing the temperature sensor. The aim is to provide a method.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, a temperature sensing element is incorporated in a sensor main body, and the temperature sensing element side of the sensor main body is inserted into a mounting hole formed in a mounting body, and the sensor main body and the mounting body are mounted on the mounting body. A temperature sensor in which a body is hermetically mounted via a seal portion provided on the sensor main body side, wherein the seal portion is formed integrally with the sensor main body using an elastic material.
[0010]
In this temperature sensor, since a seal portion made of an elastic material is integrally formed on the sensor main body, retrofit parts such as a gasket and an O-ring which are indispensable in the past are not required. This reduces the number of components, eliminates the need for management of additional components, and reduces costs.
[0011]
The invention according to claim 2 is the sensor main body according to claim 1, wherein the sensor main body is formed of resin, and an annular concave portion is formed at a position of the sensor main body facing a mounting hole of the mounted body, It is characterized in that the seal portion is integrally formed in the annular concave portion so as to protrude outward.
[0012]
In this temperature sensor, since the sensor main body is formed of resin and the seal portion is integrally formed, an airtight state between the sensor main body and the mounting hole of the mounted body can be reliably obtained at a very low cost.
[0013]
According to a third aspect of the present invention, a temperature sensing element is built in the sensor main body, and the temperature sensing element side of the sensor main body is inserted into a mounting hole formed in the mounted body, and the sensor main body and the mounted body are mounted. A method for manufacturing a temperature sensor in which a body and a body are hermetically mounted via a seal portion provided on the sensor body side, wherein the temperature sensing element is set in a cavity formed in a primary molding die. In addition, in a state where the gate pin for forming the seal portion provided in the mold is set in the cavity, the cavity is filled with a molten material to fill the gate for forming the seal portion and an annular concave portion communicating with the gate. Then, the sensor body having primary sealing is formed in a cavity formed between a mold for secondary molding and an annular recess of the sensor body which has been primary molded. It is filled with a molten material, characterized in that the sealing portion is post-formed in the annular recess.
[0014]
In this method of manufacturing a temperature sensor, the sensor body and the seal portion are integrally formed in a short time by a small number of molding dies including a primary molding die and a secondary molding die, and a high-precision temperature is obtained. Sensors are mass-produced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a sectional view showing a temperature sensor according to an embodiment of the present invention, FIG. 2 is a front view showing an attached state of the temperature sensor, and FIG. 3A is a front view of a sensor main body after primary molding of the temperature sensor. FIG. 3B is a sectional view of the sensor main body, and FIGS. 4 to 9 are sectional views sequentially showing an injection molding process of the temperature sensor.
[0017]
As shown in FIGS. 1 and 2, the water temperature sensor (temperature sensor) 10 includes a sensor body 11 made of synthetic resin. The sensor main body 11 has a small-diameter cylindrical portion 12 having a built-in thermistor (temperature sensing element) 17 for converting a change in the temperature of the engine cooling water 9 of an automobile into a change in electrical resistance at the distal end side, and the small-diameter cylindrical portion. 12, a large-diameter cylindrical portion 13 having an annular concave portion 13a formed at the center thereof, a mounting flange portion 14 integrally formed so as to extend at right angles to the large-diameter cylindrical portion 13, and A box-shaped connector portion 15 integrally formed at a position facing the large-diameter cylindrical portion 13 of the mounting flange portion 14 is provided.
[0018]
As shown in FIGS. 1 and 2, a rubber O-ring-shaped elastic seal portion (seal portion) 16 protrudes in an arc shape outside the annular concave portion 13 a of the large-diameter cylindrical portion 13 of the sensor main body 11. It is integrally formed as follows. Further, a thermistor 17 and a pair of lead wires 18 connected to the thermistor 17 and a pair of terminals 19 connected to the pair of lead wires 18 from the small-diameter cylindrical portion 12 to the connector portion 15 of the sensor body 11. , 19 are insert-molded.
[0019]
Then, as shown in FIG. 2, when the large-diameter cylindrical portion 13 of the sensor main body 11 is attached to, for example, a round mounting hole 8b formed in the engine outer wall (attached body) 8, an annular concave portion 13a of the sensor main body 11 is formed. The elastic seal portion 16 integrally formed therein is pressed against the inner surface of the mounting hole 8b, and the mounting screw 7 is screwed into the mounting screw hole 8c of the engine outer wall 8 through the screw insertion hole 14a of the mounting flange portion 14 of the sensor body 11. As a result, the space between the mounting hole 8b of the engine outer wall 8 and the large-diameter cylindrical portion 13 of the sensor main body 11 becomes airtight via the elastic seal portion 16, and the cooling water 9 in the engine outer wall 8 is separated from the mounting hole 8b and the sensor main body. 11 to prevent leakage to the outside. Since the elastic seal portion 16 is simply inserted into the mounting hole 8b and is not screwed, the outer surface of the elastic seal portion 16 is less likely to be damaged by rubbing against the inner surface of the mounting hole 8b, and the sealing property is sufficiently secured. Is done.
[0020]
Next, a method of manufacturing the water temperature sensor 10 of the embodiment will be described in order with reference to FIGS. 3 (a) and 3 (b) and FIGS. The injection mold 20 for two-color molding of the water temperature sensor 10 includes a fixed lower mold 22 and a pair of movable lower dies 23 and 23 serving as a lower mold 21 used for primary molding and secondary molding. The mold 25 includes a movable upper mold 26 for primary molding and a movable upper mold 28 for secondary molding. At the center of the upper surface of the fixed lower mold 22, a block 22c having a concave portion 22d for holding the pair of terminals 19, 19 is protruded. Further, a gate pin 24 for forming a seal portion is provided between the cavity 23a of the movable lower die 23 and the pair of slide cores 27 of the movable upper die 26 for primary molding so as to be movable forward and backward.
[0021]
As shown in FIG. 4, the lower mold 21 composed of the fixed lower mold 22 and the pair of movable lower molds 23, 23, the movable upper mold 26 for primary molding, and the upper mold 25 composed of the pair of slide cores 27, 27 are closed. To form the cavities 23a and 26a for molding the sensor body 11 of the water temperature sensor 10. Immediately before this closing, a pair of terminals 19, 19 connected to the thermistor 17 via a pair of lead wires 18, 18 are held in a pair of recesses 22d, 22d of a block 22c of the fixed lower mold 22, and the cavities 23a, The thermistor 17 and the like are set in 26a. Further, a gate pin 24 for forming a seal portion, which is provided on the lower mold 21 so as to be able to move forward and backward, is set in the cavities 23a and 26a.
[0022]
Then, in this state, when the molten resin P is filled into the cavities 23a and 26a from the gate 22a of the fixed lower mold 22, as shown in FIG. 3A, the sensor body 11 made of resin, the annular recess 13a and the From the mounting flange portion 14 of the sensor main body 11 to the large-diameter cylindrical portion 13, a gate 14b for forming a seal portion and an internal path 13b communicating from the gate 14b to the annular concave portion 13a are respectively primary molded.
[0023]
Next, as shown in FIG. 5, an upper mold 25 including a movable upper mold 26 for primary molding and a pair of slide cores 27, 27 is opened, and a gate pin 24 for forming a seal portion is retracted to lower the lower mold 21. Pull out from the movable lower mold 23. Then, as shown in FIG. 6, the lower mold 21 is moved from the station where the movable upper mold 26 for primary molding is provided to the station where the movable upper mold 28 for secondary molding is provided. Next, the upper mold 25 including the movable upper mold 28 for molding and a pair of slide cores 29, 29 is replaced.
[0024]
Next, as shown in FIG. 7, the upper mold 25 composed of the movable upper mold 28 for secondary molding and the pair of slide cores 29, 29 is closed, and the pair of slide cores 29, 29 and the annular shape of the sensor body 11 are closed. The molten rubber (elastic material) R is filled into the cavity 29 a formed between the recess 13 a and the sealing portion forming gate 22 b of the fixed lower mold 22. At this time, as shown by an arrow in FIG. 3B, the molten rubber R is transferred from the sealing portion forming gate 14b of the mounting flange portion 14 of the sensor body 11 to the annular concave portion 13a via the internal path 13b of the large-diameter cylindrical portion 13. Then, the elastic seal portion 16 is formed into the annular concave portion 13a so as to protrude outward in an arc shape.
[0025]
Then, as shown in FIG. 8, the upper mold 25 including the movable upper mold 28 for secondary molding and the pair of slide cores 29, 29 is opened, and as shown in FIG. When the lower dies 23, 23 are opened (molded), as shown in FIGS. 1 and 9, a water temperature sensor 10 formed by integrally molding a resin center body 11 and a rubber elastic seal portion 16 in two colors. Is completed.
[0026]
As described above, the annular concave portion 13a of the large-diameter cylindrical portion 13 of the resin-made sensor main body 11 primarily formed by the lower die 21 and the movable upper die 26 for primary molding, and the pair of slide cores 29, 29 are formed. The cavity 29a formed therebetween is filled with molten rubber R from the sealing portion forming gate 14b formed in the sensor main body 11 by the primary molding, so that the elastic sealing portion 16 is formed into an arc shape outward in the annular concave portion 13a. Since the secondary molding is performed so as to protrude, the sensor main body is formed by a small number of molding dies 20 including the movable upper mold 26 for primary molding, the movable upper mold 28 and the lower mold 21 for secondary molding. The two-color molding of the elastic seal part 11 and the elastic seal part 16 can be performed in a short time, and the high-precision temperature sensor 10 can be mass-produced.
[0027]
In addition, the sensor body 11 having the annular concave portion 13a formed in the center of the large-diameter cylindrical portion 13 is molded of resin, and the elastic seal portion 16 is integrally molded in the annular concave portion 13a so as to protrude outward with rubber. Retrofit parts, such as gaskets and O-rings, which have been indispensable in the past, become unnecessary, so that the number of parts can be reduced correspondingly, and the management of the retrofit parts becomes unnecessary, so that the cost can be reduced. In particular, as compared with the conventional O-ring assembly, maintenance and management of the processing accuracy of the finished surface of the O-ring mounting portion is not required, and the number of man-hours required for the maintenance can be significantly reduced, and the manufacturing cost of the water temperature sensor 10 can be reduced. Further lowering can be achieved. Thus, as shown in FIG. 2, when the large-diameter cylindrical portion 13 of the sensor body 11 is fitted into the mounting hole 8b of the engine outer wall 8 and attached, the large-diameter cylindrical portion 13 of the sensor body 10 and the engine outer wall 8 are attached. The airtight state with the mounting hole 8b can be reliably obtained at extremely low cost.
[0028]
According to the above-described embodiment, the sensor body integrally formed of a synthetic resin is used. However, a sensor body made of die-cast aluminum or magnesium may be used. Further, the seal portion is not limited to rubber, but may be made of a flexible resin such as an elastomer. Further, a gate pin for forming a seal portion is provided on the lower mold. However, when the temperature sensor is mounted, the gate is located on the outside of the body to be mounted, for example, on the engine cooling water 9 side inside the body to be mounted 8. Since the gate is not located at the position, no passage is formed between the inside and outside of the attached body 8 via the gate, which is preferable in terms of watertightness. Depending on the environment inside the attached body 8, the gate pin may be provided in the upper mold. good. Further, the secondary molded portion for integrally molding the seal portion is an annular concave portion molded at the center of the large-diameter cylindrical portion of the sensor body, but the shape of the secondary molded portion is not limited to the annular concave portion. In the case of a type without a mounting flange that forms an external thread on the large-diameter cylindrical part of the main body, the corner part at the boundary between the large-diameter cylindrical part of the sensor main body and the connector part (part facing the conventional gasket) May be used as a secondary molded portion of the seal portion. Further, although a thermistor is used as the temperature sensing element, another temperature sensing element such as a thermocouple may be used. Needless to say, the embodiment can be applied to an oil temperature sensor or the like that measures the oil temperature.
[0029]
【The invention's effect】
As described above, according to the temperature sensor of the first aspect of the present invention, since the seal portion is integrally formed of the elastic material with the sensor main body, retrofitting parts such as gaskets and O-rings which are conventionally indispensable become unnecessary. Accordingly, the number of parts can be reduced, and the management of post-installed parts becomes unnecessary, so that the cost can be reduced.
[0030]
According to the temperature sensor of the second aspect of the present invention, the sensor main body is formed of resin, and an annular concave portion is formed at a position facing the mounting hole of the attached body of the sensor main body, and a seal portion is formed in the annular concave portion. Since it is integrally formed so as to protrude outward, an airtight state between the sensor main body and the mounting hole of the mounted body can be reliably obtained at extremely low cost.
[0031]
According to the temperature sensor manufacturing method of the invention of claim 3, the cavity formed between the annular concave portion of the resin-made sensor main body primarily molded by the primary molding die and the secondary molding die. Since the molten material is filled from the seal forming gate formed on the sensor body by the primary molding to form the seal portion in the annular concave portion, the mold for the primary molding and the mold for the secondary molding are used. The sensor body and the seal portion can be integrally formed in a short time by using a small number of molding dies, and high-precision temperature sensors can be mass-produced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a temperature sensor according to an embodiment of the present invention.
FIG. 2 is a front view showing a mounting state of the temperature sensor.
3A is a front view of the sensor main body after primary molding of the temperature sensor, and FIG. 3B is a cross-sectional view of the sensor main body.
FIG. 4 is a cross-sectional view of a molding die showing a closed state before the sensor body is primarily molded.
FIG. 5 is a cross-sectional view of a molding die showing an opened state of the sensor main body after primary molding.
FIG. 6 is a cross-sectional view of a molding die showing an open state of the sensor main body before secondary molding.
FIG. 7 is a cross-sectional view of a molding die showing a closed state when the sensor body is subjected to secondary molding.
FIG. 8 is a cross-sectional view of a molding die showing an opened state of the sensor main body after secondary molding.
FIG. 9 is a cross-sectional view of a molding die showing a mold split state of a lower die after the above-mentioned sensor main body is secondarily molded.
FIG. 10 is an explanatory diagram showing a mounting state of a conventional temperature sensor.
FIG. 11 is an explanatory view showing a mounting state of another conventional temperature sensor.
[Explanation of symbols]
8. Engine outer wall (attached body)
8b Mounting hole 10 Water temperature sensor (temperature sensor)
11 Sensor main body 13a Annular concave portion (secondary molded portion)
16 Elastic seal part (seal part)
17 Thermistor (temperature sensing element)
21 Lower mold 23a Cavity 24 Seal pin forming gate pin 25 Upper mold 26 Movable upper mold 26a for primary molding Cavity 28 Movable upper mold 28a for secondary molding Cavity P Molten resin (resin)
R molten rubber (elastic material)

Claims (3)

センサ本体に温度感知素子を内蔵し、このセンサ本体の前記温度感知素子側を被取付体に形成された取付孔内に挿通させ、かつ、前記センサ本体と前記被取付体とを該センサ本体側に設けられたシール部を介して気密状態に取り付けた温度センサであって、
前記センサ本体に前記シール部を弾性材で一体成形したことを特徴とする温度センサ。
A temperature sensing element is built in the sensor body, the temperature sensing element side of the sensor body is inserted into a mounting hole formed in the body to be mounted, and the sensor body and the body to be mounted are connected to the sensor body side. A temperature sensor attached in an airtight state via a seal portion provided in
A temperature sensor, wherein the seal portion is integrally formed with an elastic material on the sensor main body.
請求項1記載のセンサ本体であって、
前記センサ本体を樹脂で成形すると共に、該センサ本体の前記被取付体の取付孔に対向する位置に環状凹部を形成し、この環状凹部内に前記シール部を外側に突出するように一体成形したことを特徴とする温度センサ。
The sensor body according to claim 1, wherein
The sensor main body was formed of resin, and an annular concave portion was formed at a position of the sensor main body opposite to the mounting hole of the mounted body, and the seal portion was integrally formed in the annular concave portion so as to protrude outward. A temperature sensor, characterized in that:
センサ本体に温度感知素子を内蔵し、このセンサ本体の前記温度感知素子側を被取付体に形成された取付孔内に挿通させ、かつ、前記センサ本体と前記被取付体とを該センサ本体側に設けられたシール部を介して気密状態に取り付けた温度センサの製造方法であって、
一次成形用の型内に形成されるキャビティ内に前記温度感知素子をセットすると共に、該キャビティ内に前記型に設けられた前記シール部形成用のゲートピンをセットした状態で、前記キャビティ内に溶融材料を充填して前記シール部形成用のゲート及び該ゲートに連通する環状凹部を有する前記センサ本体を一次成形し、次に、二次成形用の型と前記一次成形したセンサ本体の環状凹部との間で形成されるキャビティ内に前記シール部形成用のゲートより溶融材料を充填して前記環状凹部内に前記シール部を二次成形したことを特徴とする温度センサの製造方法。
A temperature sensing element is built in the sensor body, the temperature sensing element side of the sensor body is inserted into a mounting hole formed in the body to be mounted, and the sensor body and the body to be mounted are connected to the sensor body side. A method for manufacturing a temperature sensor attached in an airtight state via a seal portion provided in
The temperature sensing element is set in a cavity formed in a mold for primary molding, and the gate pin for forming a seal portion provided in the mold is set in the cavity. The sensor body having a sealing portion forming gate and an annular concave portion communicating with the gate by filling a material is primarily molded, and then a secondary molding die and an annular concave portion of the primary molded sensor body are formed. A method for manufacturing a temperature sensor, comprising: filling a molten material from a gate for forming a seal portion into a cavity formed between the seal portions; and forming the seal portion in the annular recessed portion.
JP2002169904A 2002-06-11 2002-06-11 Temperature sensor and manufacturing method of temperature sensor Abandoned JP2004012415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169904A JP2004012415A (en) 2002-06-11 2002-06-11 Temperature sensor and manufacturing method of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169904A JP2004012415A (en) 2002-06-11 2002-06-11 Temperature sensor and manufacturing method of temperature sensor

Publications (1)

Publication Number Publication Date
JP2004012415A true JP2004012415A (en) 2004-01-15

Family

ID=30436329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169904A Abandoned JP2004012415A (en) 2002-06-11 2002-06-11 Temperature sensor and manufacturing method of temperature sensor

Country Status (1)

Country Link
JP (1) JP2004012415A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848159B1 (en) 2007-03-29 2008-07-23 삼성전자주식회사 Temperature sensor
JP2011522225A (en) * 2008-04-30 2011-07-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Threaded connection piece
WO2021246167A1 (en) * 2020-06-03 2021-12-09 住友電装株式会社 Composite molded component
DE112021004454T5 (en) 2020-08-26 2023-06-07 Nifco Inc. TEMPERATURE SENSOR AND METHOD OF MAKING A TEMPERATURE SENSOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848159B1 (en) 2007-03-29 2008-07-23 삼성전자주식회사 Temperature sensor
JP2011522225A (en) * 2008-04-30 2011-07-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Threaded connection piece
WO2021246167A1 (en) * 2020-06-03 2021-12-09 住友電装株式会社 Composite molded component
DE112021004454T5 (en) 2020-08-26 2023-06-07 Nifco Inc. TEMPERATURE SENSOR AND METHOD OF MAKING A TEMPERATURE SENSOR

Similar Documents

Publication Publication Date Title
US7748717B2 (en) Housing part for a drive unit, as well as method and mold for manufacturing same
JP3997852B2 (en) Insert molded connector
JPH08162251A (en) Manufacture of waterproof connector housing
KR20060135951A (en) Housing for movement sensor with protective cover for components
US5090890A (en) Injection mold having a valve gate system
JP2004012415A (en) Temperature sensor and manufacturing method of temperature sensor
JPH03219578A (en) Manufacture of water-proof connector housing
JP3733951B2 (en) Rotation detection sensor device and manufacturing method thereof
JPS6147526A (en) Housing of digital clinical thermometer and its preparation
CN201339342Y (en) Integral type automobile handle with cavity
CN102202471A (en) Electronic apparatus and manufacturing method thereof
JP2008302634A (en) Mold for injection molding
JP3276001B2 (en) Method of manufacturing waterproof connector and mold for manufacturing the same
KR101587710B1 (en) Method for manufacturing a radiator or intercooler box
JP2010221683A (en) Insert molding method
WO2021246167A1 (en) Composite molded component
JP4058545B2 (en) Manufacturing method of waterproof connector housing
JPH0549201A (en) Mold motor
JP2588426Y2 (en) Molding equipment for resin molded products
JP3250214B2 (en) Method of manufacturing waterproof connector and mold for manufacturing the same
WO2006042942A8 (en) Injection moulding device with increased tightness between the injection nozzle and moulding matrix
JP2002005757A (en) Temperature sensor device
JPH0516260A (en) Manufacture of duplex tube made of synthetic resin
JP2000205240A (en) Manufacture of ball seat
JP3320140B2 (en) Manufacturing method of sealed container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730