JP2004012348A - Heat exchanger for liquid metal cooled reactor and manufacturing method of heat exchanger for liquid metal cooled reactor - Google Patents

Heat exchanger for liquid metal cooled reactor and manufacturing method of heat exchanger for liquid metal cooled reactor Download PDF

Info

Publication number
JP2004012348A
JP2004012348A JP2002167610A JP2002167610A JP2004012348A JP 2004012348 A JP2004012348 A JP 2004012348A JP 2002167610 A JP2002167610 A JP 2002167610A JP 2002167610 A JP2002167610 A JP 2002167610A JP 2004012348 A JP2004012348 A JP 2004012348A
Authority
JP
Japan
Prior art keywords
heat transfer
liquid metal
heat exchanger
plate
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167610A
Other languages
Japanese (ja)
Other versions
JP4105902B2 (en
Inventor
Yoshihisa Nishi
西 義久
Izumi Kinoshita
木下 泉
Masanori Takemoto
竹本 正典
Isamu Maekawa
前川 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kawasaki Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kawasaki Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2002167610A priority Critical patent/JP4105902B2/en
Publication of JP2004012348A publication Critical patent/JP2004012348A/en
Application granted granted Critical
Publication of JP4105902B2 publication Critical patent/JP4105902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for a liquid metal cooled reactor having a lowered electricity generation cost and heightened reliability by a miniaturizable structure. <P>SOLUTION: In this heat exchanger for the liquid metal cooled reactor having many heat exchanger tubes 2, heat exchange is performed between cooling water 3 flowing in the heat exchanger tubes 2 and a liquid metal coolant 4 flowing outside the heat exchanger tubes 2. In the exchanger, the heat exchanger tubes 2 are arranged close in parallel, and wall members 6 arranged around a row 7 of the heat exchanger tubes 2, for forming spaces 5 between themselves and the row 7 of the heat exchanger tubes 2, and spacers 21 interposed between the row 7 of the heat exchanger tubes 2 and the wall members 6 are provided, and the row 7 of the heat exchanger tubes 2, the spacers 21 and the wall members 6 are pressurized, simultaneously heated and joined to thereby constitute a board-like unit 9. and the plurality of board-like units 9 are arranged at intervals in a passage of the liquid metal coolant 4, and an inert gas is circulated in the spaces 5 of the board-like units 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液体金属冷却炉用熱交換器および液体金属冷却炉用熱交換器の製造方法に関する。さらに詳述すると、本発明は原子炉容器内に収容するのに適した液体金属冷却炉用熱交換器および液体金属冷却炉用熱交換器の製造方法に関するものである。なお、本明細書において「熱交換器」には、蒸気発生器、過熱器、凝縮器をも含んでいる。
【0002】
【従来の技術】
高速増殖炉(FBR)では通常、冷却材に液体ナトリウムを用いているが、ナトリウムは水に対して化学的に活性であるため、冷却系統を1次〜3次の冷却系に分割している。即ち、1次冷却系と2次冷却系に液体ナトリウムを使用し、3次冷却系に水/蒸気を使用している。炉心を冷却する1次冷却系と発電用タービンを駆動する3次冷却系との間に2次冷却系を設け、1次冷却系と2次冷却系に液体ナトリウムを使用し、3次冷却系に水/蒸気を使用することで、炉心を冷却して放射化された液体ナトリウム(1次冷却系)と水/蒸気(3次冷却系)との接触の可能性を無くして安全性の確保を図っている。
【0003】
高速増殖炉にとって、2次冷却系の存在は、軽水炉に比較して建設コストの増加を招く原因となる。このため、2次冷却系を省略したいとの要請があり、種々の検討が行われている。例えば、液体ナトリウムと水/蒸気との間で熱交換を行う蒸気発生器(SG)を、液体ナトリウムと水との接触を完全に防止する構造にできれば2次冷却系の省略が可能である。
【0004】
かかる構造の蒸気発生器として、二重管式蒸気発生器が知られている。二重管式蒸気発生器では伝熱管の一本一本を二重管で構成しており、二重管のどちらか一方のバウンダリ(管壁)が破れたとしても、伝熱管(二重管)の外側を流れる液体ナトリウムと、伝熱管内の二重の流路のうち内側の流路を流れる水/蒸気とが接触しないようにしている。伝熱管内の二重の流路のうち外側の流路にはヘリウムガスが流れており、ヘリウムガス中の水分や液体ナトリウム中のヘリウムを検出することでバウンダリが破れたことを早期に検出し、原子炉の運転を停止させるようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、二重管式蒸気発生器は大きなものであり、たとえ2次冷却系を省略できたとしても原子炉全体をさほど小型化することができず、建設コストを大きく減らすことはできない。また、システムをコンパクトにして経済性の向上を図る高速増殖炉としてプール型高速増殖炉があるが、プール型高速増殖炉では中間熱交換器を原子炉内に設置する。中間熱輸送系を省略し、この中間熱交換器の代わりに蒸気発生器を設置すれば、システムの簡素化によりプラントシステムとしての高い経済性が得られる可能性があるが、小型化が困難な二重管式蒸気発生器を用いるとプール型高速増殖炉の炉容器を大型化してしまうため、システム合理化のメリットを十分に活かしきれない。
【0006】
ところで、非常にコンパクトに設計できる熱交換器として、プレートフィン熱交換器(PFSG)がある。図21にプレートフィン熱交換器の熱交換部の概念を示す。プレートフィン熱交換器は波状のフィン101をろう付けした仕切板102を介して2系統以上の流体の熱交換を行うもので、通常は別系統の流体流路が交互に積層されている。高速増殖炉にプレートフィン熱交換器を適用することができれば、非常にコンパクトな熱交換部を構成することができる。しかし、プレートフィン熱交換器は製作過程でのろう付け部(通常、波板のフィン101と仕切板102との接合には銀ろう付けを用いる。これは、図示しないヘッダ部の溶接の際に、熔解し剥離する可能性がある。)の信頼性が低く、また、フィン101と仕切板102との接合部のような微少な隙間は二相流部が流れる場合には腐食誘起物が堆積する可能性があり、高い信頼性が要求される高速増殖炉用の蒸気発生器として採用することはできない。
【0007】
本発明は、小型化が可能で信頼性が高い液体金属冷却炉用熱交換器を提供することを目的とする。
【0008】
【課題を解決するための手段】
かかる目的を達成するために請求項1記載の発明は、多数の伝熱管を有し、伝熱管内を流れる冷却水と伝熱管の外を流れる液体金属冷却材との間で熱交換を行う液体金属冷却炉用熱交換器において、伝熱管を並列に密着させて並べると共に、伝熱管の列の周囲に配置されて伝熱管の列との間に空間を形成する壁部材と、伝熱管の列と壁部材との間に介在されたスペーサを備え、伝熱管の列とスペーサと壁部材は密着状態で加圧されながら加熱されて接合された板状ユニットを構成し、液体金属冷却材の流路中に複数の板状ユニットを隙間をあけて並べると共に、板状ユニットの空間に不活性ガスを流通させるものである。
【0009】
したがって、板状ユニットの周囲を流れる液体金属冷却材と板状ユニットの伝熱管内を流れる冷却水との間で熱交換が行われる。伝熱管同士は密着しているので、伝熱管の周壁の隣りの流路との境の部分がフィンとして機能し、熱の伝達を促進する。また、板状ユニットを液体金属冷却材の流路中に配置するので、板状ユニットの間に液体金属冷却材が流れ、熱交換を行うことができる。
【0010】
板状ユニットを構成する伝熱管、スペーサ、壁部材は密着した状態で加圧・加熱されて接合され、表面の原子の拡散により境目なく一体化されている。また、伝熱管内はもともと外部から画された独立の流路を構成している。これらのため、伝熱管内の冷却水が漏れにくく、且つ、板状ユニットの外から液体金属冷却材が染み込み難い構造である。さらに、伝熱管の周囲には不活性ガスが流通する空間が形成されているので、冷却水と液体金属冷却材を二重のバウンダリによって画することができる。
【0011】
また、請求項2記載の液体金属冷却炉用熱交換器は、板状ユニットの伝熱管が1列に並べられている。したがって、2列以上に並べた場合に比べて、熱交換を効率よく行うことができる。
【0012】
また、請求項3記載の液体金属冷却炉用熱交換器のように、液体金属冷却材は原子炉容器内を循環する1次冷却材であり、板状ユニットを原子炉容器内に配置しても良い。
【0013】
また、請求項4記載の液体金属冷却炉用熱交換器のように、冷却水は伝熱管内で加熱されて蒸気に変化するようにしても良い。
【0014】
さらに、請求項5記載の発明は、多数の伝熱管を有し、伝熱管内を流れる冷却水と伝熱管の外を流れる液体金属冷却材との間で熱交換を行う液体金属冷却炉用熱交換器の製造方法において、伝熱管を並列に密着させて並べた状態で加圧しながら加熱することで伝熱管の周壁同士を接合して中間製品を製造し、中間製品と、中間製品の周囲に配置されて中間製品との間に空間を形成する壁部材と、中間製品と壁部材との間に介在されたスペーサとを密着させた状態で加圧しながら加熱することで接合して板状ユニットを製造し、液体金属冷却材の流路中に複数の板状ユニットを隙間をあけて並べるようにしている。
【0015】
即ち、多数の伝熱管を境目なく一体化して中間製品を製造し、この中間製品と壁部材とスペーサとを境目なく一体化して板状ユニットを製造する。そして、複数の板状ユニットを液体金属冷却材の流路中に設置すると、請求項1記載の液体金属冷却炉用熱交換器が製造される。
【0016】
【発明の実施の形態】
以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。
【0017】
図1から図5に、本発明を適用した液体金属冷却炉用熱交換器1の実施形態の一例を示す。この液体金属冷却炉用熱交換器1(図4)は、図1に示すように、多数の伝熱管2を有し、伝熱管2内を流れる冷却水3と伝熱管2の外を流れる液体金属冷却材4との間で熱交換を行うもので、伝熱管2を並列に密着させて並べると共に、伝熱管2の列7の周囲に配置されて伝熱管2の列7との間に空間5を形成する壁部材6と、伝熱管2の列7と壁部材6との間に介在されたスペーサを備え、伝熱管2の列7とスペーサと壁部材6は密着状態で加圧されながら加熱されて接合された板状ユニット9(図2,図3)を構成し、液体金属冷却材4の流路38(図5)中に複数の板状ユニット9を隙間をあけて並べると共に、板状ユニット9の空間5に不活性ガスを流通させている。
【0018】
本実施形態では、板状ユニット9の伝熱管2は1列に並べられている。また、液体金属冷却材4は原子炉容器11内を循環する1次冷却材であり、板状ユニット9を原子炉容器11内に配置している。なお、本実施形態では、本発明を蒸気発生器に適用している。つまり、冷却水3は図示しない発電用タービンへと循環する2次冷却材であり、冷却水3は伝熱管2内で加熱されて蒸気に変化する。
【0019】
板状ユニット9は、有効熱交換部12と、ヘリウムガス部13と、導入管14を備えている。有効熱交換部12は多数の伝熱管2を1列に並列に並べて一体化したもので、HIP(Hot Isostatic Pressing;熱間等方加圧法)加工によって一体化している。
【0020】
なお、本明細書では、部材同士の表面を密着させ、加圧しながら加熱して拡散接合し、部材同士の境目をなくして一体化する加工をHIP加工という。また、圧力のかけ方は等方的であることが好ましいが、必ずしも等方的であることに限らない。例えば、互いに直交する3軸方向から圧力をかけるようにしても良く、この場合、3軸方向から同時に圧力をかけるようにしても良く、一の軸方向から圧力をかけることをその方向を変えて繰り返し行うようにしても良い。さらに、圧力を伝える媒体として不活性ガス等の気体を使用して等方的に圧力をかけることが好ましいが、圧力媒体として液体を使用しても良く、あるいは、圧力媒体として粉体等を使用しても良い。HIP加工では、例えば材料の融点の7割程度の温度に加熱して加圧するので、特に加工品の端部に関して製作較差が悪化することがある。このため、機械加工を行い加工品の寸法を所定値にする。本実施形態では、図6に示すように、伝熱管2の列7の周囲に板15と平板29を配置し、これらを一緒にHIP加工することで、HIP加工後の仕上げしろを形成している。伝熱管2は、例えば横断面形状が矩形を成す矩形管であり、1列に並べて配置することで、管壁同士を密着させて板状にすることができる。
【0021】
また、本実施形態では、HIP加工時に伝熱管2、板15、平板29の密着の度合いを上げるために、各部材の隙間を真空引きしている。また、HIP加工時の加圧により伝熱管2が潰れてしまうのを防止するために、伝熱管2の端部に閉止板10を仮溶接して塞ぎ伝熱管2内を例えば1200気圧に加圧している。
【0022】
このようにHIP加工により一体化させた中間製品16(図7)を切削など機械加工して閉止板10の除去と寸法出しを行う(図8)。この後、伝熱管2の端部に曲板17を溶接し(図9)、更に曲板17に蓋18を溶接する(図10)。曲板17と蓋18を合わせることで例えば3本の流路が構成され、当該流路によって伝熱管2と別の伝熱管2を接続することで伝熱管2の列7は全体として例えば3本の流路19を構成する。即ち、冷却水3の流路19として、図2に示すように、幾重にも折り返されたものが形成される。
【0023】
ヘリウムガス部13は、2枚の平板6,20、スペーサとしてのグリッド21、スペーサとしてのバー8より構成されている。図11に示すように、グリッド21の周囲をバー8で囲み、2枚の平板6,20で挟んでいる。そして、図12に示すように、これらの部材を密着させ、HIP加工を行って一体化させることで、ヘリウムガス部13を製造する。平板6,20間にグリッド21を挟み込むことでグリッド21の部分が空間5となる。なお、有効熱交換部12に対向する部分のグリッド21の空隙部には、伝熱性能向上を目的としてワイヤメッシュを充填し、その他の部分のグリッド21の空隙部にはワイヤメッシュを充填していない。また、必要に応じて機械加工を行い寸法出しを行う。
【0024】
板状ユニット9は、図13に示すように、有効熱交換部12、ヘリウムガス部13、導入管14をHIP加工によって一体化することで製造される。即ち、有効熱交換部12、3本の導入管14、曲板22、中子23を並べ、これらの周囲をスペーサ24で囲み、一対のヘリウムガス部13で挟んでいる。そして、これらの部材を密着させ、HIP加工を行って一体化させることで、板状ユニット9を製造する。なお、曲板22内には3本の流路が形成されており、有効熱交換部12の流路19と導入管14を接続する。ヘリウムガス部13は平板6とは反対側の平板20を有効熱交換部12に密着するように配置される。したがって、平板6が伝熱管2の列7との間に空間5を形成する壁部材である。なお、このようにして製造された板状ユニット9は、あとはヘッダー25を取り付けるだけであり、外形寸法に若干の誤差があったとしても機械加工を行って面取り等を行う必要はない。
【0025】
板状ユニット9にはヘッダー25が取り付けられている。ヘッダー25は、連結ブロック26と、2枚の蓋27,28より構成されている。ヘッダー25の製作手順を図14〜図19に示す。
【0026】
連結ブロック26は、例えば鍛造加工されたブロックを加工したものであり、図15に示すように、連結ブロック26の上面には入口側水室26aとなる凹部と、出口側水室26bとなる凹部が形成されている。また、図16に示すように、連結ブロック26の底面には、板状ユニット9を差し込むスリット状のソケット26cが多数形成されている。なお、図16には、一のソケット26cのみを図示しているが、実際には、多数のソケット26cが形成されている。ソケット26cに板状ユニット9を挿入すると、導入管14が入口側水室26aに開口し、伝熱管2が出口側水室26bに開口する。板状ユニット9は連結ブロック26に溶接されており、板状ユニット9の外れを防止すると共に、板状ユニット9と連結ブロック26の間をシールしている。連結ブロック26の形状は正確な立方体形状ではなく、平面視において円弧状に湾曲している。したがって、ソケット26cに挿入した板状ユニット9は円弧状に並んで配置される。
【0027】
入口側水室26aと出口側水室26bは蓋27,28によって塞がれている。入口側水室26aの蓋27には流入管30が、出口側水室26bの蓋28には流出管32がそれぞれ溶接されている。また、蓋27,28は連結ブロック26に溶接されている。流入管30と流出管32は、例えば三重管であり、最も内側の流路に水/蒸気を流すようにし、液体金属冷却材4との間に三重の隔壁を設けて安全性をより高めている。
【0028】
なお、一のヘッダー25に複数の板状ユニット9を取り付けたもの(以下、熱交換ユニット33という)を複数備えて蒸気発生器1を構成しても良いし、単一の熱交換ユニット33から蒸気発生器1を構成しても良い。即ち、熱交換ユニット33の数を増減することで、熱交換の能力を調整することができる。また、一のヘッダー25に取り付ける板状ユニット9の数を増減することで、熱交換の能力を調整することができる。
【0029】
この蒸気発生器1を設置したプール型高速増殖炉を図5に示す。原子炉容器11内には、1次冷却材である液体金属冷却材4、例えば液体ナトリウム(以下、液体ナトリウム4という)が蓄えられている。原子炉容器11内には円筒壁34が設けられており、円筒壁34の内側と外側に流路37,38を形成している。蒸気発生器1は外側流路38内に、円筒壁34の上端近傍を囲むように配置されている。炉心35を冷却して高温になった液体ナトリウム4は円筒壁34内の内側流路37を上昇して円筒壁34の上から外側流路38に流れ込み、蒸気発生器1で熱交換を行って冷却される。そして電磁ポンプ36で下方に向けて圧送され、原子炉容器11の底の部分から内側流路37に流入して炉心35へと循環する。
【0030】
この高速増殖炉では、蒸気発生器1は複数の熱交換ユニット33を備えており、複数の熱交換ユニット33をリング状に配置して円筒壁34の全周を囲んでいる。即ち、外側流路38には、板状ユニット9が全周にわたって放射状に配置さている。このため、外側流路38を下降する液体ナトリウム4は、必ず蒸気発生器1の板状ユニット9の間を通過する。液体ナトリウム4は熱伝達特性に優れており、板状ユニット9の表面にフィンを設けていなくても板状ユニット9に熱を良好に伝達することができる。
【0031】
なお、本実施形態では、電磁ポンプ36によって液体ナトリウム4を強制的に循環させるようにしているが、電磁ポンプ36を省略して液体ナトリウム4を自然循環させるようにしても良い。即ち、板状ユニット9は外側流路38の流れの方向に沿って配置されており、板状ユニット9の間を液体ナトリウム4が流れるようになっている。このため、液体ナトリウム4の流れ抵抗の増加を抑えることができ、液体ナトリウム4の自然循環が可能である。
【0032】
一方、2次冷却系の冷却水3は図示しない発電用タービンを駆動した後、図示しない復水器によって凝集され図示しないポンプによって蒸気発生器1へと圧送される。蒸気発生器1に圧送された冷却水3は各熱交換ユニット33に供給され、流入管30から入口側水室26aに流入する。そして、冷却水3は入口側水室26aから各板状ユニット9に流入し、導入管14→曲板22内の流路→伝熱管2へと循環する。冷却水3は伝熱管2内を流れる途中で液体ナトリウム4によって加熱され蒸気となる。伝熱管2内で冷却水3から変換された蒸気は出口側水室26bに流れ込み、流出管32から流出して他の熱交換ユニット33の流出管32から流出した蒸気と合流し、発電用タービンへと循環する。
【0033】
この蒸気発生器1では、伝熱管2を密着させて並列に並べているので、伝熱管2の周壁のうち隣りの流路19との境の部分2aがプレートフィンとして機能し、熱伝達を促進する。つまり、板状ユニット9は、流路19中の部分2aがフィンとして機能するため、小型で熱交換性能に優れたプレートフィン熱交換器となる。このため、蒸気発生器1を小型化することができる。しかも、本実施形態では、板状ユニット9の伝熱管2を1列に並べているので、2列以上に並べた場合に比べて、熱交換を効率良く行うことができる。このため、蒸気発生器1をより一層小型化することができる。蒸気発生器を小型化できる結果、蒸気発生器1の製造コストを下げることができ、また、原子炉も小型化できてその製造コストも下げることができ、原子力発電プラントの発電コストを下げることができて経済的に優れている。
【0034】
また、板状ユニット9内の冷却水3の流路19を幾重にも折り返すようにしているので、板状ユニット9を大きくしなくても流路19を長くすることができ、逆に、その分だけ板状ユニット9を小型化することができて蒸気発生器を小型化することができる。また、流路19を幾重にも折り返す場合には、流路19の本数が少なくて足りるため、ヘッダー25の構造を簡素なものにすることができる。
【0035】
さらに、蒸気発生器1を小型化することができるので、原子炉容器11内に設置するのが容易であり、小型で経済的なプール型高速増殖炉に適した蒸気発生器1を提供することができる。そして、このことからも原子力発電プラントの発電コストを下げることができ、経済的に優れている。
【0036】
蒸気発生器1の板状ユニット9はHIP加工によって継ぎ目のない一体構造となっている。また、冷却水3が流れる伝熱管2は管でありもともと外部から画された独立の流路19を構成している。これらのため、伝熱管2内の冷却水3と板状ユニット9の外の液体ナトリウム4が接触し難い構造であり、安全性に優れている。また、伝熱管2の周囲に空間5を形成しているので、伝熱管2はいわば二重管構造になり、冷却水3と液体ナトリウム4を二重のバウンダリによって画することができる。このため、冷却水3と液体ナトリウム4をより一層接触し難くすることができ、安全性をより一層向上させることができる。
【0037】
そして、冷却水3と液体ナトリウム4との接触を防止することができるので、ループ型高速増殖炉で必要であった2次ナトリウム冷却系を省略することができる。即ち、1次ナトリウム冷却系と水/蒸気系との間で直接熱交換を行うことができ、原子炉プラントの単純化を図ることができる。このため、原子炉プラントの製造コストを下げることができて経済性をより一層向上させることができると共に、安全性をより一層向上させることができる。
【0038】
また、蒸気発生器1の板状ユニット9はHIP加工によって継ぎ目のない一体構造となっており、例えばヘッダー25を取り付ける工程等その後の製造工程で欠陥品になり難い構造である。また、板状ユニット9内の流路19は伝熱管2や導入管14等で形成されており、冷却水3の滞留が発生し難く、腐食誘起物が堆積し難い構造である。これらのため、信頼性に優れ、高い信頼性が要求される原子炉への使用に適した蒸気発生器1を提供することができる。
【0039】
蒸気発生器1の板状ユニット9の空間5には、例えばヘリウムガス等の不活性ガスが流れている。空間5中の不活性ガスは板状ユニット9の外の液体ナトリウム4よりも大きな値に加圧されている。このため、仮に、板状ユニット9の表面に亀裂等が生じたとしても液体ナトリウム4が板状ユニット9内に流入するのを防止し、冷却水3との接触を防止することができる。また、仮に、液体ナトリウム4が板状ユニット9内に流入したとしても空間5内には不活性ガスが流れており、液体ナトリウム4が水分と反応することはない。さらに、液体ナトリウム4中の不活性ガスを検出することで、板状ユニット9の表面に亀裂等が生じたことを早期に検出することができるので、原子炉の運転を迅速に停止することが可能になる。
【0040】
また、板状ユニット9の空間5に不活性ガス10を流しているので、不活性ガス10中の水分を検出することで、板状ユニット9内の冷却水3の流路19に亀裂等が生じたことを早期に検出することができる。即ち、板状ユニット9内の流路19に亀裂等が生じると冷却水3が空間5内に漏出するので、不活性ガス中の水分を検出することで冷却水3の流路19の亀裂等を早期に検出することができ、原子炉の運転を迅速に停止することが可能になる。
【0041】
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、板状ユニット9の中間製品16に曲板17及び蓋18を溶接することで、板状ユニット9内の流路19を幾重にも折り返すように形成していたが、必ずしも流路19を幾重にも折り返すようにしなくても良い。例えば、図20に示すように、板状ユニット9内の流路19を直線状に形成しても良い。冷却水3の流路19を直線状にすることで、板状ユニット9の幅が許す範囲で流路19の数を増やすことができる。この構造では、流路19の折り返しがなく、また、流路19の数を増やすことで流路1本当たりの流量が減少するため、流動に伴う冷却水3の圧力損失を非常に小さくすることができる。
【0042】
また、上述の説明では、原子炉容器11内に設置する蒸気発生器1を例に説明していたが、原子炉容器11の外に設置する蒸気発生器に適用しても良いことは勿論である。例えば、ループ型高速増殖炉の蒸気発生器に適用しても良い。
【0043】
また、上述の説明では、蒸気を発生させる蒸気発生器1を例に説明していたが、熱交換器、過熱器等に適用しても良いことは勿論である。
【0044】
また、上述の説明では、伝熱管2として横断面形状が矩形状のものを使用していたが、横断面形状が矩形状の伝熱管2に限るものではない。例えば、横断面形状が三角形の伝熱管2や六角形の伝熱管2等を使用しても良く、その他の形状の伝熱管2を使用しても良い。なお、横断面形状が三角形の伝熱管2を使用する場合には、三角形の底辺と頂点を上下互い違いに並べることが好ましい。
【0045】
【実施例】
交換熱量135MW、ナトリウム入口/出口温度510℃/355℃、給水温度210℃、蒸気出口温度453℃、蒸気圧力10.7MPaの条件で、図2に示す流路19を幾重にも折り返すタイプの熱交換器について試算を行った。
【0046】
その結果、一の板状ユニット9当たりの冷却水3の流路19の本数が4本で、幅が1m、厚さが21mm、高さが2.7mの板状ユニット9を10mm間隔で配置して65枚必要なことが分かった。
【0047】
冷却水3の圧力損失は7kg/cm程度であり、十分に許容される範囲である。シェル&チューブ型熱交換器の熱交換部の体積が、MW当たり0.0575mであるのに対し、本発明の蒸気発生器1の熱交換部の必要体積は0.04mとなり、シェル&チューブ型熱交換部と比較して約70%の体積となっている。
【0048】
このように本発明の蒸気発生器はコンパクトであることに加え、冷却水3と液体ナトリウム4との間に2重の境界を持つ安全性の高いものであり、高速増殖炉の2次系削除に効果があり、高速増殖炉の建設コストの低減に有効である。
【0049】
【発明の効果】
以上説明したように、請求項1記載の液体金属冷却炉用熱交換器では、伝熱管を平行に密着させて並べると共に、伝熱管の列の周囲に配置されて伝熱管の列との間に空間を形成する壁部材と、伝熱管の列と前記壁部材との間に介在されたスペーサを備え、伝熱管の列とスペーサと壁部材は密着状態で加圧されながら加熱されて接合された板状ユニットを構成し、液体金属冷却材の流路中に複数の板状ユニットを隙間をあけて並べると共に、板状ユニットの空間に不活性ガスを流通させるようにしているので、伝熱管の周壁のうち隣りの流路との境の部分をプレートフィンとして機能させることができ、熱交換を効率良く行うことができる。このため、蒸気発生器を小型化することができ、ひいては原子力発電プラントを小型化することができ、発電コストを下げることができて経済的である。また、板状ユニットは継ぎ目のない一体構造であり、しかも冷却水の流れの滞留を防いで腐食誘起物が堆積し難い構造であり、蒸気発生器の安全性と信頼性を向上させることができる。
【0050】
また、請求項2記載の液体金属冷却原子炉用熱交換器では、板状ユニットの伝熱管が1列に並べられているので、2列以上に並べた場合に比べて、熱交換を効率よく行うことができる。
【0051】
また、請求項3記載の液体金属冷却炉用熱交換器のように、液体金属冷却材は原子炉容器内を循環する1次冷却材であり、板状ユニットを原子炉容器内に配置しても良い。
【0052】
また、請求項4記載の液体金属冷却炉用熱交換器のように、冷却水が伝熱管内で加熱されて蒸気に変化するものであっても良い。
【0053】
さらに、請求項5記載の液体金属冷却炉用熱交換器の製造方法では、伝熱管を並列に密着させて並べた状態で加圧しながら加熱することで伝熱管の周壁同士を接合して中間製品を製造し、中間製品と、中間製品の周囲に配置されて中間製品との間に空間を形成する壁部材と、中間製品と壁部材との間に介在されたスペーサとを密着させた状態で加圧しながら加熱することで接合して板状ユニットを製造し、液体金属冷却材の流路中に複数の板状ユニットを隙間をあけて並べるようにしているので、請求項1記載の液体金属冷却炉用熱交換器を製造することができる。
【図面の簡単な説明】
【図1】本発明を適用した液体金属冷却炉用熱交換器の実施形態の一例を示し、その板状ユニットの断面図である。
【図2】同熱交換器の板状ユニットの概略構成を示す概念図である。
【図3】同熱交換器の板状ユニットを示す斜視図である。
【図4】同熱交換器を示す斜視図である。
【図5】同熱交換器を使用した高速増殖炉の概略構成図である。
【図6】同熱交換器の有効熱交換部の製作手順を示し、伝熱管等をHIP加工する前の状態を概念的に示す斜視図である。
【図7】同熱交換器の有効熱交換部の製作手順を示し、伝熱管等をHIP加工した状態を概念的に示す斜視図である。
【図8】同熱交換器の有効熱交換部の製作手順を示し、中間製品を機械加工した状態を概念的に示す斜視図である。
【図9】同熱交換器の有効熱交換部の製作手順を示し、中間製品に曲板を溶接した状態を概念的に示す斜視図である。
【図10】同熱交換器の有効熱交換部の製作手順を示し、曲板を溶接した中間製品に蓋を溶接した状態を概念的に示す斜視図である。
【図11】同熱交換器のヘリウムガス部の製作手順を示し、平板等をHIP加工する前の状態を概念的に示す斜視図である。
【図12】同熱交換器のヘリウムガス部の製作手順を示し、平板等をHIP加工した状態を概念的に示す斜視図である。
【図13】同熱交換器の板状ユニットの製作手順を示し、有効熱交換部やヘリウムガス部等をHIP加工する前の状態を概念的に示す斜視図である。
【図14】同熱交換器のヘッダーの製作手順を示し、加工前の連結ブロックを示す斜視図である。
【図15】同熱交換器のヘッダーの製作手順を示し、連結ブロックに入口側水室と出口側水室を切削加工した状態を示す斜視図である。
【図16】同熱交換器のヘッダーの製作手順を示し、連結ブロックを上下逆にしてソケットを切削加工した状態を示す斜視図である。
【図17】同熱交換器のヘッダーの製作手順を示し、ソケットを切削加工した連結ブロックの上下を元に戻した状態を示す斜視図である。
【図18】同熱交換器のヘッダーの製作手順を示し、ソケットに板状ユニットを挿入して溶接した状態を示す斜視図である。
【図19】同熱交換器のヘッダーの製作手順を示し、連結ブロックに蓋を溶接した状態を示す斜視図である。
【図20】本発明を適用した液体金属冷却炉用熱交換器の他の実施形態を示し、その板状ユニットの概略構成を示す概念図である。
【図21】従来のプレートフィン熱交換器の要部を示す斜視図である。
【符号の説明】
1 液体金属冷却炉用熱交換器
2 伝熱管
3 冷却水
4 液体金属冷却材
5 空間
6 平板(壁部材)
7 伝熱管の列
8 バー(スペーサ)
9 板状ユニット
16 中間製品
21 グリッド(スペーサ)
38 液体金属冷却材の流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger for a liquid metal cooling furnace and a method for manufacturing the heat exchanger for a liquid metal cooling furnace. More specifically, the present invention relates to a heat exchanger for a liquid metal cooling furnace and a method for manufacturing the heat exchanger for a liquid metal cooling furnace suitable for being housed in a reactor vessel. In addition, in this specification, the "heat exchanger" includes a steam generator, a superheater, and a condenser.
[0002]
[Prior art]
In a fast breeder reactor (FBR), liquid sodium is usually used as a coolant. However, since sodium is chemically active with respect to water, the cooling system is divided into primary to tertiary cooling systems. . That is, liquid sodium is used for the primary cooling system and the secondary cooling system, and water / steam is used for the tertiary cooling system. A secondary cooling system is provided between the primary cooling system for cooling the core and the tertiary cooling system for driving the power generation turbine, and liquid sodium is used for the primary cooling system and the secondary cooling system. The use of water / steam for cooling ensures the safety by eliminating the possibility of contact between the activated liquid sodium (primary cooling system) and water / steam (tertiary cooling system) by cooling the core. I am planning.
[0003]
For the fast breeder reactor, the presence of the secondary cooling system causes an increase in the construction cost as compared with the light water reactor. For this reason, there is a demand for omitting the secondary cooling system, and various studies have been made. For example, if a steam generator (SG) that performs heat exchange between liquid sodium and water / steam can be configured to completely prevent contact between liquid sodium and water, the secondary cooling system can be omitted.
[0004]
As a steam generator having such a structure, a double-tube steam generator is known. In the double tube type steam generator, each heat transfer tube is constituted by a double tube, and even if one of the boundaries of the double tube (tube wall) is broken, the heat transfer tube (double tube) ) Is not in contact with water / steam flowing through the inner flow path of the double flow paths in the heat transfer tube. Helium gas is flowing in the outer flow path of the double flow path in the heat transfer tube, and by detecting moisture in helium gas and helium in liquid sodium, it is possible to detect early that a boundary has been broken. The operation of the reactor is stopped.
[0005]
[Problems to be solved by the invention]
However, the double-pipe steam generator is large, and even if the secondary cooling system can be omitted, the size of the entire reactor cannot be reduced so much and the construction cost cannot be significantly reduced. Pool-type fast breeder reactors are one of the fast breeder reactors that improve the economical efficiency by reducing the size of the system. In the pool-type fast breeder reactor, an intermediate heat exchanger is installed in the reactor. If the intermediate heat transport system is omitted and a steam generator is installed instead of this intermediate heat exchanger, there is a possibility that high economic efficiency as a plant system may be obtained by simplifying the system, but miniaturization is difficult. The use of a double-pipe steam generator increases the size of the reactor vessel of the pool type fast breeder reactor, so that the advantages of system rationalization cannot be fully utilized.
[0006]
By the way, there is a plate fin heat exchanger (PFSG) as a heat exchanger that can be designed very compactly. FIG. 21 shows the concept of the heat exchange section of the plate fin heat exchanger. The plate fin heat exchanger performs heat exchange of two or more systems of fluids through a partition plate 102 to which corrugated fins 101 are brazed. Usually, fluid channels of different systems are alternately stacked. If a plate fin heat exchanger can be applied to a fast breeder reactor, a very compact heat exchanger can be configured. However, the plate fin heat exchanger uses a brazing portion in the manufacturing process (usually, silver brazing is used to join the fin 101 of the corrugated plate and the partition plate 102. This is performed when welding a header portion (not shown). And there is a possibility of melting and peeling.) In addition, in a minute gap such as a joint between the fin 101 and the partition plate 102, a corrosion inducer is deposited when a two-phase flow portion flows. Therefore, it cannot be adopted as a steam generator for a fast breeder reactor requiring high reliability.
[0007]
An object of the present invention is to provide a heat exchanger for a liquid metal cooling furnace which can be reduced in size and has high reliability.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the invention according to claim 1 has a plurality of heat transfer tubes, and a liquid for performing heat exchange between cooling water flowing in the heat transfer tubes and a liquid metal coolant flowing outside the heat transfer tubes. In a heat exchanger for a metal cooling furnace, a wall member is arranged around a row of heat transfer tubes to form a space between the heat transfer tubes and a row of the heat transfer tubes, and a row of the heat transfer tubes. A spacer unit interposed between the heat transfer pipes and the wall member. The row of heat transfer tubes, the spacer and the wall member constitute a plate-shaped unit that is heated and joined while being pressed in close contact with each other. A plurality of plate units are arranged in the road with a gap therebetween, and an inert gas is circulated in the space of the plate units.
[0009]
Therefore, heat exchange is performed between the liquid metal coolant flowing around the plate-shaped unit and the cooling water flowing in the heat transfer tubes of the plate-shaped unit. Since the heat transfer tubes are in close contact with each other, the boundary between the heat transfer tubes and the flow path adjacent to the peripheral wall of the heat transfer tubes functions as a fin, thereby promoting heat transfer. Further, since the plate-shaped unit is disposed in the flow path of the liquid metal coolant, the liquid metal coolant flows between the plate-shaped units, and heat exchange can be performed.
[0010]
The heat transfer tubes, spacers, and wall members constituting the plate-shaped unit are joined by being pressed and heated in a state of being in close contact with each other, and are seamlessly integrated by diffusion of atoms on the surface. Further, the inside of the heat transfer tube originally constitutes an independent flow path defined from the outside. For this reason, the cooling water in the heat transfer tube is hardly leaked, and the liquid metal coolant is hardly permeated from outside the plate-shaped unit. Further, since a space through which the inert gas flows is formed around the heat transfer tube, the cooling water and the liquid metal coolant can be defined by a double boundary.
[0011]
Further, in the heat exchanger for a liquid metal cooling furnace according to the second aspect, the heat transfer tubes of the plate-like unit are arranged in one row. Therefore, heat exchange can be performed more efficiently than when two or more rows are arranged.
[0012]
Further, as in the liquid metal-cooled reactor heat exchanger according to claim 3, the liquid metal coolant is a primary coolant circulating in the reactor vessel, and the plate-like unit is disposed in the reactor vessel. Is also good.
[0013]
Further, as in the heat exchanger for a liquid metal cooling furnace according to the fourth aspect, the cooling water may be heated in the heat transfer tube and changed into steam.
[0014]
Furthermore, the invention according to claim 5 has a heat transfer tube for a liquid metal cooling furnace having a plurality of heat transfer tubes and performing heat exchange between cooling water flowing in the heat transfer tubes and liquid metal coolant flowing outside the heat transfer tubes. In the manufacturing method of the heat exchanger, the heat transfer tubes are brought into close contact with each other in parallel and heated while applying pressure to join the peripheral walls of the heat transfer tubes to produce an intermediate product. A plate-shaped unit that is joined by heating while pressing while a wall member that is arranged to form a space between the intermediate product and a spacer interposed between the intermediate product and the wall member is pressed. And a plurality of plate-shaped units are arranged in the flow path of the liquid metal coolant with a gap.
[0015]
That is, an intermediate product is manufactured by seamlessly integrating a large number of heat transfer tubes, and a plate-shaped unit is manufactured by integrally integrating the intermediate product, the wall member, and the spacer. Then, when a plurality of plate-shaped units are installed in the flow path of the liquid metal coolant, the heat exchanger for a liquid metal cooling furnace according to claim 1 is manufactured.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.
[0017]
1 to 5 show an example of an embodiment of a heat exchanger 1 for a liquid metal cooling furnace to which the present invention is applied. As shown in FIG. 1, the heat exchanger 1 for a liquid metal cooling furnace (FIG. 4) has a large number of heat transfer tubes 2, a cooling water 3 flowing inside the heat transfer tubes 2, and a liquid flowing outside the heat transfer tubes 2. The heat exchange is performed between the heat transfer pipes 2 and the metal coolant 4. The heat transfer pipes 2 are arranged in close contact with each other in parallel, and are arranged around the row 7 of the heat transfer pipes 2 to form a space between the row 7 and the heat transfer pipes 2. 5 and a spacer interposed between the row 7 of the heat transfer tubes 2 and the wall member 6, and the row 7 of the heat transfer tubes 2, the spacer and the wall member 6 are pressed while being in close contact with each other. A plate unit 9 (FIGS. 2 and 3) that is heated and joined is formed, and a plurality of plate units 9 are arranged in a flow path 38 (FIG. 5) of the liquid metal coolant 4 with a gap therebetween. An inert gas is circulated in the space 5 of the plate unit 9.
[0018]
In the present embodiment, the heat transfer tubes 2 of the plate unit 9 are arranged in one row. The liquid metal coolant 4 is a primary coolant circulating in the reactor vessel 11, and the plate unit 9 is disposed in the reactor vessel 11. In the present embodiment, the present invention is applied to a steam generator. That is, the cooling water 3 is a secondary coolant circulating to the power generation turbine (not shown), and the cooling water 3 is heated in the heat transfer tube 2 and changes into steam.
[0019]
The plate-shaped unit 9 includes an effective heat exchange section 12, a helium gas section 13, and an introduction pipe 14. The effective heat exchange unit 12 is formed by arranging a large number of heat transfer tubes 2 in parallel in a row and integrating them by HIP (Hot Isostatic Pressing) processing.
[0020]
In this specification, HIP processing is a process in which the surfaces of the members are brought into close contact with each other, heated and press-bonded while diffusion bonding is performed, and the boundaries between the members are eliminated and integrated. The pressure is preferably applied isotropically, but is not necessarily isotropic. For example, pressure may be applied from three axis directions orthogonal to each other. In this case, pressure may be applied simultaneously from three axis directions, and applying pressure from one axis direction may be changed. It may be performed repeatedly. Furthermore, it is preferable to apply pressure isotropically using a gas such as an inert gas as a medium for transmitting pressure, but a liquid may be used as the pressure medium, or a powder or the like may be used as the pressure medium. You may. In the HIP processing, for example, the material is heated to a temperature of about 70% of the melting point of the material and pressurized. Therefore, machining is performed to set the dimensions of the processed product to a predetermined value. In the present embodiment, as shown in FIG. 6, the plate 15 and the flat plate 29 are arranged around the row 7 of the heat transfer tubes 2 and HIP processing is performed together to form a finishing margin after the HIP processing. I have. The heat transfer tube 2 is, for example, a rectangular tube having a rectangular cross-sectional shape. By arranging the heat transfer tubes 2 in a row, the tube walls can be brought into close contact to form a plate shape.
[0021]
In the present embodiment, the gaps between the members are evacuated to increase the degree of close contact between the heat transfer tube 2, the plate 15, and the flat plate 29 during HIP processing. Further, in order to prevent the heat transfer tube 2 from being crushed by the pressurization at the time of the HIP processing, the closing plate 10 is temporarily welded to the end of the heat transfer tube 2 and closed, and the inside of the heat transfer tube 2 is pressurized to, for example, 1200 atm. ing.
[0022]
The intermediate product 16 (FIG. 7) integrated by the HIP process is machined by cutting or the like to remove the closing plate 10 and determine the dimensions (FIG. 8). Thereafter, the curved plate 17 is welded to the end of the heat transfer tube 2 (FIG. 9), and the lid 18 is further welded to the curved plate 17 (FIG. 10). By combining the curved plate 17 and the lid 18, for example, three flow paths are formed, and by connecting the heat transfer tube 2 and another heat transfer tube 2 by the flow path, the row 7 of the heat transfer tubes 2 becomes, for example, three in total. Is formed. That is, as shown in FIG. 2, the flow path 19 of the cooling water 3 is formed by being folded back many times.
[0023]
The helium gas portion 13 includes two flat plates 6 and 20, a grid 21 as a spacer, and a bar 8 as a spacer. As shown in FIG. 11, the periphery of the grid 21 is surrounded by a bar 8 and sandwiched between two flat plates 6 and 20. Then, as shown in FIG. 12, the helium gas part 13 is manufactured by bringing these members into close contact, performing HIP processing and integrating them. By sandwiching the grid 21 between the flat plates 6 and 20, the portion of the grid 21 becomes the space 5. The gaps of the grid 21 facing the effective heat exchange section 12 are filled with a wire mesh for the purpose of improving the heat transfer performance, and the gaps of the grids 21 in other portions are filled with the wire mesh. Absent. In addition, dimensions are obtained by machining as required.
[0024]
As shown in FIG. 13, the plate-shaped unit 9 is manufactured by integrating the effective heat exchange section 12, the helium gas section 13, and the introduction pipe 14 by HIP processing. That is, the effective heat exchange section 12, the three introduction tubes 14, the curved plate 22, and the core 23 are arranged, the periphery thereof is surrounded by the spacer 24, and is sandwiched between the pair of helium gas sections 13. Then, the plate-shaped unit 9 is manufactured by bringing these members into close contact, performing HIP processing and integrating them. Note that three flow paths are formed in the curved plate 22, and connect the flow path 19 of the effective heat exchange unit 12 and the introduction pipe 14. The helium gas portion 13 is arranged so that the flat plate 20 opposite to the flat plate 6 is in close contact with the effective heat exchange portion 12. Therefore, the flat plate 6 is a wall member that forms the space 5 between itself and the row 7 of the heat transfer tubes 2. The plate unit 9 manufactured in this way is only required to attach the header 25, and it is not necessary to perform machining or chamfering even if there is a slight error in the outer dimensions.
[0025]
The plate unit 9 is provided with a header 25. The header 25 includes a connection block 26 and two lids 27 and 28. The manufacturing procedure of the header 25 is shown in FIGS.
[0026]
The connection block 26 is formed by processing, for example, a forged block. As shown in FIG. 15, a recess serving as an inlet-side water chamber 26 a and a recess serving as an outlet-side water chamber 26 b are formed on the upper surface of the connection block 26. Is formed. As shown in FIG. 16, many slit-like sockets 26 c into which the plate-like unit 9 is inserted are formed on the bottom surface of the connection block 26. Although only one socket 26c is illustrated in FIG. 16, a large number of sockets 26c are actually formed. When the plate-shaped unit 9 is inserted into the socket 26c, the introduction pipe 14 opens to the inlet-side water chamber 26a, and the heat transfer tube 2 opens to the outlet-side water chamber 26b. The plate unit 9 is welded to the connection block 26 to prevent the plate unit 9 from coming off and to seal between the plate unit 9 and the connection block 26. The shape of the connection block 26 is not an accurate cubic shape, but is curved in an arc shape in plan view. Therefore, the plate-like units 9 inserted into the socket 26c are arranged side by side in an arc shape.
[0027]
The inlet-side water chamber 26a and the outlet-side water chamber 26b are closed by lids 27 and 28. An inflow pipe 30 is welded to the lid 27 of the inlet-side water chamber 26a, and an outflow pipe 32 is welded to the lid 28 of the outlet-side water chamber 26b. The lids 27 and 28 are welded to the connection block 26. The inflow pipe 30 and the outflow pipe 32 are, for example, triple pipes. Water / steam flows through the innermost flow path, and a triple partition is provided between the inflow pipe 30 and the liquid metal coolant 4 to further enhance safety. I have.
[0028]
The steam generator 1 may be provided with a plurality of units each having a plurality of plate units 9 attached to one header 25 (hereinafter, referred to as a heat exchange unit 33). The steam generator 1 may be configured. That is, by increasing or decreasing the number of the heat exchange units 33, the heat exchange ability can be adjusted. In addition, by increasing or decreasing the number of plate-like units 9 attached to one header 25, the heat exchange ability can be adjusted.
[0029]
FIG. 5 shows a pool type fast breeder reactor equipped with the steam generator 1. In the reactor vessel 11, a liquid metal coolant 4, which is a primary coolant, for example, liquid sodium (hereinafter, referred to as liquid sodium 4) is stored. A cylindrical wall 34 is provided in the reactor vessel 11, and flow paths 37 and 38 are formed inside and outside the cylindrical wall 34. The steam generator 1 is arranged in the outer channel 38 so as to surround the vicinity of the upper end of the cylindrical wall 34. The liquid sodium 4 cooled to a high temperature by cooling the reactor core 35 rises in the inner flow path 37 in the cylindrical wall 34, flows into the outer flow path 38 from above the cylindrical wall 34, and performs heat exchange in the steam generator 1. Cooled. Then, it is pumped downward by the electromagnetic pump 36, flows into the inner channel 37 from the bottom of the reactor vessel 11, and circulates to the reactor core 35.
[0030]
In this fast breeder reactor, the steam generator 1 includes a plurality of heat exchange units 33, and the plurality of heat exchange units 33 are arranged in a ring shape to surround the entire circumference of the cylindrical wall 34. That is, the plate-shaped units 9 are radially arranged in the outer channel 38 over the entire circumference. Therefore, the liquid sodium 4 descending in the outer flow path 38 always passes between the plate units 9 of the steam generator 1. The liquid sodium 4 has excellent heat transfer characteristics, and can transfer heat to the plate-shaped unit 9 satisfactorily without providing fins on the surface of the plate-shaped unit 9.
[0031]
In the present embodiment, the liquid sodium 4 is forcibly circulated by the electromagnetic pump 36, but the electromagnetic pump 36 may be omitted to allow the liquid sodium 4 to circulate naturally. That is, the plate-like units 9 are arranged along the flow direction of the outer channel 38, and the liquid sodium 4 flows between the plate-like units 9. Therefore, an increase in the flow resistance of the liquid sodium 4 can be suppressed, and natural circulation of the liquid sodium 4 is possible.
[0032]
On the other hand, the cooling water 3 of the secondary cooling system drives a power generation turbine (not shown), and is then condensed by a condenser (not shown) and pumped to the steam generator 1 by a pump (not shown). The cooling water 3 pumped to the steam generator 1 is supplied to each heat exchange unit 33 and flows into the inlet side water chamber 26a from the inflow pipe 30. Then, the cooling water 3 flows into each of the plate units 9 from the inlet-side water chamber 26a, and circulates from the introduction pipe 14 → the flow path in the curved plate 22 → the heat transfer pipe 2. The cooling water 3 is heated by the liquid sodium 4 while flowing through the heat transfer tube 2 and turns into steam. The steam converted from the cooling water 3 in the heat transfer pipe 2 flows into the outlet side water chamber 26b, flows out of the outflow pipe 32, merges with the steam flowing out of the outflow pipe 32 of the other heat exchange unit 33, and forms a turbine for power generation. Circulates to
[0033]
In the steam generator 1, since the heat transfer tubes 2 are closely arranged in parallel and arranged in parallel, a portion 2a of the peripheral wall of the heat transfer tube 2 bordering the adjacent flow path 19 functions as a plate fin to promote heat transfer. . That is, the plate-shaped unit 9 is a small-sized plate-fin heat exchanger having excellent heat exchange performance because the portion 2a in the flow path 19 functions as a fin. Therefore, the size of the steam generator 1 can be reduced. Moreover, in the present embodiment, since the heat transfer tubes 2 of the plate-shaped unit 9 are arranged in one line, heat exchange can be performed more efficiently than in the case where the heat transfer tubes 2 are arranged in two or more lines. Therefore, the size of the steam generator 1 can be further reduced. As a result of the downsizing of the steam generator, the manufacturing cost of the steam generator 1 can be reduced, and the reactor can also be downsized and the manufacturing cost can be reduced, so that the power generation cost of the nuclear power plant can be reduced. Excellent and economical.
[0034]
In addition, since the flow path 19 of the cooling water 3 in the plate-like unit 9 is folded back many times, the flow path 19 can be lengthened without increasing the size of the plate-like unit 9, and conversely, The plate unit 9 can be reduced in size by that much, and the steam generator can be reduced in size. In the case where the flow path 19 is folded many times, the number of the flow paths 19 is small, so that the structure of the header 25 can be simplified.
[0035]
Further, since the steam generator 1 can be downsized, it is easy to install the steam generator 1 in the reactor vessel 11, and the steam generator 1 suitable for a small and economical pool type fast breeder reactor is provided. Can be. Also from this, the power generation cost of the nuclear power plant can be reduced, which is economically excellent.
[0036]
The plate-like unit 9 of the steam generator 1 has a seamless integrated structure by HIP processing. The heat transfer tube 2 through which the cooling water 3 flows is a tube and originally constitutes an independent flow path 19 defined from the outside. For this reason, the structure is such that the cooling water 3 in the heat transfer tube 2 and the liquid sodium 4 outside the plate-like unit 9 are hardly in contact with each other, and the safety is excellent. Further, since the space 5 is formed around the heat transfer tube 2, the heat transfer tube 2 has a so-called double tube structure, and the cooling water 3 and the liquid sodium 4 can be defined by a double boundary. For this reason, the cooling water 3 and the liquid sodium 4 can be made more difficult to contact, and the safety can be further improved.
[0037]
Since the contact between the cooling water 3 and the liquid sodium 4 can be prevented, the secondary sodium cooling system required in the loop type fast breeder reactor can be omitted. That is, heat exchange can be performed directly between the primary sodium cooling system and the water / steam system, and the reactor plant can be simplified. For this reason, the manufacturing cost of the nuclear reactor plant can be reduced, the economic efficiency can be further improved, and the safety can be further improved.
[0038]
Further, the plate-like unit 9 of the steam generator 1 has a seamless integrated structure by HIP processing, and has a structure that is unlikely to be defective in a subsequent manufacturing process such as a process of attaching the header 25, for example. In addition, the flow path 19 in the plate unit 9 is formed by the heat transfer pipe 2 and the introduction pipe 14 and the like, and has a structure in which the retention of the cooling water 3 does not easily occur and the corrosion inducer does not easily accumulate. For these reasons, it is possible to provide the steam generator 1 which has excellent reliability and is suitable for use in a nuclear reactor requiring high reliability.
[0039]
In the space 5 of the plate unit 9 of the steam generator 1, an inert gas such as helium gas flows. The inert gas in the space 5 is pressurized to a larger value than the liquid sodium 4 outside the plate unit 9. For this reason, even if a crack or the like occurs on the surface of the plate-shaped unit 9, the liquid sodium 4 can be prevented from flowing into the plate-shaped unit 9, and the contact with the cooling water 3 can be prevented. Further, even if the liquid sodium 4 flows into the plate-shaped unit 9, an inert gas flows in the space 5, and the liquid sodium 4 does not react with moisture. Further, by detecting the inert gas in the liquid sodium 4, it is possible to detect at an early stage that a crack or the like has occurred on the surface of the plate unit 9, so that the operation of the reactor can be stopped quickly. Will be possible.
[0040]
In addition, since the inert gas 10 flows in the space 5 of the plate unit 9, cracks and the like are formed in the flow path 19 of the cooling water 3 in the plate unit 9 by detecting the moisture in the inert gas 10. The occurrence can be detected at an early stage. That is, if a crack or the like occurs in the flow path 19 in the plate-shaped unit 9, the cooling water 3 leaks into the space 5, so that the water in the inert gas is detected to detect the crack or the like in the flow path 19 of the cooling water 3. Can be detected early, and the operation of the reactor can be stopped quickly.
[0041]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the spirit of the present invention. For example, in the above description, the curved plate 17 and the lid 18 are welded to the intermediate product 16 of the plate-shaped unit 9 so that the flow path 19 in the plate-shaped unit 9 is formed so as to be folded many times. The channel 19 does not necessarily have to be folded back many times. For example, as shown in FIG. 20, the flow path 19 in the plate unit 9 may be formed linearly. By making the flow path 19 of the cooling water 3 straight, the number of the flow paths 19 can be increased within a range allowed by the width of the plate-shaped unit 9. In this structure, since the flow path 19 does not turn back, and the flow rate per flow path decreases by increasing the number of flow paths 19, the pressure loss of the cooling water 3 due to the flow can be extremely reduced. Can be.
[0042]
Further, in the above description, the steam generator 1 installed in the reactor vessel 11 has been described as an example, but it is needless to say that the present invention may be applied to a steam generator installed outside the reactor vessel 11. is there. For example, the present invention may be applied to a steam generator of a loop type fast breeder reactor.
[0043]
Further, in the above description, the steam generator 1 for generating steam has been described as an example. However, it is needless to say that the steam generator 1 may be applied to a heat exchanger, a superheater, or the like.
[0044]
In the above description, the heat transfer tube 2 has a rectangular cross-sectional shape, but is not limited to the heat transfer tube 2 having a rectangular cross-sectional shape. For example, a heat transfer tube 2 having a triangular cross section or a hexagonal heat transfer tube 2 may be used, or a heat transfer tube 2 having another shape may be used. When the heat transfer tube 2 having a triangular cross section is used, it is preferable that the base and the apex of the triangle are alternately arranged vertically.
[0045]
【Example】
Under the conditions of 135 MW of exchange heat, 510 ° C./355° C. sodium inlet / outlet temperature, 210 ° C. feed water temperature, 453 ° C. steam outlet temperature, and 10.7 MPa steam pressure, the heat of the type in which the flow path 19 shown in FIG. A trial calculation was performed for the exchanger.
[0046]
As a result, the number of the channels 19 of the cooling water 3 per one plate-like unit 9 is four, and the plate-like units 9 having a width of 1 m, a thickness of 21 mm, and a height of 2.7 m are arranged at intervals of 10 mm. It turned out that 65 sheets were necessary.
[0047]
The pressure loss of the cooling water 3 is about 7 kg / cm 2, which is a sufficiently allowable range. The volume of the heat exchange part of the shell and tube type heat exchanger is 0.0575 m 3 per MW, whereas the required volume of the heat exchange part of the steam generator 1 of the present invention is 0.04 m 3 , The volume is about 70% of that of the tube type heat exchange section.
[0048]
As described above, in addition to being compact, the steam generator of the present invention has a high safety with a double boundary between the cooling water 3 and the liquid sodium 4, and the secondary system of the fast breeder reactor is eliminated. This is effective in reducing the construction cost of the fast breeder reactor.
[0049]
【The invention's effect】
As described above, in the heat exchanger for a liquid metal cooling furnace according to the first aspect, the heat transfer tubes are arranged in close contact with each other in parallel, and are disposed around the row of the heat transfer tubes and are arranged between the heat transfer tubes. A wall member forming a space, and a spacer interposed between the row of heat transfer tubes and the wall member, wherein the row of heat transfer tubes, the spacer, and the wall member are heated and joined while being pressed in close contact. A plate-like unit is configured, and a plurality of plate-like units are arranged in the flow path of the liquid metal coolant with a gap therebetween, and an inert gas is circulated in the space of the plate-like unit. A portion of the peripheral wall at a boundary with an adjacent flow path can function as a plate fin, and heat exchange can be performed efficiently. Therefore, the size of the steam generator can be reduced, and the size of the nuclear power plant can be reduced, and the power generation cost can be reduced, which is economical. In addition, the plate-shaped unit has a seamless integrated structure, and also has a structure in which the flow of cooling water is prevented from accumulating and corrosion induced substances are hardly accumulated, thereby improving the safety and reliability of the steam generator. .
[0050]
Further, in the heat exchanger for a liquid metal-cooled nuclear reactor according to the second aspect, since the heat transfer tubes of the plate-shaped units are arranged in one row, heat exchange is more efficiently performed than in the case where the heat exchanger tubes are arranged in two or more rows. It can be carried out.
[0051]
Further, as in the liquid metal-cooled reactor heat exchanger according to claim 3, the liquid metal coolant is a primary coolant circulating in the reactor vessel, and the plate-like unit is disposed in the reactor vessel. Is also good.
[0052]
Further, as in the heat exchanger for a liquid metal cooling furnace according to the fourth aspect, the cooling water may be heated in the heat transfer tube and changed into steam.
[0053]
Further, in the method of manufacturing a heat exchanger for a liquid metal cooling furnace according to claim 5, the heat transfer tubes are closely contacted in parallel and heated while being pressurized in a state where the heat transfer tubes are arranged side by side, thereby joining the peripheral walls of the heat transfer tubes to form an intermediate product. In the state where the intermediate product, the wall member which is arranged around the intermediate product and forms a space between the intermediate product, and the spacer interposed between the intermediate product and the wall member are in close contact with each other. The liquid metal according to claim 1, wherein a plate-shaped unit is manufactured by joining by heating while applying pressure, and a plurality of plate-shaped units are arranged in the flow path of the liquid metal coolant with a gap. A heat exchanger for a cooling furnace can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a plate unit of an embodiment of a heat exchanger for a liquid metal cooling furnace to which the present invention is applied.
FIG. 2 is a conceptual diagram showing a schematic configuration of a plate-shaped unit of the heat exchanger.
FIG. 3 is a perspective view showing a plate-shaped unit of the heat exchanger.
FIG. 4 is a perspective view showing the heat exchanger.
FIG. 5 is a schematic configuration diagram of a fast breeder reactor using the heat exchanger.
FIG. 6 is a perspective view conceptually showing a manufacturing procedure of an effective heat exchange section of the heat exchanger, and conceptually showing a state before HIP processing of a heat transfer tube and the like.
FIG. 7 is a perspective view conceptually showing a procedure of manufacturing an effective heat exchange section of the heat exchanger, and conceptually showing a state in which a heat transfer tube and the like have been subjected to HIP processing.
FIG. 8 is a perspective view conceptually showing a procedure of manufacturing an effective heat exchange unit of the heat exchanger, and conceptually showing a state in which an intermediate product is machined.
FIG. 9 is a perspective view conceptually showing a procedure of manufacturing an effective heat exchange section of the heat exchanger, and conceptually showing a state in which a curved plate is welded to an intermediate product.
FIG. 10 is a perspective view conceptually showing a procedure of manufacturing an effective heat exchange section of the heat exchanger, and conceptually showing a state where a lid is welded to an intermediate product obtained by welding a curved plate.
FIG. 11 is a perspective view conceptually showing a procedure of manufacturing a helium gas portion of the heat exchanger, and conceptually showing a state before HIP processing of a flat plate or the like.
FIG. 12 is a perspective view conceptually showing a procedure of manufacturing a helium gas portion of the heat exchanger, and conceptually showing a state in which a flat plate or the like is HIPed.
FIG. 13 is a perspective view showing a manufacturing procedure of the plate-shaped unit of the heat exchanger and conceptually showing a state before HIP processing of an effective heat exchange section, a helium gas section, and the like.
FIG. 14 is a perspective view showing a procedure for manufacturing a header of the heat exchanger and showing a connecting block before processing.
FIG. 15 is a perspective view showing a procedure for manufacturing a header of the heat exchanger, and showing a state where an inlet-side water chamber and an outlet-side water chamber are cut into a connection block.
FIG. 16 is a perspective view showing a procedure for manufacturing a header of the heat exchanger, and showing a state where the socket is cut with the connecting block turned upside down.
FIG. 17 is a perspective view showing a procedure for manufacturing the header of the heat exchanger, and showing a state where the connection block obtained by cutting the socket is turned upside down.
FIG. 18 is a perspective view showing a procedure for manufacturing the header of the heat exchanger, and showing a state where the plate-shaped unit is inserted into the socket and welded.
FIG. 19 is a perspective view showing a procedure of manufacturing a header of the heat exchanger, and showing a state where a lid is welded to the connection block.
FIG. 20 is a conceptual diagram showing another embodiment of the heat exchanger for a liquid metal cooling furnace to which the present invention is applied, and showing a schematic configuration of a plate unit thereof.
FIG. 21 is a perspective view showing a main part of a conventional plate fin heat exchanger.
[Explanation of symbols]
Reference Signs List 1 Heat exchanger for liquid metal cooling furnace 2 Heat transfer tube 3 Cooling water 4 Liquid metal coolant 5 Space 6 Flat plate (wall member)
7 Row of heat transfer tubes 8 Bar (spacer)
9 Plate unit 16 Intermediate product 21 Grid (spacer)
38 Liquid metal coolant flow path

Claims (5)

多数の伝熱管を有し、前記伝熱管内を流れる冷却水と前記伝熱管の外を流れる液体金属冷却材との間で熱交換を行う液体金属冷却炉用熱交換器において、前記伝熱管を並列に密着させて並べると共に、前記伝熱管の列の周囲に配置されて前記伝熱管の列との間に空間を形成する壁部材と、前記伝熱管の列と前記壁部材との間に介在されたスペーサを備え、前記伝熱管の列とスペーサと壁部材は密着状態で加圧されながら加熱されて接合された板状ユニットを構成し、前記液体金属冷却材の流路中に複数の前記板状ユニットを隙間をあけて並べると共に、前記板状ユニットの前記空間に不活性ガスを流通させることを特徴とする液体金属冷却炉用熱交換器。A heat exchanger for a liquid metal cooling furnace that has a large number of heat transfer tubes and performs heat exchange between cooling water flowing inside the heat transfer tubes and liquid metal coolant flowing outside the heat transfer tubes, A wall member arranged in close contact with the row and arranged around the row of the heat transfer tubes to form a space between the row of the heat transfer tubes, and a wall member interposed between the row of the heat transfer tubes and the wall member. A row unit of the heat transfer tube, the spacer and the wall member constitute a plate-shaped unit that is heated and joined while being pressed in close contact with each other, and a plurality of the plurality of the liquid metal coolant are provided in the flow path of the liquid metal coolant. A heat exchanger for a liquid metal cooling furnace, wherein the plate-shaped units are arranged with a gap therebetween, and an inert gas is passed through the space of the plate-shaped units. 前記板状ユニットの伝熱管は1列に並べられていることを特徴とする請求項1記載の液体金属冷却炉用熱交換器。The heat exchanger for a liquid metal cooling furnace according to claim 1, wherein the heat transfer tubes of the plate-shaped unit are arranged in a single row. 前記液体金属冷却材は原子炉容器内を循環する1次冷却材であり、前記板状ユニットを前記原子炉容器内に配置したことを特徴とする請求項1又は2記載の液体金属冷却炉用熱交換器。The liquid metal coolant according to claim 1, wherein the liquid metal coolant is a primary coolant circulating in a reactor vessel, and the plate-shaped unit is disposed in the reactor vessel. Heat exchanger. 前記冷却水は前記伝熱管内で加熱されて蒸気に変化することを特徴とする請求項1から3のいずれかに記載の液体金属冷却炉用熱交換器。The heat exchanger for a liquid metal cooling furnace according to any one of claims 1 to 3, wherein the cooling water is heated in the heat transfer tube and changes into steam. 多数の伝熱管を有し、前記伝熱管内を流れる冷却水と前記伝熱管の外を流れる液体金属冷却材との間で熱交換を行う液体金属冷却炉用熱交換器の製造方法において、前記伝熱管を並列に密着させて並べた状態で加圧しながら加熱することで前記伝熱管の周壁同士を接合して中間製品を製造し、前記中間製品と、前記中間製品の周囲に配置されて前記中間製品との間に空間を形成する壁部材と、前記中間製品と前記壁部材との間に介在されたスペーサとを密着させた状態で加圧しながら加熱することで接合して板状ユニットを製造し、前記液体金属冷却材の流路中に複数の前記板状ユニットを隙間をあけて並べることを特徴とする液体金属冷却炉用熱交換器の製造方法。A method for manufacturing a heat exchanger for a liquid metal cooling furnace that has a large number of heat transfer tubes and performs heat exchange between cooling water flowing in the heat transfer tubes and liquid metal coolant flowing outside the heat transfer tubes. Heat transfer tubes are joined in close contact with each other in parallel and heated while applying pressure to join the peripheral walls of the heat transfer tubes to produce an intermediate product.The intermediate product and the intermediate product are arranged around the intermediate product. A wall member forming a space between the intermediate product and a spacer interposed between the intermediate product and the wall member are joined by heating while pressing while being in close contact with each other to form a plate-shaped unit. A method for manufacturing a heat exchanger for a liquid metal cooling furnace, comprising manufacturing and arranging a plurality of the plate-shaped units in a flow path of the liquid metal coolant with a gap.
JP2002167610A 2002-06-07 2002-06-07 Heat exchanger for liquid metal cooling furnace and method for producing heat exchanger for liquid metal cooling furnace Expired - Fee Related JP4105902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167610A JP4105902B2 (en) 2002-06-07 2002-06-07 Heat exchanger for liquid metal cooling furnace and method for producing heat exchanger for liquid metal cooling furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167610A JP4105902B2 (en) 2002-06-07 2002-06-07 Heat exchanger for liquid metal cooling furnace and method for producing heat exchanger for liquid metal cooling furnace

Publications (2)

Publication Number Publication Date
JP2004012348A true JP2004012348A (en) 2004-01-15
JP4105902B2 JP4105902B2 (en) 2008-06-25

Family

ID=30434812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167610A Expired - Fee Related JP4105902B2 (en) 2002-06-07 2002-06-07 Heat exchanger for liquid metal cooling furnace and method for producing heat exchanger for liquid metal cooling furnace

Country Status (1)

Country Link
JP (1) JP4105902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249475A (en) * 2009-04-20 2010-11-04 Kobe Steel Ltd Plate fin heat exchanger
CN115662659A (en) * 2022-11-25 2023-01-31 中国科学院合肥物质科学研究院 High specific power reactor core structure of heat pipe reactor
JP7430769B2 (en) 2017-10-02 2024-02-13 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Pool type liquid metal fast spectrum reactor using printed circuit heat exchanger for connection to energy conversion system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249475A (en) * 2009-04-20 2010-11-04 Kobe Steel Ltd Plate fin heat exchanger
JP7430769B2 (en) 2017-10-02 2024-02-13 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Pool type liquid metal fast spectrum reactor using printed circuit heat exchanger for connection to energy conversion system
CN115662659A (en) * 2022-11-25 2023-01-31 中国科学院合肥物质科学研究院 High specific power reactor core structure of heat pipe reactor
CN115662659B (en) * 2022-11-25 2023-05-05 中国科学院合肥物质科学研究院 Heat pipe pile high specific power reactor core structure

Also Published As

Publication number Publication date
JP4105902B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP6827062B2 (en) Heat exchanger including manifold
US10209015B2 (en) Heat exchanger and method for making
JP5321271B2 (en) Heat exchanger for high temperature gas cooling
US20120090822A1 (en) Method for manufacturing a bundle of plates for a heat exchanger
JP4533795B2 (en) Plate fin heat exchanger
TWI764487B (en) Block style heat exchanger for heat pipe reactor
US3894581A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
JP3920241B2 (en) Steam generator for liquid metal furnace and its heat transfer method
KR20160139725A (en) Heat exchanger and nuclear reactor having the same
JP2004012348A (en) Heat exchanger for liquid metal cooled reactor and manufacturing method of heat exchanger for liquid metal cooled reactor
JP3041753B2 (en) Plate heat exchanger
JPH0316590B2 (en)
JP4097997B2 (en) Reactor heat exchanger and method for manufacturing reactor heat exchanger
JP4428648B2 (en) Heat exchanger for liquid metal cooling furnace
KR101869339B1 (en) Heat exchanger and nuclear reactor having the same
KR102406322B1 (en) Heat exchangers for harsh service conditions
JP2005024109A (en) Heat exchanger
JP2004138521A (en) Waveform cooling panel and its manufacturing method
RU2709241C1 (en) Plate-type heat exchanger
JP3810728B2 (en) Laminate heat exchanger
CN113838587B (en) Small-size villiaumite pile passive surplus row system based on integral type heat exchanger
KR20110128061A (en) Heat exchanger method and heat exchanger of plate format
JPH10325691A (en) Heat exchanger
Kwon et al. Review of compact heat exchangers for supercritical CO2 power system
JP2004093075A (en) Plate tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees