JP2004010864A - Tracking-resistant resin composition crosslinkable with water and power cable having insulating coated layer formed out of the composition - Google Patents

Tracking-resistant resin composition crosslinkable with water and power cable having insulating coated layer formed out of the composition Download PDF

Info

Publication number
JP2004010864A
JP2004010864A JP2002170195A JP2002170195A JP2004010864A JP 2004010864 A JP2004010864 A JP 2004010864A JP 2002170195 A JP2002170195 A JP 2002170195A JP 2002170195 A JP2002170195 A JP 2002170195A JP 2004010864 A JP2004010864 A JP 2004010864A
Authority
JP
Japan
Prior art keywords
weight
tracking
ethylene
resin composition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170195A
Other languages
Japanese (ja)
Other versions
JP3989306B2 (en
Inventor
Yoshihiko Hamaguchi
浜口 善彦
Makoto Okazawa
岡沢 真
Ariyoshi Oki
大木 有美
Yoshio Nikaido
二階堂 吉穂
Kazutoshi Nagaoka
長岡 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUC Corp
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Nippon Unicar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Nippon Unicar Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002170195A priority Critical patent/JP3989306B2/en
Publication of JP2004010864A publication Critical patent/JP2004010864A/en
Application granted granted Critical
Publication of JP3989306B2 publication Critical patent/JP3989306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tracking-resistant resin composition crosslinkable with water, having excellent mechanical characteristics, without causing surface roughness, and therefore having excellent moldability so as to exhibit uniform electrically-insulating performance, and further having an excellent balance between weather resistance and tracking resistance, and to provide a power cable having an insulating coated layer (layer of an insulating material or a sheathing material) formed out of the composition. <P>SOLUTION: This tracking-resistant resin composition crosslinkable with the water is obtained by mixing (A) an ethylenic resin in an amount of 100 pts.wt. with (B) magnesium hydroxide in an amount of 8-50 pts.wt., (C) carbon black in an amount of 0.2-1.1 pts.wt., (D) an unsaturated alkoxysilane in an amount of 0.1-10 pts.wt., (E) an organic peroxide in an amount of 0.01-1 pt.wt., and (F) a silanol-condensing catalyst in an amount of 0.001-1 pt.wt., wherein the ethylenic resin consists mainly of an ethylene-α-olefin bipolymer and/or a terpolymer and has a melt mass flow rate of 0.8-5.8 g/10 min. The power cable having the insulating coated layer is formed out of the composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高圧屋外電力ケーブルに使用される耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブルに関し、更に詳しくは、機械的特性、成形加工性に優れ、かつ耐候性と耐トラッキング性のバランスに優れた水架橋性の耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブルに関する。
【0002】
【従来の技術】
エチレン系樹脂は、絶縁性能、耐摩耗性、強度、低温脆性等の機械的特性、及び成形加工性に優れており、例えば電線や通信ケーブルの絶縁被覆材として広く用いられている。
特に、6000V程度の高圧屋外用電線、例えば、OC(架橋ポリエチレンを絶縁材とする屋外用電線)、PDC(高圧引下げ架橋ポリエチレン線)などの絶縁材には、架橋ポリエチレンが用いられている。
屋外に布設される電線には、このように架橋することにより機械的強度が優れたもの、特に実使用の際に暴露される50〜90℃程度での機械的特性が強化された絶縁被覆材(絶縁体やシース材料の用途に)が使われ、この機械的強度に加えて、ブツやゲルを形成し得るスコーチ(早期架橋)から生じる表面荒れのなさ等の成形加工性が要求されるが、その他に、長期にわたり日光に曝されるので耐候性が求められ、また、海岸付近に布設された電線には、海風等によって海水から塩分が絶縁被覆材に付着し、この状態で絶縁被覆材に降雨により水分が付着すると、漏洩電流が流れ、ジュール熱により付着水分が蒸発すると、漏洩電流の流れが遮断され、その結果放電が生じ、この放電により、絶縁被覆材表面が炭化し、そしてこの炭化は累積すると、導電路が形成されるトラッキングが発生し、絶縁破壊を導き、電線の寿命が短くなり、新たな布設による交換が必要となるので、これに対する耐トラッキング性が求められている。
【0003】
例えば、特開平8−311241号公報には、熱可塑性樹脂、水酸化マグネシウム及び再凝固炭素微粉からなる耐トラッキング性樹脂組成物が提案されているが、これは、高圧屋外用電線としての機械的特性が不十分と考えられ、かつ耐候性と耐トラッキング性のバランスにも、更なる向上が必要である。
また、特開2000−133048号公報には、ポリオレフィン系又はゴム系ベース樹脂、金属水酸化物、シランカップリング剤、架橋剤、触媒を配合した樹脂を押出成形してなる耐トラッキング性絶縁電線が提案されているが、これは、機械的強度は満足するが、耐候性が不十分で、成形加工時の熱処理によりブツやゲルが生じる場合があり、絶縁性能に影響があることとなり、これを絶縁被覆材として用いた電線を海岸近い所等に布設すると、耐候性と耐トラッキング性のバランスも不十分であり、その結果、電線の寿命が短くなるという問題が指摘されていた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点に鑑み、優れた機械的特性、表面荒れのない、よって均一な絶縁性能を得る成形加工性を持ち、かつ耐候性と耐トラッキング性のバランスに優れた耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層(絶縁体やシース体の層)を持つ電力ケーブルを提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究した結果、特定のエチレン系樹脂が機械的特性に優れ、かつ耐候性付与のために配合するカーボンブラックと、また耐トッラキング性付与剤として配合する水酸化マグネシウムとの相溶性が良好であり、更にこれら耐候性付与剤や耐トラッキング性付与剤の配合割合を最適化することにより、耐候性と耐トラッキング性が更に改善され、その上架橋法として、水架橋法を採用することにより、ブツやゲルなどの表面荒れがなく、よって絶縁性能の均一性に優れた成形加工品が得られることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明の第1の発明によれば、メルトマスフローレート0.8〜5.8g/10分のエチレン−α−オレフィン二元共重合体及び/又は三元共重合体を主成分とするエチレン系樹脂(A)100重量部に対して、水酸化マグネシウム(B)8〜50重量部、カーボンブラック(C)0.2〜1.1重量部、不飽和アルコキシシラン(D)0.1〜10重量部、有機過酸化物(E)0.01〜1重量部、及びシラノール縮合触媒(F)0.001〜1重量部を配合させてなることを特徴とする耐トラッキング性水架橋性樹脂組成物が提供される。
また、本発明の第2の発明によれば、第1の発明において、エチレン−α−オレフィン二元共重合体及び/又は三元共重合体の密度は、0.880〜0.935g/cmであることを特徴とする耐トラッキング性水架橋性樹脂組成物が提供される。
さらに、本発明の第3の発明によれば、第1又は2の発明において、エチレン系樹脂(A)は、密度0.880〜0.935g/cm及びメルトマスフローレート0.8〜5.8g/10分であるエチレン−α−オレフィン二元共重合体及び/又は三元共重合体100〜50重量%と、密度0.910〜0.930g/cm及びメルトマスフローレート0.1〜15g/10分である高圧法エチレン単独重合体0〜50重量%未満からなることを特徴とする耐トラッキング性水架橋性樹脂組成物が提供される。
【0007】
本発明の第4の発明によれば、第1〜3のいずれかの発明において、カーボンブラック(C)がファーネスブラック、不飽和アルコキシシラン(D)がビニルトリメトキシシラン、有機過酸化物(E)がジクミルパーオキシド、及びシラノール縮合触媒(F)がジブチル錫ジラウレートであることを特徴とする耐トラッキング性水架橋性樹脂組成物が提供される。
また一方、本発明の第5の発明によれば、第1〜4のいずれかの発明に係る耐トラッキング性水架橋性樹脂組成物からなる絶縁被覆層が構成されていることを特徴とする電力ケーブルが提供される。
【0008】
【発明の実施の形態】
以下、本発明の耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブルについて、各項目毎に詳細に説明する。
【0009】
1.エチレン系樹脂(A)
本発明において使用されるエチレン系樹脂(A)は、そのメルトマスフローレートが0.8〜5.8g/10分、好ましくは1〜5g/10分、更に好ましくは2〜3g/10分であるエチレン−α−オレフィン(炭素数3〜12)二元共重合体及び/又は三元共重合体を主成分とするエチレン系樹脂である。
エチレン系樹脂(A)のメルトマスフローレートが0.8g/10分未満であると、成形加工性が劣り、押出加工時に不整流が生じて表面状態が劣化し、表面荒れを形成し、絶縁性能の均一性に悪影響がでることがあり、一方、メルトマスフローレートが5.8g/10分を超えると、押出加工後樹脂が垂れ下がり、成形自体が困難となり、また充分な機械的強度が得られないことがあるので望ましくない。
【0010】
エチレン−α−オレフィン二元共重合体及び/又は三元共重合体を主成分とするとは、エチレン系樹脂(A)の樹脂成分の50重量%以上、好ましくは55重量%以上、更に好ましくは60重量%以上がエチレン−α−オレフィン二元共重合体及び/又は三元共重合体によって構成されていることを意味する。
エチレン系樹脂(A)が、上記の条件を満たさなければ、得られる樹脂組成物の機械的特性が劣り望ましくない。
【0011】
本発明では、密度が0.880〜0.935g/cm、好ましくは0.900〜0.925g/cmであり、及びメルトマスフローレートが0.8〜5.8g/10分、好ましくは1〜5g/10分、更に好ましくは2〜3g/10分であるエチレン−α−オレフィン二元共重合体及び/又は三元共重合体のみからなるものを、エチレン系樹脂(A)として好適に使用できる。
また、エチレン系樹脂(A)に配合できるエチレン−α−オレフィン二元共重合体及び/又は三元共重合体以外のマイナー配合量の樹脂成分としては、エチレン単独重合体、エチレン−α,β−不飽和カルボン酸(あるいはそのエステル誘導体)共重合体、エチレン−カルボン酸ビニルエステル共重合体などが挙げられ、これらは、エチレン系樹脂(A)に所望の特性を付与する目的で配合される。これらを具体的に例示すると、高圧法エチレン単独重合体、エチレン−アクリル酸エチル共重合体、エチレン−酢酸ビニル共重合体などを挙げることができる。これらの中では、絶縁性能の優れた高圧法エチレン単独重合体を好適に使用できる。
例えば、樹脂組成物調製時や押出加工時の負荷圧の上昇を軽減し、不整流の発生を防止し安定した表面荒れのない成形加工性を得るために、密度0.910〜0.930g/cm、及びメルトマスフローレート0.1〜15g/10分の高圧法エチレン単独重合体の配合を挙げることができ、その配合量が50重量%未満、好ましくは45重量%未満、更に好ましくは40重量%未満であるものを例示できる。
【0012】
本発明で使用されるエチレン−α−オレフィン二元共重合体及び/又は三元共重合体は、温度0〜250℃、圧力50MPa以上(高圧の場合)、10〜50MPa(中圧の場合)あるいは常圧〜10Mpa(低圧の場合)のいずれかの条件で、溶液重合法、懸濁重合法、スラリー重合法、気相重合法等の方法で、チーグラー触媒、フィリップス触媒、スタンダード触媒、又はシングルサイト(メタロセンあるいはカミンスキーとも呼ばれる。)触媒等を用いて製造される、いわゆる直鎖状低密度品に該当するものが好適である。
【0013】
コモノマーとしては、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、オクテン−1等炭素数3〜12のアルケンが使用できる。二元共重合体の場合は、コモノマーを1種用い、三元共重合体の場合は、コモノマーを2種用いて重合されるが、具体的にはエチレン−ブテン−1二元共重合体、エチレン−ヘキセン−1二元共重合体、エチレン−オクテン−1二元共重合体、エチレン−プロピレン−ブテン−1三元共重合体、エチレン−プロピレン−ヘキセン−1三元共重合体等を例示できる。
なお、エチレン−α−オレフィン二元共重合体及び/又は三元共重合体は、1種あるいは2種以上を同時に使用することができる。
【0014】
2.水酸化マグネシウム(B)
本発明において使用される水酸化マグネシウム(B)は、耐トラッキング性を付与するために配合される。
一般に金属水和物や金属水酸化物、具体的には水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム、塩基性炭酸マグネシウム、ハイドロタルサイト等は、耐トラッキング性を付与できるが、本発明では、機械的特性が優れて、耐候性と耐トラッキング性の優れたバランスを得るためには、熱暴露に対して安定で、表面荒れのない絶縁被覆層を得ることができ、よって絶縁性能の均一性の良い組成物を得ることができる分解開始温度の高い水酸化マグネシウムでなければならない。
【0015】
水酸化マグネシウム(B)としては、海水等から製造された合成水酸化マグネシウム、又は天然産ブルーサイト鉱石を粉砕して製造された水酸化マグネシウムを主成分(水酸化マグネシウム含有量85〜95重量%)とする天然水酸化マグネシウムのいずれも好適に使用することができる。
【0016】
水酸化マグネシウム(B)の表面は、分散性や流動性を向上するために、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド、高級アルコール、硬化油、チタネートカップリング剤又はシランカップリング剤等から選ばれた少なくとも1種の表面処理剤0.5〜5重量%で、表面被覆されていることが望ましい。
表面処理剤として、具体的には、ステアリン酸、オレイン酸、パルミチン酸等の高級脂肪酸;これらの高級脂肪酸のナトリウム塩、カルシウム塩、マグネシウム塩;これらの高級脂肪酸のメチルエステル、プロピルエステル、ブチルエステル、オクチルエステル;これらの高級脂肪酸のアミド;オクチルアルコール、ミリスチルアルコール、ステアリルアルコール等の高級アルコール;牛脂硬化油;イソプロピル−トリ(ジオクチルホスフェート)チタネート;ビニルトリエトキシシラン等を例示できる。表面処理法としては、合成品では湿式法、天然品では乾式法を好適に用いることができる。
【0017】
水酸化マグネシウム(B)の平均粒子径は、樹脂への分散性、耐トラッキング性への効果から、40μm以下が好ましく、特に0.2〜6μmのものが好ましい。
【0018】
水酸化マグネシウム(B)の配合量は、エチレン系樹脂(A)100重量部に対して、8〜50重量部、好ましくは10〜40重量部、更に好ましくは20〜30重量部である。これが、上記下限値(8重量部)未満であると、耐トラッキング性が不十分となり、一方、これが上記上限値(50重量部)を超えると、機械的特性及び耐候性が低下すると共に、成形加工性が落ち、ブツ等が生じ表面荒れを形成することがあるので望ましくない。
【0019】
3.カーボンブラック(C)
本発明で使用されるカーボンブラック(C)の主たる作用は、耐候性付与にあるが、同時に耐トラッキング性も付与する。
カーボンブラック(C)としては、公知のカーボンブラックであればよく、特に制限はない。例えば、黒鉛化カーボン、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が例示できる。
これらの中では、ファーネスブラックが、耐候性と絶縁性能のバランスが良く好適に使用できる。
【0020】
カーボンブラック(C)の平均粒子径は、樹脂への分散性、耐トラッキング性への効果から10〜80μmが好ましく、特に15〜30μmのものが好ましい。
【0021】
カーボンブラック(C)の配合量は、エチレン系樹脂(A)100重量部に対して、0.2〜1.1重量部、好ましくは0.3〜1.0重量部、更に好ましくは0.3〜0.8重量部である。カーボンブラック(C)の配合量が上記下限値(0.2重量部)未満であると、耐候性が不十分となり、一方、これが上記上限値(1.1重量部)を超えると、絶縁性能が低下する場合があると共に、耐トラッキング性も悪くなり、更に成形加工性も落ち、ブツ等が形成し表面荒れが認められることがあり、望ましくない。
なお、カーボンブラック(C)は、1種あるいは2種以上を混合して使用することができる。
【0022】
4.不飽和アルコキシシラン(D)
本発明で使用される不飽和アルコキシシラン(D)は、次の一般式:
RR’Si(OR”)3−n
(式中、nは、0又は1であり、Rは、ポリエチレン系樹脂中に発生した遊離ラジカルと反応性を有する脂肪族不飽和炭化水素基又はヒドロカーボンオキシ基であり、R’は、アルキル基又はフェニル基であり、R”は、アルキル基又は置換アルキル基である。)
で表わされるアルコキシシラン化合物である。式中、Rの脂肪族不飽和炭化水素基としては、例えば、ビニル基、アリル基、ブテニル基、シクロヘキセニル基又はシクロペンタジエニル基が挙げられ、ビニル基が特に望ましい。(OR”)は、例えば、メトキシ基、エトキシ基又はブトキシ基が挙げられる。好適な不飽和アルコキシシランは、γ−メタアクリロイルオキシプロピルトリメトキシシラン、ビニルトリエトキシシラン、又はビニルトリメトキシシランである。
【0023】
不飽和アルコキシシラン(D)の配合量は、エチレン系樹脂(A)100重量部に対して、0.1〜10重量部、好ましくは0.4〜5重量部、更に好ましくは0.5〜2.0重量部である。不飽和アルコキシシラン(D)の配合量が上記下限値(0.1重量部)未満であると、架橋度が低くなり機械的特性が不十分で、かつ耐熱変形性が悪くなり、一方、これが上記上限値(10重量部)を超えて多量に配合しても、架橋度の向上が顕著に表れず、不飽和アルコキシシランは高価であるのでコストアップとなり、また成形加工時にガスを発生し、ボイドが形成され表面荒れが起こることと共に余剰の不飽和アルコキシシラン(D)のゲル化によるスコーチ(早期架橋)、これに伴うブツが形成し易くなるので望ましくない。
なお、不飽和アルコキシシラン(D)は、1種あるいは2種以上を混合して使用することができる。
【0024】
5.有機過酸化物(E)
本発明で使用される有機過酸化物(E)は、加熱下においてエチレン系樹脂(A)に遊離ラジカル部位を生成させ、不飽和アルコキシシラン(C)をグラフト付加させるために配合されるもので、公知のものであればよく、特に制限はない。
【0025】
有機過酸化物(E)として、具体的には、1,1−ビス−t−ブチルパーオキシシクロヘキサン、2,2−ビス−t−ブチルパ−オキシブタン、ジクミルパーオキシド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン、t−ブチルクミルパ−オキシド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキシン−3、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジ−t−ブチルパーオキシド、ジイソプロピルベンゼンヒドロパーオキシド等を挙げることができる。これらの中では、使用実績や1分間半減期を得るための分解温度など使用のしやすさから、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシドを好適に使用することができる。
【0026】
有機過酸化物(E)の配合量は、エチレン系樹脂(A)100重量部に対して、0.01〜1重量部、好ましくは0.02〜0.8重量部、更に好ましくは0.03〜0.15重量部である。
有機過酸化物(E)の配合量が上記下限値(0.01重量部)未満であると、有効なグラフト付加が得られず、一方、これが上記上限値(1重量部)を超えて多量に配合すると、ゲル等を発生し、絶縁性能の均一性が劣りはじめ、また表面荒れを生じるので望ましくない。
なお、有機過酸化物(E)は、1種あるいは2種以上を混合して使用することができる。
【0027】
6.シラノール縮合触媒(F)
本発明で使用されるシラノール縮合触媒(F)は、エチレン系樹脂(A)にグラフト付加された不飽和アルコキシシラン同士を加水分解し、脱水縮合(水架橋)反応を促進する触媒であり、公知のものであればよく、特に制限はない。
シラノール縮合触媒(F)として、具体的には、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオリテート、酢酸第一錫、ナフテン酸鉛、ナフテン酸コバルト、カプリル酸亜鉛、2−エチルヘキサン酸鉄、チタン酸エステル、チタン酸テトラブチルエステル、チタン酸テトラノニルエステル、ビス(アセチルアセトニトリル)ジ−イソプロピルチタン−エチルアミン、へキシルアミン、ジブチルアミン、ピリジン等を挙げることができる。これらの中では、ジブチル錫ジラウレート、ジブチル錫ジアセテートを好適に使用することができる。
【0028】
シラノール縮合触媒(F)の配合量は、エチレン系樹脂(A)100重量部に対して、0.001〜1重量部、好ましくは0.005〜0.5重量部、更に好ましくは0.01〜0.1重量部である。
シラノール縮合触媒(F)の配合量が上記下限値(0.001重量部)未満であると、水架橋反応が促進されず、一方、これが上記上限値(1重量部)を超えて多量に配合しても、水架橋反応が顕著に向上するものでないばかりでなく、スコーチを生じ易くなり、表面荒れの原因となり、かえって絶縁性能を悪化させることがあるので望ましくない。
なお、シラノール縮合触媒(F)は、1種あるいは2種以上を混合して使用することができる。
【0029】
7.その他の配合物(G)
本発明の耐トラッキング性水架橋性樹脂組成物には、上記配合成分の他に、本発明の目的を損なわない範囲で、その他の各種添加剤や補助資材を配合することができる。この各種添加剤や補助資材としては、安定剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、核剤、滑剤、充填剤、分散剤、銅害防止剤、金属不活性剤、中和剤、難燃剤、加工助剤、離型剤、発泡剤、気泡防止剤、着色剤、殺菌剤、防カビ剤等を挙げることができる。
【0030】
また、本発明の耐トラッキング性水架橋性樹脂組成物には、本発明の目的を損なわない範囲で、例えば、上記その他の配合物(G)の高濃度マスターバッチの調製に使用する等に、その他のオレフィン系樹脂を少量配合することができる。
【0031】
本発明の耐トラッキング性水架橋性樹脂組成物には、酸化防止剤を配合することが好ましい。酸化防止剤としては、フェノール系、リン系、アミン系、イオウ系等を挙げることができ、単独でも2種以上を混合して使用してもよく、その配合量は、エチレン系樹脂(A)100重量部に対して、0.001〜5重量部程度である。
【0032】
8.耐トラッキング性水架橋性樹脂組成物の調製
本発明の耐トラッキング性水架橋性樹脂組成物は、上述のような電線の絶縁被覆材として用いられるので、機械的強度の強化が必要であり、エチレン系樹脂(A)を架橋することが不可欠である。
【0033】
エチレン系樹脂(A)を架橋する方法としては、化学架橋法と水架橋法がある。化学架橋法は、エチレン系樹脂(A)に有機過酸化物(E)を0.01〜0.5重量%程度配合した樹脂組成物を、例えば120〜150℃程度で導線の周りに押出成形し、絶縁被覆層を形成し、これを300℃程度の架橋管中を通し架橋させるものである。しかし、本発明は、高融点の水酸化マグネシウム(B)を使用するが、化学架橋法では、これさえも280℃程度で分解しはじめるので、これから水が放出され、その配合値の上限値に近づけば近づくほど、得られる絶縁被覆層にブツやゲルが形成され、表面荒れが認められると共に、機械的特性や絶縁性能の均一性も低下するので、本発明のような耐トラッキング性に加えて機械的特性、成形加工性(表面荒れ)、絶縁性能の均一性、耐候性を満たす樹脂組成物が得らない。また、化学架橋法では、高温の熱処理が必要なので、製造効率も悪い。
したがって、本発明の耐トラッキング性水架橋性樹脂組成物は、架橋方法としては、水架橋法でなければならず、本発明の耐トラッキング性水架橋性樹脂組成物は水架橋性であり、この製造効率は、化学架橋法より高いという効果も持つ。
【0034】
本発明の耐トラッキング性水架橋性樹脂組成物の調製方法は、公知の方法であればよく、特に限定されないが、主な方法として以下の2調製方法を例示することができる。
(1)エチレン系樹脂(A)に、それぞれ特定量の不飽和アルコキシシラン(D)及び有機過酸化物(E)を配合し、押出機を用いて180〜220℃程度で混練溶融して、先ず不飽和アルコキシランをグラフト付加させたシラン変性エチレン系樹脂を調製し、次いで、別の押出機に、得られたシラン変性エチレン系樹脂とそれぞれれ特定量の水酸化マグネシウム(B)、カーボンブラック(C)、シラノール縮合触媒(F)及びそのほかの配合物(G)を投入し、180〜220℃程度で溶融混練して、金型から押出し、成形体とし、その後水分により架橋させる方法である。この方法は、2工程方式(Sioplas法)とも呼ばれている。
(2)一つの押出機に、すべての原料(エチレン系樹脂(A)、水酸化マグネシウム(B)、カーボンブラック(C)、不飽和アルコキシシラン(D)、有機過酸化物(E)、シラノール縮合触媒(F)、その他の配合物(G))を投入し、180〜220℃で溶融加熱し、金型から押出し、成形体とし、その後水分により架橋させる方法である。この方法は、1工程方式(Monosil法)とも呼ばれている。
【0035】
本発明の耐トラッキング性水架橋性樹脂組成物は、Monosil法を用いて好適に調製することができる。
また、本発明の耐トラッキング性水架橋性樹脂組成物の好ましい調製方法としては、不飽和アルコキシシラン(D)、有機過酸化物(E)、シラノール縮合触媒(F)等をエチレン系樹脂(A)に加え、室温〜80℃で密閉容器中でこれらをエチレン系樹脂(A)中に浸透含浸させ、これと、水酸化マグネシウム(B)、カーボンブラック(C)及びその他の配合物(G)を一つの押出機に投入し、180〜220℃で溶融混練し、金型から押出し、成形体とし、その後水分により架橋させる方法を挙げることができる。
更に、耐トラッキング性水架橋性樹脂組成物の最も好ましい調製方法としては、エチレン系樹脂(A)、これと、水酸化マグネシウム(B)、及びカーボンブラック(C)を押出機に投入し、140〜180℃で溶融混練し、均一な樹脂組成物を得て、これを造粒し、密閉容器に入れ、次いで不飽和アルコキシシラン(D)、有機過酸化物(E)、シラノール縮合触媒(F)、及びその他の配合物(G)等を加え、室温〜80℃で密閉容器中でこれらを該樹脂組成物中に浸透含浸させ、これを押出成形し成形体とし、その後水分により架橋させる方法を挙げることができる。本発明において、この方法は、最小限の熱暴露により均一性の優れた樹脂組成物が得られる。
また、酸化防止剤等、その他の配合物(G)は、他のオレフィン系樹脂を用いて高濃度のマスターバッチを調製し、これを配合しても勿論よい。
【0036】
本発明の耐トラッキング性水架橋性樹脂組成物は、電力ケーブルの絶縁被覆層として押出成形する作業性から、平均粒径が2〜7mmのペレットであることが好ましい。
本発明に係る電力ケーブルは、公知の方法で導体上に絶縁被覆層を押出成形し形成すればよい。例えば、硬銅撚線等の導体上に、本発明の耐トラッキング性水架橋性樹脂組成物を、押出成形機を用いて180〜230℃で押出し、得られた電力ケーブルを、80℃の水蒸気で24時間処理し、製造することができる。
【0037】
【実施例】
次に実施例に基づいて本発明をさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。なお、本明細書中で用いられた評価は、それぞれ以下の方法によるものである。
【0038】
「評価」
1.メルトマスフローレート
JIS K7210に準拠して行い、評価条件は、温度190℃、荷重2.16kgであった。
2.密度
JIS K7112に準拠して行った。
【0039】
3.成形加工性(表面荒れ)
得られた耐トラッキング性水架橋性樹脂組成物につき、ラボプラストミル(東洋精機製、20C200、スクリュウ外径(D)20mm、スクリュウ外径(D)と長さ(L)の比L/D=24)を用い、押出試験設定温度C1/C2/C3=180℃/200℃/220℃、スクリュウ回転数30rpmとし、直径2mmのダイスを使用して行った。
押出成形体の表面を目視で観察し、不整、ブツ、ゲルによる突起(表面荒れ)の認められないものを「○」と評価し、合格とした。一方、表面荒れの認められるものを「×」とし、不合格とした。
【0040】
4.機械的特性
4−1)引張破壊応力
得られた耐ブロッキング性樹脂組成物を、プレス成形(温度160℃、予熱圧力0.5MPa*5分間、加圧圧力15MPa*3分間)し、厚み1mmのシートを得て、これを沸騰水中で3時間処理し水架橋させ、次いでJIS K6251の4.1に規定する3号ダンベルで打ちぬいた試験片につき、JIS C3005に準拠して行った。評価基準として、15MPa以上を合格とした。
4−2)引張破壊ひずみ
引張破壊応力試験と同様の試験片を用いて、JIS C3005に準拠して行った。評価基準として、400%以上を合格とした。
【0041】
5.耐候性
機械的強度で用いた同様の試験片を、アイスーパーUVテスター(岩埼電機製)を用い、光源として紫外線ランプを使用して、紫外線強度100mW/cm、試験槽温度64℃に設定し、10時間照射後の試験片の引張破壊応力を測定し、試験前の強度に対する残率を求め評価した。評価基準として、残率40%以上を合格とした。
【0042】
6.耐トラッキング性
汚損液の電気伝導度を規定の3000μS/cmから8500μS/cmに替え、更に電圧を規定の4kVから6.6kVに替え、より過酷な条件とした以外は、JIS C3005に準拠して行った。この条件では、200回以上で良好な耐トラッキング性を持っていると考えられるが、発明の目的からより厳しい400回以上を合格とした。
【0043】
[実施例1、比較例1]
エチレン系樹脂(A)としてエチレン−プロピレン−ヘキセン−1三元共重合体(メルトマスフローレート2.5g/10分、密度0.910g/cm)を用いて、この100重量部に対して、水酸化マグネシウム(B)として脂肪酸(ステアリン酸)表面処理水酸化マグネシウム(キスマ5A(登録商標)、協和化学製)25重量部、カーボンブラック(C)としてファーネスブッラク0.6重量部を配合し、150℃で溶融混練して得られた樹脂組成物を粒径約4mmに造粒し、ペレットを得た。このペレットを密閉容器に入れ、これに上記エチレン系樹脂(A)100重量部に対して、不飽和アルコキシシラン(C)としてビニルトリメトキシシラン1重量部、有機過酸化物(E)としてジクミルパーオキシド0.05重量部、シラノール縮合触媒(F)としてジブチル錫ジラウレート0.04重量部、及びその他の配合物(G)として酸化防止剤のテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン0.15重量部となるように加えて、密閉しこれを60℃で3時間攪拌しこれらを浸透含浸させて、実施例1の本発明の耐トラッキング性水架橋性樹脂組成物を得た。
【0044】
カーボンブラック(C)としてファーネスブッラクの配合量を0.12重量部に替えた以外は、実施例1と同様にして、比較例1の樹脂組成物を得た。
【0045】
これらの樹脂組成物につき、上述の「評価」による試験を行い、その結果を樹脂組成物の配合割合と共に表1に示した。
結果から明らかなように、実施例1の組成物は、全評価項目に合格したが、カーボンブラックの配合量が本発明の範囲よリ少ない比較例1の組成物は、耐トラッキング性は、非常に高い評価が得られたが、耐候性が劣り不合格となり、結果として、耐候性と耐トラッキング性のバランスの劣る組成物であった。
【0046】
【表1】

Figure 2004010864
【0047】
[実施例2、3、4]
実施例2では、カーボンブラック(C)としてファーネスブッラクの配合量を0.4重量部に替え、実施例3では、水酸化マグネシウム(B)として脂肪酸表面処理水酸化マグネシウムの配合量を11重量部に替え、実施例4では、この配合量を44重量部に替え、各々それ以外は、実施例1と同様にして、実施例2〜4の樹脂組成物を得た。
【0048】
これらの樹脂組成物につき、上述の「評価」による試験を行い、その結果を樹脂組成物の配合割合と共に表1に示した。
結果から明らかなように、実施例2〜4の組成物は、全評価項目に合格した優れた成形加工性、機械的特性、耐候性、耐トラッキング性を持ち、耐候性と耐トラッキング性のバランスもよいものであった。
実施例1と比べて、実施例2〜4の結果を精査してみると、カーボンブラックの配合量が少ない実施例2では、耐候性がやや劣り、しかし耐トラッキング性がやや優れ、水酸化マグネシウムの配合量が少ない実施例3では、耐候性は同レベルであり、しかし耐トラッキング性はやや劣り、これが多い実施例4では、耐候性は同レベルであり、耐トラッキング性はやや優れていたが、機械的特性がやや劣るものであった。
【0049】
[比較例2、3]
比較例2では、カーボンブラック(C)としてファーネスブッラクの配合量を1.5重量部に替え、比較例3では、水酸化マグネシウム(B)として脂肪酸表面処理水酸化マグネシウムの配合量を68重量部に替え、各々それ以外は、実施例1と同様にして、比較例2、3の樹脂組成物を得た。
これらの樹脂組成物につき、上述の「評価」による試験を行い、その結果を樹脂組成物の配合割合と共に表1に示した。
結果から明らかなように、カーボンブラックの配合量が本発明の範囲よリ多い比較例2の組成物は、耐候性は高い評価が得られたが、耐トラッキング性が劣り不合格となり、水酸化マグネシウムの配合量が本発明よリ多い比較例3の組成物は、実施例1に比べて機械的特性もやや劣り、耐候性は同等で、耐トラッキング性は非常に高かったが、表面荒れが認められ、成形加工性が不合格であった。
【0050】
[実施例5、比較例4]
実施例5では、エチレン系樹脂(A)として、エチレン−プロピレン−ヘキセン−1共重合体(メルトマスフローレート2.5g/10分、密度0.910g/cm)75重量%と高圧法エチレン単独重合体(メルトマスフローレート2.0g/10分、密度0.922g/cm)25重量%とからなる、メルトマスフローレート2.36g/10分のエチレン系樹脂100重量部を用いて、比較例4では、この高圧法エチレン単独重合体のみをエチレン系樹脂として用い、かつ水酸化マグネシウム(B)として脂肪酸表面処理水酸化マグネシウムの配合量を44重量部に替え、各々それ以外は、実施例1と同様にして、実施例5、比較例4の樹脂組成物を得た。
【0051】
これらの樹脂組成物につき、上述の「評価」による試験を行い、その結果を樹脂組成物の配合割合と共に表1に示した。
結果から明らかなように、実施例5の組成物は、全評価項目に合格したが、ベース樹脂としてメルトマスフローレートが本発明の条件を満たす高圧法エチレン単独重合体のみを用いた比較例4の組成物は、実施例4と同量の水酸化マグネシウムを配合しているのに係らず、機械的特性が不合格であった。
【0052】
[実施例6、比較例5]
実施例6では、エチレン系樹脂(A)をメルトマスフローレート2.0g/10分、密度0.918g/cmのエチレン−ブテン−1二元共重合体(これをエチレン−ブテン−1二元共重合体(1)と呼ぶ。)に替えて、比較例5では、メルトマスフローレート0.7g/10分、密度0.920g/cmのエチレン−ブテン−1二元共重合体(これをエチレン−ブテン−1二元共重合体(2)と呼ぶ。)に、かつ水酸化マグネシウムの配合量を18重量部に替え、各々それ以外は、実施例1と同様にして樹脂組成物を得た。
これらの樹脂組成物につき、上述の「評価」による試験を行い、その結果を樹脂組成物の配合割合と共に表1に示した。
結果から明らかなように、実施例6の組成物は、全評価項目に合格したが、メルトマスフローレートの条件が本発明の範囲外である比較例5では、その他の評価では良好な結果を示したが、不整流(メルトフラクチャー)が認められ、表面荒れが発生し、不合格であった。
【0053】
[比較例6]
比較例6では、高圧法エチレン単独重合体(メルトマスフローレート2.0g/10分、密度0.922g/cm)をエチレン系樹脂(A)として用い、水酸化マグネシウムは配合しないで、ファーネスブラック、ジクミルパーオキシド、酸化防止剤のみの配合にした以外は、実施例1と同様にして樹脂組成物を得た。得られた樹脂組成物について「評価」を行ったが、この際、成形加工性(表面荒れ)については、押出試験設定温度C1/C2/C3=110℃/120℃/120℃に変更し、機械的特性測定の試料のプレス成形は、温度120℃に変更した。
「評価」結果は、表1に示したように成形加工性、機械的特性、耐候性は合格したが、肝心の耐トラッキング性は非常に劣るものであった。
【0054】
【発明の効果】
以上詳細に説明したように、本発明は、メルトマスフローレート0.8〜5.8g/10分のエチレン−α−オレフィン二元共重合体及び/又は三元共重合体を主成分とするエチレン系樹脂(A)100重量部に対して、水酸化マグネシウム(B)8〜50重量部、カーボンブラック(C)0.2〜1.1重量部、不飽和アルコキシシラン(D)0.1〜10重量部、有機過酸化物(E)0.01〜0.8重量部、及びシラノール縮合触媒(F)0.001〜10重量部を配合させてなるので、機械的特性に優れ、かつ成形加工性に秀でると共に、絶縁性能の均一性がよく、更に優れた耐候性と耐トラッキング性を持つと共に、これら両特性のバランスにも秀でた耐トラッキング性水架橋性樹脂組成物である。さらに、これを絶縁被覆層として持つ電力ケーブルは、屋外、特に海風があたる海岸沿いに布設しても、優れた耐候性、耐トラッキング性、及びこれら両特性のバランスの優秀さにより、長期間の使用に耐える寿命を持つ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tracking-resistant water-crosslinkable resin composition used for a high-voltage outdoor power cable, and a power cable having an insulating coating layer comprising the same. More specifically, the present invention relates to a mechanical property, excellent moldability, and weather resistance. The present invention relates to a water-crosslinkable water-crosslinkable resin composition having excellent balance between water resistance and tracking resistance, and a power cable having an insulating coating layer made of the same.
[0002]
[Prior art]
Ethylene-based resins are excellent in insulating properties, abrasion resistance, strength, mechanical properties such as low-temperature brittleness, and moldability, and are widely used, for example, as insulation coating materials for electric wires and communication cables.
In particular, cross-linked polyethylene is used as an insulating material such as a high-voltage outdoor electric wire of about 6000 V, for example, an OC (outdoor electric wire using cross-linked polyethylene as an insulating material) and a PDC (high-pressure lowered cross-linked polyethylene wire).
Electric wires laid outdoors have excellent mechanical strength by being crosslinked as described above, and in particular, an insulating coating material having enhanced mechanical properties at about 50 to 90 ° C. which is exposed during actual use. (For use as an insulator or sheath material), and in addition to this mechanical strength, moldability such as surface roughening caused by scorch (early crosslinking) that can form bumps and gels is required. In addition, weather resistance is required due to long-term exposure to sunlight, and salt laid from the seawater on the wires laid near the shore due to sea breeze etc. When moisture adheres to the surface due to rainfall, a leakage current flows, and when the attached moisture evaporates due to Joule heat, the flow of the leakage current is interrupted, resulting in a discharge.This discharge causes the surface of the insulating coating material to be carbonized. Carbonization is cumulative Then, the tracking has occurred and the conductive path is formed, leads to dielectric breakdown, the life of the wire is shortened, and since the replacement by a new cable laying required, tracking resistance is required for this.
[0003]
For example, Japanese Unexamined Patent Publication No. 8-31241 proposes a tracking-resistant resin composition comprising a thermoplastic resin, magnesium hydroxide and re-solidified carbon fine powder. The properties are considered to be insufficient, and the balance between weather resistance and tracking resistance needs to be further improved.
Japanese Patent Application Laid-Open No. 2000-133048 discloses a tracking-resistant insulated wire obtained by extruding a resin containing a polyolefin-based or rubber-based resin, a metal hydroxide, a silane coupling agent, a crosslinking agent, and a catalyst. Although it has been proposed, this satisfies the mechanical strength, but the weather resistance is insufficient, and heat treatment at the time of molding may cause bumps and gels, which may affect the insulation performance. It has been pointed out that if an electric wire used as an insulating covering material is laid near a coast or the like, the balance between the weather resistance and the tracking resistance is insufficient, and as a result, the life of the electric wire is shortened.
[0004]
[Problems to be solved by the invention]
In view of the above problems of the prior art, an object of the present invention is to provide excellent mechanical properties, no surface roughness, moldability to obtain uniform insulation performance, and an excellent balance between weather resistance and tracking resistance. Another object of the present invention is to provide a power cable having a tracking-resistant water-crosslinkable resin composition and an insulating coating layer (insulator or sheath layer) made of the same.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a specific ethylene-based resin has excellent mechanical properties, and is blended with carbon black blended for imparting weather resistance, and also as a trafficking-resistance imparting agent. Compatibility with magnesium hydroxide is good, and by further optimizing the proportions of these weathering agents and tracking resistance imparting agents, the weathering resistance and tracking resistance are further improved, and the crosslinking method is further improved. As a result, the present inventors have found that by employing the water crosslinking method, a molded article having no surface roughness such as bumps and gels and thus having excellent insulation performance uniformity can be obtained, and have completed the present invention.
[0006]
That is, according to the first invention of the present invention, an ethylene-α-olefin binary copolymer and / or a ternary copolymer having a melt mass flow rate of 0.8 to 5.8 g / 10 min as a main component is used. 8 to 50 parts by weight of magnesium hydroxide (B), 0.2 to 1.1 parts by weight of carbon black (C), 0.1 to 0.1 parts by weight of unsaturated alkoxysilane (D) per 100 parts by weight of ethylene resin (A) 10 to 10 parts by weight, 0.01 to 1 part by weight of an organic peroxide (E), and 0.001 to 1 part by weight of a silanol condensation catalyst (F). A resin composition is provided.
According to the second invention of the present invention, in the first invention, the density of the ethylene-α-olefin binary copolymer and / or the ternary copolymer is 0.880 to 0.935 g / cm.3A tracking-resistant water-crosslinkable resin composition is provided.
Further, according to the third invention of the present invention, in the first or second invention, the ethylene resin (A) has a density of 0.880 to 0.935 g / cm.3And an ethylene-α-olefin binary copolymer and / or terpolymer having a melt mass flow rate of 0.8 to 5.8 g / 10 minutes and a density of 0.910 to 0.930 g / cm3And a tracking-resistant water-crosslinkable resin composition comprising 0 to less than 50% by weight of a high-pressure ethylene homopolymer having a melt mass flow rate of 0.1 to 15 g / 10 minutes.
[0007]
According to a fourth aspect of the present invention, in any one of the first to third aspects of the invention, carbon black (C) is furnace black, unsaturated alkoxysilane (D) is vinyltrimethoxysilane, and an organic peroxide (E). ) Is dicumyl peroxide, and the silanol condensation catalyst (F) is dibutyltin dilaurate.
On the other hand, according to a fifth aspect of the present invention, there is provided an electric power comprising an insulating coating layer comprising the tracking-resistant water-crosslinkable resin composition according to any one of the first to fourth aspects. A cable is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the tracking-resistant water-crosslinkable resin composition of the present invention and a power cable having an insulating coating layer composed of the same will be described in detail for each item.
[0009]
1. Ethylene resin (A)
The ethylene-based resin (A) used in the present invention has a melt mass flow rate of 0.8 to 5.8 g / 10 min, preferably 1 to 5 g / 10 min, more preferably 2 to 3 g / 10 min. It is an ethylene resin containing an ethylene-α-olefin (3 to 12 carbon atoms) binary copolymer and / or a ternary copolymer as a main component.
If the melt mass flow rate of the ethylene-based resin (A) is less than 0.8 g / 10 minutes, the molding processability is poor, unrectification occurs during extrusion, the surface condition is deteriorated, the surface is roughened, and the insulation performance is reduced. When the melt mass flow rate exceeds 5.8 g / 10 min, the resin sags after extrusion, making the molding itself difficult and failing to provide sufficient mechanical strength. Is not desirable.
[0010]
The main component of the ethylene-α-olefin binary copolymer and / or terpolymer is that the resin component of the ethylene resin (A) is at least 50% by weight, preferably at least 55% by weight, more preferably at least 55% by weight. It means that 60% by weight or more is constituted by an ethylene-α-olefin binary copolymer and / or terpolymer.
Unless the ethylene-based resin (A) satisfies the above conditions, the mechanical properties of the obtained resin composition are inferior, which is not desirable.
[0011]
In the present invention, the density is 0.880 to 0.935 g / cm.3, Preferably 0.900 to 0.925 g / cm3And an ethylene-α-olefin binary copolymer having a melt mass flow rate of 0.8 to 5.8 g / 10 min, preferably 1 to 5 g / 10 min, more preferably 2 to 3 g / 10 min, and A resin consisting of only a terpolymer can be suitably used as the ethylene resin (A).
Further, as a resin component having a minor compounding amount other than the ethylene-α-olefin binary copolymer and / or terpolymer which can be compounded in the ethylene resin (A), ethylene homopolymer, ethylene-α, β -Unsaturated carboxylic acid (or its ester derivative) copolymer, ethylene-carboxylic acid vinyl ester copolymer and the like, which are blended for the purpose of imparting desired properties to the ethylene resin (A). . Specific examples thereof include a high-pressure ethylene homopolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-vinyl acetate copolymer. Among these, a high-pressure ethylene homopolymer having excellent insulation performance can be suitably used.
For example, in order to reduce the increase in the load pressure during the preparation of the resin composition or the extrusion process, to prevent the occurrence of unrectification, and to obtain a stable moldability without surface roughness, a density of 0.910 to 0.930 g / cm3And a high-pressure ethylene homopolymer having a melt mass flow rate of 0.1 to 15 g / 10 min, and the compounding amount is less than 50% by weight, preferably less than 45% by weight, more preferably 40% by weight. Can be exemplified.
[0012]
The ethylene-α-olefin binary copolymer and / or terpolymer used in the present invention has a temperature of 0 to 250 ° C., a pressure of 50 MPa or more (at high pressure), and 10 to 50 MPa (at medium pressure). Alternatively, under any conditions of normal pressure to 10 Mpa (at low pressure), a Ziegler catalyst, a Phillips catalyst, a standard catalyst, or a single catalyst may be prepared by a solution polymerization method, a suspension polymerization method, a slurry polymerization method, a gas phase polymerization method, or the like. Those which correspond to so-called linear low-density products produced using a site (also called metallocene or Kaminsky) catalyst or the like are suitable.
[0013]
As the comonomer, an alkene having 3 to 12 carbon atoms such as propylene, butene-1, pentene-1, hexene-1, and octene-1 can be used. In the case of a binary copolymer, one kind of a comonomer is used, and in the case of a tertiary copolymer, two kinds of comonomers are used. Specifically, ethylene-butene-1 copolymer, Examples include ethylene-hexene-1 binary copolymer, ethylene-octene-1 binary copolymer, ethylene-propylene-butene-1 ternary copolymer, and ethylene-propylene-hexene-1 terpolymer. it can.
The ethylene-α-olefin binary copolymer and / or terpolymer can be used alone or in combination of two or more.
[0014]
2. Magnesium hydroxide (B)
The magnesium hydroxide (B) used in the present invention is blended for imparting tracking resistance.
Generally, metal hydrates and metal hydroxides, specifically, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zirconium hydroxide, basic magnesium carbonate, hydrotalcite, etc., have tracking resistance. Although it can be provided, in the present invention, in order to obtain excellent balance between weather resistance and tracking resistance, it is necessary to obtain an insulating coating layer that is stable to heat exposure and has no surface roughness. It must be a magnesium hydroxide having a high decomposition onset temperature and capable of obtaining a composition having good insulation performance and uniformity.
[0015]
As the magnesium hydroxide (B), synthetic magnesium hydroxide produced from seawater or the like, or magnesium hydroxide produced by grinding natural brucite ore as a main component (magnesium hydroxide content of 85 to 95% by weight) )) Can be suitably used.
[0016]
In order to improve dispersibility and fluidity, the surface of the magnesium hydroxide (B) may be a higher fatty acid, a higher fatty acid metal salt, a higher fatty acid ester, a higher fatty acid amide, a higher alcohol, a hardened oil, a titanate coupling agent or a silane cup. The surface is desirably coated with at least one kind of surface treatment agent selected from a ring agent and the like in an amount of 0.5 to 5% by weight.
Specific examples of the surface treatment agent include higher fatty acids such as stearic acid, oleic acid and palmitic acid; sodium, calcium and magnesium salts of these higher fatty acids; methyl esters, propyl esters and butyl esters of these higher fatty acids Octyl esters; amides of these higher fatty acids; higher alcohols such as octyl alcohol, myristyl alcohol, and stearyl alcohol; hardened tallow oil; isopropyl-tri (dioctyl phosphate) titanate; and vinyl triethoxysilane. As the surface treatment method, a wet method can be suitably used for synthetic products, and a dry method can be suitably used for natural products.
[0017]
The average particle size of the magnesium hydroxide (B) is preferably 40 μm or less, particularly preferably 0.2 to 6 μm, from the viewpoint of the effect on dispersibility in a resin and tracking resistance.
[0018]
The amount of magnesium hydroxide (B) is 8 to 50 parts by weight, preferably 10 to 40 parts by weight, and more preferably 20 to 30 parts by weight, based on 100 parts by weight of the ethylene resin (A). If this is less than the above lower limit (8 parts by weight), the tracking resistance will be insufficient, while if it exceeds the above upper limit (50 parts by weight), the mechanical properties and weather resistance will be reduced, and the molding will not be performed. Undesirably, the workability is deteriorated, and irregularities are formed to cause surface roughness.
[0019]
3. Carbon black (C)
The main function of the carbon black (C) used in the present invention lies in imparting weather resistance, but also imparts tracking resistance.
The carbon black (C) may be any known carbon black, and is not particularly limited. For example, graphitized carbon, furnace black, acetylene black, Ketjen black and the like can be exemplified.
Among these, furnace black can be suitably used with a good balance between weather resistance and insulation performance.
[0020]
The average particle diameter of the carbon black (C) is preferably from 10 to 80 μm, particularly preferably from 15 to 30 μm, from the viewpoint of the effect on the dispersibility in the resin and the tracking resistance.
[0021]
The amount of carbon black (C) is 0.2 to 1.1 parts by weight, preferably 0.3 to 1.0 part by weight, and more preferably 0.1 to 1.0 part by weight, based on 100 parts by weight of the ethylene resin (A). It is 3 to 0.8 parts by weight. When the amount of the carbon black (C) is less than the lower limit (0.2 parts by weight), the weather resistance becomes insufficient. On the other hand, when the amount exceeds the upper limit (1.1 parts by weight), the insulation performance becomes poor. May be reduced, the tracking resistance may be degraded, the molding processability may also be reduced, and irregularities may be formed and surface roughness may be observed, which is not desirable.
The carbon black (C) can be used alone or in combination of two or more.
[0022]
4. Unsaturated alkoxysilane (D)
The unsaturated alkoxysilane (D) used in the present invention has the following general formula:
RR 'nSi (OR ”)3-n
Wherein n is 0 or 1, R is an aliphatic unsaturated hydrocarbon group or a hydrocarbonoxy group reactive with free radicals generated in the polyethylene resin, and R ′ is an alkyl group. Or R "is an alkyl group or a substituted alkyl group.)
Is an alkoxysilane compound represented by In the formula, examples of the aliphatic unsaturated hydrocarbon group for R include a vinyl group, an allyl group, a butenyl group, a cyclohexenyl group and a cyclopentadienyl group, and a vinyl group is particularly desirable. (OR ") includes, for example, a methoxy group, an ethoxy group or a butoxy group. Suitable unsaturated alkoxysilanes are [gamma] -methacryloyloxypropyltrimethoxysilane, vinyltriethoxysilane, or vinyltrimethoxysilane. .
[0023]
The amount of the unsaturated alkoxysilane (D) is 0.1 to 10 parts by weight, preferably 0.4 to 5 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the ethylene resin (A). 2.0 parts by weight. When the amount of the unsaturated alkoxysilane (D) is less than the above lower limit (0.1 parts by weight), the degree of crosslinking is low, the mechanical properties are insufficient, and the heat deformation resistance is deteriorated. Even if the amount is more than the above upper limit (10 parts by weight), the degree of crosslinking is not significantly improved, and the cost of the unsaturated alkoxysilane is increased because of its high price. It is not desirable because voids are formed and the surface is roughened, and scorch (early cross-linking) due to the gelling of excess unsaturated alkoxysilane (D), which is liable to be formed, is easy.
In addition, unsaturated alkoxysilane (D) can be used individually by 1 type or in mixture of 2 or more types.
[0024]
5. Organic peroxide (E)
The organic peroxide (E) used in the present invention is compounded to generate free radical sites in the ethylene resin (A) under heating and to graft-add the unsaturated alkoxysilane (C). Any known one may be used, and there is no particular limitation.
[0025]
As the organic peroxide (E), specifically, 1,1-bis-t-butylperoxycyclohexane, 2,2-bis-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl- 2,5-di-t-butylperoxyhexane, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, α, α′-bis (t- (Butylperoxy) diisopropylbenzene, di-t-butyl peroxide, diisopropylbenzene hydroperoxide and the like. Among these, α, α'-bis (t-butylperoxy) diisopropylbenzene and dicumyl peroxide are preferably used because of their ease of use such as the actual performance and the decomposition temperature for obtaining a one-minute half-life. can do.
[0026]
The compounding amount of the organic peroxide (E) is 0.01 to 1 part by weight, preferably 0.02 to 0.8 part by weight, and more preferably 0.1 to 100 parts by weight based on 100 parts by weight of the ethylene resin (A). 03 to 0.15 parts by weight.
When the amount of the organic peroxide (E) is less than the above lower limit (0.01 part by weight), effective graft addition cannot be obtained, while the amount exceeds the upper limit (1 part by weight). If such a compound is used, a gel or the like is generated, the uniformity of the insulating performance starts to deteriorate, and the surface is roughened.
The organic peroxide (E) can be used alone or in combination of two or more.
[0027]
6. Silanol condensation catalyst (F)
The silanol condensation catalyst (F) used in the present invention is a catalyst that hydrolyzes unsaturated alkoxysilanes graft-added to the ethylene resin (A) and promotes a dehydration condensation (water crosslinking) reaction. And there is no particular limitation.
Specific examples of the silanol condensation catalyst (F) include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioritate, stannous acetate, lead naphthenate, cobalt naphthenate, zinc caprylate, iron 2-ethylhexanoate, Titanate, tetrabutyl titanate, tetranonyl titanate, bis (acetylacetonitrile) di-isopropyltitanium-ethylamine, hexylamine, dibutylamine, pyridine and the like can be mentioned. Among these, dibutyltin dilaurate and dibutyltin diacetate can be suitably used.
[0028]
The compounding amount of the silanol condensation catalyst (F) is 0.001 to 1 part by weight, preferably 0.005 to 0.5 part by weight, more preferably 0.01 to 100 parts by weight of the ethylene resin (A). 0.10.1 parts by weight.
When the amount of the silanol condensation catalyst (F) is less than the above lower limit (0.001 part by weight), the water crosslinking reaction is not promoted, while the amount exceeds the above upper limit (1 part by weight). However, not only is the water crosslinking reaction not remarkably improved, but also scorch is likely to occur, causing surface roughening and, on the contrary, deteriorating insulation performance, which is not desirable.
The silanol condensation catalyst (F) can be used alone or as a mixture of two or more.
[0029]
7. Other compounds (G)
The tracking-resistant water-crosslinkable resin composition of the present invention may contain, in addition to the above components, other various additives and auxiliary materials as long as the object of the present invention is not impaired. These various additives and auxiliary materials include stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, nucleating agents, lubricants, fillers, dispersants, copper damage inhibitors, metal deactivators, Examples include a neutralizing agent, a flame retardant, a processing aid, a release agent, a foaming agent, an air bubble inhibitor, a coloring agent, a bactericide, and a fungicide.
[0030]
In addition, the tracking-resistant water-crosslinkable resin composition of the present invention may be used, for example, in the preparation of a high-concentration masterbatch of the other compound (G) as long as the object of the present invention is not impaired. A small amount of other olefin resins can be blended.
[0031]
The tracking-resistant water-crosslinkable resin composition of the present invention preferably contains an antioxidant. Examples of the antioxidant include phenol-based, phosphorus-based, amine-based, and sulfur-based antioxidants, and they may be used alone or in combination of two or more. It is about 0.001 to 5 parts by weight based on 100 parts by weight.
[0032]
8. Preparation of tracking-resistant water-crosslinkable resin composition
Since the tracking-resistant water-crosslinkable resin composition of the present invention is used as an insulating coating material for electric wires as described above, it is necessary to enhance the mechanical strength, and it is essential to crosslink the ethylene-based resin (A). It is.
[0033]
Methods for crosslinking the ethylene resin (A) include a chemical crosslinking method and a water crosslinking method. In the chemical crosslinking method, a resin composition obtained by blending about 0.01 to 0.5% by weight of an organic peroxide (E) with an ethylene resin (A) is extruded around a conductive wire at, for example, about 120 to 150 ° C. Then, an insulating coating layer is formed, which is cross-linked through a cross-linking tube at about 300 ° C. However, in the present invention, although magnesium hydroxide (B) having a high melting point is used, even in the case of the chemical crosslinking method, even this starts to decompose at about 280 ° C., so that water is released from this, and the upper limit of the blending value is increased. The closer, the more lumps and gels are formed on the obtained insulating coating layer, and the surface roughness is recognized, and the uniformity of mechanical properties and insulating performance is also reduced, so in addition to tracking resistance as in the present invention, A resin composition that satisfies mechanical properties, moldability (surface roughness), uniformity of insulation performance, and weather resistance cannot be obtained. In addition, the chemical crosslinking method requires a high-temperature heat treatment, so that the production efficiency is low.
Therefore, the tracking-resistant water-crosslinkable resin composition of the present invention must be a water-crosslinking method as a crosslinking method, and the tracking-resistant water-crosslinkable resin composition of the present invention is water-crosslinkable. The production efficiency also has the effect of being higher than the chemical crosslinking method.
[0034]
The method for preparing the tracking-resistant water-crosslinkable resin composition of the present invention may be any known method, and is not particularly limited. Examples of the main method include the following two preparation methods.
(1) A specific amount of an unsaturated alkoxysilane (D) and an organic peroxide (E) are respectively blended with an ethylene resin (A), and the mixture is kneaded and melted at about 180 to 220 ° C. using an extruder. First, a silane-modified ethylene-based resin having an unsaturated alkoxylan grafted thereto is prepared, and then the extruder is mixed with a specific amount of each of the obtained silane-modified ethylene-based resin and a specific amount of magnesium hydroxide (B) and carbon black. (C), a method in which the silanol condensation catalyst (F) and other components (G) are charged, melt-kneaded at about 180 to 220 ° C., extruded from a mold to form a molded body, and then crosslinked with moisture. . This method is also called a two-step method (Sioplas method).
(2) All the raw materials (ethylene resin (A), magnesium hydroxide (B), carbon black (C), unsaturated alkoxysilane (D), organic peroxide (E), silanol This is a method in which a condensation catalyst (F) and other components (G) are charged, melt-heated at 180 to 220 ° C, extruded from a mold to form a molded body, and then crosslinked with moisture. This method is also called a one-step method (Monosil method).
[0035]
The tracking-resistant water-crosslinkable resin composition of the present invention can be suitably prepared using the Monosil method.
In addition, as a preferred method for preparing the tracking-resistant water-crosslinkable resin composition of the present invention, an unsaturated alkoxysilane (D), an organic peroxide (E), a silanol condensation catalyst (F) and the like are mixed with an ethylene resin (A). ), And infiltrate and impregnate them into an ethylene resin (A) in a closed vessel at room temperature to 80 ° C., and mix them with magnesium hydroxide (B), carbon black (C) and other compounds (G). Into one extruder, melt-kneaded at 180 to 220 ° C., extruded from a mold to form a molded body, and then crosslinked with water.
Further, as the most preferable preparation method of the tracking-resistant water-crosslinkable resin composition, an ethylene-based resin (A), magnesium hydroxide (B), and carbon black (C) are charged into an extruder, and Melt kneading at ~ 180 ° C to obtain a uniform resin composition, which is granulated and placed in a closed container, and then unsaturated alkoxysilane (D), organic peroxide (E), silanol condensation catalyst (F ) And other compounds (G), etc., infiltrating and impregnating these into the resin composition in a closed container at room temperature to 80 ° C., extruding the resin composition to form a molded body, and then crosslinking with water. Can be mentioned. In the present invention, this method provides a resin composition having excellent uniformity with minimal heat exposure.
In addition, other compounds (G) such as an antioxidant may be prepared by preparing a high-concentration masterbatch using another olefin-based resin and blending the same.
[0036]
The tracking-resistant water-crosslinkable resin composition of the present invention is preferably a pellet having an average particle diameter of 2 to 7 mm from the viewpoint of workability of extrusion molding as an insulating coating layer of a power cable.
The power cable according to the present invention may be formed by extruding an insulating coating layer on a conductor by a known method. For example, the tracking-resistant water-crosslinkable resin composition of the present invention is extruded on a conductor such as a hard copper stranded wire at 180 to 230 ° C using an extruder, and the obtained power cable is steamed at 80 ° C. For 24 hours.
[0037]
【Example】
Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The evaluations used in this specification are based on the following methods.
[0038]
"Evaluation"
1. Melt mass flow rate
The evaluation was carried out in accordance with JIS K7210 at a temperature of 190 ° C. and a load of 2.16 kg.
2. density
The measurement was performed according to JIS K7112.
[0039]
3. Formability (rough surface)
For the obtained tracking-resistant water-crosslinkable resin composition, Labo Plastomill (manufactured by Toyo Seiki Co., Ltd., 20C200, screw outer diameter (D) 20 mm, ratio of screw outer diameter (D) to length (L) L / D = Extrusion test set temperature C1 / C2 / C3 = 180 ° C./200° C./220° C., screw rotation speed 30 rpm, and using a die having a diameter of 2 mm, using 24).
The surface of the extruded product was visually observed, and a sample without irregularities, bumps, or protrusions (surface roughness) due to gel was evaluated as “O” and passed. On the other hand, those with surface roughness were rated "x" and rejected.
[0040]
4. Mechanical properties
4-1) Tensile fracture stress
The obtained anti-blocking resin composition was subjected to press molding (temperature: 160 ° C., preheating pressure: 0.5 MPa * 5 minutes, pressing pressure: 15 MPa * 3 minutes) to obtain a sheet having a thickness of 1 mm, which was heated in boiling water. The sample was treated for 3 hours to form a water crosslink, and then the test piece punched out with a No. 3 dumbbell specified in 4.1 of JIS K6251 was performed according to JIS C3005. As an evaluation standard, 15 MPa or more was regarded as a pass.
4-2) Tensile breaking strain
The test was performed in accordance with JIS C3005 using the same test piece as the tensile fracture stress test. As an evaluation criterion, 400% or more was judged to be acceptable.
[0041]
5. Weatherability
A similar test piece used for mechanical strength was applied to an eye super UV tester (manufactured by Iwasaki Electric Co., Ltd.) using an ultraviolet lamp as a light source, and an ultraviolet intensity of 100 mW / cm.2The test chamber temperature was set to 64 ° C., and the tensile fracture stress of the test piece after 10 hours of irradiation was measured, and the residual ratio to the strength before the test was determined and evaluated. As an evaluation criterion, a residual ratio of 40% or more was regarded as acceptable.
[0042]
6. Tracking resistance
The procedure was performed in accordance with JIS C3005, except that the electric conductivity of the fouling liquid was changed from the specified 3000 μS / cm to 8500 μS / cm, and the voltage was changed from the specified 4 kV to 6.6 kV, and the conditions were more severe. Under these conditions, it is considered that good tracking resistance is obtained at 200 times or more, but 400 times or more, which is stricter for the purpose of the present invention, is judged as acceptable.
[0043]
[Example 1, Comparative Example 1]
Ethylene-propylene-hexene-1 terpolymer (melt mass flow rate 2.5 g / 10 min, density 0.910 g / cm) as ethylene resin (A)3), 25 parts by weight of fatty acid (stearic acid) surface-treated magnesium hydroxide (Kisuma 5A (registered trademark), manufactured by Kyowa Chemical Co., Ltd.) and 100 parts by weight of carbon black (C) ), 0.6 part by weight of furnace black was blended, and the resin composition obtained by melt-kneading at 150 ° C. was granulated to a particle size of about 4 mm to obtain pellets. The pellets are placed in a closed container, and 1 part by weight of vinyltrimethoxysilane as unsaturated alkoxysilane (C) and dicumyl as organic peroxide (E) are added to 100 parts by weight of the ethylene resin (A). 0.05 parts by weight of peroxide, 0.04 parts by weight of dibutyltin dilaurate as a silanol condensation catalyst (F), and tetrakis [methylene-3- (3 ′, 5′-) as an antioxidant as another compound (G). Di-t-butyl-4'-hydroxyphenyl) propionate] methane was added in an amount of 0.15 parts by weight, sealed, and stirred at 60 ° C. for 3 hours to impregnate them. A tracking-resistant water-crosslinkable resin composition of the invention was obtained.
[0044]
A resin composition of Comparative Example 1 was obtained in the same manner as in Example 1, except that the amount of furnace black as carbon black (C) was changed to 0.12 parts by weight.
[0045]
The above-mentioned "evaluation" was performed on these resin compositions, and the results are shown in Table 1 together with the mixing ratio of the resin compositions.
As is clear from the results, the composition of Example 1 passed all the evaluation items, but the composition of Comparative Example 1 in which the blending amount of carbon black was less than the range of the present invention was extremely low in tracking resistance. However, the composition was poor in weather resistance and failed, resulting in a composition having a poor balance between weather resistance and tracking resistance.
[0046]
[Table 1]
Figure 2004010864
[0047]
[Examples 2, 3, and 4]
In Example 2, the amount of furnace black was changed to 0.4 parts by weight as carbon black (C). In Example 3, the amount of fatty acid surface-treated magnesium hydroxide was changed to 11 parts by weight as magnesium hydroxide (B). In Example 4, the compounding amount was changed to 44 parts by weight, and the other conditions were the same as in Example 1 to obtain the resin compositions of Examples 2 to 4.
[0048]
The above-mentioned "evaluation" was performed on these resin compositions, and the results are shown in Table 1 together with the mixing ratio of the resin compositions.
As is clear from the results, the compositions of Examples 2 to 4 have excellent moldability, mechanical properties, weather resistance, and tracking resistance that have passed all the evaluation items, and have a balance between weather resistance and tracking resistance. Was also good.
Examining the results of Examples 2 to 4 in comparison with Example 1, it was found that Example 2 in which the amount of carbon black was small was slightly inferior in weather resistance, but slightly superior in tracking resistance. In Example 3 where the amount of the compound was small, the weather resistance was at the same level, but the tracking resistance was slightly inferior. In Example 4 where the amount was large, the weather resistance was at the same level and the tracking resistance was slightly excellent. And the mechanical properties were somewhat inferior.
[0049]
[Comparative Examples 2 and 3]
In Comparative Example 2, the amount of furnace black was changed to 1.5 parts by weight as carbon black (C). In Comparative Example 3, the amount of fatty acid surface-treated magnesium hydroxide was changed to 68 parts by weight as magnesium hydroxide (B). The resin compositions of Comparative Examples 2 and 3 were obtained in the same manner as in Example 1 except for the above.
The above-mentioned "evaluation" was performed on these resin compositions, and the results are shown in Table 1 together with the mixing ratio of the resin compositions.
As is clear from the results, the composition of Comparative Example 2 in which the blending amount of carbon black was larger than the range of the present invention was evaluated as having high weather resistance, but was inferior in tracking resistance and was rejected. The composition of Comparative Example 3 in which the amount of magnesium was greater than that of the present invention was slightly inferior in mechanical properties to Example 1, and had the same weather resistance and extremely high tracking resistance, but had a rough surface. The molding processability was rejected.
[0050]
[Example 5, Comparative Example 4]
In Example 5, an ethylene-propylene-hexene-1 copolymer (melt mass flow rate 2.5 g / 10 min, density 0.910 g / cm) was used as the ethylene resin (A).3) 75% by weight and a high pressure ethylene homopolymer (melt mass flow rate 2.0 g / 10 min, density 0.922 g / cm)3In Comparative Example 4, only this high-pressure ethylene homopolymer was used as an ethylene resin, and 100 parts by weight of an ethylene resin consisting of 25% by weight and having a melt mass flow rate of 2.36 g / 10 min. The resin composition of Example 5 and Comparative Example 4 was obtained in the same manner as in Example 1 except that the blending amount of the fatty acid surface-treated magnesium hydroxide was changed to 44 parts by weight as magnesium oxide (B).
[0051]
The above-mentioned "evaluation" was performed on these resin compositions, and the results are shown in Table 1 together with the mixing ratio of the resin compositions.
As is clear from the results, the composition of Example 5 passed all the evaluation items, but the composition of Comparative Example 4 using only the high-pressure ethylene homopolymer having a melt mass flow rate satisfying the conditions of the present invention as the base resin. Although the composition contained the same amount of magnesium hydroxide as in Example 4, the mechanical properties were rejected.
[0052]
[Example 6, Comparative Example 5]
In Example 6, the ethylene-based resin (A) was melted at a melt mass flow rate of 2.0 g / 10 min and a density of 0.918 g / cm.3In Comparative Example 5, instead of the ethylene-butene-1 binary copolymer (hereinafter referred to as ethylene-butene-1 binary copolymer (1)), the melt mass flow rate was 0.7 g / 10 minutes, Density 0.920g / cm3Of ethylene-butene-1 binary copolymer (hereinafter referred to as ethylene-butene-1 binary copolymer (2)), and the blending amount of magnesium hydroxide was changed to 18 parts by weight. In the same manner as in Example 1, a resin composition was obtained.
The above-mentioned "evaluation" was performed on these resin compositions, and the results are shown in Table 1 together with the mixing ratio of the resin compositions.
As is clear from the results, the composition of Example 6 passed all the evaluation items, but showed good results in other evaluations in Comparative Example 5 in which the condition of the melt mass flow rate was out of the range of the present invention. However, non-rectification (melt fracture) was observed, the surface was roughened, and it was rejected.
[0053]
[Comparative Example 6]
In Comparative Example 6, the high-pressure ethylene homopolymer (melt mass flow rate 2.0 g / 10 min, density 0.922 g / cm3) Was used as the ethylene-based resin (A), and a resin composition was obtained in the same manner as in Example 1 except that only magnesium black, dicumyl peroxide, and an antioxidant were used without using magnesium hydroxide. Was. “Evaluation” was performed on the obtained resin composition. At this time, the molding processability (surface roughness) was changed to an extrusion test set temperature C1 / C2 / C3 = 110 ° C./120° C./120° C. The press molding of the sample for measuring the mechanical properties was changed to a temperature of 120 ° C.
As shown in Table 1, the "evaluation" results indicated that the moldability, mechanical properties, and weather resistance were acceptable, but the essential tracking resistance was very poor.
[0054]
【The invention's effect】
As described in detail above, the present invention provides an ethylene-α-olefin binary copolymer and / or a ternary copolymer having a melt mass flow rate of 0.8 to 5.8 g / 10 min. 8 to 50 parts by weight of magnesium hydroxide (B), 0.2 to 1.1 parts by weight of carbon black (C), and 0.1 to 0.1 parts by weight of unsaturated alkoxysilane (D) based on 100 parts by weight of base resin (A) 10 parts by weight, 0.01 to 0.8 parts by weight of the organic peroxide (E) and 0.001 to 10 parts by weight of the silanol condensation catalyst (F) are blended, so that they have excellent mechanical properties and are molded. It is a tracking-resistant water-crosslinkable resin composition that excels in processability, has good uniformity in insulation performance, has excellent weather resistance and tracking resistance, and also has an excellent balance between these two properties. Furthermore, even if the power cable having this as an insulating coating layer is laid outdoors, especially along the coast where the sea breeze hits, the power cable has excellent weather resistance, tracking resistance, and excellent balance between these two properties, so it can be used for a long time. Has a lifespan that can be used.

Claims (5)

メルトマスフローレート0.8〜5.8g/10分のエチレン−α−オレフィン二元共重合体及び/又は三元共重合体を主成分とするエチレン系樹脂(A)100重量部に対して、水酸化マグネシウム(B)8〜50重量部、カーボンブラック(C)0.2〜1.1重量部、不飽和アルコキシシラン(D)0.1〜10重量部、有機過酸化物(E)0.01〜1重量部、及びシラノール縮合触媒(F)0.001〜1重量部を配合させてなることを特徴とする耐トラッキング性水架橋性樹脂組成物。Melt mass flow rate of 0.8 to 5.8 g / 10 min. 8 to 50 parts by weight of magnesium hydroxide (B), 0.2 to 1.1 parts by weight of carbon black (C), 0.1 to 10 parts by weight of unsaturated alkoxysilane (D), and 0 of organic peroxide (E) 0.11 to 1 part by weight of the silanol condensation catalyst (F) and 0.001 to 1 part by weight of the silanol condensation catalyst (F). エチレン−α−オレフィン二元共重合体及び/又は三元共重合体の密度は、0.880〜0.935g/cmであることを特徴とする請求項1に記載の耐トラッキング性水架橋性樹脂組成物。The density of the ethylene -α- olefin binary copolymer and / or terpolymer, tracking resistance water bridge according to claim 1, characterized in that the 0.880~0.935g / cm 3 Resin composition. エチレン系樹脂(A)は、密度0.880〜0.935g/cm及びメルトマスフローレート0.8〜5.8g/10分であるエチレン−α−オレフィン二元共重合体及び/又は三元共重合体100〜50重量%と、密度0.910〜0.930g/cm及びメルトマスフローレート0.1〜15g/10分である高圧法エチレン単独重合体0〜50重量%未満からなることを特徴とする請求項1又は2に記載の耐トラッキング性水架橋性樹脂組成物。The ethylene-based resin (A) is an ethylene-α-olefin binary copolymer and / or ternary having a density of 0.880 to 0.935 g / cm 3 and a melt mass flow rate of 0.8 to 5.8 g / 10 minutes. 100 to 50% by weight of a copolymer, and 0 to less than 50% by weight of a high-pressure ethylene homopolymer having a density of 0.910 to 0.930 g / cm 3 and a melt mass flow rate of 0.1 to 15 g / 10 minutes. The tracking-resistant water-crosslinkable resin composition according to claim 1 or 2, characterized in that: カーボンブラック(C)がファーネスブラック、不飽和アルコキシシラン(D)がビニルトリメトキシシラン、有機過酸化物(E)がジクミルパーオキシド、及びシラノール縮合触媒(F)がジブチル錫ジラウレートであることを特徴とする請求項1〜3のいずれかに記載の耐トラッキング性水架橋性樹脂組成物。Carbon black (C) is furnace black, unsaturated alkoxysilane (D) is vinyltrimethoxysilane, organic peroxide (E) is dicumyl peroxide, and silanol condensation catalyst (F) is dibutyltin dilaurate. The tracking-resistant water-crosslinkable resin composition according to any one of claims 1 to 3, which is characterized in that: 請求項1〜4のいずれかに記載の耐トラッキング性水架橋性樹脂組成物からなる絶縁被覆層が構成されていることを特徴とする電力ケーブル。A power cable, comprising an insulating coating layer made of the tracking-resistant water-crosslinkable resin composition according to claim 1.
JP2002170195A 2002-06-11 2002-06-11 Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same Expired - Lifetime JP3989306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170195A JP3989306B2 (en) 2002-06-11 2002-06-11 Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170195A JP3989306B2 (en) 2002-06-11 2002-06-11 Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same

Publications (2)

Publication Number Publication Date
JP2004010864A true JP2004010864A (en) 2004-01-15
JP3989306B2 JP3989306B2 (en) 2007-10-10

Family

ID=30436536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170195A Expired - Lifetime JP3989306B2 (en) 2002-06-11 2002-06-11 Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same

Country Status (1)

Country Link
JP (1) JP3989306B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241235A (en) * 2005-03-01 2006-09-14 Hitachi Cable Ltd Molded product and electric wire/cable using crosslinked polyethylene
CN103718255A (en) * 2011-08-12 2014-04-09 西门子公司 Coating having high corona resistance and production method therefor
JP2015071667A (en) * 2013-10-02 2015-04-16 住友電気工業株式会社 Method of producing halogen-free compound and method of producing insulated wire
JP2015131910A (en) * 2014-01-14 2015-07-23 大日本印刷株式会社 Resin composition, reflector, lead frame having reflector, and semiconductor light-emitting device
JPWO2013147148A1 (en) * 2012-03-30 2015-12-14 古河電気工業株式会社 Method for producing heat resistant resin composition, heat resistant resin composition produced by the production method, and molded article using the heat resistant resin composition
KR20160045325A (en) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
EP4023711A1 (en) 2020-12-29 2022-07-06 Borealis AG Highly track resistant polyethylene compounds for wire and cable applications
EP4023712A1 (en) 2020-12-29 2022-07-06 Borealis AG Highly track resistant polyethylene compositions for wire and cable applications
CN115772291A (en) * 2021-09-06 2023-03-10 韩华道达尔能源有限公司 Polyolefin resin composition having excellent tracking resistance and molded article made of the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241235A (en) * 2005-03-01 2006-09-14 Hitachi Cable Ltd Molded product and electric wire/cable using crosslinked polyethylene
CN103718255A (en) * 2011-08-12 2014-04-09 西门子公司 Coating having high corona resistance and production method therefor
JPWO2013147148A1 (en) * 2012-03-30 2015-12-14 古河電気工業株式会社 Method for producing heat resistant resin composition, heat resistant resin composition produced by the production method, and molded article using the heat resistant resin composition
JP2015071667A (en) * 2013-10-02 2015-04-16 住友電気工業株式会社 Method of producing halogen-free compound and method of producing insulated wire
US10454008B2 (en) 2014-01-14 2019-10-22 Dai Nippon Printing Co., Ltd. Resin composition, reflector, lead frame with reflector, and semiconductor light-emitting device
JP2015131910A (en) * 2014-01-14 2015-07-23 大日本印刷株式会社 Resin composition, reflector, lead frame having reflector, and semiconductor light-emitting device
WO2015108043A1 (en) * 2014-01-14 2015-07-23 大日本印刷株式会社 Resin composition, reflector, lead frame with reflector, and semiconductor light-emitting device
TWI644957B (en) * 2014-01-14 2018-12-21 大日本印刷股份有限公司 Resin composition, reflector, lead frame with reflector, and semiconductor light emitting device
KR20160045325A (en) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
KR102221601B1 (en) 2014-10-17 2021-03-02 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
EP4023711A1 (en) 2020-12-29 2022-07-06 Borealis AG Highly track resistant polyethylene compounds for wire and cable applications
EP4023712A1 (en) 2020-12-29 2022-07-06 Borealis AG Highly track resistant polyethylene compositions for wire and cable applications
WO2022144282A1 (en) 2020-12-29 2022-07-07 Borealis Ag Highly track resistant polyethylene compositions for wire and cable applications
WO2022144362A1 (en) 2020-12-29 2022-07-07 Borealis Ag Highly track resistant polyethylene compositions for wire and cable applications
CN115772291A (en) * 2021-09-06 2023-03-10 韩华道达尔能源有限公司 Polyolefin resin composition having excellent tracking resistance and molded article made of the same

Also Published As

Publication number Publication date
JP3989306B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP6287919B2 (en) Wire covering material composition, insulated wire and wire harness
EP2084717B1 (en) Semiconductive polyolefin composition
CN102762650B (en) Composition for use in wire coating material, insulated wire and wire harness
KR101847326B1 (en) Polymer blends
JP5894710B2 (en) Method for reducing peroxide migration in crosslinkable ethylene polymer compositions
TWI523901B (en) Thiobis phenolic antioxidant/polyethylene glycol blends
KR101357170B1 (en) Flame retardant polymer composition with improved mechanical properties
CA3015614C (en) Halogen-free flame retardant compositions with improved tensile properties
US20030207979A1 (en) Wear resistant, flame-retardant composition and electric cable covered with said composition
JP3989306B2 (en) Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same
EP3589681B1 (en) Flame-retardant, moisture-cured wire and cable constructions with improved glancing impact performance
WO2009056407A1 (en) Silane-functionalised polyolefin compositions, products thereof and preparation processes thereof for wire and cable applications
JP7385355B2 (en) Stabilized moisture curable polymer composition
JP2021155592A (en) Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product
JP2020143184A (en) Manufacturing method of silane crosslinked resin molded product and silane crosslinked resin molded product
WO2018085366A1 (en) Flame-retardant, moisture-cured wire and cable constructions with improved glancing impact performance
KR100561274B1 (en) Crosslinkable polyolefine composition having excellent water tree resistance and thermal stability
JP2000230025A (en) Silane-modified linear polyethylene for power cable covering, and power cable
JP6969082B2 (en) Catalyst batch, electric wire / cable formed using it, and its manufacturing method
WO2023049127A1 (en) Halogen free flame retardant polymeric compositions
WO2019209546A1 (en) Non-foam polyolefin compositions for wire and cable coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3989306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140727

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term