JP2004011616A - Wind mill blade structure for wind power generator - Google Patents

Wind mill blade structure for wind power generator Download PDF

Info

Publication number
JP2004011616A
JP2004011616A JP2002170380A JP2002170380A JP2004011616A JP 2004011616 A JP2004011616 A JP 2004011616A JP 2002170380 A JP2002170380 A JP 2002170380A JP 2002170380 A JP2002170380 A JP 2002170380A JP 2004011616 A JP2004011616 A JP 2004011616A
Authority
JP
Japan
Prior art keywords
blade
wind turbine
members
turbine blade
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002170380A
Other languages
Japanese (ja)
Inventor
Yukio Satonaka
里中 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2002170380A priority Critical patent/JP2004011616A/en
Publication of JP2004011616A publication Critical patent/JP2004011616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To secure enough strength when a wind mill blade 3 for a large-sized wind power generator is made into a structure wherein the blade is partitioned in the longitudinal direction without using a column unlike the conventional technique. <P>SOLUTION: The wind mill blade 3 is partitioned into three blade members 6-8 in the longitudinal direction and the blade members 6-8 are connected by cylindrical connecting members 9, 10 arranged in the wind mill blade 3 in each divided part 3b, 3c, respectively. In the first divided part 3b on a base end side, a lot of bolts 11a which penetrate peripheral walls of the blade members 6, 7 and the connecting member 9 from the outer circumferential side are arranged over almost the entire circumference and a nut 11b is screwed and fastened on the end side of each bolt 11a inside the connecting member 9. In the second divided part 3c on a tip side, a lot of bolts 13a are arranged so as to penetrate the wind mill blade 3 itself in a thickness direction and a nut 13b is screwed and fastened on the end side of each bolt 13a. Joint parts 14 are provided on the connecting members 9, 10, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、風力発電機の風車ブレードに関し、特に、大型の中空状ブレードを長手方向に複数の部材に分割したものの構造の技術分野に属する。
【0002】
【従来の技術】
従来より、この種の風車ブレードとして、例えば特開2000−64941号公報に開示されるように、風車の回転軸から放射状に延びるように複数の支柱を立設し、この各支柱に対してその基端側から順番に複数の分割ブレードを重ねていって、最後に支柱の先端側においてナットにより固定するようにしたものが知られている。このものでは、長さが20m以上にもなる長尺の風車ブレードを複数の部材に分けて製造し、それを現場まで運搬して組み立てるようにしたことで、我が国の交通規制下でも運搬に支障を来すことがない。
【0003】
【発明が解決しようとする課題】
ところで、近年、CO2を排出しないクリーンエネルギとして、風力発電が再び脚光を浴びており、我が国における風力発電機の能力も増大の一途を辿っている。すなわち、前記従来例のものでは、風力発電機の発電能力は概略400〜500キロワットくらいであり、風車の直径も40〜50m程度に過ぎないが、現在、計画中の発電設備ではその発電能力が1メガワットを超えるものが多く、そのなかには5メガワットに迫るものもある。
【0004】
そのように能力の高い発電設備では、風車の直径が100mを超えるものとなり、1つの風車ブレードの長さは50mくらいになる。そして、このように大きな風車ブレードの場合は、ブレード部材のみで所要の構造強度を確保することが好ましく、前記従来例のように支柱を用いることは単に部品点数の増加や重量の増大を招くのみとなる。
【0005】
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、大型の風力発電機に用いられる風車ブレードの構造に工夫を凝らし、該風車ブレードを長手方向に分割可能な構造とする場合に、従来までのように支柱を用いることなく、ブレード部材のみによって十分な強度を確保することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明の第1の解決手段では、風車ブレードの分割部位において隣接するブレード部材同士に跨るように筒状の接続部材を内挿し、この接続部材とブレード部材とを風車ブレードの略全周に亘って締結部材により結合する構成とした。
【0007】
すなわち、本願請求項1の発明は、風力発電機の風車の回転軸に対してそれぞれ径方向に延びるように取り付けられる複数枚の風車ブレードの構造を対象とする。そして、前記各風車ブレードをそれぞれ風車の径方向に長い中空状のものとし、且つその長手方向に2つ以上のブレード部材に分割して、その分割部位において隣接するブレード部材同士に跨るように筒状の接続部材を内挿するとともに、該接続部材とブレード部材とを風車ブレードの略全周に亘って複数の締結部材により結合してなる構成とする。
【0008】
前記の構成により、中空状の風車ブレードをその長手方向に2つ以上のブレード部材に分割可能としたことで、長さが50mくらいにもなる長尺状のブレードを25m以下の部材に分割することができ、これにより発電設備の建設現場への運搬が可能になる。また、隣接するブレード部材同士に跨るように筒状の接続部材を設けるとともに、この接続部材とブレード部材とを略全周に亘って多数の締結部材により結合したことで、風車の回転時に作用する遠心力や揚力等に対して十分な引っ張り、曲げ及び捻り強度が得られるので、従来例(特開2000−64941号公報)のような支柱を用いる必要がなく、部品点数を減らして運搬や現場での組立て作業を容易化できるとともに、風車の重量を低減することも可能となる。
【0009】
前記のような風車ブレードにおいて、接続部材は、風車ブレードの長手方向の寸法を少なくともその厚み方向の寸法よりも大きくするのが好ましい。こうすれば、ブレード部材と接続部材との重なり合う部分が、風車ブレードの長手方向について十分に大きくなるので、風車ブレードの重量の増大を招くことなく、特に曲げや捻りに対して十分な強度が得られる。
【0010】
また、風車ブレードをその長手方向の中央位置よりも基端側で分割する場合には、締結部材として、ブレード部材又は接続部材の何れか一側からそれらを貫通するボルトと、該ブレード部材又は接続部材の他側に配設されて前記ボルトの先端側に螺合するナットとを用いることが好ましい(請求項2の発明)。
【0011】
すなわち、一般的に風車ブレードは先端側が扁平な翼断面形状となる一方、基端側に向かって徐々に断面が円形状に近づくものなので、この発明において対象とする大型の風車ブレードの場合、その長手方向中央位置よりも基端側の分割箇所では、組立の際に作業者が容易に内部空間に入ることができる。従って、ブレード部材及び接続部材をボルト、ナットにより締結する構造とすれば、現場での作業が容易且つ確実なものとなる。また、ボルトの長さは必要最小限度のものとすればよく、こうすることで重量の低減が図られる。
【0012】
一方、風車ブレードを長手方向の中央位置よりも先端側で分割する場合には、締結部材として、風車ブレードをその厚み方向一側から他側まで貫通するボルトと、これに螺合するナットとを用いる(請求項3の発明)。こうすれば、断面が扁平な形状で内部に作業者が入れないブレードの先端側部分でも、ブレード部材と接続部材とを容易に結合することができる。
【0013】
さらに、前記接続部材には、風車ブレードの内部空間を長手方向に区画するように節部を設けることが好ましい(請求項5の発明)。こうすれば、長尺状の風車ブレードが竹のように節を有する構造となり、軽量でありながら特に捻りに強いものとなる。
【0014】
次に、本発明の第2の解決手段では、風車ブレードの分割部位において隣接するブレード部材の端部にそれぞれ内方へ突出するブレード長手方向に長い形状のフランジ部を設け、このフランジ部同士を重ね合わせてそれらをブレード長手方向に貫通する締結部材により、略全周に亘って結合する構成とした。
【0015】
すなわち、本願請求項5の発明は、前記請求項1の発明と同じ風車ブレードの構造を対象とし、各風車ブレードをそれぞれ風車の径方向に長い中空状のものとし且つその長手方向に2つ以上のブレード部材に分割する。そして、その分割部位において隣接するブレード部材の端部にそれぞれ周壁部から内方に向かって突出する環状のフランジ部を形成し、このフランジ部の厚みをその突出量よりも大きく設定するとともに、互いに接合させた環状部同士を各々風車ブレードの長手方向に貫通する複数の締結部材によって該風車ブレードの略全周に亘って結合してなる構成とする。
【0016】
この構成により、請求項1の発明と同様に長尺状の風車ブレードを複数の部材に分割して現場へ運搬することができる。また、各ブレード部材の端部に設けたフランジ部同士を略全周に亘って複数の締結部材により締結固定することで、ブレード部材同士を確実に結合することができる。しかも、前記フランジ部をブレード長手方向に長いものとし、且つブレード長手方向に貫通する締結部材により固定したことで、ブレード長手方向への引っ張り強度は勿論、曲げや捻り強度も高くなり、これにより、前記請求項1の発明と同様に支柱を無くすことができるから、部品点数の削減と重量の低減とが図られる。
【0017】
また、本発明の第3の解決手段では、風車ブレードの分割部位において隣接するブレード部材の一方の端部にブレード長手方向に長い筒状の挿入部を形成し、これを他方のブレード部材の端部に内挿して、それらを締結部材により略全周に亘って結合する構成とした。
【0018】
すなわち、本願請求項6の発明は、前記請求項1や請求項5の発明と同じ風車ブレードの構造を対象とし、各風車ブレードをそれぞれ風車の径方向に長い中空状のものとし且つその長手方向に2つ以上のブレード部材に分割する。そして、その分割部位において隣接するブレード部材の一方の端部に、他方のブレード部材の端部に内挿される筒状の挿入部を形成し、この挿入部のブレード長手方向の寸法をブレード厚み方向の寸法よりも大きく設定するとともに、その挿入部と隣接するブレード部材の端部とを風車ブレードの略全周に亘って複数の締結部材により結合してなる構成とする。
【0019】
この構成により、請求項1や請求項5の発明と同様に長尺状の風車ブレードを複数の部材に分割して現場へ運搬することができる。また、ブレード部材の一方の端部に設けた筒状の挿入部を隣接するブレード部材の端部に内挿して、略全周に亘って複数の締結部材により固定することで、ブレード部材同士を確実に結合することができる。しかも、前記挿入部をブレード長手方向に長いものとしたことで、特に曲げや捻り強度を高くすることができ、さらに、締結部材を風車ブレードの長手方向に2列以上、配設すれば、ブレード長手方向への引っ張り強度も高くすることができる。よって、前記請求項1や請求項5の発明と同様の作用効果が得られる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基いて説明する。
【0021】
(実施形態1)
図1は、本願発明に係る風力発電機の風車Wの外観を示す。この風車Wは、地面から例えば70m以上の高さに延びる鉄塔1の最上部に配設されており、図示しない発電機に連結された回転軸2に対しその径方向に延びるように複数枚(図例では3枚)の風車ブレード3,3,3をそれぞれ取り付けたものである。すなわち、前記鉄塔1の最上部には、発電機を収容する収容部4が配設されていて、この収容部4の前壁を貫通する回転軸2が図示しない軸受によって回転自在に支持されるとともに、この回転軸2の端部が発電機の入力軸に連結されて一体的に回転するようになっている。
【0022】
前記風車ブレード3,3,…は、例えば繊維補強樹脂(FRP)等により形成され、図2に示すようにそれぞれ50m近い長さを有する長尺状のものである。また、各風車ブレード3は中空状であり、基端部に風車Wの回転軸2に結合される円筒部3aが形成されている以外は、概ね翼断面形状を有するものであって、先端側が扁平な翼断面形状であり、そこから基端側に向かって徐々にブレードの幅及び厚みが増して、円形に近いアーモンドのような断面形状となる。詳しくは図3(a)にも示すように、風車ブレード3の幅は、基端の円筒部3aよりも少し先端側の部位で最大になっていて、そこから先端部に向かって徐々に減少しており、また、同図(b)に示すように、風車ブレード3の厚みはその先端部から基端部に向かって略一様に増大している。
【0023】
また、この発明の特徴部分として、前記風車ブレード3はその長手方向(以下、ブレード長手方向ともいう)について基端側から順番に第1〜第3の3つのブレード部材6,7,8に分割されていて、第1及び第2ブレード部材6,7がその間に跨るように内挿された第1接続部材9により連結され、同様に、第2及び第3ブレード部材7,8が第2接続部材10により連結されている。詳しくは、基端側の第1分割部3bについて図4に示すように、第1ブレード部材6の先端側と第2ブレード部材7の基端側とにはそれぞれ周壁部の厚みを増した厚肉部6a,7aが形成され、この厚肉部6a,7aの内周側に筒状の第1接続部材9が内挿されている。この接続部材9の一側(図の右側)と第2ブレード部材7の厚肉部7aとは、周方向に略全周に亘って並設された多数の締結部材11,11,…により結合されており、同様に、接続部材9の他側(図の左側)と第1ブレード部材6の厚肉部6aとが周方向に略全周に亘って並設された多数の締結部材11,11,…により結合されている(図には断面に現れるもののみを示す)。
【0024】
前記各締結部材11は、ブレード部材6,7の外周側から該ブレード部材6,7の厚肉部6a,7aを貫通し、さらに接続部材9の周壁を貫通して、先端側が該接続部材9の内方に突出するボルト11aと、接続部材9の内方に配設されて前記ボルト11aの先端側に螺合するナット11bとからなる。すなわち、この実施形態のような大型の風車ブレード3の場合、基端側の分割部3bの断面形状は円形に近いアーモンド状になっており、組立の際に作業者が風車ブレード3の内部空間に入ることができるから、接続部材9の内方に位置するナット11bをしっかりと固定することができ、締結作業が容易且つ確実に行える。このため、ボルト11aの長さは必要最小限のものとして、重量の低減を図ることができる。尚、各ボルト11aの基端部は、ブレード部材6,7の外周に形成された円形の凹部12内に収容されている。
【0025】
一方、図5に示す先端側の第2分割部3cでは、前記第1分割部3bと同様に連続する第2ブレード部材7及び第3ブレード部材8の厚肉部7b,8aの内周側に、筒状の第2接続部材10が内挿されていて、この第2接続部材10と厚肉部7b,8aとがそれぞれ締結部材13,13,…、即ちボルト13a及びナット13bにより結合されている。但し、先端側の第2分割部3cにおいてはブレード部材7,8がかなり扁平な形状となっており、ここでは風車ブレード3の内部空間に作業者が入ることは困難である。そこで、各ボルト13aをブレード部材7,8の厚み方向に一側(図の上側)から他側(図の下側)まで貫通させて、ナット13bを螺合させるようにしており、このことで、内部に作業者が入れない風車ブレード3の先端側においても締結作業を容易に行うことができる。尚、各ボルト13aの基端部とナット13bとは、それぞれ、ブレード部材7,8の外周に形成された円形の凹部12,12,…内に収容されている。
【0026】
さらに、前記接続部材9、10は、いずれも風車ブレード3の長手方向の寸法Lがその厚み方向の寸法Dよりも大きくされていて、その長手方向の略中央部には風車ブレード3の内部空間を長手方向に区画するように節部14が設けられている。そのように風車ブレード3の長手方向に十分な長さを有する接続部材9,10を用いることにより、風車ブレード3の分割部位3b,3cにおいてブレード部材6,7,8と接続部材9,10とが重なり合う部分の面積が大きくなり、このことで、補強のための重量の増大を抑制しながら大きな結合強度を得ることができる。また、長尺状の風車ブレード3が竹のように途中に節を有する構造となることで、軽量でありながら特に捻りに強いものとなる。
【0027】
尚、前記図4及び図5にそれぞれ示すように、隣り合うブレード部材6,7,8の端面の一方には円環状の凸部が形成され、また、他方には前記凸部対応する形状の凹部が形成されており、それらが互いに嵌合されるようになっている。
【0028】
したがって、この実施形態に係る風車ブレード3の構造によれば、まず、風力発電機用の大型の風車Wに用いられる中空状の風車ブレード3,3,…を、その長手方向に3つのブレード部材6〜8に分割可能としたことで、長さが50mくらいになる長尺状のブレード3を20mくらいの部材に分割することができ、このことで、風車ブレード3,3,…を発電設備の建設現場へ運搬することができる。
【0029】
また、1つの風車ブレード3において隣接する第1及び第2ブレード部材6,7や第2及び第3ブレード部材7,8の間にそれぞれ接続部材9,10を内挿し、該接続部材9,10とブレード部材6〜8とが重なり合う部分の面積を十分に大きくするとともに、それらを略全周に亘って多数の締結部材11,11,…、13,13,…により結合しており、さらに、接続部材9,10に節部14を設けたことで、補強のための重量の増大を抑制しながら、風車Wの回転時に作用する遠心力や揚力等に対して十分な引っ張り、曲げ及び捻り強度を得ることができる。この結果、従来までのような支柱を用いる必要がなくなり、部品点数を減らして運搬や組立て作業を容易化できるとともに、風車Wの重量も低減できる。
【0030】
さらに、この実施形態では、作業者が内部空間に入ることのできる風車ブレード3基端側の第1分割部3bにおいて、ブレード部材6,7の周壁の厚肉部6a,7aと接続部材9の周壁とをボルト11aにより貫通してこれにナット11bを螺合締結し、一方、扁平形状で作業者が入れない先端側の第2分割部3cにおいては、長めのボルト13a,13a,…によりブレード部材6,7自体を厚み方向に貫通して、これにナット13bを螺合締結するようにしているので、現場での作業を極めて容易で且つ確実なものとすることができる。
【0031】
尚、前記風車ブレード3,3,…の接続部材9,10としては、図6に一例を示すように節部14のないものを用いてもよい。また、締結部材としてボルト及びナットを用いる必要はなく、同図に示すようにリベット15,15,…を用いることも可能である。
【0032】
また、風車ブレード3は、3つのブレード部材6〜8に分割する必要はなく、例えば2つのブレード部材に分割するようにしてもよいし、或いは4つ以上のブレード部材に分割するようにしてもよい。この点は以下の実施形態2、3においても同様である。
【0033】
(実施形態2)
図7は、本発明の実施形態2に係る風車ブレード3の分割部の構造を示す。尚、この風車ブレード3の全体的な構造は上述した実施形態1のものと同じであり、同一部材には同一の符号を付してその説明は省略する。そして、この実施形態2のものでは、前記実施形態1のような接続部材9,10は用いず、互いに隣接するブレード部材6〜8の長手方向の端部に、その周壁部から内方に向かって突出する環状のフランジ部16,16,…を設けて、これを風車ブレード3の長手方向に貫通するボルト17a及びナット17b(締結部材)により結合したものである。
【0034】
すなわち、前記図7に風車ブレード3の第1分割部3bについて示すように、第1ブレード部材6の先端側と第2ブレード部材7の基端側とには、それぞれ内方に向かって突出する環状のフランジ部16,16が形成されている。これらのフランジ部16は、その厚み、即ちブレード長手方向の寸法が周壁からの突出量に比べて大きく設定されている。そして、それらの両フランジ部16,16同士を風車ブレード3の長手方向に貫通するようにボルト17aが配設され、このボルト17aの先端側にナット17bが螺合締結されている。そのボルト17a及びナット17bは風車ブレード3の周方向に略等間隔を開けて略全周に亘って配設されている(図には断面に現れるもののみを示す)。
【0035】
したがって、この実施形態2に係る風車ブレード3の構造によれば、前記実施形態1のものと同様に、長尺状の風車ブレード3を複数の部材6〜8に分割して現場へ運搬することができる。また、各ブレード部材6〜8の端部に設けたフランジ部16,16同士を略全周に亘って多数の締結部材17,17,…により固定したことで、ブレード部材6〜8同士を確実に結合することができる。
【0036】
その際、前記フランジ部16を比較的、ブレード長手方向に長い形状として、これをブレード長手方向に貫通する締結部材17,17,…により結合したことで、風車ブレード3の長手方向への引っ張り荷重に対しては勿論、曲げ荷重や捻り荷重に対しても十分に高い強度が得られ、これにより、前記実施形態1のものと同様に支柱が不要になって、部品点数の削減や重量の低減が図られる。
【0037】
(実施形態3)
図8は、本発明の実施形態3に係る風車ブレード3の分割部の構造を示す。尚、この風車ブレード3の全体的な構造は上述した実施形態1、2のものと同じであり、同一部材には同一の符号を付してその説明は省略する。そして、この実施形態3のものでは、前記実施形態2のものと同様に接続部材9,10は用いずに、ブレード部材6,7の長手方向の一方の端部に設けた筒状の挿入部を隣接する他方のブレード部材7,8の端部に内挿して、それらをリベット15,15,…(締結部材)により結合したものである。
【0038】
すなわち、前記図8に風車ブレード3の第1分割部3bについて示すように、第1ブレード部材6の先端側と、隣り合う第2ブレード部材7の基端側とには、それぞれ厚肉部6a,7aが形成され、さらに、第1ブレード部材6の先端面には、その内周寄りの部位から第2ブレード部材7に向かって延びるように、筒状の挿入部18が形成されている。一方、第2ブレード部材7の厚肉部7aの内周側には、前記第1ブレード部材6の挿入部18が差し込まれるように肉盗み、即ち被挿入部19が形成されている。
【0039】
そして、前記第1ブレード部材6の挿入部18が第2ブレード部材7の被挿入部19に内挿され、さらに、それらを固定する多数のリベット15,15,…が風車ブレード3の略全周に亘って周方向に略等間隔を空けて配設されるとともに、このリベット15,15,…の列がブレード長手方向に2列、設けられている。尚、前記リベット15,15,…は、ブレード部材6,7の断面に現れるもののみを図示し、それ以外は図示省略する。また、締結部材としてリベット15,15,…の代わりにボルト、ナットを用いてもよいことは言うまでもない。
【0040】
したがって、この実施形態3に係る風車ブレード3の構造によれば、前記実施形態1、2のものと同様に、長尺状の風車ブレード3を複数の部材6〜8に分割して現場へ運搬することができるとともに、該各ブレード部材6〜8同士を支柱を用いることなく、十分亜強度でもって結合することができ、これにより、部品点数の削減や重量の低減が図られる。
【0041】
【発明の効果】
以上、説明したように、請求項1の発明に係る風力発電機の風車ブレード構造によると、風車ブレードをその長手方向に2以上のブレード部材に分割し、その分割部位において隣接するブレード部材同士に跨るように筒状の接続部材を内挿して、この接続部材とブレード部材とを風車ブレードの略全周に亘って締結部材により結合する構成としたことで、該ブレード部材を取り付けるための支柱が無くとも、風車の回転時に作用する遠心力や揚力等に対して十分な引っ張り、曲げ及び捻り強度を得ることができる。よって、部品点数を減らして運搬や現場での組立て作業を容易化できるとともに、風車の重量を低減できる。
【0042】
請求項2の発明によると、大型の風車ブレードをその中央よりも基端側で分割する場合には、現場での組み立ての際に作業者が内部空間に入ることができるから、ブレード部材及び接続部材をボルト、ナットによって容易且つ確実に結合することができる。従って、ボルトの長さを必要最小限度のものとすることで、重量の低減が図られる。
【0043】
請求項3の発明によると、風車ブレードの先端側の分割部位では、ボルトにより風車ブレード全体をその厚み方向に貫通し、その先端側にナットを螺合させるようにすることで、締結作業を容易に行うことができる。
【0044】
請求項4の発明によると、接続部材に節部を設けることで、長尺状の風車ブレードを竹のような構造として、軽量でありながら特に捻りに強いものとすることができる。
【0045】
また、請求項5の発明に係る風力発電機の風車ブレード構造によると、風車ブレードをその長手方向に2以上のブレード部材に分割し、その分割部位において隣接するブレード部材の端部にそれぞれブレード長手方向に長いフランジ部を形成して、それらをブレード長手方向に貫通する締結部材により略全周に亘って結合する構成としたことで、前記請求項1の発明と同様の効果が得られる。
【0046】
さらに、請求項6の発明に係る風力発電機の風車ブレード構造によると、風車ブレードをその長手方向に2以上のブレード部材に分割し、その分割部位において隣接するブレード部材の一方の端部にブレード長手方向に長い筒状の挿入部を形成し、これを他方のブレード部材の端部に内挿してそれらを締結部材により略全周に亘って結合する構成としたことで、前記請求項1や請求項5の発明と同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る風力発電機の風車の外観を示す正面図(a)及び側面図(b)である。
【図2】実施形態1の風車ブレードの構造を示す斜視図である。
【図3】実施形態1の風車ブレードの構造を示す上面図(a)及び正面図(b)である。
【図4】風車ブレードの基端側の分割部の構成を示す拡大断面図である。
【図5】風車ブレードの先端側の分割部に係る図4相当図である。
【図6】締結部材としてリベットを用いた変形例に係る図4相当図である。
【図7】実施形態2に係る図4相当図である。
【図8】実施形態3に係る図4相当図である。
【符号の説明】
W      風車
2       回転軸
3       風車ブレード
6,7,8  ブレード部材
9、10   接続部材
11a,13a,17a   ボルト(締結部材)
11b,13b,17b   ナット(締結部材)
14     接続部材の節部
15     リベット(締結部材)
16     フランジ部
18     挿入部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wind turbine blade of a wind power generator, and particularly to a technical field of a structure in which a large hollow blade is divided into a plurality of members in a longitudinal direction.
[0002]
[Prior art]
Conventionally, as this type of windmill blade, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-64941, a plurality of columns are erected so as to extend radially from the rotation axis of the windmill. There is known a configuration in which a plurality of divided blades are sequentially stacked from a base end side, and finally fixed at a distal end side of a support column with a nut. In this product, a long windmill blade with a length of 20 m or more is manufactured by dividing it into multiple members, and transporting it to the site to assemble it, which hinders transportation even under Japanese traffic regulations. Never come.
[0003]
[Problems to be solved by the invention]
By the way, in recent years, wind power has come into the spotlight again as clean energy that does not emit CO2, and the capacity of wind power generators in Japan has been steadily increasing. That is, in the conventional example, the power generation capacity of the wind power generator is approximately 400 to 500 kilowatts, and the diameter of the wind turbine is only about 40 to 50 m. Many are over one megawatt, some approaching five megawatts.
[0004]
In such a high-capacity power generation facility, the diameter of a windmill exceeds 100 m, and the length of one windmill blade is about 50 m. In the case of such a large wind turbine blade, it is preferable to secure the required structural strength only with the blade member, and the use of the pillar as in the conventional example merely causes an increase in the number of parts and an increase in weight. It becomes.
[0005]
The present invention has been made in view of such a point, and an object thereof is to devise a structure of a wind turbine blade used for a large-sized wind power generator and divide the wind turbine blade in a longitudinal direction. In the case of a structure, the object is to secure sufficient strength only by the blade member without using a pillar as in the related art.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to a first solution of the present invention, a tubular connecting member is inserted so as to straddle adjacent blade members at a divided portion of a wind turbine blade, and the connecting member and the blade member are separated. The wind turbine blades are configured to be connected by a fastening member over substantially the entire circumference.
[0007]
That is, the invention of claim 1 of the present application is directed to a structure of a plurality of wind turbine blades attached so as to extend in a radial direction with respect to a rotation axis of a wind turbine of a wind power generator. Each of the wind turbine blades is formed in a hollow shape that is long in the radial direction of the wind turbine, and is divided into two or more blade members in the longitudinal direction. A connection member having a shape of a circle is inserted therein, and the connection member and the blade member are connected by a plurality of fastening members over substantially the entire circumference of the windmill blade.
[0008]
With the above configuration, the hollow wind turbine blade can be divided into two or more blade members in the longitudinal direction, so that a long blade having a length of about 50 m can be divided into members having a length of 25 m or less. This allows transportation of the power generation equipment to the construction site. In addition, a cylindrical connecting member is provided so as to straddle adjacent blade members, and the connecting member and the blade member are joined by a number of fastening members over substantially the entire circumference, thereby acting when the windmill rotates. Since sufficient pulling, bending and torsional strength against centrifugal force and lift force can be obtained, there is no need to use a column as in the conventional example (Japanese Patent Application Laid-Open No. 2000-64941), and the number of parts is reduced, and , And the weight of the windmill can be reduced.
[0009]
In the windmill blade as described above, it is preferable that the connecting member has a dimension in the longitudinal direction of the windmill blade larger than at least a dimension in the thickness direction. With this configuration, the overlapping portion between the blade member and the connection member becomes sufficiently large in the longitudinal direction of the wind turbine blade, so that sufficient strength against bending and twisting can be obtained without increasing the weight of the wind turbine blade. Can be
[0010]
In the case where the wind turbine blade is divided on the base end side from the center position in the longitudinal direction, as a fastening member, a bolt penetrating therethrough from any one of the blade member and the connection member, and the blade member or the connection member It is preferable to use a nut arranged on the other side of the member and screwed to the tip end side of the bolt (the invention of claim 2).
[0011]
That is, in general, the wind turbine blade has a flat blade cross section on the tip side, while the cross section gradually approaches a circular shape toward the base end side. An operator can easily enter the internal space at the division at the base end side of the longitudinal center position during assembly. Therefore, if the blade member and the connection member are configured to be fastened with bolts and nuts, work on site can be performed easily and reliably. In addition, the length of the bolt may be set to the minimum necessary length, so that the weight can be reduced.
[0012]
On the other hand, when the wind turbine blade is divided at the distal end side from the center position in the longitudinal direction, as a fastening member, a bolt that penetrates the wind turbine blade from one side in the thickness direction to the other side, and a nut that is screwed to the bolt. (Invention of claim 3). In this case, the blade member and the connection member can be easily connected to each other even at the tip end portion of the blade, which has a flat cross section and does not allow an operator to enter the inside.
[0013]
Further, it is preferable that the connection member is provided with a node portion so as to partition the internal space of the wind turbine blade in the longitudinal direction (the invention of claim 5). In this case, the long windmill blade has a structure having a knot like a bamboo, and is particularly lightweight but resistant to twisting.
[0014]
Next, in a second solution of the present invention, at the divided portion of the wind turbine blade, an end portion of the adjacent blade member is provided with a flange portion having a long shape in the longitudinal direction of the blade protruding inward. A configuration is adopted in which the members are superimposed and joined over substantially the entire circumference by a fastening member that penetrates them in the blade longitudinal direction.
[0015]
That is, the invention of claim 5 of the present application is directed to the same structure of the wind turbine blade as the invention of claim 1, wherein each of the wind turbine blades has a hollow shape that is long in the radial direction of the wind turbine and two or more wind turbine blades are formed in the longitudinal direction. Divided into blade members. Then, annular flanges projecting inward from the peripheral wall are formed at the ends of the adjacent blade members at the divided portions, and the thickness of the flanges is set to be larger than the amount of projection, and The joined annular portions are connected over substantially the entire circumference of the wind turbine blade by a plurality of fastening members penetrating in the longitudinal direction of the wind turbine blade.
[0016]
With this configuration, similarly to the first aspect of the present invention, the long windmill blade can be divided into a plurality of members and transported to the site. In addition, the flange members provided at the ends of the blade members are fastened and fixed by a plurality of fastening members over substantially the entire circumference, so that the blade members can be securely connected to each other. Moreover, the flange portion is elongated in the blade longitudinal direction, and is fixed by a fastening member penetrating in the blade longitudinal direction, so that not only the tensile strength in the blade longitudinal direction but also the bending and torsional strength are increased, whereby Since the support can be eliminated as in the first aspect of the present invention, the number of parts and the weight can be reduced.
[0017]
According to a third solution of the present invention, a cylindrical insertion portion that is long in the blade longitudinal direction is formed at one end of an adjacent blade member at a divided portion of a wind turbine blade, and this is inserted into the end of the other blade member. In this case, they are inserted into the parts, and they are connected over substantially the entire circumference by fastening members.
[0018]
That is, the invention of claim 6 of the present application is directed to the same structure of the wind turbine blade as that of the invention of claim 1 or 5, wherein each wind turbine blade has a hollow shape which is long in the radial direction of the wind turbine and its longitudinal direction. Into two or more blade members. Then, at one end of the adjacent blade member at the divided portion, a cylindrical insertion portion to be inserted into the end of the other blade member is formed, and the dimension of the insertion portion in the blade longitudinal direction is set in the blade thickness direction. Is set to be larger than the dimension of the wind turbine blade, and the insertion portion and the end of the adjacent blade member are connected by a plurality of fastening members over substantially the entire circumference of the wind turbine blade.
[0019]
With this configuration, similarly to the first and fifth aspects of the present invention, the long windmill blade can be divided into a plurality of members and transported to the site. Also, by inserting a cylindrical insertion portion provided at one end of the blade member into an end of an adjacent blade member and fixing the plurality of fastening members over substantially the entire circumference, the blade members are connected to each other. It can be securely connected. Moreover, since the insertion portion is elongated in the longitudinal direction of the blade, the bending and torsional strength can be particularly increased. Further, if the fastening members are arranged in two or more rows in the longitudinal direction of the windmill blade, the blade becomes The tensile strength in the longitudinal direction can also be increased. Therefore, the same functions and effects as those of the first and fifth aspects are obtained.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 shows the appearance of a wind turbine W of a wind power generator according to the present invention. The wind turbine W is disposed at the uppermost part of a steel tower 1 extending to a height of, for example, 70 m or more from the ground, and a plurality of wind turbines W extend in a radial direction with respect to a rotating shaft 2 connected to a generator (not shown). In this example, three wind turbine blades 3, 3, and 3 are attached. That is, at the uppermost part of the steel tower 1, a housing 4 for housing a generator is disposed, and the rotating shaft 2 penetrating the front wall of the housing 4 is rotatably supported by a bearing (not shown). At the same time, the end of the rotating shaft 2 is connected to the input shaft of the generator so as to rotate integrally.
[0022]
The wind turbine blades 3, 3,... Are formed of, for example, a fiber reinforced resin (FRP) or the like, and each have a length of about 50 m as shown in FIG. Each of the wind turbine blades 3 is hollow, and has a substantially wing cross-sectional shape except that a cylindrical portion 3a coupled to the rotating shaft 2 of the wind turbine W is formed at a base end thereof. The blade has a flat wing cross-sectional shape, and the width and thickness of the blade gradually increase from the wing toward the base end side, resulting in a cross-sectional shape similar to a circular almond. Specifically, as shown in FIG. 3 (a), the width of the wind turbine blade 3 is maximum at a position slightly distal to the cylindrical portion 3a at the base end, and gradually decreases from there toward the distal end. As shown in FIG. 3B, the thickness of the wind turbine blade 3 increases substantially uniformly from the distal end to the proximal end.
[0023]
Further, as a characteristic portion of the present invention, the wind turbine blade 3 is divided into first to third three blade members 6, 7, 8 in the longitudinal direction (hereinafter also referred to as blade longitudinal direction) in order from the base end side. And the first and second blade members 6, 7 are connected by a first connection member 9 inserted so as to straddle between them, and similarly, the second and third blade members 7, 8 are connected by a second connection member. They are connected by a member 10. More specifically, as shown in FIG. 4, the thickness of the peripheral wall portion is increased on the distal end side of the first blade member 6 and on the proximal end side of the second blade member 7, as shown in FIG. The thick portions 6a and 7a are formed, and a cylindrical first connection member 9 is inserted into the inner peripheral side of the thick portions 6a and 7a. One side (the right side in the figure) of the connecting member 9 and the thick portion 7a of the second blade member 7 are joined by a number of fastening members 11, 11,... Similarly, the other side (left side in the figure) of the connection member 9 and the thick portion 6a of the first blade member 6 are arranged in parallel with each other over substantially the entire circumference in the circumferential direction. (Only those appearing in the cross section are shown in the figure).
[0024]
Each of the fastening members 11 penetrates through the thick portions 6a, 7a of the blade members 6, 7 from the outer peripheral side of the blade members 6, 7, and further penetrates the peripheral wall of the connecting member 9, and the distal end side is connected to the connecting member 9 And a nut 11b disposed inside the connecting member 9 and screwed to the tip side of the bolt 11a. That is, in the case of a large windmill blade 3 as in this embodiment, the sectional shape of the base-side divided portion 3b is an almond-like shape close to a circle. Therefore, the nut 11b located inside the connection member 9 can be firmly fixed, and the fastening operation can be performed easily and reliably. For this reason, the length of the bolt 11a can be reduced to a necessary minimum, and the weight can be reduced. The base end of each bolt 11a is housed in a circular recess 12 formed on the outer periphery of the blade members 6, 7.
[0025]
On the other hand, in the second divided portion 3c on the distal end side shown in FIG. 5, on the inner peripheral side of the thick portions 7b and 8a of the second blade member 7 and the third blade member 8 which are continuous similarly to the first divided portion 3b. , A cylindrical second connecting member 10 is inserted therein, and the second connecting member 10 and the thick portions 7b, 8a are connected by fastening members 13, 13,..., Ie, bolts 13a and nuts 13b. I have. However, the blade members 7 and 8 have a considerably flat shape in the second division 3c on the distal end side, and it is difficult for an operator to enter the internal space of the wind turbine blade 3 here. Therefore, each bolt 13a is penetrated from one side (upper side in the figure) to the other side (lower side in the figure) in the thickness direction of the blade members 7 and 8, and the nut 13b is screwed. Also, the fastening operation can be easily performed even on the tip end side of the windmill blade 3 where no worker can enter. Note that the base end of each bolt 13a and the nut 13b are housed in circular recesses 12, 12,... Formed on the outer periphery of the blade members 7, 8, respectively.
[0026]
Further, in each of the connection members 9 and 10, the length L in the longitudinal direction of the wind turbine blade 3 is larger than the dimension D in the thickness direction thereof, and the internal space of the wind turbine blade 3 is provided substantially at the center in the longitudinal direction. Are provided in such a manner as to partition the longitudinal direction. By using the connecting members 9 and 10 having a sufficient length in the longitudinal direction of the wind turbine blade 3 in such a manner, the blade members 6, 7, and 8 and the connecting members 9 and 10 are separated at the divided portions 3b and 3c of the wind turbine blade 3. The area of the overlapped portion becomes large, which makes it possible to obtain a large bonding strength while suppressing an increase in weight for reinforcement. In addition, since the long windmill blade 3 has a structure having a knot in the middle like bamboo, the windmill blade 3 is particularly lightweight but resistant to twisting.
[0027]
As shown in FIGS. 4 and 5, an annular convex portion is formed on one of the end surfaces of the adjacent blade members 6, 7, and 8, and the other has a shape corresponding to the convex portion. Recesses are formed so that they fit together.
[0028]
Therefore, according to the structure of the wind turbine blade 3 according to this embodiment, first, the hollow wind turbine blades 3, 3, ... used for the large wind turbine W for the wind power generator are divided into three blade members in the longitudinal direction. By being able to be divided into 6 to 8, the long blade 3 having a length of about 50 m can be divided into members having a length of about 20 m. To the construction site.
[0029]
In addition, connecting members 9 and 10 are inserted between the first and second blade members 6 and 7 and the second and third blade members 7 and 8 adjacent to each other in one wind turbine blade 3, and the connecting members 9 and 10 are inserted. And the blade members 6 to 8 have a sufficiently large area where they overlap with each other, and are joined by a number of fastening members 11, 11, ..., 13, 13, ... over substantially the entire circumference. By providing the joints 14 on the connecting members 9 and 10, sufficient tensile, bending and torsional strength against centrifugal force and lift acting upon rotation of the windmill W while suppressing an increase in weight for reinforcement. Can be obtained. As a result, it is not necessary to use a column as in the related art, so that the number of components can be reduced, transportation and assembly work can be facilitated, and the weight of the windmill W can be reduced.
[0030]
Furthermore, in this embodiment, the thick portions 6a and 7a of the peripheral walls of the blade members 6 and 7 and the connecting member 9 are formed in the first divided portion 3b on the base end side of the wind turbine blade 3 where the operator can enter the internal space. The nut 11b is screwed and fastened to the peripheral wall with a bolt 11a, and the second divided portion 3c on the distal end side, which is flat and does not allow an operator to enter, is bladed with longer bolts 13a, 13a,. Since the nuts 13b are threadedly fastened to the members 6 and 7 themselves in the thickness direction, work on site can be made extremely easy and reliable.
[0031]
Incidentally, as the connecting members 9, 10 of the wind turbine blades 3, 3,..., Those having no nodes 14 may be used as shown in an example in FIG. It is not necessary to use bolts and nuts as fastening members, and rivets 15, 15,... Can be used as shown in FIG.
[0032]
Further, the wind turbine blade 3 does not need to be divided into three blade members 6 to 8, and may be divided into, for example, two blade members, or may be divided into four or more blade members. Good. This point is the same in the following second and third embodiments.
[0033]
(Embodiment 2)
FIG. 7 shows a structure of a divided portion of the wind turbine blade 3 according to the second embodiment of the present invention. The overall structure of the wind turbine blade 3 is the same as that of the above-described first embodiment, and the same members are denoted by the same reference numerals and description thereof will be omitted. In the second embodiment, the connecting members 9 and 10 as in the first embodiment are not used, and the blade members 6 to 8 which are adjacent to each other are provided with the ends in the longitudinal direction inward from the peripheral wall portions. Are provided, and are connected by bolts 17a and nuts 17b (fastening members) penetrating in the longitudinal direction of the wind turbine blade 3.
[0034]
That is, as shown in FIG. 7 for the first divided portion 3b of the wind turbine blade 3, the distal end side of the first blade member 6 and the proximal end side of the second blade member 7 protrude inward, respectively. Annular flange portions 16 are formed. The thickness of these flange portions 16, that is, the dimension in the blade longitudinal direction, is set to be larger than the amount of protrusion from the peripheral wall. A bolt 17a is provided so as to penetrate both flange portions 16, 16 in the longitudinal direction of the wind turbine blade 3, and a nut 17b is screwed and fastened to a tip end of the bolt 17a. The bolts 17a and the nuts 17b are arranged at substantially equal intervals in the circumferential direction of the wind turbine blade 3 and over substantially the entire circumference (only those appearing in the cross section are shown in the figure).
[0035]
Therefore, according to the structure of the windmill blade 3 according to the second embodiment, similarly to the first embodiment, the long windmill blade 3 is divided into a plurality of members 6 to 8 and transported to the site. Can be. In addition, the flange members 16, 16 provided at the ends of the blade members 6 to 8 are fixed to each other over a substantially entire circumference by a large number of fastening members 17, 17,. Can be combined.
[0036]
At this time, the flange portion 16 has a relatively long shape in the longitudinal direction of the blade, and is connected by fastening members 17, 17,... Penetrating in the longitudinal direction of the blade. Of course, a sufficiently high strength against bending load and torsion load can be obtained, thereby eliminating the necessity of a support as in the first embodiment, reducing the number of parts and weight. Is achieved.
[0037]
(Embodiment 3)
FIG. 8 shows a structure of a divided portion of the wind turbine blade 3 according to the third embodiment of the present invention. Note that the overall structure of the wind turbine blade 3 is the same as that of the first and second embodiments, and the same members are denoted by the same reference numerals and description thereof will be omitted. In the third embodiment, a cylindrical insertion portion provided at one end in the longitudinal direction of the blade members 6, 7 without using the connection members 9, 10 as in the second embodiment. Are inserted into the ends of the other adjacent blade members 7, 8 and they are connected by rivets 15, 15,... (Fastening members).
[0038]
That is, as shown for the first divided portion 3b of the wind turbine blade 3 in FIG. 8, a thick portion 6a is provided on the distal end side of the first blade member 6 and on the proximal end side of the adjacent second blade member 7, respectively. , 7a are formed, and a cylindrical insertion portion 18 is formed on the distal end surface of the first blade member 6 so as to extend toward a second blade member 7 from a portion near the inner periphery thereof. On the other hand, on the inner peripheral side of the thick portion 7a of the second blade member 7, a steal, that is, an inserted portion 19 is formed so that the insertion portion 18 of the first blade member 6 is inserted.
[0039]
The insertion portion 18 of the first blade member 6 is inserted into the insertion portion 19 of the second blade member 7, and a number of rivets 15, 15,. Are arranged at substantially equal intervals in the circumferential direction, and two rows of the rivets 15, 15,... Are provided in the longitudinal direction of the blade. The rivets 15, 15,... Only show those appearing in the cross section of the blade members 6, 7, and the other rivets are not shown. Needless to say, bolts and nuts may be used instead of the rivets 15, 15,... As the fastening members.
[0040]
Therefore, according to the structure of the wind turbine blade 3 according to the third embodiment, similarly to the first and second embodiments, the long wind turbine blade 3 is divided into a plurality of members 6 to 8 and transported to the site. In addition, the blade members 6 to 8 can be connected to each other with sufficient sub-strength without using columns, thereby reducing the number of parts and weight.
[0041]
【The invention's effect】
As described above, according to the wind turbine blade structure of the wind power generator according to the first aspect of the present invention, the wind turbine blade is divided into two or more blade members in the longitudinal direction, and adjacent blade members are divided at the divided portion. By inserting a cylindrical connecting member so as to straddle and connecting the connecting member and the blade member with a fastening member over substantially the entire circumference of the windmill blade, a support for attaching the blade member is provided. Even without this, it is possible to obtain sufficient tensile, bending and torsional strength against centrifugal force, lift, and the like that act when the windmill rotates. Therefore, the number of parts can be reduced to facilitate transportation and assembly work on site, and the weight of the windmill can be reduced.
[0042]
According to the invention of claim 2, when the large wind turbine blade is divided at the base end side from the center thereof, an operator can enter the internal space at the time of assembling at the site, so that the blade member and the connection The members can be easily and reliably connected by bolts and nuts. Therefore, the weight can be reduced by minimizing the length of the bolt.
[0043]
According to the third aspect of the present invention, at the divided portion on the front end side of the wind turbine blade, the entirety of the wind turbine blade is penetrated in the thickness direction by a bolt, and a nut is screwed onto the front end side, thereby facilitating the fastening operation. Can be done.
[0044]
According to the fourth aspect of the present invention, by providing the connecting member with the node, the long windmill blade can be made to have a structure like bamboo, and can be made lightweight and particularly resistant to twisting.
[0045]
Further, according to the wind turbine blade structure of the wind power generator according to the invention of claim 5, the wind turbine blade is divided into two or more blade members in the longitudinal direction, and each of the divided portions is provided at the end of the adjacent blade member. The same effect as the first aspect of the present invention can be obtained by forming a flange portion that is long in the direction and connecting them over substantially the entire circumference by a fastening member penetrating in the blade longitudinal direction.
[0046]
Furthermore, according to the wind turbine blade structure of the wind power generator according to the invention of claim 6, the wind turbine blade is divided into two or more blade members in the longitudinal direction, and a blade is provided at one end of an adjacent blade member at the divided portion. By forming a cylindrical insertion portion that is long in the longitudinal direction, inserting the insertion portion into the end of the other blade member, and connecting them over substantially the entire circumference by a fastening member, The same effect as that of the fifth aspect is obtained.
[Brief description of the drawings]
FIG. 1 is a front view (a) and a side view (b) showing the appearance of a wind turbine of a wind power generator according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a structure of a wind turbine blade according to the first embodiment.
3A and 3B are a top view and a front view, respectively, showing the structure of the wind turbine blade according to the first embodiment.
FIG. 4 is an enlarged cross-sectional view showing a configuration of a divided portion on a proximal end side of a wind turbine blade.
FIG. 5 is a diagram corresponding to FIG. 4 relating to a split portion on the tip end side of a wind turbine blade.
FIG. 6 is a diagram corresponding to FIG. 4 according to a modification using rivets as fastening members.
FIG. 7 is a diagram corresponding to FIG. 4 according to the second embodiment.
FIG. 8 is a diagram corresponding to FIG. 4 according to the third embodiment.
[Explanation of symbols]
W Windmill 2 Rotary shaft 3 Windmill blades 6, 7, 8 Blade members 9, 10 Connection members 11a, 13a, 17a Bolts (fastening members)
11b, 13b, 17b Nut (fastening member)
14 Knot of connection member 15 Rivet (fastening member)
16 Flange part 18 Insertion part

Claims (6)

風力発電機の風車の回転軸に対してそれぞれ径方向に延びるように取り付けられる複数枚の風車ブレードの構造であって、
前記各風車ブレードは、それぞれ、風車の径方向に長い中空状のものであり、且つその長手方向に2つ以上のブレード部材に分割され、
前記風車ブレードの分割部位において隣接するブレード部材同士に跨るように筒状の接続部材が内挿され、
前記接続部材とブレード部材とが風車ブレードの略全周に亘って複数の締結部材により結合されてなることを特徴とする風力発電機の風車ブレード構造。
It is a structure of a plurality of wind turbine blades attached to extend in the radial direction with respect to the rotation axis of the wind turbine of the wind generator,
Each of the windmill blades is a hollow shape that is long in the radial direction of the windmill, and is divided into two or more blade members in the longitudinal direction,
A tubular connecting member is inserted so as to straddle adjacent blade members in the divided portion of the wind turbine blade,
A wind turbine blade structure for a wind power generator, wherein the connecting member and the blade member are joined by a plurality of fastening members over substantially the entire circumference of the wind turbine blade.
請求項1において、
風車ブレードは、少なくとも長手方向の中央位置よりも基端側で分割され、
締結部材は、それぞれ、ブレード部材又は接続部材の何れか一側からそれらを貫通するボルトと、該ブレード部材又は接続部材の他側に配設されて前記ボルトの先端側に螺合するナットとからなることを特徴とする風力発電機の風車ブレード構造。
In claim 1,
The wind turbine blade is divided at least on the proximal side from the central position in the longitudinal direction,
Each of the fastening members includes a bolt that penetrates the blade member or the connection member from one side thereof, and a nut that is disposed on the other side of the blade member or the connection member and that is screwed to a tip side of the bolt. A wind turbine blade structure for a wind power generator.
請求項1において、
風車ブレードは、少なくとも長手方向の中央位置よりも先端側で分割され、
締結部材は、それぞれ、前記風車ブレードをその厚み方向の一側から他側まで貫通するボルトと、このボルトに螺合するナットとからなることを特徴とする風力発電機の風車ブレード構造。
In claim 1,
The wind turbine blade is divided at least on the tip side from the central position in the longitudinal direction,
The fastening member comprises a bolt penetrating the wind turbine blade from one side to the other side in a thickness direction of the wind turbine blade and a nut screwed to the bolt, and a wind turbine blade structure of a wind power generator.
請求項1〜3のいずれか1つにおいて、
接続部材には、風車ブレードの内部空間を長手方向に区画するように節部が設けられていることを特徴とする風力発電機の風車ブレード構造。
In any one of claims 1 to 3,
The connection member is provided with a node so as to partition an internal space of the wind turbine blade in a longitudinal direction, wherein the wind turbine blade structure of a wind power generator is provided.
風力発電機の風車の回転軸に対してそれぞれ径方向に延びるように取り付けられる複数枚の風車ブレードの構造であって、
前記各風車ブレードは、それぞれ、風車の径方向に長い中空状のものであり、且つその長手方向に2つ以上のブレード部材に分割され、
前記風車ブレードの分割部位において隣接するブレード部材の端部には、それぞれ周壁部から内方に向かって突出する環状のフランジ部が形成され、
前記フランジ部の厚みがその突出量よりも大きく設定され、
互いに接合された前記フランジ部同士がそれらを風車ブレードの長手方向に貫通し且つ該風車ブレードの略全周に亘るように設けられた複数の締結部材により結合されてなることを特徴とする風力発電機の風車ブレード構造。
It is a structure of a plurality of wind turbine blades attached to extend in the radial direction with respect to the rotation axis of the wind turbine of the wind generator,
Each of the windmill blades is a hollow shape that is long in the radial direction of the windmill, and is divided into two or more blade members in the longitudinal direction,
At the end of the blade member adjacent to the divided portion of the wind turbine blade, an annular flange portion is formed to protrude inward from the peripheral wall portion, respectively.
The thickness of the flange portion is set to be larger than the protrusion amount,
A wind power generator, wherein the flange portions joined to each other penetrate them in the longitudinal direction of the wind turbine blade and are connected by a plurality of fastening members provided substantially over the entire circumference of the wind turbine blade. Machine windmill blade structure.
風力発電機の風車の回転軸に対してそれぞれ径方向に延びるように取り付けられる複数枚の風車ブレードの構造であって、
前記各風車ブレードは、それぞれ、風車の径方向に長い中空状のものであり、且つその長手方向に2つ以上のブレード部材に分割され、
前記風車ブレードの分割部位において隣接するブレード部材の一方の端部には、他方のブレード部材の端部に内挿される筒状の挿入部が形成され、
前記挿入部のブレード長手方向の寸法がブレード厚み方向の寸法よりも大きく設定され、
前記ブレード部材の挿入部と隣接するブレード部材の端部とが、風車ブレードの略全周に亘って複数の締結部材により結合されてなることを特徴とする風力発電機の風車ブレード構造。
It is a structure of a plurality of wind turbine blades attached to extend in the radial direction with respect to the rotation axis of the wind turbine of the wind generator,
Each of the windmill blades is a hollow shape that is long in the radial direction of the windmill, and is divided into two or more blade members in the longitudinal direction,
At one end of the adjacent blade member at the divided portion of the wind turbine blade, a cylindrical insertion portion inserted into the end of the other blade member is formed,
The dimension in the blade longitudinal direction of the insertion portion is set to be larger than the dimension in the blade thickness direction,
A wind turbine blade structure for a wind power generator, wherein an insertion portion of the blade member and an end of the adjacent blade member are joined by a plurality of fastening members over substantially the entire circumference of the wind turbine blade.
JP2002170380A 2002-06-11 2002-06-11 Wind mill blade structure for wind power generator Pending JP2004011616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170380A JP2004011616A (en) 2002-06-11 2002-06-11 Wind mill blade structure for wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170380A JP2004011616A (en) 2002-06-11 2002-06-11 Wind mill blade structure for wind power generator

Publications (1)

Publication Number Publication Date
JP2004011616A true JP2004011616A (en) 2004-01-15

Family

ID=30436666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170380A Pending JP2004011616A (en) 2002-06-11 2002-06-11 Wind mill blade structure for wind power generator

Country Status (1)

Country Link
JP (1) JP2004011616A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147086A (en) * 2003-11-19 2005-06-09 Fuji Heavy Ind Ltd Blade of horizontal axis wind mill
WO2005100781A1 (en) * 2004-04-07 2005-10-27 Gamesa Eólica, S.A., Sociedad Unipersonal Wind turbine blade
WO2006002621A1 (en) * 2004-06-30 2006-01-12 Vestas Wind Systems A/S Wind turbine blades made of two separate sections, and method of assembly
WO2006056584A1 (en) * 2004-11-24 2006-06-01 Siemens Aktiengesellschaft Method and connecting piece for assembling windmill blade sections
WO2006103307A3 (en) * 2005-03-31 2006-11-30 Gamesa Corporacion Technologic Blade for wind-power generators
JP2006329109A (en) * 2005-05-27 2006-12-07 Fuji Heavy Ind Ltd Blade of horizontal shaft windmill
EP1827973A2 (en) * 2004-11-18 2007-09-05 Sikorsky Aircraft Corporation Mission replaceable rotor blade tip section
WO2008084126A1 (en) * 2007-01-08 2008-07-17 Guillermo Petri Larrea Reversible system for sectioning wind generator blades in several parts
EP1950414A2 (en) 2007-01-23 2008-07-30 Fuji Jukogyo Kabushiki Kaisha Separable blade for wind turbine
KR100915381B1 (en) * 2008-09-23 2009-09-03 삼우플랜트(주) Wind power generator
WO2010023299A2 (en) * 2008-08-31 2010-03-04 Vestas Wind Systems A/S A sectional blade
WO2010026903A1 (en) 2008-09-04 2010-03-11 三菱重工業株式会社 Wind wheel blade
ES2337645A1 (en) * 2007-09-14 2010-04-27 GAMESA INNOVATION &amp; TECHNOLOGY, S.L. Flange joint for blade sections of a wind turbine with load sensor on the bolts
CN101749181A (en) * 2008-12-12 2010-06-23 通用电气公司 Turbine blade and method of fabricating the same
ES2343712A1 (en) * 2007-05-03 2010-08-06 Manuel Torres Martinez Divided wind turbine on tramos and manufacturing process of the same (Machine-translation by Google Translate, not legally binding)
WO2010118517A1 (en) * 2009-04-13 2010-10-21 1066626 Ontario Ltd. Wind turbine blade and method of constructing same
CN101941267A (en) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 Macromolecular composite vane for vertical shaft windmill with rated power of below 300KW
CN101943106A (en) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 High-molecular composite blade for 500KW-below three-blade wind turbine
JP2011510208A (en) * 2008-01-14 2011-03-31 クリッパー・ウィンドパワー・インコーポレーテッド Modular rotor blade for power generation turbine and method of assembling a power generation turbine with modular rotor blade
US20110081247A1 (en) * 2009-10-01 2011-04-07 Vestas Wind Systems A/S Wind Turbine Blade
US20110091326A1 (en) * 2008-05-07 2011-04-21 Vestas Wind Systems A/S Sectional Blade
US20110123343A1 (en) * 2009-11-24 2011-05-26 Ronner David E Wind turbine blade and methods, apparatus and materials for fabrication in the field
US7997874B2 (en) * 2010-08-19 2011-08-16 General Electric Company Wind turbine rotor blade joint
ES2364258A1 (en) * 2008-03-05 2011-08-30 Manuel Torres Martinez System for connecting wind generator blade sections
CN102192110A (en) * 2011-06-12 2011-09-21 中国科学院工程热物理研究所 Subsection blade of wind turbine and assembling method thereof
CN102312798A (en) * 2011-07-22 2012-01-11 上海庆华蜂巢建材有限公司 Full honeycomb board wind power generator wind wheel blade
JP4880749B2 (en) * 2006-05-11 2012-02-22 アロイス・ヴォベン Rotor blade for wind power equipment
US20120100002A1 (en) * 2010-10-22 2012-04-26 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade
CN102518568A (en) * 2011-12-27 2012-06-27 东方电气集团东方汽轮机有限公司 Wind power sectional-type blade
CN102606419A (en) * 2012-04-16 2012-07-25 国电联合动力技术有限公司 Sectional type wind wheel blade and connection mechanism and mounting method thereof
ES2385516A1 (en) * 2008-06-27 2012-07-26 Gamesa Innovation & Technology, S.L. Wind turbine blade insert
CN102678694A (en) * 2012-06-06 2012-09-19 国电联合动力技术有限公司 Flange-free connection mode and implementation method for barrel-type tower frame of large size wind turbine
WO2012156547A1 (en) 2011-05-13 2012-11-22 Investigaciones Y Desarrollos Eolicos, S.L. System for joining component portions of wind‑turbine blades
ES2392301A1 (en) * 2008-11-18 2012-12-07 Gamesa Innovation & Technology, Sl Mechanism and method of unión between inserts. (Machine-translation by Google Translate, not legally binding)
KR101243497B1 (en) 2011-04-08 2013-03-13 인하대학교 산학협력단 Turbine blade in kid form and assembly method
CN103470456A (en) * 2013-09-23 2013-12-25 华北电力大学(保定) Sectional wind power generation blade with interchangeability
CN103603777A (en) * 2013-11-28 2014-02-26 江西洪都航空工业集团有限责任公司 Segmented fan blade
WO2014125645A1 (en) * 2013-02-18 2014-08-21 三菱重工業株式会社 Windmill blade and method for manufacturing same
JP2015500420A (en) * 2011-12-08 2015-01-05 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Rotor blade and connecting device
US20150132137A1 (en) * 2012-04-20 2015-05-14 Airbus Defence And Space Sas Assembly of sections of structural parts
KR101541067B1 (en) 2013-12-04 2015-08-03 삼성중공업 주식회사 Blade for wind turbine
DK178291B1 (en) * 2005-07-29 2015-11-09 Gen Electric Passive load-reducing blades in several pieces and wind turbines using the same
JP5941174B1 (en) * 2015-02-03 2016-06-29 株式会社日立製作所 Wind power generator
US9388789B2 (en) 2009-12-02 2016-07-12 Vestas Wind Systems A/S Sectional wind turbine blade
JP2017110519A (en) * 2015-10-02 2017-06-22 ザ・ボーイング・カンパニーThe Boeing Company Induction consolidation for wind turbine blade fabrication
WO2019228906A1 (en) * 2018-05-29 2019-12-05 Wobben Properties Gmbh Wind power plant rotor blade
US10578077B2 (en) 2014-04-07 2020-03-03 Wobben Properties Gmbh Rotor blade for a wind turbine
CN111692050A (en) * 2020-07-01 2020-09-22 上海电气风电集团股份有限公司 Connecting assembly and fan blade comprising same
US10801469B2 (en) 2017-11-07 2020-10-13 General Electric Company Wind blade joints with floating connectors
KR102238219B1 (en) * 2019-12-19 2021-04-09 정성호 Stacked wind turbines for maximum wind induction
CN113323797A (en) * 2021-08-03 2021-08-31 常州市宏发纵横新材料科技股份有限公司 Modularized wind power blade
CN113339190A (en) * 2021-08-04 2021-09-03 常州市宏发纵横新材料科技股份有限公司 High-strength connecting structure and sectional type wind power blade
CN113685310A (en) * 2021-09-27 2021-11-23 常州市宏发纵横新材料科技股份有限公司 Plug-in type composite material sectional type blade
CN113700599A (en) * 2021-09-18 2021-11-26 常州市宏发纵横新材料科技股份有限公司 Composite sectional type wind power blade with high connection strength

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147086A (en) * 2003-11-19 2005-06-09 Fuji Heavy Ind Ltd Blade of horizontal axis wind mill
WO2005100781A1 (en) * 2004-04-07 2005-10-27 Gamesa Eólica, S.A., Sociedad Unipersonal Wind turbine blade
US7901188B2 (en) 2004-04-07 2011-03-08 Gamesa Innovation & Technology, S.L. Wind turbine blade
CN102287322A (en) * 2004-06-30 2011-12-21 维斯塔斯风力系统有限公司 Wind turbine blade with two separate parts and assembly method of same
WO2006002621A1 (en) * 2004-06-30 2006-01-12 Vestas Wind Systems A/S Wind turbine blades made of two separate sections, and method of assembly
US8348622B2 (en) 2004-06-30 2013-01-08 Vestas Wind Systems A/S Wind turbine blades made of two separate sections, and method of assembly
EP1827973A4 (en) * 2004-11-18 2012-04-25 Sikorsky Aircraft Corp Mission replaceable rotor blade tip section
EP1827973A2 (en) * 2004-11-18 2007-09-05 Sikorsky Aircraft Corporation Mission replaceable rotor blade tip section
WO2006056584A1 (en) * 2004-11-24 2006-06-01 Siemens Aktiengesellschaft Method and connecting piece for assembling windmill blade sections
EP1815137B1 (en) 2004-11-24 2018-09-05 Siemens Aktiengesellschaft Windmill blade
US8511996B2 (en) 2005-03-31 2013-08-20 Gamesa Innovation & Technology, S.L. Blade for wind-power generator formed by attaching multiple independent sections utilizing connection means at the end of each opposing sections
WO2006103307A3 (en) * 2005-03-31 2006-11-30 Gamesa Corporacion Technologic Blade for wind-power generators
ES2265760A1 (en) * 2005-03-31 2007-02-16 Gamesa Eolica, S.A. Sociedad Unipersonal Blade for wind-power generators
CN101151458B (en) * 2005-03-31 2010-04-21 歌美飒创新技术公司 Blade for wind-power generators
JP2006329109A (en) * 2005-05-27 2006-12-07 Fuji Heavy Ind Ltd Blade of horizontal shaft windmill
JP4574442B2 (en) * 2005-05-27 2010-11-04 富士重工業株式会社 Horizontal axis windmill blade
DK178291B1 (en) * 2005-07-29 2015-11-09 Gen Electric Passive load-reducing blades in several pieces and wind turbines using the same
JP4880749B2 (en) * 2006-05-11 2012-02-22 アロイス・ヴォベン Rotor blade for wind power equipment
WO2008084126A1 (en) * 2007-01-08 2008-07-17 Guillermo Petri Larrea Reversible system for sectioning wind generator blades in several parts
EP2119909A1 (en) * 2007-01-08 2009-11-18 Guillermo Petri Larrea Reversible system for sectioning wind generator blades in several parts
ES2319599A1 (en) * 2007-01-08 2009-05-08 Guillermo Petri Larrea Reversible system for sectioning wind generator blades in several parts
US8356982B2 (en) 2007-01-08 2013-01-22 Guillermo Petri Larrea Reversible system for dividing aerogenerator blades into several parts
EP2119909A4 (en) * 2007-01-08 2013-09-04 Larrea Guillermo Petri Reversible system for sectioning wind generator blades in several parts
JP2008180102A (en) * 2007-01-23 2008-08-07 Fuji Heavy Ind Ltd Separable blade for wind turbine
EP1950414A2 (en) 2007-01-23 2008-07-30 Fuji Jukogyo Kabushiki Kaisha Separable blade for wind turbine
ES2343712A1 (en) * 2007-05-03 2010-08-06 Manuel Torres Martinez Divided wind turbine on tramos and manufacturing process of the same (Machine-translation by Google Translate, not legally binding)
ES2337645A1 (en) * 2007-09-14 2010-04-27 GAMESA INNOVATION &amp; TECHNOLOGY, S.L. Flange joint for blade sections of a wind turbine with load sensor on the bolts
JP2011510208A (en) * 2008-01-14 2011-03-31 クリッパー・ウィンドパワー・インコーポレーテッド Modular rotor blade for power generation turbine and method of assembling a power generation turbine with modular rotor blade
ES2364258A1 (en) * 2008-03-05 2011-08-30 Manuel Torres Martinez System for connecting wind generator blade sections
US9765756B2 (en) 2008-05-07 2017-09-19 Vestas Wind Systems A/S Sectional blade
US20110091326A1 (en) * 2008-05-07 2011-04-21 Vestas Wind Systems A/S Sectional Blade
ES2385516A1 (en) * 2008-06-27 2012-07-26 Gamesa Innovation & Technology, S.L. Wind turbine blade insert
WO2010023299A3 (en) * 2008-08-31 2010-12-16 Vestas Wind Systems A/S A sectional blade
WO2010023299A2 (en) * 2008-08-31 2010-03-04 Vestas Wind Systems A/S A sectional blade
KR101204212B1 (en) 2008-09-04 2012-11-26 미츠비시 쥬고교 가부시키가이샤 Wind wheel blade
JP2010059884A (en) * 2008-09-04 2010-03-18 Mitsubishi Heavy Ind Ltd Wind turbine blade
WO2010026903A1 (en) 2008-09-04 2010-03-11 三菱重工業株式会社 Wind wheel blade
KR100915381B1 (en) * 2008-09-23 2009-09-03 삼우플랜트(주) Wind power generator
ES2392301A1 (en) * 2008-11-18 2012-12-07 Gamesa Innovation & Technology, Sl Mechanism and method of unión between inserts. (Machine-translation by Google Translate, not legally binding)
CN101749181A (en) * 2008-12-12 2010-06-23 通用电气公司 Turbine blade and method of fabricating the same
CN102483032A (en) * 2009-04-13 2012-05-30 极流制造股份有限公司 Wind turbine blade and method of constructing same
US8662853B2 (en) 2009-04-13 2014-03-04 Maxiflow Manufacturing Inc. Wind turbine blade and method of constructing same
WO2010118517A1 (en) * 2009-04-13 2010-10-21 1066626 Ontario Ltd. Wind turbine blade and method of constructing same
CN101941267A (en) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 Macromolecular composite vane for vertical shaft windmill with rated power of below 300KW
CN101943106A (en) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 High-molecular composite blade for 500KW-below three-blade wind turbine
US8177514B2 (en) * 2009-10-01 2012-05-15 Vestas Wind Systems A/S Wind turbine blade
US20110081247A1 (en) * 2009-10-01 2011-04-07 Vestas Wind Systems A/S Wind Turbine Blade
US20110123343A1 (en) * 2009-11-24 2011-05-26 Ronner David E Wind turbine blade and methods, apparatus and materials for fabrication in the field
US9388789B2 (en) 2009-12-02 2016-07-12 Vestas Wind Systems A/S Sectional wind turbine blade
DE102011052841B4 (en) * 2010-08-19 2013-11-21 General Electric Co. Rotor blade connection for a wind turbine
US7997874B2 (en) * 2010-08-19 2011-08-16 General Electric Company Wind turbine rotor blade joint
CN102374113B (en) * 2010-08-19 2014-10-22 通用电气公司 Wind turbine rotor blade joint
CN102374113A (en) * 2010-08-19 2012-03-14 通用电气公司 Wind turbine rotor blade joint
CN103180609A (en) * 2010-10-22 2013-06-26 三菱重工业株式会社 Wind turbine rotor blade
US20120100002A1 (en) * 2010-10-22 2012-04-26 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade
US8376713B2 (en) 2010-10-22 2013-02-19 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade
KR101243497B1 (en) 2011-04-08 2013-03-13 인하대학교 산학협력단 Turbine blade in kid form and assembly method
WO2012156547A1 (en) 2011-05-13 2012-11-22 Investigaciones Y Desarrollos Eolicos, S.L. System for joining component portions of wind‑turbine blades
JP2014513774A (en) * 2011-05-13 2014-06-05 インベスティガシオネス イ デサロージョス エオリコス, エセ.エレ. System for combining components of a wind turbine blade
CN102192110A (en) * 2011-06-12 2011-09-21 中国科学院工程热物理研究所 Subsection blade of wind turbine and assembling method thereof
CN102312798A (en) * 2011-07-22 2012-01-11 上海庆华蜂巢建材有限公司 Full honeycomb board wind power generator wind wheel blade
CN102312798B (en) * 2011-07-22 2014-06-11 上海庆华蜂巢建材有限公司 Full honeycomb board wind power generator wind wheel blade
US10077757B2 (en) 2011-12-08 2018-09-18 Wobben Properties Gmbh Rotor blade and connecting device
JP2015500420A (en) * 2011-12-08 2015-01-05 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Rotor blade and connecting device
CN102518568A (en) * 2011-12-27 2012-06-27 东方电气集团东方汽轮机有限公司 Wind power sectional-type blade
CN102606419A (en) * 2012-04-16 2012-07-25 国电联合动力技术有限公司 Sectional type wind wheel blade and connection mechanism and mounting method thereof
US9945356B2 (en) * 2012-04-20 2018-04-17 Airbus Defence And Space Sas Assembly of sections of structural parts
US20150132137A1 (en) * 2012-04-20 2015-05-14 Airbus Defence And Space Sas Assembly of sections of structural parts
CN102678694A (en) * 2012-06-06 2012-09-19 国电联合动力技术有限公司 Flange-free connection mode and implementation method for barrel-type tower frame of large size wind turbine
JP5996083B2 (en) * 2013-02-18 2016-09-21 三菱重工業株式会社 Wind turbine blade and manufacturing method thereof
WO2014125645A1 (en) * 2013-02-18 2014-08-21 三菱重工業株式会社 Windmill blade and method for manufacturing same
US9581134B2 (en) 2013-02-18 2017-02-28 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and manufacturing method thereof
CN103470456A (en) * 2013-09-23 2013-12-25 华北电力大学(保定) Sectional wind power generation blade with interchangeability
CN103603777A (en) * 2013-11-28 2014-02-26 江西洪都航空工业集团有限责任公司 Segmented fan blade
KR101541067B1 (en) 2013-12-04 2015-08-03 삼성중공업 주식회사 Blade for wind turbine
US10578077B2 (en) 2014-04-07 2020-03-03 Wobben Properties Gmbh Rotor blade for a wind turbine
JP5941174B1 (en) * 2015-02-03 2016-06-29 株式会社日立製作所 Wind power generator
TWI611100B (en) * 2015-02-03 2018-01-11 Hitachi Ltd Wind power generator
EP3054151A1 (en) * 2015-02-03 2016-08-10 Hitachi, Ltd. Wind power generation apparatus
JP2017110519A (en) * 2015-10-02 2017-06-22 ザ・ボーイング・カンパニーThe Boeing Company Induction consolidation for wind turbine blade fabrication
US10801469B2 (en) 2017-11-07 2020-10-13 General Electric Company Wind blade joints with floating connectors
WO2019228906A1 (en) * 2018-05-29 2019-12-05 Wobben Properties Gmbh Wind power plant rotor blade
KR102238219B1 (en) * 2019-12-19 2021-04-09 정성호 Stacked wind turbines for maximum wind induction
CN111692050A (en) * 2020-07-01 2020-09-22 上海电气风电集团股份有限公司 Connecting assembly and fan blade comprising same
CN113323797A (en) * 2021-08-03 2021-08-31 常州市宏发纵横新材料科技股份有限公司 Modularized wind power blade
CN113339190A (en) * 2021-08-04 2021-09-03 常州市宏发纵横新材料科技股份有限公司 High-strength connecting structure and sectional type wind power blade
CN113700599A (en) * 2021-09-18 2021-11-26 常州市宏发纵横新材料科技股份有限公司 Composite sectional type wind power blade with high connection strength
CN113700599B (en) * 2021-09-18 2022-06-28 常州市宏发纵横新材料科技股份有限公司 Composite sectional type wind power blade with high connection strength
CN113685310A (en) * 2021-09-27 2021-11-23 常州市宏发纵横新材料科技股份有限公司 Plug-in type composite material sectional type blade

Similar Documents

Publication Publication Date Title
JP2004011616A (en) Wind mill blade structure for wind power generator
US6371730B1 (en) Connection of a wind energy plant rotor blade to a rotor hub
JP5249684B2 (en) Windmill wing
US8449263B2 (en) Segmented rotor hub assembly
US20110154777A1 (en) Wind turbine tower joints
US9074581B2 (en) Cone angle insert for wind turbine rotor
JP2007107515A (en) Wind turbine assembly tower and method for constructing same
US6833633B2 (en) Lightweight non-resonant stator support
US20140003946A1 (en) Cone angle insert for wind turbine rotor
US10451043B2 (en) Hybrid tubular lattice tower assembly for a wind turbine
WO2012025985A1 (en) Wind turbine device and method for constructing tower for blade wheel
US20130299277A1 (en) Optimized Wind Turbine Tower with Mountings for Tower Internals
JP6145056B2 (en) Wind turbine tower and wind power generator
KR100915381B1 (en) Wind power generator
KR20190031305A (en) METHOD FOR MANUFACTURING CONNECTION MEMBER, TOWER SECTION, TOWER, WIND POWER FACILITY, AND TOWER SECTION FOR CONNECTING TOWER SECTIONS AND METHOD FOR CONNECTING TOWER SECTIONS
WO2010071527A1 (en) A wind turbine
CN112469894B (en) Modular wind turbine blade
CN102135067A (en) Circumferential inhaul cable structure of vertical axis wind turbine
TW202132685A (en) Root assembly of a wind turbine blade for a wind turbine, wind turbine blade and wind turbine
JP2000064941A (en) Wind power generation set
US20230086143A1 (en) Wind turbine rotor blade and method for assembling a wind turbine rotor blade
KR20130030113A (en) Pitch bearing of aerogenerator
WO2010134863A1 (en) A section of a carrying column of a wind turbine with vertical shaft and a method for the manufacture of such a carrying column.
KR200476725Y1 (en) Support for wind power equipment stabilizer tower
US9404473B2 (en) Strain isolated attachment for one-piece wind turbine rotor hub