JP2004012329A - Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector - Google Patents

Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector Download PDF

Info

Publication number
JP2004012329A
JP2004012329A JP2002167053A JP2002167053A JP2004012329A JP 2004012329 A JP2004012329 A JP 2004012329A JP 2002167053 A JP2002167053 A JP 2002167053A JP 2002167053 A JP2002167053 A JP 2002167053A JP 2004012329 A JP2004012329 A JP 2004012329A
Authority
JP
Japan
Prior art keywords
electrode plate
physical quantity
fixed electrode
capacitance
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167053A
Other languages
Japanese (ja)
Inventor
Mitsunori Nishizawa
西澤 充智
Hiroaki Niitsuma
新妻 弘明
Yusaku Yoshida
吉田 勇作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Corp
Original Assignee
Akashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Corp filed Critical Akashi Corp
Priority to JP2002167053A priority Critical patent/JP2004012329A/en
Publication of JP2004012329A publication Critical patent/JP2004012329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity detector of high measuring precision, and a manufacturing method thereof. <P>SOLUTION: In this capacity-regulable detector (for example, detecting part 100) provided with a movable electrode plate 21 supported displaceably by an elastic part 22, and at least one fixed electrode plate 11, 31 in a position faced to the movable electrode plate, to detect one out of physical quantities comprising a displacement, a speed and an acceleration of a measured body, based on an electrostatic capacity of a capacitor formed with the movable electrode plate and the fixed electrode plate, the fixed electrode plate(s) is/are on glass substrates 1, 3, and the fixed electrode plate is provided with a main body part (for example, main body part electrode plate 111), and a regulation part (for example, electrode plate 12 for regulation) connected to the main body part to regulate the electrostatic capacity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、加速度、変位、圧力その他の物理量を検出する物理量検出器に関し、特に静電容量差に基づいて物理量を検出する静電容量調節可能な物理量検出器およびその製造方法に関するものである。
【0002】
【従来の技術】
従来より、静電容量型の物理量検出器には様々なものが提供されており、例えば、特開平9−243654号公報に記載された加速度センサが知られている。
かかる加速度センサ100は、例えば、図4に示すように、シリコン基盤101の下面に、第1のガラス基盤102が接合され、シリコン基盤101の上面に第2のガラス基盤103が接合されている。シリコン基盤101はエッチング加工により平面がロ字状に形成された支持枠101aに重り部101bが梁部101cを介して片持ち支持されて連結されている。更に、重り部101bの上下両面と、対向する両ガラス基盤102、103の対向面との間には、所定の隙間を形成している。これにより、加速度を受けると梁部101cが撓み、重り部101bが変位し、前記隙間の距離が変化するようになっている。
【0003】
そして、重り部101bの両表面に可動電極104が形成され、この可動電極104と対向するように、第1のガラス基盤102と第2のガラス基盤103の内側面にそれぞれ第1の固定電極105と第2の固定電極106が形成される。従って、重り部101bが変位して隙間の距離が変化すると、可動電極104と第1の固定電極105間に第1のキャパシタが形成され、可動電極104と第2の固定電極106間に第2のキャパシタが形成され、可動電極104の移動に伴って第1のキャパシタ及び第2のキャパシタの静電容量も変化する。この静電容量の変化を検出することにより、重り部101bの変位に基づく加速度を検出することができるようになる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の物理量検出器では、重り部101bを挟んで上下にキャパシタが形成されるが、重り部101bを形成する過程での歪み等に起因して、定常状態で上下のキャパシタにより検出される静電容量値を平衡状態とすることが難しく機械的な誤差を生じてしまうという問題があった。
しかも、物理量検出器を組み立てた後でないと誤差を確認することができないので、誤差を機械的に補正することが難しかった。
【0005】
上記を鑑み、本発明の課題は、より測定精度の高い物理量検出器、およびその製造方法を提供することである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、以下の手段を提供する。なお、括弧の数字は、実施の形態において対応する構成の符号を示す。
請求項1記載の発明は、弾性部22によって変位自在に支持された可動極板21と、
前記可動極板と対面する位置に配置された固定極板11、31と、を備え、
前記可動極板と前記固定極板とで形成されるキャパシタの静電容量に基づいて被測定体の変位、速度、加速度の何れかの物理量を検出する容量調節可能な物理量検出器(例えば、検出部100)において、
前記固定極板は透光材(例えば、ガラス基盤1、3)に形成され、
前記固定極板には、本体部(例えば、本体部極板111)と、前記本体部に接続され、静電容量を調整する調整部(例えば、調整用極板112)と、が設けられていることを特徴とする。
【0007】
ここで、調整部の位置、大きさ、形状、及び数は任意に定めて良い。
請求項1記載の発明によれば、固定極板に静電容量を調整する調整部が設けられているので、静電容量の値に誤差が生じた場合には、固定極板の調整部を他の部分と切り離すことにより容易に静電容量値を調整することができる。従って、より精度のよい物理量測定を行うことができる。
【0008】
請求項2記載の発明は、請求項1記載の容量調節可能な物理量検出器において、
前記調整部は、静電容量が既知の複数の調整用極板により構成されていることを特徴とする。
【0009】
請求項2記載の発明によれば、請求項1記載の発明と同様の効果が得られることは無論のこと、特に、調整部は、静電容量が既知の複数の調整用極板により構成されているので、誤差に応じて調整用極板を選択できることとなって、より精度のよい物理量測定を行うことができる。
【0010】
請求項3記載の発明は、請求項1又は2記載の容量調節可能な物理量検出器の製造方法であって、
基盤(例えば、シリコン基盤2)に可動極板を形成する工程と、
前記透光材に前記固定極板を形成する工程と、
前記可動極板と前記固定極板とが所定の間隔離間して対面するように、前記基盤と前記透光材とを結合する工程と、
次いで、前記可動極板および前記固定極板とで形成されるキャパシタの静電容量を測定し、その測定結果に基づいて、前記固定極板の調整部の少なくとも一部と、前記本体部との接続をレーザにより断つ工程と、
を備えることを特徴とする。
【0011】
請求項3記載の発明によれば、可動極板と固定極板とが所定の間隔離間して対面するように、基盤と透光材とが結合され、可動極板および固定極板とで形成されるキャパシタの静電容量が測定され、その測定結果に基づいて、調整用極板の少なくとも一部と本体部との接続がレーザにより断たれるので、物理量検出器を組み立てて製造した後、製造過程で生じた誤差の機械的な補正を容易に行うことができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態にかかる静電容量型加速度センサについて図1〜図3を参照しながら説明する。
静電容量型加速度センサは、検出部100と、図示せぬ制御部と、これらを接続するリード線Lとから成る。これ等の内、検出部100は、図1、図2に示す様に、中央に配置されたシリコン基盤2と、このシリコン基盤2を上下両側から挟む2つの透光材としてガラス基板1及びガラス基盤3と、を陽極接合する事により構成されている。シリコン基盤2の大部分は、シリコン製の本体部20によって構成されており、当該本体部20には、弾性部22とこの弾性部22によって厚さ方向に変位自在に支持された平面視円形の可動極板21とがエッチングによって一体的に設けられている。
【0013】
上側のガラス基盤1に於いて、可動極板21と対面する位置には、これと数ミクロンのギャップ(隙間)を確保して、第1の固定極板11が蒸着やスパッタリング等の方法によって成膜されている。
この第1の固定極板11は、投影視において固定極板21及び弾性部22が占める領域に一致している本体部極板111(本体部)と、この本体部極板111に電気的に接続される調整用極板112…(調整部)により構成されている。
第1の固定極板11からは、チタンと白金の薄膜層から成る平面L字状の第1の検出用電極113が、シリコン基盤2の島4の投影領域に向かって延設されている。
【0014】
調整用極板112…は、本体部極板111の四隅に設けられ、各々三角形状となっており、本体部極板111と調整用極板112との間は、僅かの幅を有する接続部11aによって電気的に接続されている。従って、接続部11aをレーザ等で切断することにより、本体部極板111と調整用極板112との間の電気的接続を断ち切ることができる。
また、各調整用極板112…は、各々静電容量が既知であり、且つ異なるように設定されている。
【0015】
更に、上側のガラス基盤1に於いて、第1の固定極板11の周囲には、貫通孔であるリード線取付部13,14、15が所定位置に設けられている。当該各リード線取付部13,14は、夫々島4,島5に向かって連通する様配置されている。
【0016】
一方、下側のガラス基盤3に於いて、可動極板21と対面する位置には、これと数ミクロンのギャップを確保して、第2の固定極板31が蒸着やスパッタリング等の方法によって成膜されている。
この第2の固定極板31は、投影視において固定極板21及び弾性部22が占める領域に一致している本体部極板311(本体部)と、この本体部極板311に電気的に接続される調整用極板312…(調整部)により構成されている。
第1の固定極板11からは、チタンと白金の合金から成る平面L字状の第1の検出用電極113が、シリコン基盤2の島4の投影領域に向かって延設されている。
【0017】
調整用極板312…は、本体部極板311の四隅に設けられ、各々三角形状となっており、本体部極板311と調整用極板312との間は、僅かの幅を有する接続部31aによって電気的に接続されている。従って、接続部31aをレーザ等で切断することにより、本体部極板311と調整用極板312との間の電気的接続を断ち切ることができる。
また、各調整用極板312…は、各々静電容量が既知であり、且つ異なるように設定されている。
【0018】
以上の如く構成されて成るガラス基盤1及びガラス基盤2によって挟まれるシリコン基盤2の本体部20に於いて、可動極板21は、図1に示す如く平面視円形に形成されており、この可動極板21の周縁には、その折線方向に複数の弾性支持部材が等間隔を隔てて規則的且つ均一に配設されて有る。これ等の弾性支持部材によって弾性部22が構成されている。
この様にして弾性部22を構成する事により、当該弾性部22を製作する際に生じる応力を開放させることができ、残留応力のない弾性部22が実現される。
【0019】
また、図3は、検出部100の断面概略図を示すもので、図示の様に、弾性支持部材の各々は、可動極板21の周縁に於ける上側の表面と下側の表面とに上下2段に配設された梁から成っている。
更に図2から明らかなように、弾性部22は可動極板21の各表面よりも内側に窪んだ位置に配設されている。
【0020】
これら可動極板21及び弾性部22は、体部20を構成することとなる板状のシリコン基盤2に、可動極板21及び各弾性支持部材に対応するマスキングを施した後、当該シリコン基盤2にエッチングを施す事により一体に形成したものである。
このとき、可動極板21と、各固定極板11、31の間にギャップを確保するべく、当該シリコン基盤2に於いて可動極板21が形成されることとなる部分の面が、残余の部分の面よりも数ミクロン低くなる様にエッチングによって削る。また、弾性部22が、可動極板21の表面よりも低く窪んだ位置に配置される様にエッチングを施す。
【0021】
このように、可動極板21、弾性部22、及び本体部20は一体的に形成されるので、可動極板21と本体部20とは弾性部22を介して電気的に接続されることとなる。
【0022】
また、シリコン基盤2に於いて可動極板21の周囲には、所定位置に電極取出用のシリコン製の島4、5が設けられている。当該各島4、5は、他の島及び本体部20と接触せぬ様に隔離されて配置されており、従って他の島及び本体部20とは電気的に絶縁されている。
これ等の内、島4は平面方向からの投影視に於いてリード線取付部13と重なる位置に配置されており、島5は同じく投影視に於いてリード線取付部14と重なる位置に配置されている。
【0023】
更に、シリコン基盤2の所定位置にはガス吸着剤としてのゲッタGを受け入れる収容部27が設けて有る。
【0024】
この静電容量型加速度センサを製造する過程に於いては、先ず収容部27にゲッタGを収容し、次いで、ガラス基盤1、シリコン基盤2、及びガラス基盤3を陽極接合する。これにより、可動極板21、各固定極板11,31、ゲッタGとが密封される。
また、このとき、第1の検出用電極113と島4とが着接し、第2の検出用電極313と島5とが着接する。
【0025】
次いで、透光材としてのガラス基盤1或いはガラス基盤3を介してゲッタGにYAGレーザを照射する。これにより、ゲッタGが加熱され活性化されて、当該ゲッタGは、可動極板21、各固定極板11,31等を取り巻くガス(大気)を吸収する。かくして、可動極板21、固定極板11,31等が真空中に配置されることとなる。
【0026】
ガラス基盤101に設けた各リード線取付部13,14、15は、夫々導電エポキシEによりリード線Lがボンディングされる。
よって、リード線取付部13にボンディングされたリード線Lは第1の固定極板11と電気的に接続され、リード線取付部14にボンディングされたリード線Lは第2の固定極板31と電気的に接続され、リード線取付部15にボンディングされたリード線Lは本体部20を介して可動極板21と電気的に接続される。
また、当該各リード線Lは、図示せぬ制御部に接続される。
【0027】
以上の如くして構成された静電容量型加速度センサのキャパシタの補正工程は次の通りである。
先ず、当該静電容量型加速度センサに於いて、図示せぬ制御部は、リード線取付部13にボンディングされたリード線Lを介して検出する第1の固定極板11の電位と、リード線取付部15にボンディングされたリード線Lを介して検出する可動極板21の電位と、に基づいて、これら第1の固定極板11と可動極板21とによって形成される可変容量キャパシタ(以下、「第1のキャパシタ」という。)の静電容量C1を検出する。
【0028】
また、図示せぬ制御部は、リード線取付部14にボンディングされたリード線Lを介して検出する第2の固定極板31の電位と、リード線取付部15にボンディングされたリード線Lを介して検出する可動極板21の電位と、に基づいて、これら第2の固定極板31と可動極板21とによって形成される可変容量キャパシタ(以下、「第2のキャパシタ」という。)の静電容量C2を検出する。
【0029】
ここで、図示せぬ制御部は、第1のキャパシタの静電容量C1と第2のキャパシタの静電容量C2との容量差ΔCが所定の平衡位置(中立位置)にあるか否かを判定する。そして、容量差ΔCが所定の大きさ以上の場合、静電容量の大きい方のキャパシタ(例えば、第1のキャパシタとする。)の調整用電極板112と本体部極板111との接続を断ち切るため、ガラス基盤1の上からレーザを照射させ、接続部11aを切断する。これにより、第1のキャパシタの静電容量C1を減少させて、容量差に応じて調整用電極板112を2〜4個切断する。
【0030】
以上の如くして構成された静電容量型加速度センサのキャパシタの作用は次の通りである。
静電容量型加速度センサを被測定物に取り付けた状態に於いて、当該検出部100に対して外部から加速度が印加されると、当該加速度に起因して、弾性部22によって平衡位置に支持された可動極板21が当該弾性部22に拘束されながら板厚方向に変位する。これにより、第1のキャパシタの静電容量C1と、第2のキャパシタの静電容量C2とが相互に増減し、これに伴って両者の容量差であるΔCが変動する。この容量差により、被測定物の加速度を算出する。
【0031】
尚、制御部の構成については図示していないが、以上の如く作用する当該制御部を、マイコンその他のハードウエア、或いは、DSP(デイジタル・シグナル・プロセツサ)その他のソフトウエアによっても実現できる。
また、本発明における固定電極の形状には、種々の変形例が考えられる。
例えば、固定極板11、31をメッシュ状に形成して、メッシュの一部(調整部)を切断することにより、キャパシタの静電容量を減少させてもよい。
【0032】
以上の如くして構成され作用する静電容量型加速度センサによれば、次の様な優れた効果が得られる。
【0033】
第1の固定極板11、第2の固定極板31に静電容量を調整する調整用極板112、312が設けられているので、静電容量の値に誤差が生じた場合には、固定極板11、31の調整用極板112、312を本体部極板111、311と切り離すことにより容易に静電容量値を調整することができる。従って、より精度のよい物理量測定を行うことができる。
【0034】
また、調整用極板112、312は、静電容量が既知の複数の調整用極板により構成されているので、誤差に応じて調整用極板を選択できることとなって、より精度のよい物理量測定を行うことができる。
【0035】
また、可動極板22と固定極板11、31とが所定の間隔離間して対面するように、シリコン基盤2とガラス基盤1,3とが陽極結合され、可動極板22および固定極板11、31とで形成されるキャパシタの静電容量が測定され、その測定結果に基づいて、調整用極板112、312の少なくとも一部と、本体部極板111、311との接続がレーザにより断たれるので、物理量検出器を組み立てて製造した後、製造過程で生じた誤差の機械的は補正を容易に行うことができる。
【0036】
以上、本発明が適用された静電容量型加速度センサについて説明したが、本発明の技術思想はこれに限られるものではない。例えば、次の事等は本発明と均等であると云うことができる。
【0037】
例えば、図示せぬ制御部をチップ型のマイコンにて実現し、実現したマイコンを検出部100内に組み込むと共に、当該マイコンによって検出される加速度その他の物理量を、赤外線その他の無線にて外部出力する様に構成してもよい。この場合は、マイコンを駆動する為のエネルギ及び検出結果を外部出力するのに必要なエネルギを、外部よりマイクロ波にて供給する様に構成するとよい。この様に構成すれば、リード線Lが不要となるのはもとより、狭い箇所や劣悪な環境の箇所等にも当該静電容量型物理量センサを設置する事が可能となる。
【0038】
加速度以外にも、圧力その他の物理量を検出する様に設計変更する事が可能である。この事は、外部からの圧力その他の物理量に起因して可動極板21が変位する様に構成することで容易に実現できる。
【0039】
また、本発明にかかる静電容量型物理量センサは、傾斜計にも適用可能である。この場合、真空封止しないのでゲッターは必要ない。
【0040】
【発明の効果】
請求項1記載の発明によれば、固定極板に静電容量を調整する調整部が設けられているので、静電容量の値に誤差が生じた場合には、固定極板の調整部を他の部分と切り離すことにより容易に静電容量値を調整することができる。従って、より精度のよい物理量測定を行うことができる。
【0041】
請求項2記載の発明によれば、請求項1記載の発明と同様の効果が得られることは無論のこと、特に、調整部は、静電容量が既知の複数の調整用極板により構成されているので、誤差に応じて調整用極板を選択できることとなって、より精度のよい物理量測定を行うことができる。
【0042】
請求項3記載の発明によれば、可動極板と固定極板とが所定の間隔離間して対面するように、基盤と透光材とが結合され、可動極板および固定極板とで形成されるキャパシタの静電容量が測定され、その測定結果に基づいて、調整用極板の少なくとも一部と本体部との接続がレーザにより断たれるので、物理量検出器を組み立てて製造した後、製造過程で生じた誤差の機械的な補正を容易に行うことができる。
【図面の簡単な説明】
【図1】静電容量型加速度センサの検出部の構成を模式的に示す分解斜視概略図である。
【図2】静電容量型加速度センサの検出部に具備される可動極板及び弾性部を示す部分平面図である。
【図3】静電容量型加速度センサの検出部を示す断面概略図である。
【図4】従来技術に於ける静電容量型加速度センサを示す断面図である。
【符号の説明】
1        ガラス基盤
2        シリコン基盤
3        ガラス基盤
11       第1の固定極板(固定極板)
20       本体部
21       可動極板(可動極板)
22       弾性部
31       第2の固定極板(固定極板)
100      検出部(物理量検出器)
111、311  本体部極板(本体部)
112、312  調整用極板(調整部)
221      弾性支持部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a physical quantity detector for detecting physical quantities such as acceleration, displacement, pressure, and the like, and more particularly to a physical quantity detector capable of detecting a physical quantity based on a capacitance difference and capable of adjusting a capacitance, and a method of manufacturing the same.
[0002]
[Prior art]
Conventionally, various types of capacitance type physical quantity detectors have been provided, and for example, an acceleration sensor described in Japanese Patent Application Laid-Open No. 9-243654 is known.
In the acceleration sensor 100, for example, as shown in FIG. 4, a first glass substrate 102 is bonded to a lower surface of a silicon substrate 101, and a second glass substrate 103 is bonded to an upper surface of the silicon substrate 101. The weight 101b of the silicon base 101 is supported by a cantilever via a beam 101c, and is connected to a support frame 101a having a flat square shape formed by etching. Further, a predetermined gap is formed between the upper and lower surfaces of the weight portion 101b and the opposing surfaces of the opposing glass substrates 102 and 103. Thereby, when receiving an acceleration, the beam portion 101c bends, the weight portion 101b is displaced, and the distance of the gap changes.
[0003]
Then, movable electrodes 104 are formed on both surfaces of the weight portion 101b, and first fixed electrodes 105 are respectively formed on inner surfaces of the first glass substrate 102 and the second glass substrate 103 so as to face the movable electrodes 104. And the second fixed electrode 106 are formed. Therefore, when the weight 101b is displaced and the distance of the gap changes, a first capacitor is formed between the movable electrode 104 and the first fixed electrode 105, and a second capacitor is formed between the movable electrode 104 and the second fixed electrode 106. Are formed, and the capacitance of the first capacitor and the second capacitor also changes as the movable electrode 104 moves. By detecting the change in the capacitance, the acceleration based on the displacement of the weight portion 101b can be detected.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional physical quantity detector, capacitors are formed above and below the weight portion 101b, but are detected by the upper and lower capacitors in a steady state due to distortion or the like in the process of forming the weight portion 101b. However, there is a problem that it is difficult to bring the capacitance value into an equilibrium state and a mechanical error occurs.
Moreover, since the error cannot be confirmed until after the physical quantity detector is assembled, it is difficult to mechanically correct the error.
[0005]
In view of the above, an object of the present invention is to provide a physical quantity detector with higher measurement accuracy and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
To solve the above problems, the following means are provided. The numbers in parentheses indicate the reference numerals of the corresponding components in the embodiment.
The invention according to claim 1 is characterized in that the movable electrode plate 21 movably supported by the elastic portion 22,
Fixed electrode plates 11 and 31 arranged at positions facing the movable electrode plate,
A capacitance-adjustable physical quantity detector (e.g., detection) that detects any physical quantity of displacement, velocity, or acceleration of the measured object based on the capacitance of a capacitor formed by the movable electrode plate and the fixed electrode plate. In part 100),
The fixed electrode plate is formed on a light-transmitting material (for example, glass substrates 1, 3),
The fixed electrode plate is provided with a main body (for example, main body electrode plate 111) and an adjustment unit (for example, an adjustment electrode plate 112) connected to the main body and for adjusting the capacitance. It is characterized by having.
[0007]
Here, the position, size, shape, and number of the adjustment units may be arbitrarily determined.
According to the first aspect of the present invention, since the fixed electrode plate is provided with the adjusting unit for adjusting the capacitance, when an error occurs in the capacitance value, the adjusting unit of the fixed electrode plate is adjusted. The capacitance value can be easily adjusted by separating it from other parts. Therefore, more accurate physical quantity measurement can be performed.
[0008]
According to a second aspect of the present invention, in the physical quantity detector capable of adjusting the capacity according to the first aspect,
The adjustment section is configured by a plurality of adjustment electrode plates having a known capacitance.
[0009]
According to the second aspect of the present invention, it is needless to say that the same effect as that of the first aspect of the invention can be obtained. In particular, the adjusting section is constituted by a plurality of adjusting electrode plates having a known capacitance. Therefore, the adjustment electrode plate can be selected according to the error, and more accurate physical quantity measurement can be performed.
[0010]
According to a third aspect of the present invention, there is provided a method for manufacturing a physical quantity detector capable of adjusting a capacity according to the first or second aspect,
Forming a movable electrode plate on a base (for example, a silicon base 2);
Forming the fixed electrode plate on the translucent material;
Coupling the base and the translucent material such that the movable electrode plate and the fixed electrode plate face each other with a predetermined distance therebetween;
Next, the capacitance of the capacitor formed by the movable electrode plate and the fixed electrode plate is measured, and based on the measurement result, at least a part of the adjustment unit of the fixed electrode plate and the main body portion Disconnecting the connection with a laser;
It is characterized by having.
[0011]
According to the third aspect of the present invention, the base and the light-transmitting material are coupled to each other so that the movable electrode plate and the fixed electrode plate face each other with a predetermined distance therebetween, and are formed by the movable electrode plate and the fixed electrode plate. The capacitance of the capacitor to be measured is measured, based on the measurement result, since the connection between at least a part of the adjustment electrode plate and the main body is cut off by the laser, after assembling and manufacturing the physical quantity detector, It is possible to easily perform mechanical correction of an error generated in a manufacturing process.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a capacitive acceleration sensor according to an embodiment of the present invention will be described with reference to FIGS.
The capacitance-type acceleration sensor includes a detection unit 100, a control unit (not shown), and a lead L connecting these components. Among these, as shown in FIGS. 1 and 2, the detection unit 100 includes a silicon substrate 2 disposed at the center, and two glass substrates 1 and 2 as two translucent members sandwiching the silicon substrate 2 from above and below. The base 3 is formed by anodic bonding. Most of the silicon substrate 2 is constituted by a silicon main body 20. The main body 20 has an elastic portion 22 and a circular shape in a plan view supported by the elastic portion 22 so as to be displaceable in the thickness direction. The movable electrode plate 21 is provided integrally by etching.
[0013]
In the upper glass substrate 1, a gap (gap) of several microns is secured at a position facing the movable electrode plate 21, and the first fixed electrode plate 11 is formed by a method such as vapor deposition or sputtering. Is filmed.
The first fixed electrode plate 11 includes a main body electrode plate 111 (main body portion) that corresponds to an area occupied by the fixed electrode plate 21 and the elastic portion 22 in a projection view, and is electrically connected to the main body electrode plate 111. It is composed of connected adjustment electrode plates 112 (adjustment unit).
From the first fixed electrode plate 11, a first L-shaped detection electrode 113 composed of a thin film layer of titanium and platinum extends toward the projection region of the island 4 of the silicon substrate 2.
[0014]
The adjustment electrode plates 112 are provided at the four corners of the main body electrode plate 111 and each have a triangular shape. A connection portion having a slight width is provided between the main body electrode plate 111 and the adjustment electrode plate 112. 11a are electrically connected. Accordingly, by cutting the connection portion 11a with a laser or the like, the electrical connection between the main body portion electrode plate 111 and the adjustment electrode plate 112 can be cut off.
Each of the adjusting plates 112 has a known capacitance and is set to be different.
[0015]
Further, on the upper glass substrate 1, around the first fixed electrode plate 11, lead wire mounting portions 13, 14, 15 as through holes are provided at predetermined positions. The lead wire attaching portions 13 and 14 are arranged so as to communicate with the islands 4 and 5, respectively.
[0016]
On the other hand, on the lower glass substrate 3, a gap of several microns is secured at a position facing the movable electrode plate 21, and the second fixed electrode plate 31 is formed by a method such as evaporation or sputtering. Is filmed.
The second fixed electrode plate 31 is electrically connected to a main body electrode plate 311 (main body portion) corresponding to an area occupied by the fixed electrode plate 21 and the elastic portion 22 in a projection view. (Adjusting unit) to be connected.
From the first fixed electrode plate 11, a first L-shaped detection electrode 113 made of an alloy of titanium and platinum extends toward the projection area of the island 4 of the silicon substrate 2.
[0017]
Are provided at the four corners of the main body electrode plate 311 and each have a triangular shape, and a connection portion having a slight width is provided between the main body electrode plate 311 and the adjustment electrode plate 312. 31a are electrically connected. Accordingly, by cutting the connection portion 31a with a laser or the like, the electrical connection between the main body portion electrode plate 311 and the adjustment electrode plate 312 can be cut off.
Each of the adjusting electrode plates 312 has a known capacitance and is set to be different.
[0018]
In the main body portion 20 of the silicon substrate 2 sandwiched between the glass substrate 1 and the glass substrate 2 configured as described above, the movable electrode plate 21 is formed in a circular shape in plan view as shown in FIG. A plurality of elastic support members are regularly and uniformly arranged at equal intervals on the periphery of the electrode plate 21 in the direction of the fold line. The elastic part 22 is constituted by these elastic supporting members.
By configuring the elastic portion 22 in this manner, the stress generated when manufacturing the elastic portion 22 can be released, and the elastic portion 22 having no residual stress is realized.
[0019]
FIG. 3 is a schematic cross-sectional view of the detection unit 100. As shown, each of the elastic supporting members is vertically positioned on the upper surface and the lower surface of the periphery of the movable electrode plate 21. It consists of two beams.
Further, as is clear from FIG. 2, the elastic portion 22 is disposed at a position depressed inward from each surface of the movable electrode plate 21.
[0020]
After the movable electrode plate 21 and the elastic portion 22 are subjected to masking corresponding to the movable electrode plate 21 and the respective elastic support members on the plate-shaped silicon substrate 2 constituting the body portion 20, the silicon substrate 2 Is formed integrally by etching the substrate.
At this time, in order to secure a gap between the movable electrode plate 21 and each of the fixed electrode plates 11 and 31, the surface of the portion where the movable electrode plate 21 is to be formed on the silicon substrate 2 is left. It is etched away so as to be several microns lower than the surface of the part. Further, the etching is performed so that the elastic portion 22 is arranged at a position depressed lower than the surface of the movable electrode plate 21.
[0021]
As described above, since the movable electrode plate 21, the elastic portion 22, and the main body portion 20 are integrally formed, the movable electrode plate 21 and the main body portion 20 are electrically connected through the elastic portion 22. Become.
[0022]
Further, silicon islands 4 and 5 for taking out electrodes are provided at predetermined positions around the movable electrode plate 21 in the silicon substrate 2. The respective islands 4 and 5 are arranged so as to be separated from each other so as not to contact the other islands and the main body 20, and are therefore electrically insulated from the other islands and the main body 20.
Of these, the island 4 is arranged at a position overlapping with the lead wire attaching portion 13 in a projection view from the plane direction, and the island 5 is similarly arranged at a position overlapping with the lead wire attaching portion 14 in a projection view. Have been.
[0023]
Further, a housing 27 for receiving a getter G as a gas adsorbent is provided at a predetermined position of the silicon substrate 2.
[0024]
In the process of manufacturing the capacitance type acceleration sensor, first, the getter G is housed in the housing part 27, and then the glass substrate 1, the silicon substrate 2, and the glass substrate 3 are anodically bonded. Thereby, the movable electrode plate 21, the fixed electrode plates 11, 31, and the getter G are sealed.
At this time, the first detection electrode 113 and the island 4 are in contact with each other, and the second detection electrode 313 and the island 5 are in contact with each other.
[0025]
Next, the getter G is irradiated with a YAG laser via the glass substrate 1 or the glass substrate 3 as a light transmitting material. Thereby, the getter G is heated and activated, and the getter G absorbs the gas (atmosphere) surrounding the movable electrode plate 21, the fixed electrode plates 11, 31 and the like. Thus, the movable electrode plate 21, the fixed electrode plates 11, 31 and the like are arranged in a vacuum.
[0026]
The lead wires L are bonded to the respective lead wire mounting portions 13, 14, 15 provided on the glass substrate 101 by the conductive epoxy E.
Therefore, the lead wire L bonded to the lead wire attaching portion 13 is electrically connected to the first fixed electrode plate 11, and the lead wire L bonded to the lead wire attaching portion 14 is electrically connected to the second fixed electrode plate 31. The lead wire L that is electrically connected and bonded to the lead wire attaching portion 15 is electrically connected to the movable electrode plate 21 via the main body portion 20.
Further, each of the lead wires L is connected to a control unit (not shown).
[0027]
The correction process of the capacitor of the capacitance type acceleration sensor configured as described above is as follows.
First, in the capacitance type acceleration sensor, a control unit (not shown) controls the potential of the first fixed electrode plate 11 detected via the lead wire L bonded to the lead wire mounting unit 13 and the lead wire. On the basis of the potential of the movable electrode plate 21 detected via the lead wire L bonded to the mounting portion 15, a variable capacitor (hereinafter, referred to as a capacitor) formed by the first fixed electrode plate 11 and the movable electrode plate 21. , "First capacitor").
[0028]
The control unit (not shown) determines the potential of the second fixed electrode plate 31 detected via the lead wire L bonded to the lead wire mounting unit 14 and the lead L bonded to the lead wire mounting unit 15. Of the variable capacitor formed by the second fixed electrode plate 31 and the movable electrode plate 21 (hereinafter, referred to as a “second capacitor”) based on the potential of the movable electrode plate 21 detected via the second fixed electrode plate 31. The capacitance C2 is detected.
[0029]
Here, the control unit (not shown) determines whether or not the capacitance difference ΔC between the capacitance C1 of the first capacitor and the capacitance C2 of the second capacitor is at a predetermined equilibrium position (neutral position). I do. When the capacitance difference ΔC is equal to or larger than a predetermined value, the connection between the adjustment electrode plate 112 of the capacitor having the larger capacitance (for example, the first capacitor) and the main body electrode plate 111 is cut off. Therefore, a laser is irradiated from above the glass substrate 1 to cut the connecting portion 11a. Thereby, the capacitance C1 of the first capacitor is reduced, and 2 to 4 adjustment electrode plates 112 are cut in accordance with the capacitance difference.
[0030]
The operation of the capacitor of the capacitance type acceleration sensor configured as described above is as follows.
When acceleration is externally applied to the detection unit 100 in a state where the capacitance-type acceleration sensor is attached to the object to be measured, the acceleration unit is supported at an equilibrium position by the elastic unit 22 due to the acceleration. The movable electrode plate 21 is displaced in the plate thickness direction while being restrained by the elastic portion 22. As a result, the capacitance C1 of the first capacitor and the capacitance C2 of the second capacitor increase and decrease with each other, and accordingly, ΔC, which is the difference between the two capacitances, changes. The acceleration of the object to be measured is calculated based on the capacitance difference.
[0031]
Although the configuration of the control unit is not shown, the control unit that operates as described above can be realized by a microcomputer or other hardware, or a DSP (Digital Signal Processor) or other software.
Various modifications are conceivable for the shape of the fixed electrode in the present invention.
For example, the capacitance of the capacitor may be reduced by forming the fixed electrode plates 11 and 31 in a mesh shape and cutting a part (adjustment portion) of the mesh.
[0032]
According to the capacitive acceleration sensor configured and operated as described above, the following excellent effects can be obtained.
[0033]
Since the first fixed electrode plate 11 and the second fixed electrode plate 31 are provided with the adjusting electrode plates 112 and 312 for adjusting the capacitance, when an error occurs in the value of the capacitance, The capacitance value can be easily adjusted by separating the adjusting electrode plates 112 and 312 of the fixed electrode plates 11 and 31 from the main body electrode plates 111 and 311. Therefore, more accurate physical quantity measurement can be performed.
[0034]
In addition, since the adjustment electrode plates 112 and 312 are configured by a plurality of adjustment electrode plates having known capacitances, the adjustment electrode plates can be selected according to the error, and a more accurate physical quantity can be obtained. A measurement can be made.
[0035]
Further, the silicon substrate 2 and the glass substrates 1 and 3 are anodically coupled such that the movable electrode plate 22 and the fixed electrode plates 11 and 31 face each other with a predetermined distance therebetween, and the movable electrode plate 22 and the fixed electrode plates 11 and 31 are joined together. , 31 are measured, and based on the measurement result, the connection between at least a part of the adjustment electrode plates 112, 312 and the main body electrode plates 111, 311 is cut by a laser. Since the physical quantity detector is assembled and manufactured, mechanical errors in the manufacturing process can be easily corrected mechanically after the physical quantity detector is assembled.
[0036]
As described above, the capacitive acceleration sensor to which the present invention is applied has been described, but the technical idea of the present invention is not limited to this. For example, the following can be said to be equivalent to the present invention.
[0037]
For example, a control unit (not shown) is realized by a chip-type microcomputer, and the realized microcomputer is incorporated in the detection unit 100, and acceleration and other physical quantities detected by the microcomputer are externally output by infrared rays or other radio. It may be configured as follows. In this case, it is preferable that the energy for driving the microcomputer and the energy necessary for outputting the detection result to the outside be supplied from outside by a microwave. With such a configuration, the capacitance type physical quantity sensor can be installed not only in the necessity of the lead wire L but also in a narrow place or a place in a bad environment.
[0038]
In addition to the acceleration, the design can be changed so as to detect the pressure and other physical quantities. This can be easily realized by configuring the movable electrode plate 21 to be displaced due to an external pressure or other physical quantity.
[0039]
Further, the capacitance type physical quantity sensor according to the present invention is applicable to an inclinometer. In this case, no getter is required because vacuum sealing is not performed.
[0040]
【The invention's effect】
According to the first aspect of the present invention, the fixed electrode plate is provided with the adjustment unit for adjusting the capacitance. Therefore, when an error occurs in the value of the capacitance, the adjustment unit of the fixed electrode plate is adjusted. The capacitance value can be easily adjusted by separating it from other parts. Therefore, more accurate physical quantity measurement can be performed.
[0041]
According to the second aspect of the present invention, it is needless to say that the same effect as that of the first aspect of the invention can be obtained. In particular, the adjusting section is constituted by a plurality of adjusting electrode plates having a known capacitance. Therefore, the adjustment electrode plate can be selected according to the error, and more accurate physical quantity measurement can be performed.
[0042]
According to the third aspect of the present invention, the base and the light-transmitting material are coupled to each other so that the movable electrode plate and the fixed electrode plate face each other with a predetermined distance therebetween, and are formed by the movable electrode plate and the fixed electrode plate. The capacitance of the capacitor to be measured is measured, based on the measurement result, since the connection between at least a part of the adjustment electrode plate and the main body is cut off by the laser, after assembling and manufacturing the physical quantity detector, It is possible to easily perform mechanical correction of an error generated in a manufacturing process.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view schematically showing a configuration of a detection unit of a capacitance type acceleration sensor.
FIG. 2 is a partial plan view showing a movable electrode plate and an elastic portion provided in a detection unit of the capacitance type acceleration sensor.
FIG. 3 is a schematic sectional view showing a detection unit of the capacitance type acceleration sensor.
FIG. 4 is a cross-sectional view showing a capacitance type acceleration sensor according to the related art.
[Explanation of symbols]
Reference Signs List 1 glass base 2 silicon base 3 glass base 11 first fixed electrode plate (fixed electrode plate)
20 body part 21 movable electrode plate (movable electrode plate)
22 elastic part 31 second fixed electrode plate (fixed electrode plate)
100 detection unit (physical quantity detector)
111, 311 Main unit electrode (main unit)
112, 312 Adjusting electrode plate (adjusting unit)
221 Elastic support member

Claims (3)

弾性部によって変位自在に支持された可動極板と、
前記可動極板と対面する位置に配置された固定極板と、を備え、
前記可動極板と前記固定極板とで形成されるキャパシタの静電容量に基づいて被測定体の変位、速度、加速度の何れかの物理量を検出する容量調節可能な物理量検出器において、
前記固定極板は透光材に形成され、
前記固定極板には、本体部と、前記本体部に接続され、静電容量を調整する調整部と、が設けられていることを特徴とする容量調節可能な物理量検出器。
A movable electrode plate displaceably supported by an elastic portion,
A fixed electrode plate disposed at a position facing the movable electrode plate,
A displacement-adjustable physical quantity detector for detecting any physical quantity of the displacement, velocity, or acceleration of the measured object based on the capacitance of a capacitor formed by the movable electrode plate and the fixed electrode plate,
The fixed electrode plate is formed of a translucent material,
A physical quantity detector capable of adjusting a capacitance, wherein the fixed electrode plate is provided with a main body and an adjusting unit connected to the main body and adjusting an electrostatic capacity.
請求項1記載の容量調節可能な物理量検出器において、
前記調整部は、静電容量が既知の複数の調整用極板により構成されていることを特徴とする容量調節可能な物理量検出器。
2. The physical quantity detector according to claim 1, wherein the physical quantity is adjustable.
The physical quantity detector capable of adjusting a capacitance, wherein the adjusting unit is configured by a plurality of adjusting electrodes having known capacitances.
請求項1又は2記載の容量調節可能な物理量検出器の製造方法であって、
基盤に可動極板を形成する工程と、
前記透光材に前記固定極板を形成する工程と、
前記可動極板と前記固定極板とが所定の間隔離間して対面するように、前記基盤と前記透光材とを結合する工程と、
前記可動極板および前記固定極板とで形成されるキャパシタの静電容量を測定し、その測定結果に基づいて、前記固定極板の調整部の少なくとも一部と、前記本体部との接続をレーザにより断つ工程と、
を備えることを特徴とする容量調節可能な物理量検出器の製造方法。
A method for manufacturing a physical quantity detector capable of adjusting a capacity according to claim 1 or 2,
Forming a movable electrode plate on the base;
Forming the fixed electrode plate on the translucent material;
Coupling the base and the translucent material such that the movable electrode plate and the fixed electrode plate face each other with a predetermined distance therebetween;
The capacitance of the capacitor formed by the movable electrode plate and the fixed electrode plate is measured, and based on the measurement result, at least a part of the adjustment unit of the fixed electrode plate is connected to the main body. Laser cutting process,
A method for manufacturing a physical quantity detector capable of adjusting a capacity, comprising:
JP2002167053A 2002-06-07 2002-06-07 Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector Pending JP2004012329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167053A JP2004012329A (en) 2002-06-07 2002-06-07 Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167053A JP2004012329A (en) 2002-06-07 2002-06-07 Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector

Publications (1)

Publication Number Publication Date
JP2004012329A true JP2004012329A (en) 2004-01-15

Family

ID=30434415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167053A Pending JP2004012329A (en) 2002-06-07 2002-06-07 Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector

Country Status (1)

Country Link
JP (1) JP2004012329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010411A (en) * 2004-06-23 2006-01-12 Seiko Instruments Inc Vacuum sealed inertia force sensor
JP2007064919A (en) * 2005-09-02 2007-03-15 Alps Electric Co Ltd Electrostatic capacity type mechanical quantity sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010411A (en) * 2004-06-23 2006-01-12 Seiko Instruments Inc Vacuum sealed inertia force sensor
JP4570912B2 (en) * 2004-06-23 2010-10-27 セイコーインスツル株式会社 Vacuum-sealed inertial force sensor
JP2007064919A (en) * 2005-09-02 2007-03-15 Alps Electric Co Ltd Electrostatic capacity type mechanical quantity sensor

Similar Documents

Publication Publication Date Title
CA2006672C (en) Capacitive pressure sensor with encircling third plate
EP0744603B1 (en) Linear capacitive sensor by fixing the center of a membrane
US4388668A (en) Capacitive pressure transducer
CN1053736C (en) Capacitive pressure sensor
US5381299A (en) Capacitive pressure sensor having a substrate with a curved mesa
US4207604A (en) Capacitive pressure transducer with cut out conductive plate
JP2610532B2 (en) Capacitive pressure sensor
EP0380885B1 (en) Capacitive sensor with minimized dielectric drift
EP0385574A1 (en) Capacitive semiconductor sensor with hinged diaphragm for planar movement
JPS6356935B2 (en)
JPH025255B2 (en)
CA2610185A1 (en) Method of manufacturing a capacitive acceleration sensor, and a capacitive acceleration sensor
US20160341759A1 (en) Sensor and method of manufacturing same
JP2004012329A (en) Capacity-regulable physical quantity detector and manufacturing method of capacity-regulable physical quantity detector
NO822380L (en) MOISTURIZING DEVICE FOR A SENSITIVE PROVIDER WITH ELECTRICAL CONDUCTORS.
JPH0465645A (en) Pressure sensor array
JPH10206458A (en) External force-measuring apparatus and its manufacture
US10649000B2 (en) Connection assembly
JP4540775B2 (en) Servo capacitive vacuum sensor
JP2002055008A (en) Vacuum sensor with built-in thin-film getter
JPH08160072A (en) Acceleration/pressure detecting element and its manufacture
JP4138372B2 (en) Physical quantity detector and method of manufacturing physical quantity detector
JP2896728B2 (en) Capacitive pressure sensor
US20070062294A1 (en) Pressure sensor and method for manufacturing pressure sensor
JP2004012327A (en) Physical quantity detector and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411