JP2004010390A - METHOD FOR SYNTHESIZING SUPERCONDUCTING BORIDE MgB2 FROM MELT BY ELECTRODEPOSITION - Google Patents

METHOD FOR SYNTHESIZING SUPERCONDUCTING BORIDE MgB2 FROM MELT BY ELECTRODEPOSITION Download PDF

Info

Publication number
JP2004010390A
JP2004010390A JP2002163764A JP2002163764A JP2004010390A JP 2004010390 A JP2004010390 A JP 2004010390A JP 2002163764 A JP2002163764 A JP 2002163764A JP 2002163764 A JP2002163764 A JP 2002163764A JP 2004010390 A JP2004010390 A JP 2004010390A
Authority
JP
Japan
Prior art keywords
melt
mgb
superconducting
synthesizing
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163764A
Other languages
Japanese (ja)
Other versions
JP4120955B2 (en
Inventor
Masamoto Yoshii
吉井 賢資
Hideki Abe
阿部 英樹
Hideaki Kitazawa
北澤 英明
Akiyuki Matsushita
松下 明行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, National Institute for Materials Science filed Critical Japan Atomic Energy Research Institute
Priority to JP2002163764A priority Critical patent/JP4120955B2/en
Publication of JP2004010390A publication Critical patent/JP2004010390A/en
Application granted granted Critical
Publication of JP4120955B2 publication Critical patent/JP4120955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing MgB<SB>2</SB>in a thin film from a melt by electrodeposition using a simple device structure. <P>SOLUTION: The method for synthesizing the superconducting boride MgB<SB>2</SB>from a melt by electrodeposition comprises depositing a thin film or a wire of MgB<SB>2</SB>on an electrode from a melt of MgB<SB>2</SB>. The melt consists of a mixture of magnesium halide and magnesium borofluoride, and an alkali metal or magnesium borate. Metallic electrodes that are stable to the melt such as Fe, Co, Ni, Cu, Pd, Ag, Pt or Au, or non-metallic electrodes that are chemically stable to the melt such as graphite, highly doped silicon or tin oxides are used as the electrode materials. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超伝導ホウ化物MgB(Tc=39K)超伝導薄膜、及び超伝導線材の作製方法に関するものである。
【0002】
【従来の技術】
超伝導薄膜は超伝導量子干渉素子(SQUID)として高感度な磁束計に用いられる。又、超伝導線材は超伝導電磁磁石として強磁場の発生に使われる。両者とも医療におけるCTスキャン装置の他、学術研究等で広く利用されている。
【0003】
【発明が解決しようとする課題】
先頃、金属間化合物として最高のTc=39Kを示すホウ化物MgBが発見され、従来のA15型金属間化合物(TC=15K程度)に代わるものとしてその応用が期待されている。
【0004】
MgBは、しかし、構成元素MgとBの極端な蒸気圧の違いから、単相バルク試料の合成すら難しいのが現状である。超伝導体の実用に不可欠な線材作製技法、又は素子化に必要な薄膜作製技術は、現在まで得られていない。
【0005】
【課題を解決するための手段】
本発明は、簡単な装置構成により、MgBを融液中から電気析出法(電析法)により薄膜状に合成する手法を提供するものである。この手法を最適化することにより、どのような形状の基板金属に対してもMgBを一様な厚みで育成できる。
【0006】
即ち、本発明は、マグネシウムハロゲン化物と塩化カリウムの混合物にマグネシウムのホウ酸塩を加えて得られた粉体混合物を耐熱性ボートに充填し、この混合物中に負電極及び正電極を挿入し、これらを加熱炉中で不活性ガス雰囲気下で加熱してボート中の混合物を熔融して融液とした後、両電極間に直流電流を印加し、負電極上にMgBを析出させることからなる超伝導ホウ化物MgBの融液からの電析法による合成方法である。
【0007】
したがって、予め線状に成形した金属線上にMgBをメッキすることにより、MgBの線材を作製することができる。又、平面基板上への育成も可能である。即ち、MgBを利用したジョセフソン素子等、薄膜構成を必要とする系の作製に対しても有力である。
【0008】
【発明の実施の形態】
本発明は、新物質合成実験の途上、いくつかの合成方法を試みるなかで、電解法/電析法による難合成物質の合成法として開発されたものである。MgBは、非常に蒸気圧の高いMgと逆に非常に融点の高いホウ素の化合物であるが、そこで行われた一連の高蒸気圧物質合成の試行過程において、本発明は、電気析出法を使用してMgBを合成する方法を見いだした。
【0009】
又、本発明は、現在盛んに用いられている真空蒸着等の高度且つ高価な装置を用いた製膜法と違い、メッキ用の僅かな装置だけで簡単にMgBの膜を作製することを可能にする。それだけでなく、真空蒸着では不可能な基板面への製膜も可能である。これは、例えば、初めからコイル状に成形した金属線にメッキを施すことにより、MgB超伝導体マグネットを作製することができることを意味している。
【0010】
更に又、本発明においては、実施例に示されるように、MgCl/Mg(BF6HO/MgBを混合系を用いることにおいて、MgBの合成が可能であった。融体の融点を下げる目的で、アルカリ金属ホウ酸塩の添加が有効である。電極材料としては、実施例ではPt/Auを使用したが、他の金属/導電性物質も使用可能である。
【0011】
【実施例】
市販の試薬MgCl、Mg(BF6HO、及びMgBを重量比10:1:1にて総量2.5g秤量する(以下粉末試料と呼ぶ)。アルミナボートの一端に直径1mmの白金線をボート底に這わせるように固定する。同様に、ボートの反対の端に同径の金を固定する。白金線及び金線それぞれに直径0.3mmの金線(以下リード線と呼ぶ)を圧着する。
【0012】
粉末試料をボートに満たした後、これを石英炉心管を備えた横型電気炉に入れる。炉心管の一端をふさぐゴム栓にチューブを取り付け、アルゴンガスラインにつなぐ。炉心管の他端のゴム栓には排気用のチューブに加え、二つ穴のガイシを挿入する。ガイシを介してリード線を炉心管外部に導き、直流電源に接続する。リード線が互いに触れないよう注意を払う。白金線を負極、金線を正極に結合する。
【0013】
アルゴンガスを1リットル毎分程度流しながら炉温度を600℃まで上げる。粉末試料は融体となる。リード線に4V直流電圧を印加、数百ミリアンペアの通電を確認したらそのまま数時間静置する。数時間後、炉温度を常温に戻し、ボートを取出す。フラックスを除くため、蒸留水にボートを浸ける。フラックス除去後、黒色物質(MgB)に被覆された白金線を得た。
【0014】
白金線上に育成されたMgBの磁化率・温度曲線を示すと図1のとおりである。測定磁場は20ガウスで、無磁場中冷却(ZFC)、磁場中冷却(FC)それぞれの曲線を示している。磁気的特性として、37Kにおいて磁化率曲線に特異点がみられるが、これがMgBの超電導転換に対応している。
【0015】
【発明の効果】
従来の真空蒸着装置を用いた大がかりな製膜処理に比べて、本発明の簡単な機構の装置を使用することにより、合成困難なMgBの薄膜、線材の作製が極めて低コストで可能となる。
【0016】
即ち、本発明により、現在盛んに用いられている真空蒸着等の高度且つ高価な装置を用いた製膜法と違い、メッキ用の僅かな装置だけで簡単にMgBの膜を作成することを可能にする。それだけでなく、真空蒸着では不可能な基板面への製膜も可能である。これは、例えば、初めからコイル状に成形した金線にメッキを施すことにより、MgB超伝導マグネットを作製することができることを意味している。
【0017】
又、MgB薄膜は超伝導量子干渉素子(SQUID)として高感度な磁束計に用いられる。その超伝導線材は超伝導電磁磁石として強磁場の発生に使用される。両者とも医療におけるCTスキャン装置の他、学術研究等で利用される。
【図面の簡単な説明】
【図1】白金線上に育成されたMgBの磁化率・温度曲線を示すと図1のとおりである。
【図2】本発明の方法でMgBを作製する装置の図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting boride MgB 2 (Tc = 39K) superconducting thin film and a method for producing a superconducting wire.
[0002]
[Prior art]
The superconducting thin film is used for a highly sensitive magnetometer as a superconducting quantum interference device (SQUID). The superconducting wire is used as a superconducting electromagnetic magnet to generate a strong magnetic field. Both are widely used in academic research and the like in addition to CT scanning devices in medical treatment.
[0003]
[Problems to be solved by the invention]
Recently, a boride MgB 2 showing the highest Tc = 39K as an intermetallic compound was discovered, and its application is expected as a substitute for the conventional A15 type intermetallic compound (TC = about 15K).
[0004]
At present, however, it is difficult to synthesize a single-phase bulk sample of MgB 2 because of the extreme difference in vapor pressure between the constituent elements Mg and B. Until now, a technique for producing a wire material essential for practical use of a superconductor, or a technique for producing a thin film necessary for realizing an element has not been obtained.
[0005]
[Means for Solving the Problems]
The present invention provides a method of synthesizing MgB 2 into a thin film from a melt by an electrodeposition method (electrodeposition method) with a simple apparatus configuration. By optimizing this method, MgB 2 can be grown with a uniform thickness for any shape of substrate metal.
[0006]
That is, the present invention fills a heat-resistant boat with a powder mixture obtained by adding magnesium borate to a mixture of magnesium halide and potassium chloride, inserting a negative electrode and a positive electrode into this mixture, These are heated in a heating furnace under an inert gas atmosphere to melt the mixture in the boat into a melt, and then a direct current is applied between both electrodes to precipitate MgB 2 on the negative electrode. This is a method of synthesizing a superconducting boride MgB 2 from a melt by an electrodeposition method.
[0007]
Therefore, a MgB 2 wire can be manufactured by plating MgB 2 on a metal wire that has been previously formed into a linear shape. It is also possible to grow on a flat substrate. That is, the present invention is also effective in producing a system requiring a thin film structure, such as a Josephson device using MgB 2 .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has been developed as a method for synthesizing difficult-to-synthesize substances by an electrolytic method / electrodeposition method while trying several synthetic methods in the course of a new substance synthesis experiment. MgB 2 is a compound of boron having a very high melting point, contrary to Mg having a very high vapor pressure. I found a method for synthesizing MgB 2 using.
[0009]
Further, the present invention is different from a film forming method using an advanced and expensive apparatus such as vacuum evaporation which is currently used widely, and is intended to easily produce a MgB 2 film with only a small apparatus for plating. enable. In addition, it is possible to form a film on a substrate surface that cannot be obtained by vacuum deposition. This means that, for example, an MgB 2 superconductor magnet can be manufactured by plating a metal wire formed into a coil shape from the beginning.
[0010]
Furthermore, in the present invention, as shown in the examples, the MgCl 2 / Mg (BF 4) 2 6H 2 O / MgB 2 O 4 in the use of the mixed system, it was possible synthesis of MgB 2 is . In order to lower the melting point of the melt, it is effective to add an alkali metal borate. As the electrode material, Pt / Au is used in the embodiment, but other metals / conductive substances can be used.
[0011]
【Example】
Commercially available reagents MgCl 2, Mg (BF 4) 2 6H 2 O, and MgB 2 O 4 in a weight ratio of 10: 1: (hereinafter referred to as powder sample) at 1 total 2.5g weighed. A platinum wire having a diameter of 1 mm is fixed to one end of the alumina boat so as to crawl on the bottom of the boat. Similarly, secure gold of the same diameter to the opposite end of the boat. A 0.3 mm diameter gold wire (hereinafter referred to as a lead wire) is crimped to each of the platinum wire and the gold wire.
[0012]
After the powder sample is filled in the boat, it is placed in a horizontal electric furnace equipped with a quartz furnace tube. Attach the tube to a rubber stopper covering one end of the furnace tube, and connect to the argon gas line. In addition to the exhaust tube, a two-hole insulator is inserted into the rubber stopper at the other end of the furnace tube. The lead wire is led out of the furnace tube through the insulator and connected to a DC power supply. Take care that the leads do not touch each other. The platinum wire is connected to the negative electrode and the gold wire is connected to the positive electrode.
[0013]
The furnace temperature is raised to 600 ° C. while flowing argon gas at about 1 liter per minute. The powder sample becomes a melt. Apply a 4V DC voltage to the lead wire, and after confirming that a current of several hundred milliamperes has been supplied, leave it for several hours. After several hours, the furnace temperature is returned to room temperature and the boat is removed. Soak the boat in distilled water to remove the flux. After removing the flux, a platinum wire coated with a black substance (MgB 2 ) was obtained.
[0014]
FIG. 1 shows a magnetic susceptibility / temperature curve of MgB 2 grown on a platinum wire. The measured magnetic field is 20 gauss, and the curves for cooling under no magnetic field (ZFC) and cooling under magnetic field (FC) are shown. As a magnetic property, a singular point is observed in the susceptibility curve at 37K, which corresponds to the superconducting conversion of MgB 2 .
[0015]
【The invention's effect】
Compared to a large-scale film forming process using a conventional vacuum deposition apparatus, by using the apparatus having the simple mechanism of the present invention, it is possible to produce a MgB 2 thin film and a wire that are difficult to synthesize at an extremely low cost. .
[0016]
That is, according to the present invention, unlike a film forming method using an advanced and expensive apparatus such as vacuum evaporation which is currently used widely, it is possible to easily form a MgB 2 film with only a small apparatus for plating. enable. In addition, it is possible to form a film on a substrate surface that cannot be obtained by vacuum deposition. This means that, for example, a MgB 2 superconducting magnet can be manufactured by plating a gold wire formed into a coil shape from the beginning.
[0017]
The MgB 2 thin film is used as a superconducting quantum interference device (SQUID) in a highly sensitive magnetometer. The superconducting wire is used as a superconducting electromagnetic magnet to generate a strong magnetic field. Both of them are used in medical research, as well as in academic research and the like.
[Brief description of the drawings]
FIG. 1 shows the magnetic susceptibility / temperature curve of MgB 2 grown on a platinum wire as shown in FIG.
FIG. 2 is a diagram of an apparatus for producing MgB 2 by the method of the present invention.

Claims (3)

MgBの融液からMgBからなる薄膜又は線材を電極に析出させることを特徴とする超伝導ホウ化物MgBの融液からの電析法による合成方法。Synthesis process according electrodeposition method from superconducting borides of MgB 2 melt, characterized in that to deposit the electrode thin film or wire made of MgB 2 from MgB 2 melt. 上記融液がマグネシウムハロゲン化物及びフッ化ホウ化マグネシウムの混合物にアルカリ金属又はマグネシウムのホウ酸塩からなることを特徴とする請求項1記載の方法。The method of claim 1 wherein the melt comprises a mixture of magnesium halide and magnesium fluoroboride in an alkali metal or magnesium borate. 電極材として、融液に対して安定であるFe、Co、Ni、Cu、Pd、Ag、Pt若しくはAuの金属極、又は融液に対して化学的に安定であるグラファイト、ハイドープシリコン若しくはスズ酸化物の非金属が用いられる請求項1記載の方法。As an electrode material, a metal electrode of Fe, Co, Ni, Cu, Pd, Ag, Pt or Au which is stable to the melt, or graphite, highly doped silicon or tin which is chemically stable to the melt The method of claim 1 wherein an oxide non-metal is used.
JP2002163764A 2002-06-05 2002-06-05 Synthesis Method of Superconducting Boride MgB2 by Electrodeposition from Melt Expired - Fee Related JP4120955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163764A JP4120955B2 (en) 2002-06-05 2002-06-05 Synthesis Method of Superconducting Boride MgB2 by Electrodeposition from Melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163764A JP4120955B2 (en) 2002-06-05 2002-06-05 Synthesis Method of Superconducting Boride MgB2 by Electrodeposition from Melt

Publications (2)

Publication Number Publication Date
JP2004010390A true JP2004010390A (en) 2004-01-15
JP4120955B2 JP4120955B2 (en) 2008-07-16

Family

ID=30432094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163764A Expired - Fee Related JP4120955B2 (en) 2002-06-05 2002-06-05 Synthesis Method of Superconducting Boride MgB2 by Electrodeposition from Melt

Country Status (1)

Country Link
JP (1) JP4120955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010389A (en) * 2002-06-05 2004-01-15 Japan Atom Energy Res Inst MELT ELECTRODEPOSITION SYNTHESIS METHOD FOR SUPERCONDUCTING BORIDE MgB2
JP2007141793A (en) * 2005-11-22 2007-06-07 National Institute For Materials Science Manufacturing method by electroplating of superconductive mgb2 film
CN101864587A (en) * 2009-04-20 2010-10-20 鸿富锦精密工业(深圳)有限公司 Device and method for forming nanoscale metal particles/metal composite coatings
CN102242371A (en) * 2011-06-24 2011-11-16 武汉大学 Preparation method and application of superfine calcium hexaboride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321911A (en) * 2001-04-26 2002-11-08 National Institute For Materials Science METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTOR
JP2003238144A (en) * 2002-02-21 2003-08-27 Japan Atom Energy Res Inst METHOD FOR ELECTROCHEMICALLY SYNTHESIZING SUPERCONDUCTING BORON COMPOUND MgB2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321911A (en) * 2001-04-26 2002-11-08 National Institute For Materials Science METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTOR
JP2003238144A (en) * 2002-02-21 2003-08-27 Japan Atom Energy Res Inst METHOD FOR ELECTROCHEMICALLY SYNTHESIZING SUPERCONDUCTING BORON COMPOUND MgB2

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010389A (en) * 2002-06-05 2004-01-15 Japan Atom Energy Res Inst MELT ELECTRODEPOSITION SYNTHESIS METHOD FOR SUPERCONDUCTING BORIDE MgB2
JP2007141793A (en) * 2005-11-22 2007-06-07 National Institute For Materials Science Manufacturing method by electroplating of superconductive mgb2 film
CN101864587A (en) * 2009-04-20 2010-10-20 鸿富锦精密工业(深圳)有限公司 Device and method for forming nanoscale metal particles/metal composite coatings
CN102242371A (en) * 2011-06-24 2011-11-16 武汉大学 Preparation method and application of superfine calcium hexaboride

Also Published As

Publication number Publication date
JP4120955B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Pöttgen et al. Intermetallics: synthesis, structure, function
Filipič et al. Copper oxide nanowires: a review of growth
Zhang et al. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes
Baskaran et al. Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties
JP2009503269A (en) Electrodeposition of biaxially textured layers on substrates
Yu et al. Pulsed laser-assisted ionic liquid electrodeposition of gallium nanoparticles and germanium nanostructures for energy storage
Lai et al. Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO2 nanowires by the Kirkendall effect
Liu et al. Electrochemical synthesis of Sm-Co metal magnetic materials by Co-reduction of Sm (III) and Co (II) in LiCl-KCl-SmCl3-CoCl2 melt
Thiebaud et al. Tuning the morphology of Te one-dimensional nanostructures by template-free electrochemical deposition in an ionic liquid
JP3774761B2 (en) Method for producing MgB2 superconductor
Bhattacharya et al. YBaCuO and TlBaCaCuO superconductor thin films via an electrodeposition process
JP2004010390A (en) METHOD FOR SYNTHESIZING SUPERCONDUCTING BORIDE MgB2 FROM MELT BY ELECTRODEPOSITION
Cummings et al. Supercritical fluid electrodeposition of elemental germanium onto titanium nitride substrates
Cao et al. Electrodeposition and thermoelectric characterization of (00L)-Oriented Bi2Te3 thin films on silicon with seed layer
JP4061576B2 (en) Melt electrodeposition synthesis method of superconducting boride MgB2
CN109119179B (en) Novel submicron radioactive film source and preparation method thereof
Vishnu et al. Direct electrochemical preparation of nanostructured silicon carbide and its nitridation behavior
Chen et al. Electrodeposition of thin films and single-crystalline nanowires of Ag7Te4
Enstrom et al. Compounds and Alloys for Superconducting Applications
CN110629241A (en) Silicon material manufacturing method
CN102496680A (en) Preparation method of carbon-doped magnesium diboride superconducting tape
CN111188074A (en) Preparation method of Cu-CNTs composite material
Bhattacharya et al. Processing of Ag doped thick-film electrodeposited thallium-oxide superconductors
Qiu et al. Effect of hot-press treatment on electrochemically deposited antimony telluride film
Gujar et al. Electrochemical approach for selenization of stacked Cu–In layers for formation of crystalline CuInSe2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees