JP2004011164A - Wind shaking preventive device for building - Google Patents

Wind shaking preventive device for building Download PDF

Info

Publication number
JP2004011164A
JP2004011164A JP2002162602A JP2002162602A JP2004011164A JP 2004011164 A JP2004011164 A JP 2004011164A JP 2002162602 A JP2002162602 A JP 2002162602A JP 2002162602 A JP2002162602 A JP 2002162602A JP 2004011164 A JP2004011164 A JP 2004011164A
Authority
JP
Japan
Prior art keywords
building
pressure
wind
hydraulic cylinder
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162602A
Other languages
Japanese (ja)
Other versions
JP3806805B2 (en
Inventor
Makoto Masuda
増田 誠
Masahiko Tono
東野 雅彦
Kazuo Otake
大竹 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2002162602A priority Critical patent/JP3806805B2/en
Publication of JP2004011164A publication Critical patent/JP2004011164A/en
Application granted granted Critical
Publication of JP3806805B2 publication Critical patent/JP3806805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind shaking preventive device capable of surely preventing the shaking of a building by wind with a simple structure, and never impairing the base isolating performance to minor earthquake in the application to a base isolation structure. <P>SOLUTION: A locking hole 3 is fixed to one of the upper surface side of a foundation A and the lower surface of a building B, and a hydraulic cylinder 11 for protruding a piston rod 14 outwardly is fixed to the other, so that the hydraulic pressure in a hydraulic cylinder chamber 12 can be automatically released, in conformation to the wind pressure received by one side surface of the building through a pressure guide pipe 21, by fitting the piston rod 14 into the locking hole 3, when the internal pressure is increased by a fixed limit or more, to reduce the internal pressure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の利用分野】
本発明は、建築物風揺れ防止装置、特に免震構造物風揺れ防止装置に関する。
【0002】
【従来の技術】
高層建築物及び板状建築物の如く受風面積の大きな建築物は、強風を受けると横揺れして居住者に不快感を与える不都合があり、特に水平剛性の低い免震装置で支承した場合には揺れ幅が大きく、大きな残留変形が残る虞がある。
【0003】
こうした免震構造物の風揺れ防止装置として次のものが知られている。
▲1▼構造物下面に風揺れ防止の為に係合させた基礎側の係合突起が一定値以上の地震力を受けて破損することで係合が外れるもの(特開平8−284115)
▲2▼滑り型免震構造物の下面のうち、支承装置上面に常時当接する部分の周りに地震動時摺接用滑り面を形成することで、地震動に対する免震性能を維持しつつ通常時の風揺れに抵抗するもの(特開2000−74138)
▲3▼感震球乃至電気的検知手段を用いて地震動を検知し、基礎と該基礎上の建築物との風揺れ防止用ロックを地震時に解除するもの(特開2000−038858,特開平10−288242)
▲4▼電気的な風力感知手段を用いて、強風時に基礎と該基礎上の建築物とをロックするもの(特開2001−12108)
【0004】
【発明の解決しようとする課題】
上記従来技術のうち機械的な係合力や摩擦力で一定限度内の地震力に対抗する上記▲1▼及び▲2▼の装置では、その限界以内では建築物が基礎に固く締結されているから、中小地震に対する免震機能を殆ど発揮できない。
【0005】
又、感震球や電気的な検知手段を用いる上記▲3▼及び▲4▼の装置は、構造が複雑であるため誤作動の可能性があり、又保守に手間がかかる。
【0006】
本発明は、簡易な構成で建築物の風揺れを確実に防止することができ、しかも免震構造物に使用した場合に中小地震に対する免震性能を損なうことのない風揺れ防止装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
第1の手段は、基礎Aの上面側と該基礎上に構築された建築物Bの下面側との一方に係止穴3を、他方にはピストン棒14を外方突出する液圧シリンダ11を、それぞれ固設し、該液圧シリンダ室12内の液圧を、建築物の一側面が受ける風圧に導圧管21を介して対応させて、該内圧が一定限度以上増大したとき上記ピストン棒14が上記係止穴3内へ嵌入し、又該内圧減少により自動的に抜出し可能に設けている。
【0008】
第2の手段は、上記第1の手段を有し、かつ上記導圧管21に絞り弁24を設けている。
【0009】
第3の手段は、上記第1の手段又は第2の手段を有し、かつ上記液圧シリンダ11を、ピストン13両面からそれぞれピストン棒14,14を外方突出する復動式シリンダとして、ピストン両側の液圧シリンダ室12,12内の各液体圧を、建築物風上側と風下側との2箇所測定点における各風圧と、それぞれ導圧管21,21を介して対応させ、又上記係止穴3,3を一対として、
上記2測定点の圧力差が一定限度以上となったとき両ピストン棒14,14の一方が一方係止穴3内へ嵌入可能に形成している。
【0010】
第4の手段は、上記第1の手段、第2の手段、又は第3の手段を有し、かつ建築物B下面のうち該建築物の重心Gに対して前後又は左右対称な複数箇所にそれぞれ上記係止穴3及び液圧シリンダ11を設けると共に、これら液圧シリンダ室12…内へ、建築物Bが同一方向から受ける風圧を導入するように導圧管21を配管している。
【0011】
【発明の実施の形態】
図1から図3は、本発明の第1実施形態を示す。図中Aは基礎であり、該基礎上に免震装置Cを介して建築物Bを支承させている。
【0012】
基礎A上面と建築物B下面との間には、建築物風揺れ防止装置1が設けられており、該装置は、図示の例では、基礎A上面に固設された受け部材2と建築物B下面に固設された液圧シリンダ11,11とで構成している。
【0013】
受け部材2は、風圧に十分対抗可能な強度を有するブロックの上面に左右一対の係止穴3,3を穿設したものである。尚、この受け部材を省略して、基礎A上面に直接係止穴3,3を形成しても良い。
【0014】
又、液圧シリンダ11,11は、それぞれ有頂で下面開口のシリンダ筒内を昇降するピストン13からピストン棒14を垂下する単動式のものであり、該ピストン棒下端部が下限降下時に上記係止穴3,3内へ嵌入するように配置されている。上記ピストン13は例えば図示のスプリング15によって上方へ付勢されており、又、該ピストン上方に画成される液圧シリンダ室12は、建築物左右側壁Bに穿設した受圧孔22内へ吹き込む風圧を導圧管21を介して導入するように形成している。該導圧管は、上端部側を除き適当な比重の液体(例えば水)で満たされている。
【0015】
尚、上記図示例と異なり、受け部材2を建築物B下面側へ、又、液圧シリンダ11,11を基礎A上面側へ固設することもできる。
【0016】
又、本実施形態の装置は、図1及び図3に示す如く係止穴3と液圧シリンダ11と導圧管21とをそれぞれ左右に一対ずつ有するものとしているが、これら各一対のうち一方を省略したものとしても良い。
【0017】
上記構成において、例えば図2に矢示する如く風が吹いたときに、建築物Bが風上側(図示例では左側)外面に受ける風圧は、風上側導圧管21aにより正圧として対応する一方液圧シリンダ室12a内へ伝達され、一定圧以上に達したときに一方ピストン棒14aが下降して係止穴3内へ嵌合され、建築物Bの横揺れを阻止する。尚、図面によれば上記一方ピストン棒14aの下降と連動して他方ピストン棒14bが上昇しているが、これは建築物風下側に生ずる負圧が風下側導圧管21bを介して他方液圧シリンダ室12bに伝達されるためである。
【0018】
風が止むと、上記正圧が解消され、スプリング力によりピストン13及びピストン棒14が図1に示す原位置に復帰する。
【0019】
図4は、本実施形態の第1の実施例であり、その風揺れ防止装置の好適な設置例を建築物Bの底面図として示したものである。例えば建築物の重心G一箇所に図3に示す本願装置を設けた場合には、当該建築物へ当たる風の向きによっては図4に想像線で描く如くに建築物が水平面上を捩れるように運動する虞がある。この捩れ運動を防止するために、この変形例では、上記底面の建築物重心Gに対する前後乃至左右対称位置(図示例では上記底面の4隅及び中心位置)に、それぞれ一対の風揺れ防止装置1x,1yを設置させている。もっとも上記重心Gに付近の風揺れ防止装置については、作図上の都合から重心よりやや外れた位置に描いている。尚、風揺れ防止装置1xは左右方向の風圧Xに対応して、又風揺れ防止装置1yは前後方向Yの風圧に対応してそれぞれ作動するように導圧管21を配管したものである。又建築物底面四隅付近の装置の配管は一部を省略して描いている。
【0020】
図5は、本実施形態の第2の変形例を示すものであり、建築物Bの前後及び左右各面が受ける風圧に対応して作動する4つの液圧シリンダ11と対応する係止穴3とを近接させて1つの風揺れ防止装置を構成したものである。
【0021】
図6は、本実施形態の第3の変形例であり、各導圧管21の途中に横断面積(流路面積)を減少させて流量を制御する公知の絞り弁24を設けたものである。
【0022】
以下、本発明の第2実施形態及び第3実施形態を説明する。その際第1実施形態と同じ構成については同一の符号を付することで解説を省略する。
【0023】
図7は、本発明の第2実施形態を示す。
【0024】
該形態においては、受け部材2は、側面開放の嵌合溝5を有する縦断面コ字形に形成して、該嵌合溝の上下側面外側部分に係止穴3,3をそれぞれ穿設している。
【0025】
又、建築物B下面から突設する縦断面L字形の支持部材18を突設して、該支持部材の水平部分を、上記嵌合溝5内へ遊嵌させると共に、該水平部分の先端面に復動式縦形液圧シリンダ11を固定している。この復動式縦形液圧シリンダは、シリンダ中間部に設けたピストン13の上下からピストン棒14,14を突出したものであり、それらピストン棒延長線上に係止穴3,3を設けている。
【0026】
ピストン13の上下両側に設けた液圧シリンダ室12d,12cは、それぞれ上記支持部材18内部を貫通する一対の導圧管21b,21aを介して建築物左右側壁Bに設けた受圧孔22,22に連通させている。又、ピストン下方の液圧シリンダ室12cに連通する導圧管21a(図示例では左側導圧管)中の液面は、他方導圧管21b内の液面よりもΔH高く設定し、この水頭差によりピストン13及びピストン棒14,14の重量を支えるように設けるとよい。
【0027】
図8から図10は、本発明の第3の実施形態を示している。該実施形態は、第2実施形態の縦形液圧シリンダ11を横形として、該横形液圧シリンダから左右に突出するピストン棒14,14を、建築物受風時に係止穴3,3内へ嵌合させることが可能に受け部材2,2を配置し、併せて、後述する如く地震時において上記ピストン棒14が上記係止穴3内へ入ることで、その棒軸と直交する方向に免震装置Cが働かなくなる不都合を避けるように構成したものである。
【0028】
説明の便宜上より、まず本実施形態に係る装置の構造のうち主として建築物の風揺れ防止に関する部分について説明すると、上記横形液圧シリンダ11は、図示例にあっては、上下一対の保護プレート16,16の間に挟持されており、かつ上側保護プレート16を介して建築物B下面に固設されている。又、ピストン13で仕切られた左右一対のシリンダ室12,12からは、図9に示す如く導圧管21,21がそれぞれ前後反対方向へ伸びており、建築物の前後両壁B,Bに開口している。
【0029】
又、液圧シリンダ11の左右両端部外方には、左右方向内面に係止穴3,3を有する受け部材2,2を配置している。該受け部材は、基礎Aに対して(図示例では後述の案内レールを介して)少なくとも前後方向に対して不動に設けてあり、これにより、前乃至後方向から一定圧以上の風が吹いたときに、ピストン13が右動乃至左動して、図9に想像線で示す如く左右のピストン棒14,14の一方が係止穴3,3の一方内へ嵌合され、建築物Bの風揺れを防止する。
【0030】
しかし上記ピストン13が左右へ摺動可能とすると、前後及び左右への震動成分を不規則に含む実際の地震では、震動の左右成分によりピストン棒14が係止穴3内へ入り、これらピストン棒及び係止穴が一時的に前後方向へロックされた状態となって震動の前後成分に対して免震装置が機能しない虞がある。
【0031】
かかる不都合を避けるために、本実施形態の装置は、更に次の構成を有する。
【0032】
即ち、上記基盤A上に、左右一対の水平基板32、32が固着されており、これら両基板上に左右方向へ長い案内レール33を固定すると共に、該案内レールの前後両面間に上記受け部材2を左右方向へのスライド自在かつ上方への抜出し不能に跨設している。又、上記水平基板32,32左右方向外側の基礎部分からは図示例では縦長板状の制止体35、35を起立しており、これら制止板内面と上記受け部材2外面とをスプリング36を介して連結している。
【0033】
又、上記両保護プレート16,16の左右両端部は、上記受け部材2との緩衝部兼スペーサ17,17として、液体シリンダ11左右両端面から側外方へピストン棒14とほぼ同じ突出長さで突出させている。
【0034】
上記構成によれば図10に示す地震時において、地震動の左右成分に対して、スペーサ17が受け部材2,2の一方へ当接して該受け部材を側外方へ退かせ、ピストン棒14,14が係止穴3,3内へ侵入することを阻止するので、免震装置Cを確実に作動させることができる。
【0035】
尚、図示例では、上記案内レール33と水平基板32とで受け部材2を案内するガイド装置31を構成しているが、必ずしも該構成とする必要はなく、受け部材をその案内する方向と直角な風圧力に対して十分な強度を持って支持できるものであれば如何なるガイド装置を用いても良い。又、上記両スペーサ17、17は、必ずしも保護プレート16の一部とする必要はなく、更にいずれか一方のスペーサは省略することができる。
【0036】
【発明の効果】
本発明は上記構成のものであり、請求項1の発明によれば次の効果を奏する。○基礎Aと建築物Bとの一方に設けた液圧シリンダ11のピストン棒14を、他方に設けた受け部材2の係止穴3内へ嵌合可能とすると共に、上記液体シリンダ11内へ建築物Bが受けた風圧を導圧管21を介して導入したから、簡易な構成ながら、ピストン棒14に直交する方向の風揺れを確実に防止できる。
○上記ピストン棒14は、風圧が所定値以下となったときには原位置に戻り係止穴3内への嵌合が解除されるように形成しており、この状態で免震装置Cは自由に揺動可能であるから、中小の地震に対する免震装置の免震性能を損なうことがない。
○電気回路を用いないので、誤作動が少なく、メンテナンスも容易である。
【0037】
請求項2の発明によれば、導圧管21の途中に絞り弁24を設けたから、建築物側面から液圧シリンダ11へ導入される風圧が時間的に平均化され、風力の細かい変化に対応してピストン棒が徒に微動して故障などの原因となることを防止することができる。
【0038】
請求項3の発明によれば、次の効果を奏する
○液圧シリンダ11を復動式シリンダとしてピストン両側の液圧シリンダ室12,12内へそれぞれ風上及び風下側観測点での正負の圧力変化を導入したから、その変化量の絶対値を合わせた合力によりピストン13がスライドすることとなり、ピストン及びピストン棒の重量がある程度大であっても、単動式のものに比べて所要風圧に対応して確実に装置を作動させることができる。
○建物に作用する風圧力の変動成分を除去し、平均成分のみを利用して、該建築物が所定圧力以上の強風を受けた時に風揺れ防止装置を作動させることができる。
【0039】
請求項4の発明によれば、建築物B下面のうち該建築物重心Gに対して前後又は左右対称な複数箇所にそれぞれ上記係止穴3及び液圧シリンダ11を設けると共に、これら液圧シリンダ内へ、建築物Bが同一方向から受ける風圧を導入するように導圧管21を配管したから、建築物が基礎に対して捩れ運動をすることを防止できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る装置の縦断面図である。
【図2】図1装置の使用状態での縦断面図である。
【図3】図1装置をIII−III線方向から見た図である。
【図4】上記第1実施形態の第1の変形例を、図1に示すIII−III線方向から見た図である。
【図5】上記第1実施形態の第2の変形例を、図3と同じ方向から見た図である。
【図6】上記第1実施形態の第3の変形例を、図1と同じ方向から見た半縦断面図である。
【図7】本発明の第2の実施形態に係る装置の縦断面図である。
【図8】本発明の第3の実施形態に係る装置の縦断面図である。
【図9】図8の装置を、IX−IX線方向から見た図である。
【図10】図9の装置の、地震時における作用説明図である。
【符号の説明】
A…基礎 B…建築物 B…底壁B…左右側壁B,B…前後両壁
C…免震装置
1…風揺れ防止装置 2…受け部材 3…係止穴 5…嵌合溝
11…液圧シリンダ12…液圧シリンダ室 13…ピストン 14…ピストン棒
15…スプリング 16…保護プレート 17…スペーサ 18…支持部材
21…導圧管  22…受圧孔 24…絞り弁 31…ガイド装置 32…水平基板
33…案内レール 35…制止体 36…スプリング
[0001]
Field of application of the invention
The present invention relates to a wind sway prevention device for a building, and more particularly to a wind sway prevention device for a seismic isolation structure.
[0002]
[Prior art]
Buildings with a large wind receiving area, such as high-rise buildings and plate-like buildings, have the inconvenience of swaying and receiving discomfort to residents when exposed to strong winds, especially when supported by seismic isolation devices with low horizontal rigidity. May have a large swing width, and large residual deformation may remain.
[0003]
The following are known as wind sway prevention devices for such seismic isolation structures.
{Circle around (1)} An engagement disengaged when an engagement protrusion on the base side engaged with the lower surface of the structure to prevent wind sway is damaged by a seismic force exceeding a certain value and is damaged (Japanese Patent Laid-Open No. 8-284115)
(2) By forming a sliding surface for sliding contact at the time of seismic motion around the part of the lower surface of the sliding type seismic isolation structure that constantly contacts the upper surface of the bearing device, it is possible to maintain the seismic isolation performance against earthquake Resisting wind sway (JP-A-2000-74138)
{Circle over (3)} Seismic motion is detected by using a seismic ball or an electric detecting means, and a lock for preventing wind sway between a foundation and a building on the foundation is released in the event of an earthquake (Japanese Patent Laid-Open No. 2000-038858, Japanese Patent Laid-Open No. -288242)
{Circle around (4)} Locking a foundation and a building on the foundation in strong winds using electric wind sensing means (Japanese Patent Laid-Open No. 2001-12108)
[0004]
[Problems to be solved by the invention]
Among the above prior arts, in the devices of the above (1) and (2) which oppose seismic force within a certain limit by mechanical engagement force or frictional force, the building is securely fastened to the foundation within the limit. And can hardly perform the seismic isolation function for small and medium earthquakes.
[0005]
Further, the above-mentioned devices (3) and (4) using a seismic ball or an electric detecting means have a possibility of malfunction due to their complicated structure, and require a long maintenance.
[0006]
The present invention provides a wind sway prevention device that can reliably prevent wind sway of a building with a simple configuration and that does not impair seismic isolation performance against a small or medium-sized earthquake when used in a seismic isolation structure. The purpose is to:
[0007]
[Means for Solving the Problems]
The first means is a hydraulic cylinder 11 having a locking hole 3 on one of the upper surface side of the foundation A and the lower surface side of the building B constructed on the foundation, and a hydraulic cylinder 11 projecting a piston rod 14 outward on the other. Are fixed to each other, and the hydraulic pressure in the hydraulic cylinder chamber 12 is made to correspond to the wind pressure received on one side of the building via the pressure guiding tube 21. When the internal pressure increases by a certain limit or more, the piston rod 14 is provided so as to be fitted into the above-mentioned locking hole 3 and to be able to be automatically taken out by reducing the internal pressure.
[0008]
The second means includes the first means, and the throttle valve 21 is provided in the pressure guiding tube 21.
[0009]
The third means has the first means or the second means, and the hydraulic cylinder 11 is a reciprocating cylinder which projects the piston rods 14 and 14 outward from both surfaces of the piston 13, respectively. The respective liquid pressures in the hydraulic cylinder chambers 12 on both sides are made to correspond to the respective wind pressures at two measurement points on the leeward and leeward sides of the building via the pressure guiding tubes 21 and 21, respectively. Holes 3, 3 as a pair
When the pressure difference between the two measurement points is equal to or greater than a certain limit, one of the two piston rods 14 is formed so as to be able to fit into the one locking hole 3.
[0010]
The fourth means has the first means, the second means, or the third means, and is provided at a plurality of locations on the lower surface of the building B which are symmetric with respect to the center of gravity G of the building. The locking holes 3 and the hydraulic cylinders 11 are provided, respectively, and the pressure guiding pipes 21 are piped into the hydraulic cylinder chambers 12 so as to introduce wind pressure received by the building B from the same direction.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a first embodiment of the present invention. In the figure, A is a foundation, and a building B is supported on the foundation via a seismic isolation device C.
[0012]
A building wind sway prevention device 1 is provided between the upper surface of the foundation A and the lower surface of the building B. In the example shown in the drawing, the device is provided with a receiving member 2 fixed on the upper surface of the foundation A and a building. The hydraulic cylinders 11 and 11 are fixed to the lower surface of B.
[0013]
The receiving member 2 is formed by forming a pair of left and right locking holes 3, 3 on the upper surface of a block having sufficient strength to withstand wind pressure. The receiving members may be omitted, and the locking holes 3 and 3 may be formed directly on the upper surface of the foundation A.
[0014]
Each of the hydraulic cylinders 11 is a single-acting type in which a piston rod 14 is suspended from a piston 13 which rises and descends in a cylinder cylinder having a crest and an opening at a lower surface. They are arranged to fit into the locking holes 3, 3. The piston 13 is biased upwardly by a spring 15 illustrated example, also the hydraulic cylinder chamber is defined in said piston upper 12, to the building right and left side walls B 2 drilled into the receiving hole 22 The air pressure to be blown in is formed so as to be introduced through the pressure guiding tube 21. The pressure guiding tube is filled with a liquid (for example, water) having an appropriate specific gravity except for the upper end side.
[0015]
It is to be noted that the receiving member 2 may be fixed to the lower surface side of the building B, and the hydraulic cylinders 11 and 11 may be fixed to the upper surface side of the foundation A, unlike the above-described example.
[0016]
The apparatus of the present embodiment has a pair of locking holes 3, a hydraulic cylinder 11, and a pressure guiding tube 21 on each of the left and right sides as shown in FIGS. 1 and 3. It may be omitted.
[0017]
In the above configuration, for example, when the wind blows as shown by an arrow in FIG. 2, the wind pressure received by the building B on the windward (left side in the illustrated example) outer surface corresponds to the one-sided liquid corresponding to the positive pressure by the windward impulse line 21 a. The pressure is transmitted into the pressure cylinder chamber 12a, and when the pressure reaches a certain level or more, the piston rod 14a is lowered and fitted into the locking hole 3, thereby preventing the building B from rolling. According to the drawing, the other piston rod 14b rises in conjunction with the lowering of the one piston rod 14a, but this is caused by the negative pressure generated on the leeward side of the building via the leeward side impulse line 21b. This is because it is transmitted to the cylinder chamber 12b.
[0018]
When the wind stops, the positive pressure is released, and the piston 13 and the piston rod 14 return to the original positions shown in FIG. 1 by the spring force.
[0019]
FIG. 4 is a first example of the present embodiment, and shows a suitable installation example of the wind sway prevention device as a bottom view of a building B. For example, when the apparatus of the present invention shown in FIG. 3 is provided at one position of the center of gravity G of the building, depending on the direction of the wind hitting the building, the building may be twisted on a horizontal plane as drawn by imaginary lines in FIG. Exercise. In order to prevent this torsional movement, in this modification, a pair of wind sway prevention devices 1x are provided at front and rear or left and right symmetrical positions with respect to the center of gravity G of the building (four corners and center position of the bottom in the illustrated example). , 1y. However, the wind sway prevention device near the center of gravity G is drawn at a position slightly deviated from the center of gravity for the convenience of drawing. The wind sway prevention device 1x is provided with a pressure guiding tube 21 so as to operate corresponding to the wind pressure X in the left and right direction, and the wind sway prevention device 1y is provided with a pressure guiding tube 21 so as to operate corresponding to the wind pressure in the front and rear direction Y. The piping of the equipment near the four corners of the bottom of the building is partially omitted.
[0020]
FIG. 5 shows a second modified example of the present embodiment, in which four hydraulic cylinders 11 which operate in response to wind pressures applied to the front, rear, left and right surfaces of the building B and corresponding locking holes 3. Are arranged close to each other to constitute one wind sway prevention device.
[0021]
FIG. 6 shows a third modification of the present embodiment, in which a well-known throttle valve 24 for reducing the cross-sectional area (flow path area) and controlling the flow rate is provided in the middle of each pressure guiding tube 21.
[0022]
Hereinafter, a second embodiment and a third embodiment of the present invention will be described. At this time, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0023]
FIG. 7 shows a second embodiment of the present invention.
[0024]
In this embodiment, the receiving member 2 is formed in a U-shape in vertical section having a fitting groove 5 having an open side surface, and locking holes 3 and 3 are respectively formed in outer portions of upper and lower side surfaces of the fitting groove. I have.
[0025]
In addition, a support member 18 having an L-shaped vertical section is provided so as to protrude from the lower surface of the building B, and a horizontal portion of the support member is loosely fitted into the fitting groove 5 and a front end surface of the horizontal portion. Is fixed to a return-type vertical hydraulic cylinder 11. In this backward-acting vertical hydraulic cylinder, piston rods 14, 14 are projected from above and below a piston 13 provided in an intermediate portion of the cylinder, and locking holes 3, 3 are provided on extensions of the piston rods.
[0026]
Hydraulic cylinder chamber 12d provided on both upper and lower sides of the piston 13, 12c is pressure holes 22 and 22 respectively provided in the building right and left side walls B 2 via a pair of impulse lines 21b, 21a through the interior of the said support member 18 Is communicated with. Further, the liquid level in the pressure guiding tube 21a (in the illustrated example, the left pressure guiding tube) communicating with the hydraulic cylinder chamber 12c below the piston is set to be ΔH higher than the liquid level in the other pressure guiding tube 21b. 13 and the piston rods 14 and 14 are preferably provided to support the weight.
[0027]
8 to 10 show a third embodiment of the present invention. In this embodiment, the vertical hydraulic cylinder 11 of the second embodiment is made horizontal, and piston rods 14, 14 projecting from the horizontal hydraulic cylinder to the left and right are fitted into the locking holes 3, 3 when the building receives wind. The receiving members 2 and 2 are arranged so that they can be combined with each other, and at the same time, when the piston rod 14 enters the locking hole 3 during an earthquake as described later, the seismic isolation is performed in a direction orthogonal to the rod axis. The configuration is such that the inconvenience that the device C does not work is avoided.
[0028]
For convenience of explanation, first, of the structure of the apparatus according to the present embodiment, a part mainly related to wind sway prevention of a building will be described. In the illustrated example, the horizontal hydraulic cylinder 11 includes a pair of upper and lower protection plates 16. , 16 and is fixed to the lower surface of the building B via the upper protection plate 16. Further, from a pair of left and right cylinder chambers 12, 12 partitioned by the piston 13, pressure guiding tubes 21, 21 respectively extend in opposite directions, as shown in FIG. 9, and the front and rear walls B 3 , B 4 of the building It is open to.
[0029]
Outside the left and right ends of the hydraulic cylinder 11, receiving members 2, 2 having locking holes 3, 3 on the inner surface in the left-right direction are arranged. The receiving member is provided at least immovably in the front-rear direction with respect to the foundation A (in the illustrated example, via a guide rail to be described later). At this time, the piston 13 moves rightward or leftward, and one of the left and right piston rods 14, 14 is fitted into one of the locking holes 3, 3 as shown by the imaginary line in FIG. Prevent wind sway.
[0030]
However, assuming that the piston 13 is slidable left and right, in an actual earthquake that includes irregularly forward and backward and left and right vibration components, the left and right components of the vibration cause the piston rod 14 to enter the locking hole 3, and these piston rods In addition, the locking hole may be temporarily locked in the front-rear direction, and the seismic isolation device may not function for the front-rear component of the vibration.
[0031]
In order to avoid such inconvenience, the device of the present embodiment further has the following configuration.
[0032]
That is, a pair of left and right horizontal substrates 32, 32 are fixed on the base A, and a long guide rail 33 is fixed on both substrates in the left-right direction, and the receiving member is provided between both front and rear surfaces of the guide rail. 2 are slidable in the left-right direction and straddled so that it cannot be pulled out upward. In the example shown in the drawing, elongate plate-like restraining members 35, 35 are erected from the horizontal bases 32, 32 in the lateral direction outside of the base portion, and the inner surface of the restraining plate and the outer surface of the receiving member 2 are interposed via a spring 36. Connected.
[0033]
The left and right ends of the protection plates 16 and 16 serve as buffering portions and spacers 17 for the receiving member 2 and have a projection length substantially the same as that of the piston rod 14 outwardly from the left and right end surfaces of the liquid cylinder 11. It is made to protrude.
[0034]
According to the above configuration, at the time of the earthquake shown in FIG. 10, the spacer 17 abuts against one of the receiving members 2 and 2 to retreat the receiving member outward and laterally against the left and right components of the seismic motion. 14 is prevented from entering the locking holes 3, 3, so that the seismic isolation device C can be reliably operated.
[0035]
In the illustrated example, the guide device 31 that guides the receiving member 2 by the guide rail 33 and the horizontal substrate 32 is configured. However, the guide device 31 is not necessarily required to have the configuration, and is perpendicular to the direction in which the receiving member is guided. Any guide device may be used as long as it can support with sufficient strength against a strong wind pressure. In addition, the spacers 17, 17 need not necessarily be part of the protection plate 16, and one of the spacers can be omitted.
[0036]
【The invention's effect】
The present invention has the above configuration, and according to the first aspect of the present invention, the following effects can be obtained. The piston rod 14 of the hydraulic cylinder 11 provided on one of the foundation A and the building B can be fitted into the locking hole 3 of the receiving member 2 provided on the other, and into the liquid cylinder 11. Since the wind pressure received by the building B is introduced through the pressure guiding tube 21, the wind sway in the direction perpendicular to the piston rod 14 can be reliably prevented with a simple configuration.
The piston rod 14 is formed so as to return to the original position when the wind pressure becomes equal to or lower than a predetermined value and the fitting into the locking hole 3 is released. In this state, the seismic isolation device C can be freely moved. Since it can be swung, the seismic isolation performance of the seismic isolation device for small and medium-sized earthquakes is not impaired.
○ Since no electric circuit is used, there is little malfunction and maintenance is easy.
[0037]
According to the invention of claim 2, since the throttle valve 24 is provided in the middle of the pressure guiding tube 21, the wind pressure introduced into the hydraulic cylinder 11 from the side of the building is averaged over time, and it is possible to cope with small changes in wind force. Therefore, it is possible to prevent the piston rod from slightly moving and causing a failure or the like.
[0038]
According to the third aspect of the present invention, the following effects are obtained. The positive and negative pressures at the leeward and leeward observation points are respectively introduced into the hydraulic cylinder chambers 12 and 12 on both sides of the piston by using the hydraulic cylinder 11 as a backward-acting cylinder. Since the change is introduced, the piston 13 slides due to the resultant force that matches the absolute value of the change amount. The device can be reliably operated accordingly.
O The fluctuation component of the wind pressure acting on the building is removed, and the wind sway prevention device can be operated when the building receives a strong wind of a predetermined pressure or more by using only the average component.
[0039]
According to the invention of claim 4, the locking holes 3 and the hydraulic cylinders 11 are provided at a plurality of locations on the lower surface of the building B, which are symmetrical with respect to the center of gravity G of the building, front and rear, and the hydraulic cylinders. Since the pressure guiding tube 21 is provided so as to introduce the wind pressure received by the building B from the same direction, the building can be prevented from twisting with respect to the foundation.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an apparatus according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the apparatus in FIG. 1 in a use state.
FIG. 3 is a view of the apparatus in FIG. 1 as viewed from the direction of line III-III.
FIG. 4 is a view of a first modification of the first embodiment as viewed from the direction of line III-III shown in FIG. 1;
FIG. 5 is a view of a second modification of the first embodiment as viewed from the same direction as in FIG. 3;
FIG. 6 is a semi-longitudinal sectional view of a third modification of the first embodiment, viewed from the same direction as FIG.
FIG. 7 is a longitudinal sectional view of a device according to a second embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a device according to a third embodiment of the present invention.
9 is a view of the device of FIG. 8 as viewed from the direction of line IX-IX.
FIG. 10 is an explanatory diagram of an operation of the device of FIG. 9 during an earthquake.
[Explanation of symbols]
A: foundation B: building B 1 ... bottom wall B 2 ... left and right side walls B 3 , B 4 ... front and rear walls C ... seismic isolation device 1 ... wind sway prevention device 2 ... receiving member 3 ... locking hole 5 ... fitting Groove 11 ... Hydraulic cylinder 12 ... Hydraulic cylinder chamber 13 ... Piston 14 ... Piston rod 15 ... Spring 16 ... Protection plate 17 ... Spacer 18 ... Support member 21 ... Pressure guide tube 22 ... Pressure receiving hole 24 ... Throttle valve 31 ... Guide device 32 ... Horizontal board 33 ... Guide rail 35 ... Stopper 36 ... Spring

Claims (4)

基礎Aの上面側と該基礎上に構築された建築物Bの下面側との一方に係止穴3を、他方にはピストン棒14を外方突出する液圧シリンダ11を、それぞれ固設し、該液圧シリンダ室12内の液圧を、建築物の一側面が受ける風圧に導圧管21を介して対応させて、該内圧が一定限度以上増大したとき上記ピストン棒14が上記係止穴3内へ嵌入し、又該内圧減少により自動的に抜出し可能に設けたことを特徴とする建築物風揺れ防止装置。The locking hole 3 is fixed to one of the upper surface side of the foundation A and the lower surface side of the building B constructed on the foundation, and the hydraulic cylinder 11 that projects the piston rod 14 outward is fixed to the other. The hydraulic pressure in the hydraulic cylinder chamber 12 is made to correspond to the wind pressure received on one side of the building via the pressure guiding pipe 21. When the internal pressure increases by a certain limit or more, the piston rod 14 is connected to the locking hole. 3. A wind sway prevention device for a building, wherein the device is fitted into the device 3 and can be automatically removed by reducing the internal pressure. 上記導圧管21に絞り弁24を設けたことを特徴とする請求項1記載の建築物風揺れ防止装置。The building wind sway prevention device according to claim 1, wherein a throttle valve (24) is provided on the pressure guiding tube (21). 上記液圧シリンダ11を、ピストン13両面からそれぞれピストン棒14,14を外方突出する復動式シリンダとして、ピストン両側の液圧シリンダ室12,12内の各液体圧を、建築物風上側と風下側との2箇所測定点における各風圧と、それぞれ導圧管21,21を介して対応させ、又上記係止穴3,3を一対として、
上記2測定点の圧力差が一定限度以上となったとき両ピストン棒14,14の一方が一方係止穴3内へ嵌入可能に形成したことを特徴とする、請求項1乃至請求項2記載の建築物風揺れ防止装置。
The hydraulic cylinder 11 is a backward-acting cylinder in which the piston rods 14 and 14 protrude outward from both surfaces of the piston 13, respectively. The hydraulic pressure in the hydraulic cylinder chambers 12 and 12 on both sides of the piston is adjusted to the windward side of the building. Each wind pressure at the two measurement points on the leeward side is made to correspond to each wind pressure through the pressure guiding tubes 21 and 21, respectively.
3. The method according to claim 1, wherein one of the two piston rods is formed so as to be able to fit into one of the locking holes when the pressure difference between the two measurement points is equal to or greater than a certain limit. Building wind sway prevention device.
建築物B下面のうち該建築物の重心Gに対して前後又は左右対称な複数箇所にそれぞれ上記係止穴3及び液圧シリンダ11を設けると共に、これら液圧シリンダ室12…内へ、建築物Bが同一方向から受ける風圧を導入するように導圧管21を配管したことを特徴とする、請求項1、請求項2又は請求項3記載の建築物風揺れ防止装置。The locking holes 3 and the hydraulic cylinders 11 are provided at a plurality of locations on the lower surface of the building B which are symmetrical with respect to the center of gravity G of the building in the front-rear or left-right directions, respectively. The building wind sway prevention device according to claim 1, 2 or 3, wherein the pressure guiding tube 21 is provided so as to introduce wind pressure received by B from the same direction.
JP2002162602A 2002-06-04 2002-06-04 Wind sway prevention device for buildings Expired - Fee Related JP3806805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162602A JP3806805B2 (en) 2002-06-04 2002-06-04 Wind sway prevention device for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162602A JP3806805B2 (en) 2002-06-04 2002-06-04 Wind sway prevention device for buildings

Publications (2)

Publication Number Publication Date
JP2004011164A true JP2004011164A (en) 2004-01-15
JP3806805B2 JP3806805B2 (en) 2006-08-09

Family

ID=30431306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162602A Expired - Fee Related JP3806805B2 (en) 2002-06-04 2002-06-04 Wind sway prevention device for buildings

Country Status (1)

Country Link
JP (1) JP3806805B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788111A (en) * 2011-05-16 2012-11-21 钱佼佼 Shockproof system mounted on equipment base
CN105697641A (en) * 2016-04-07 2016-06-22 张素平 Air pressure stabilizer of hydropneumatic control teaching table
JP2021532294A (en) * 2018-07-13 2021-11-25 ▲陸▼科 Friction seismic isolation device that opens immediately due to shaking or impact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788111A (en) * 2011-05-16 2012-11-21 钱佼佼 Shockproof system mounted on equipment base
CN105697641A (en) * 2016-04-07 2016-06-22 张素平 Air pressure stabilizer of hydropneumatic control teaching table
JP2021532294A (en) * 2018-07-13 2021-11-25 ▲陸▼科 Friction seismic isolation device that opens immediately due to shaking or impact

Also Published As

Publication number Publication date
JP3806805B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US5689919A (en) Base isolated building of wind resisting type
US20030230032A1 (en) Take-up devices for use in building structure
JPH0254041A (en) Structure stabilizing system and base separating system
CN110552429A (en) Self-balancing three-dimensional shock-isolation anti-swing device and method
KR101661079B1 (en) Windows and doors system improving the seismic performance in the parallel direction
JP2004011164A (en) Wind shaking preventive device for building
CN109811640B (en) Two-stage buffering, limiting and shock isolating device
CN209800854U (en) Wide antidetonation support for building electromechanical device of application scope
JP2011032849A (en) Brake damper for base isolator
JP2001271862A (en) Oil damper
JPH07150810A (en) Damping device
CN114542644A (en) Three-dimensional shock absorption, isolation and anti-swing device with replaceable damping part
CN111158042B (en) Composite support system for pipeline seismic resistance and pipeline monitoring system thereof
JP2000240318A (en) Base isolation and vibration control system
CN113638523A (en) Building curtain wall with windproof and anti-seismic functions
CN208219894U (en) A kind of manifold type Pneumatic ball shape damper group set
CN111911714A (en) Shock insulation and damping type pipeline bearing support
CN213954537U (en) Anti-seismic U-shaped pipe clamp
JP6738528B2 (en) Vibration reduction device
JP2000104785A (en) Trigger device having damper function for building base isolation
Kasalanati et al. Seismic isolation of sensitive equipment
CN218384205U (en) Damping anti-seismic early warning braking device for large-volume concrete building
CN212455793U (en) Shock insulation and damping type pipeline bearing support
CN220337821U (en) A fire control pipeline support for assembled building
CN211371628U (en) Pipeline maintenance and repair device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120526

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees