JP2004010213A - °screw for conveyance - Google Patents

°screw for conveyance Download PDF

Info

Publication number
JP2004010213A
JP2004010213A JP2002163233A JP2002163233A JP2004010213A JP 2004010213 A JP2004010213 A JP 2004010213A JP 2002163233 A JP2002163233 A JP 2002163233A JP 2002163233 A JP2002163233 A JP 2002163233A JP 2004010213 A JP2004010213 A JP 2004010213A
Authority
JP
Japan
Prior art keywords
transport
screw
rotating shaft
okara
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163233A
Other languages
Japanese (ja)
Other versions
JP3599719B2 (en
Inventor
Hiroshi Ishima
異島 洋
Makoto Sakurai
桜井 孚
Shuichi Hamada
濱田 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IJIMA DENSETSU KK
Original Assignee
IJIMA DENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IJIMA DENSETSU KK filed Critical IJIMA DENSETSU KK
Priority to JP2002163233A priority Critical patent/JP3599719B2/en
Publication of JP2004010213A publication Critical patent/JP2004010213A/en
Application granted granted Critical
Publication of JP3599719B2 publication Critical patent/JP3599719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Screw Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw for conveyance capable of conveying a solid particle aggregate, such as bean-curd refuse, containing a moisture content at a comparatively slow speed without generating concretion. <P>SOLUTION: The screw 1 for conveyance comprises a columnar rotary shaft 2 rotating counterclockwisely (anticlockwise) as seen from the starting end side in a conveyance direction through drive of a motor; and a plurality of conveyance members 5 having conveyance surfaces 5a arrayed at intervals of 120° along a virtual spiral 3 in a left hand screw shape drawn at the outside of the rotary shaft 2 and crossing the virtual spiral 3 at a specified angle. When an object to be conveyed is inputted in the vicinity of the right end of the rotary shaft 2 with the rotary shaft 2 rotated in a rotation direction L, the object to be conveyed is conveyed in a conveyance direction P as the object is collided with conveyance surfaces 5a of the conveyance members 5 rotated, in order, in the rotation direction L together with a rotary shaft 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、豆腐の製造工程で発生するおから、あるいは焼酎の製造工程で発生する焼酎滓などの、水分を含有する固形粒子集合体を一定方向へ搬送する工程において用いられる搬送用スクリューに関する。
【0002】
【従来の技術】
豆腐製造工場で発生するおからや焼酎醸造工場で発生する焼酎滓などは産業廃棄物処理業者へ引き渡して処理を委託していることが多いが、近年、様々な分野においておからなどの有効活用を図る研究が行われるようになり、一部では家畜用の飼料としての利用などが行われている。
【0003】
しかしながら、豆腐製造工場で発生するおからは70〜80%程度の水分を含有する腐敗しやすい物質であるため、再利用するにあたっては水分含有率が5〜8%程度になるまで乾燥する必要があり、これまでも色々な種類のおから乾燥装置が開発されている。
【0004】
従来のおから乾燥装置は、水分を含むおからを所定方向に搬送しながら外部から加熱することによって水分を蒸発させる加熱搬送工程を有するものが代表的である。このような加熱搬送工程において、おからを一定方向へ直線的に搬送する手段として、図11に示すような搬送用スクリュー90が用いられている。
【0005】
搬送用スクリュー90は、円柱状の回転軸91の外周面91aに、四角板形状をした複数の搬送部材92を一定規則に従って放射状に立設した構造であり、この搬送用スクリュー90を筒状ケーシング(図示せず)内に配置し、回転軸91を一定方向に回転駆動するモータなどを設けることによって搬送機構が形成されている。
【0006】
このような搬送機構において、モータなどで回転軸91を回転方向Lに回転させ、図11(a)の搬送用スクリュー90の右端付近におからを投入すると、そのおからは、回転軸91とともに回転する複数の搬送部材92に次々に衝突して弾かれるという過程を繰り返して回転軸91の周りを螺旋状に回転しながらその軸方向91bに移動していくので、搬送用スクリュー90の周囲から加熱することによって、おからは搬送方向Pに搬送されながら乾燥されていく。
【0007】
搬送用スクリュー90の場合、回転軸91の外周面91aに立設されている複数の搬送部材92は、図11(a)に示すように、回転軸91の外側に回転軸91と同軸上に描かれる仮想螺旋93に沿って120度間隔で配列されている。この仮想螺旋93は、回転方向Lと同方向(搬送方向Pの始端側から見て左回り)に回転させたとき搬送方向Pと逆方向に進む形状(右ねじ形状)であるため、回転軸91外周面91aを、回転軸91の軸方向91bに切断し平面展開して見ると、搬送部材92は図12に示すような状態となる。
【0008】
ここで、図12に示すように、回転軸91とともに回転する搬送部材92cにおからSが衝突したとすると、回転力yの軸方向分力xによっておからSは軸方向91bに弾かれ、搬送部材92cの直後に回ってくる搬送部材92bに衝突するが、ここでまた回転力yの水平分力xによって軸方向91bに弾かれ、搬送部材92bの直後に回ってくる搬送部材92aに衝突してまた軸方向91bに弾かれ、以下、このような衝突、弾発過程を順次繰り返すことによっておからSは搬送方向Pへ搬送されていく。すなわち、投入されたおからSは、右ねじ形状の仮想螺旋93に沿って配列された搬送部材92によって順番に弾かれながら、恰も、階段を一つずつ下りるように移動していくので、投入されたおからSは効率良く搬送方向Pへ搬送されていくこととなる。
【0009】
【発明が解決しようとする課題】
図11に示す搬送用スクリュー90を用いた加熱搬送工程でおからを乾燥した場合、搬送用スクリュー90によって搬送されていくおからが互いに結合して団塊を形成することがある。一旦、形成されたおからの団塊は容易に壊れず、小さな団塊が雪達磨式に成長して大きな団塊となることも多いので、搬送経路を閉塞するなどトラブルの原因となることがある。また、大きく成長した団塊の内部には熱が十分に届かないので、水分が蒸散されず、乾燥ムラや乾燥不足などの様々な形の乾燥不良の原因となっている。
【0010】
そこで、このようなトラブルを防ぐため、搬送用スクリュー90の回転数を上げて搬送部材91の回転打撃力を増大させ、おからに対する撹拌作用および破砕作用を増大させることにより、加熱搬送工程におけるおから団塊の発生を阻止するとともに、形成されたおから団塊を細かく破砕するという手段が講じられている。
【0011】
ところが、回転軸91の回転数を上げることで搬送部材91の撹拌作用および破砕作用が増大するので、おから団塊をなくすことができるのであるが、同時に搬送方向Pへのおから搬送速度も大幅に増大するので、搬送用スクリュー90を用いた加熱搬送工程の始端に投入されたおからは、乾燥に必要とする時間よりも短時間で終端に到達してしまい、全体的に乾燥不足となる。
【0012】
このような乾燥不足をなくすには、おからに対する加熱温度を上げたり、加熱搬送工程を長くしたりすればよいのであるが、加熱温度を上げ過ぎるとおからが焦げるので限度があり、加熱搬送工程を長くすると占有スペースが著しく拡大するので実用上の限度がある。
【0013】
このように、従来の搬送用スクリュー90は、回転数を上げれば撹拌、破砕作用が高まっておからの団塊は形成されなくなるが搬送速度が過大となって全体的に乾燥不足となり、回転数を下げれば撹拌、破砕作用が低下して団塊が多量に形成され乾燥不良が生じるという問題がある。
【0014】
本発明が解決しようとする課題は、おからや焼酎滓など水分を含有する固形粒子集合体を、団塊を発生させることなく、比較的遅い速度で搬送することのできる搬送用スクリューを提供することにある。
【0015】
【課題を解決するための手段】
本発明の搬送用スクリューは、搬送方向の始端側から見て左回りに回転する回転軸と、回転軸の外側に回転軸と同軸上に描かれた左ねじ形状の仮想螺旋に沿って回転軸外周面に間隔をおいて配列され仮想螺旋と交わる搬送面を有する複数の搬送部材とを備えたことを特徴とする。ここで、左ねじ形状とは、雄ねじを左回りさせたとき前進するねじ山の稜線形状をいい、搬送面とは、搬送対象物と当接して当該搬送対象物を移動させる機能を有する面をいう。
【0016】
複数の搬送部材は左ねじ形状の仮想螺旋に沿って回転軸の外周に配列され、その搬送面は前記仮想螺旋と交わる状態に設けられているため、搬送方向の始端側に投入された搬送対象物は、回転軸とともに回転する複数の搬送部材のいずれか一つの搬送面に衝突して搬送方向へ弾かれるが、その直後に回転してくる搬送部材は搬送方向と逆方向に変位した位置にあるため、弾かれた前記搬送対象物は直後に回転してくる搬送部材の搬送面に衝突せず、1または2以上の搬送部材を隔てて後から回転してくる搬送部材の搬送面に衝突して弾かれることとなる。したがって、搬送対象物が、搬送部材の配列順に沿って全ての搬送部材の搬送面に次々に衝突して搬送方向へ弾かれていく場合に比べ、搬送方向への加速度は小さくなり、搬送方向への移動速度の増大が抑制される。
【0017】
すなわち、搬送対象物は、間隔をおいて配列された複数の搬送部材の搬送面に間欠的に衝突しながら搬送方向へ弾かれるため、回転軸の回転数および搬送部材の配列間隔など他の条件が同じであれば、搬送対象物が全ての搬送部材91に順番に衝突して搬送方向へ弾かれていく搬送用スクリュー90の場合よりも搬送対象物の搬送方向の速度増大は小さくなる。したがって、搬送対象物に対する撹拌、破砕作用を高める目的で回転軸の回転数を上昇させても搬送速度の増大が抑制されることとなり、搬送対象物が水分を含有する固形粒子集合体であっても、団塊を発生させることなく、比較的遅い速度で搬送することができるようになる。
【0018】
ここで、仮想螺旋方向に隣り合う搬送部材の搬送面の回転通過領域同士が互いに共通領域を有するように搬送部材を配列することが望ましい。このような配列とすれば、回転軸と共に複数の搬送部材が回転しているとき、搬送面が通過しない領域がなくなるので、回転軸外周における搬送部材の配列範囲に投入された搬送対象物は、必ずいずれかの搬送部材の搬送面に衝突して搬送方向へ弾かれることとなるため、隣り合う搬送部材の間で搬送対象物が滞留することがなくなる。
【0019】
また、搬送部材の形状を、回転軸外周に一辺が固着された四角板形状とすることが望ましい。このような形状とすることにより、搬送対象物を衝突させて搬送対象物を移動させる機能だけでなく、搬送部材の通過領域の空気を撹拌、撹乱したり、空気を移動させたりする作用も生じるので、搬送対象物の団塊化を阻止する機能をさらに高めることができ、形状が簡単であることで製作コストの低減を図ることもできる。そのほか、当該搬送用スクリューをおから乾燥装置などに採用した場合、四角板形状の搬送部材の板厚を増減することで伝熱面積を増減させ、加熱状態を変化させることができるので、加熱条件を比較的細かく制御することができる。
【0020】
一方、回転軸の軸方向に隣り合う搬送部材同士の間に、搬送方向と交差する抑止面を有する搬送抑止部材を配置することが望ましい。このような搬送抑止部材を設けることにより、搬送部材の搬送面に衝突して搬送方向へ弾かれた搬送対象物の一部が搬送抑止部材の抑止面に衝突して、搬送方向と異なる方向へ弾き返されるようになるので、搬送対象物に対する撹拌、破砕作用を高めるとともに、搬送方向への速度増大をさらに抑制することが可能となる。すなわち、搬送対象物に対する撹拌、破砕作用を高めると同時に、さらに遅い速度で搬送することができるようになる。
【0021】
この場合、搬送抑止部材の抑止面の形状を、回転軸から径方向に放射状に広がる扇形状とすれば、回転軸中心から径方向に遠ざかるにつれて面積の広がった抑止面を形成することができるため、搬送部材に衝突して回転軸から離れる方向へ拡散する搬送対象物も当該抑止面で的確に弾き返すことが可能となり、搬送速度の増大を抑制する機能を高めることができる。また、扇形状の広がり角度を増大させ抑止面の面積を拡大すれば搬送対象物の搬送方向への移動速度が減少し、前記広がり角度を減少させ抑止面の面積を縮小すれば前記移動速度が増大するので、扇形状の広がり角度の増減によって搬送対象物の搬送速度を比較的細かく制御することができる。
【0022】
また、搬送抑止部材の抑止面の回転方向の最先端部を、回転軸の軸方向に隣り合う搬送部材の搬送面の回転方向の最先端部よりも回転方向へ変位させて配置することにより、搬送部材に衝突して回転軸方向へ弾かれた搬送対象物の殆ど全てが、搬送方向に隣り合う搬送抑止部材の抑止面に的確に衝突して弾き返されるようになるので、搬送速度の増大を抑制する機能をさらに高めることができる。また、前記変位を増加させると、搬送対象物の搬送方向への移動速度が低下し、前記変位を減少させると前記移動速度が増大するので、前記変位量の増減によって搬送対象物の搬送速度を比較的細かく制御することができる。
【0023】
【発明の実施の形態】
図1は第1実施形態である搬送用スクリューを示す部分斜視図、図2(a)は図1に示す搬送用スクリューの部分正面図、(b)は図1に示す搬送用スクリューの側面図、図3は図1に示す搬送用スクリューの羽根板配列を示す回転軸外周面の部分展開図である。
【0024】
図1および図2に示すように、本実施形態の搬送用スクリュー1は、モータ(図示せず)の駆動によって搬送方向Pの始端側から見て左回り(反時計回り)に回転する円柱状の回転軸2と、回転軸2の外側に描かれた仮想螺旋3に沿って120度間隔で配列され且つ仮想螺旋3と一定角度で交わる搬送面5aを有する複数の搬送部材5などで構成されている。搬送面5aの配列基準となる仮想螺旋3の形状は左ねじ形状であり、回転軸2と同軸上に描かれている。
【0025】
各搬送部材5は四角板形状であり、その一辺が回転軸2の外周面2aに固着されている。搬送部材5の搬送面5aは、回転軸2の軸方向2bを基準にすると、この軸方向2bに対し、約25度程度の変位角5bをもって搬送方向Pへ下り勾配をなすように配置されている。また、回転軸2を回転可能に軸支するための駆動軸2cが回転軸2の端面中心から軸方向2bに突出状に設けられている。なお、変位角5bについては使用条件に応じて10度〜30度程度の範囲内で任意に設定することが可能であるが、例えば、搬送用スクリュー1を後述するおから乾燥装置(図7)に用いる場合、搬送対象物であるおからの含水率が高いときは変位角5bを30度に近い角度に設定することが望ましく、含水率が低くなるにしたがって変位角5bを10度に近い角度に設定することが望ましい。
【0026】
したがって、回転軸2を回転方向Lへ回転させた状態で、搬送方向Pの始端側(図1および図2における回転軸2の右端付近)に搬送対象物を投入すると、投入された搬送対象物は、回転軸3とともに回転方向Lへ順次回転してくる搬送部材5の搬送面5aに衝突し、後述するような過程を経て搬送方向Pへ移動していくこととなる。
【0027】
図3に示すように、複数の搬送部材5は左ねじ形状の仮想螺旋3に沿って回転軸2の外周面2aに配列され、その搬送面2aは仮想螺旋3と一定角度で交わる状態、すなわち、軸方向2bに対して変位角5bだけ搬送方向Pへ下り勾配をつけて配列されているため、搬送方向Pの始端側(図3の右端付近)に投入された搬送対象物Sは、回転軸2とともに回転する複数の搬送部材5のいずれか一つの搬送面5aに衝突して、搬送方向Pへ弾かれる。
【0028】
ここで、投入された搬送対象物Sが、図3に示す搬送部材5Cの搬送面5aに衝突したとすると、この搬送対象物Sは、回転軸2の回転力yの軸方向分力xによって搬送方向Pへ弾かれ搬送部材5Cの通過領域50Cを越えて搬送方向Pへ飛び出すが、その直後に回転してくる搬送部材5Bは搬送部材5Cより搬送方向Pと逆方向に変位した位置にあるため、通過領域50Cを越えて搬送方向Pへ飛び出した搬送対象物Sはこの搬送部材5Bの搬送面5aには衝突せず、この搬送部材5Bの直後に回転してくる搬送部材5Dの搬送面5aに衝突して、搬送方向Pへ弾かれる。
【0029】
搬送部材5Dの搬送面5aで弾かれた搬送対象物Sは、その通過領域50Dを越えて搬送方向Pへ飛び出すが、その直後に回転してくる搬送部材5Cは搬送部材5Dより搬送方向Pと逆方向に変位した位置にあるため、飛び出した搬送対象物Sは搬送部材Cの直後に回転してくる搬送部材5Eの搬送面5aに衝突して、搬送方向Pへ飛び出す。飛び出した搬送対象物Sは、この後も、120度間隔で左ねじ螺旋状に配列された搬送部材5に、一つおきに衝突、弾発されながら搬送方向Pへ移動していく。
【0030】
したがって、図12で示したように、搬送対象物Sが、右ねじ螺旋状に配列された搬送部材92の全ての搬送面92aに連続的に衝突、弾発して搬送方向Pへ移動していく従来の搬送用スクリュー90に比べ、搬送対象物Sの搬送方向Pへの加速度は小さくなり、搬送方向Pへの移動速度の増大が抑制される。
【0031】
すなわち、搬送用スクリュー1の場合、搬送対象物Sは、間隔をおいて左ねじ螺旋状に配列された複数の搬送部材5の搬送面5aに飛び石状態に衝突、弾発して搬送方向Pへ移動するため、回転軸2の回転数および搬送部材5の配列間隔など他の条件が同じであれば、搬送対象物Sが全ての搬送部材92に連続的に衝突、弾発して搬送方向Pへ移動していく搬送用スクリュー90の場合より、搬送対象物Sの搬送方向Pの速度増大は小さくなる。
【0032】
したがって、搬送対象物Sに対する撹拌、破砕作用を高める目的で回転軸2の回転数を上昇させても搬送速度の増大は比較的小さく、搬送対象物Sがおからや焼酎滓などのように水分を含有する固形粒子集合体であっても、団塊を発生させることなく、比較的遅い適度な速度で搬送することができる。
【0033】
また、図3に示すように、仮想螺旋3方向に隣り合う搬送部材5の搬送面5aの回転通過領域同士、例えば、搬送部材5Cの搬送面5aの回転通過領域50Cと、搬送部材5Dの搬送面5aの回転通過領域50Dとは互いに共通領域50Mを有するように搬送部材5C,5Dは配列されている。全ての搬送部材5をこのような配列としているため、搬送部材5の搬送面5aの回転通過領域内に投入された搬送対象物Sは、必ずいずれかの搬送部材5の搬送面5aに衝突して搬送方向Pへ弾かれることとなるため、隣り合う搬送部材5の間で搬送対象物Sが滞留することがない。
【0034】
また、搬送用スクリュー1においては搬送部材5の形状を、回転軸2の外周面2aに一辺が固着された四角板形状としているため、搬送対象物Sを衝突させて搬送対象物Sを移動させるだけでなく、搬送部材5の通過領域の空気を撹拌、撹乱したり、空気を移動させたりすることができるので、搬送対象物Sの団塊化を阻止する機能にも優れ、形状が簡単であることで製作コストも安価である。
【0035】
次に図4〜図6を参照して、本発明の第2実施形態である搬送用スクリュー21について説明する。図4および図5に示すように、搬送用スクリュー21においては、前述した搬送用スクリュー1と同様、左ねじ形状の仮想螺旋22aに沿って回転軸22の外周面22aに120度間隔で搬送部材25を配列し、さらに、図6などに示すように、回転軸22の軸方向22bに隣り合う搬送部材25同士の間にそれぞれ、搬送方向Pと直交する搬送抑止面26aを有する抑止部材26を配置している。また、回転軸22を軸支あるいは駆動するため、回転軸22の両端面には軸方向22bに沿って駆動軸22cが突設されている。
【0036】
このような抑止部材26を設けたことにより、図6に示すように、搬送部材25の搬送面25aに衝突して搬送方向Pへ弾かれた搬送対象物Sの一部が抑止部材26の搬送抑止面26aに衝突して搬送方向Pと異なる方向へ弾き返されるようになるので、搬送対象物Sに対する撹拌、破砕作用が高まるとともに、搬送対象物Sの搬送方向Pへの速度増大は搬送用スクリュー1の場合よりも抑制されるようになる。すなわち、搬送対象物Sに対する撹拌、破砕作用を搬送用スクリュー1よりも高く維持しつつ、さらに遅い速度で搬送対象物Sを搬送することができる。
【0037】
本実施形態においては、搬送抑止部材26の抑止面26aの形状を、回転軸22からその径方向に放射状に広がる扇形状としているため、回転軸2中心から径方向に遠ざかるにつれて面積の広がった抑止面26aが形成され、搬送部材25に衝突して回転軸22から離れる方向へ拡散する搬送対象物Sも当該抑止面25aで的確に弾き返すことができ、搬送速度の増大を抑制することができ、回転軸22に対する搬送抑止部材26の固着作業も容易である。
【0038】
また、搬送抑止部材26の抑止面26aの回転方向最先端部26bを、回転軸22の軸方向22bに隣り合う搬送部材25の搬送面25aの回転方向最先端部25bよりもオフセット27だけ回転方向Lに変位させて配置しているため、搬送部材25に衝突して回転軸22の軸方向22bへ弾かれた搬送対象物Sの殆ど全てが、搬送方向に隣り合う搬送抑止部材26の抑止面26aに的確に衝突して弾き返されることとなり、これによっても搬送対象物Sの搬送速度の増大を抑制することができ、搬送対象物Sの撹拌、破砕を促進することができる。その他の機能、効果などは前述した搬送用スクリュー1と同じである。
【0039】
次に図7および図8を参照して、搬送用スクリュー1を利用したおから乾燥装置について説明する。図7は搬送用スクリュー1を用いたおから乾燥装置を示す模式図であり、図8(a)は前記おから乾燥装置を構成する乾燥ユニットの一部切欠平面図、同(b)は前記乾燥ユニットの一部切欠正面図、同(c)は前記乾燥ユニットの一部切欠側面図である。
【0040】
図7に示すおから乾燥装置は、略円筒形状をした4本の乾燥ユニット31を互いに平行をなすように水平配列して並列体32を形成するとともに、並列体32を垂直方向に3段配置することによって構成されている。各々の乾燥ユニット31は、図8に示すように、搬送用スクリュー1を円筒形状のケーシング30内に同軸上に配置し、駆動軸2cをケーシング30の両端から外へ突出させた構造を有し、ケーシング30の両端付近にはそれぞれ、搬送対象物(乾燥対象物)であるおからをケーシング30内へ導入するための取入口30aと、ケーシング30内のおからを排出するための排出口30bとが設けられている。
【0041】
図8(a)に示すように、取入口30a、排出口30bの位置は基本的にそれぞれケーシング30の正面部分、背面部分であるが、並列体32内における乾燥ユニット31の配列位置や、隣接する他の乾燥ユニット31との位置関係によって対象物の導入位置や排出方向が変わるので、配列状況に応じて図8(b)に示すようにケーシング30の上面部分あるいは下面部分に設けられている。
【0042】
並列体32において水平方向に隣接する乾燥ユニット31はその搬送方向Pが互いに逆方向を向くように配置され、乾燥ユニット31の搬送方向Pの終端側のケーシング30に形成された排出口30aは、隣接する乾燥ユニット31のケーシング30の始端側に形成された取入口30bに連通され、並列体32の最終部分に位置する乾燥ユニット31の排出口30bは、直下にある乾燥ユニット31の取入口30aに連通されている。各乾燥ユニット31に内蔵されている搬送用スクリュー1はそれぞれ図8に示す回転方向Pへ回転するようにモータで駆動されており、全ての乾燥ユニット31は加熱手段(図示せず)によって加熱されている。
【0043】
図7に示すように、最上段にある並列体32の最前部に位置する乾燥ユニット31aの取入口30aからケーシング30内へ搬送対象物(乾燥対象物)であるおからを投入すれば、内蔵されている搬送用スクリュー1によって搬送方向Pへ搬送され、ケーシング30の終端部分で排出口30bから排出され、隣接する他の乾燥ユニット31の取入口30aからそのケーシング30内へ移行し、以下、このような移動を繰り返しながら、すなわち、矢線33で示すようにおからが移動しながら加熱されるため、おからが含有する水分などが徐々に蒸発していき、最終的に最下段にある並列体32の最後部に位置する乾燥ユニット31zの排出口(図示せず)から乾燥おからとなって排出される。
【0044】
おから乾燥装置を構成する各々の乾燥ユニット31に内蔵されている搬送用スクリュー1は前述した撹拌、破砕作用により、おからを十分に撹拌、破砕しながら搬送することができるので、おから団塊や焦げなどが発生せず、乾燥不足、乾燥不良などのない乾燥おからを生成することができる。また、搬送用スクリュー1によるおから搬送速度は、従来の搬送用スクリュー90のそれより遅いので、矢線33で示す搬送経路を従来よりも短縮化することができる。
【0045】
ここで、図9を参照して、搬送用スクリュー1を内蔵する乾燥ユニット31と従来の搬送用スクリュー90を内蔵した同構造の乾燥ユニットとの乾燥性能の違いについて説明する。図9は、乾燥ユニット31を12個配列した図7のおから乾燥装置と、従来の搬送用スクリュー90を内蔵した同構造の乾燥ユニットを12個配列したおから乾燥装置とを用いて同含水率のおからを乾燥したときのそれぞれの乾燥性能を示すグラフである。横軸の乾燥ユニット番号は最初に位置する乾燥ユニットから数えて何番目に位置する乾燥ユニットであるかを示しており、縦軸は各乾燥ユニットからサンプリングしたおからの含水率を示している。
【0046】
図9を見ると分かるように、最初から4番目の乾燥ユニット付近までは乾燥ユニット31および従来の乾燥ユニットからそれぞれサンプリングしたおからの含水率の格差は小さいが、6番目の乾燥ユニット31の排出口30bからサンプリングしたおからの含水率が約43%であるの対し、6番目の従来の乾燥ユニットからサンプリングしたおからの含水率は約62%であり、乾燥ユニット31からサンプリングしたおからの含水率の方が20%程度低くなっている。
【0047】
そして、最終段階に位置する12番目の従来の乾燥ユニットから排出されたおからの含水率は40%以上あり、さらなる乾燥工程を必要とするのに対し、12番目の乾燥ユニット31から排出されたおからの含水率は約2%まで下がり、おから製品として出荷可能な状態に達しているのが分かる。
【0048】
このように、搬送用スクリュー1を内蔵する乾燥ユニット31を用いればおからを十分に撹拌、破砕しながら比較的遅い速度で搬送することができるので、従来の搬送用スクリュー90を内蔵する乾燥ユニットよりも少ない配列個数でおから乾燥装置を構成することが可能であり、これによって、装置占有スペースの削減、装置稼動用エネルギの低減を図ることができる。なお、前述したように搬送対象物であるおからの含水率が高いときは搬送部材5の変位角5bを30度に近い角度に設定し、含水率が低くなるにしたがって変位角5bを10度に近い角度に設定することが望ましい。
【0049】
次に、図10を参照して、図4に示す搬送用スクリュー21を用いて形成した乾燥ユニット35について説明する。乾燥ユニット35は、前述した乾燥ユニット31と同様、搬送用スクリュー21を円筒形状のケーシング36内に同軸上に配置し、駆動軸22cをケーシング30の両端から外へ突出させた構造を有し、ケーシング36の両端付近にはそれぞれ、搬送対象物(乾燥対象物)であるおからをケーシング36内へ導入するための取入口36aと、ケーシング36内のおからを排出するための排出口36bとが設けられている。
【0050】
ケーシング36に内蔵されている搬送用スクリュー21の回転軸22には、終端部分まで搬送されてきた搬送対象物を排出口36bから残らず掃き出すために3枚の排出部材37が120度間隔で接線方向に設けられ、ケーシング36の終端付近まで搬送されてきた搬送対象物が排出口36よりも先に搬送されるのを防ぐため回転軸22の外周に搬送部材25と逆方向に搬送部材25よりも大きく変位させた3枚の反転部材38が120度間隔で径方向に立設されている。乾燥ユニット35の構造は、内蔵されている搬送用スクリュー21が搬送抑止部材26、排出部材37および反転部材38を備えている点を除けば、乾燥ユニット31と同じ構造である。
【0051】
乾燥ユニット35の場合、搬送用スクリュー21が搬送抑止部材26を備えているため、乾燥ユニット31よりも遅い速度で搬送対象物を搬送することができるので、撹拌、破砕作用に優れており、団塊を形成しやすい物質の搬送工程、乾燥工程などに好適であり、おから乾燥装置に利用すれば、乾燥経路のさらなる短縮化を図ることができる。
【0052】
本発明は、これまで述べた実施の形態に限定するものではないので、仮想螺旋のピッチ、仮想螺旋に沿って配列される搬送部材の間隔、搬送面と仮想螺旋との交差角度、回転軸の軸方向と搬送面との変位角度、搬送部材および搬送面の形状・面積、搬送抑止部材の形状・面積・配列位置・配列間隔などは、搬送対象物の性状などに応じて適切に設定することができる。
【0053】
【発明の効果】
本発明により、以下の効果を奏する。
【0054】
(1)搬送方向の始端側から見て左回りに回転する回転軸と、回転軸の外側に回転軸と同軸上に描かれた左ねじ形状の仮想螺旋に沿って回転軸外周面に間隔をおいて配列され仮想螺旋と交わる搬送面を有する複数の搬送部材とを備えたことにより、搬送対象物は、左ねじ形状の仮想螺旋に沿って配列され、左回りに回転する複数の搬送部材の搬送面に間欠的に衝突しながら搬送方向へ移動していくため、回転数上昇に伴う搬送速度の増大が抑制され、搬送対象物が水分を含有する固形粒子集合体であっても、団塊を発生させることなく、比較的遅い速度で搬送することができるようになる。
【0055】
(2)仮想螺旋方向に隣り合う搬送部材の搬送面の回転通過領域同士が互いに共通領域を有するように搬送部材を配列とすれば、搬送面が回転通過しない領域がなくなるので、投入された搬送対象物が、隣り合う搬送部材の間で滞留することがなくなる。
【0056】
(3)搬送部材の形状を、回転軸外周に一辺が固着された四角板形状とすることにより、搬送対象物を衝突させて移動させる機能だけでなく、搬送部材の通過領域の空気を撹拌、撹乱したり、空気を移動させたりする作用も生じるので、搬送対象物の団塊化を阻止する機能をさらに高めることができ、形状が簡単であることで製作コストの低減を図ることもできる。
【0057】
(4)回転軸の軸方向に隣り合う搬送部材同士の間に、搬送方向と交差する抑止面を有する搬送抑止部材を配置することにより、搬送部材の搬送面に衝突して搬送方向へ弾かれた搬送対象物の一部が搬送抑止部材の抑止面に衝突して、搬送方向と異なる方向へ弾き返されるようになるので、搬送対象物に対する撹拌、破砕作用を高めると同時に、さらに遅い速度で搬送することができるようになる。
【0058】
(5)搬送抑止部材の抑止面の形状を、回転軸から径方向に放射状に広がる扇形状とすることにより、回転軸中心から径方向に遠ざかるにつれて面積の広がった抑止面を形成することができるため、搬送部材に衝突して回転軸から離れる方向へ拡散する搬送対象物も当該抑止面で的確に弾き返すことが可能となり、搬送速度の増大を抑制する機能を高めることができる。
【0059】
(6)搬送抑止部材の抑止面の回転方向の最先端部を、回転軸の軸方向に隣り合う搬送部材の搬送面の回転方向の最先端部よりも回転方向へ変位させて配置することにより、搬送部材に衝突して回転軸方向へ弾かれた搬送対象物の殆ど全てが、搬送方向に隣り合う搬送抑止部材の抑止面に的確に衝突して弾き返されるようになるので、搬送速度の増大を抑制する機能をさらに高めることができる。
【図面の簡単な説明】
【図1】第1実施形態である搬送用スクリューを示す部分斜視図である。
【図2】(a)は図1に示す搬送用スクリューの部分正面図、(b)は図1に示す搬送用スクリューの側面図である。
【図3】図1に示す搬送用スクリューを構成する回転軸の外周面の部分展開図である。
【図4】第2実施形態である搬送用スクリューを示す部分斜視図である。
【図5】(a)は図4に示す搬送用スクリューの部分正面図、(b)は図4に示す搬送用スクリューの側面図である。
【図6】図4に示す搬送用スクリューを構成する回転軸の外周面の部分展開図である。
【図7】図1に示す搬送用スクリューを利用したおから乾燥装置の概略構成図である。
【図8】(a)は図7に示すおから乾燥装置を構成する乾燥ユニットの一部切欠平面図、(b)は前記乾燥ユニットの一部切欠正面図、(c)は前記乾燥ユニットの一部切欠側面図である。
【図9】図7に示すおから乾燥装置などの乾燥性能を示すグラフである。
【図10】(a)は図4に示す搬送用スクリューを用いた乾燥ユニットの一部切欠平面図、(b)は前記乾燥ユニットの一部切欠正面図、(c)は前記乾燥ユニットの一部切欠側面図である。
【図11】(a)は従来の搬送用スクリューを示す部分斜視図、(b)は前記搬送用スクリューを示す側面図である。
【図12】図11に示す搬送用スクリューを構成する回転軸の外周面の部分展開図である。
【符号の説明】
1,11,21 搬送用スクリュー
2,22 回転軸
2a,22a 外周面
2b,22b 軸方向
2c,22c 駆動軸
3,23 仮想螺旋
5,5A〜5C 搬送部材
5a 搬送面
5b 変位角
30,36 ケーシング
30a,36a 取入口
30b,36b 排出口
31,31a,31z,35 乾燥ユニット
32 並列体
33 矢線
34 取入口
37 排出部材
38 反転部材
50C,50D,50E 回転通過領域
50M 共通領域
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a transport screw used in a process of transporting a water-containing solid particle aggregate such as okara generated in a tofu manufacturing process or shochu scum generated in a shochu manufacturing process in a certain direction.
[0002]
[Prior art]
Okara produced at tofu manufacturing plants and shochu slag produced at shochu brewing plants are often handed over to industrial waste disposal contractors for processing, but in recent years they have been used effectively in various fields. Research has been carried out, and some of them have been used as feed for livestock.
[0003]
However, okara produced in a tofu manufacturing plant is a perishable substance containing about 70 to 80% of water, and therefore must be dried until the water content becomes about 5 to 8% before reuse. Yes, various types of okara drying devices have been developed.
[0004]
A typical okara drying apparatus typically has a heating and transporting step of evaporating moisture by externally heating an okara containing moisture in a predetermined direction while heating the same. In such a heating and transporting step, a transport screw 90 as shown in FIG. 11 is used as a means for linearly transporting okara in a certain direction.
[0005]
The transfer screw 90 has a structure in which a plurality of square plate-shaped transfer members 92 are erected radially in accordance with a predetermined rule on an outer peripheral surface 91a of a cylindrical rotary shaft 91. (Not shown), a transport mechanism is formed by providing a motor or the like for rotating the rotating shaft 91 in a fixed direction.
[0006]
In such a transport mechanism, when the rotating shaft 91 is rotated in the rotation direction L by a motor or the like and the okara is inserted near the right end of the transport screw 90 in FIG. The process of repeatedly colliding with the rotating plurality of transport members 92 and being repelled repeatedly moves in the axial direction 91 b while helically rotating around the rotating shaft 91, so that the transport member 90 is moved around the transport screw 90. By heating, the okara is dried while being transported in the transport direction P.
[0007]
In the case of the transport screw 90, the plurality of transport members 92 erected on the outer peripheral surface 91a of the rotary shaft 91 are coaxial with the rotary shaft 91 outside the rotary shaft 91 as shown in FIG. They are arranged at 120-degree intervals along the virtual spiral 93 to be drawn. The virtual spiral 93 has a shape (right-handed screw shape) that advances in the direction opposite to the transport direction P when rotated in the same direction as the rotational direction L (counterclockwise as viewed from the start end of the transport direction P). When the outer peripheral surface 91a is cut in the axial direction 91b of the rotating shaft 91 and developed in a plane, the transport member 92 is in a state as shown in FIG.
[0008]
Here, as shown in FIG. 12, if the okara S collides with the transport member 92c that rotates together with the rotating shaft 91, the okara S is repelled in the axial direction 91b by the axial component x of the rotational force y, It collides with the transport member 92b coming immediately after the transport member 92c, but here again is repelled in the axial direction 91b by the horizontal component force x of the rotational force y and collides with the transport member 92a coming right after the transport member 92b. Then, the ball is repelled in the axial direction 91b, and thereafter, such a collision and repelling process are sequentially repeated, so that the okara S is transported in the transport direction P. In other words, the inserted okara S moves down the stairs one by one while being sequentially flipped by the transport members 92 arranged along the virtual spiral 93 having a right-handed screw shape. The soured okara S is efficiently transported in the transport direction P.
[0009]
[Problems to be solved by the invention]
When the okara is dried in the heating and transporting step using the transport screw 90 shown in FIG. 11, the okara being transported by the transport screw 90 may be combined with each other to form a lump. Once formed, okara nodules are not easily broken, and small nodules grow in a snow-like manner often to become large nodules, which may cause troubles such as blocking the transport path. In addition, since heat does not sufficiently reach the inside of the large-grown baby boomer, moisture does not evaporate, causing various forms of poor drying such as uneven drying and insufficient drying.
[0010]
Therefore, in order to prevent such troubles, the rotational speed of the conveying screw 90 is increased to increase the rotational impact force of the conveying member 91, and the agitating action and the crushing action on the okara are increased. Measures have been taken to prevent the formation of karaka nodules and to crush the formed okara nodules.
[0011]
However, increasing the number of rotations of the rotating shaft 91 increases the stirring and crushing effects of the transport member 91, so that okara nodules can be eliminated. Okara charged at the beginning of the heating and transporting process using the transporting screw 90 reaches the end in a shorter time than the time required for drying, resulting in insufficient drying as a whole. .
[0012]
In order to eliminate such insufficient drying, the heating temperature of the okara may be increased or the heating and transporting step may be lengthened. However, if the heating temperature is excessively increased, the okara is burnt, so there is a limit. When the length is increased, the occupied space is remarkably expanded, so that there is a practical limit.
[0013]
As described above, when the rotation speed of the conventional conveying screw 90 is increased, the stirring and crushing action is increased, so that no okara nodules are formed. However, the conveying speed becomes excessively large and the drying becomes insufficient as a whole. If lowered, there is a problem that the stirring and crushing actions are reduced, a large amount of nodules are formed, and poor drying occurs.
[0014]
The problem to be solved by the present invention is to provide a transport screw capable of transporting a solid particle aggregate containing water such as okara and shochu slag without generating lumps at a relatively slow speed. It is in.
[0015]
[Means for Solving the Problems]
The transport screw of the present invention includes a rotating shaft that rotates counterclockwise when viewed from the starting end side in the carrying direction, and a rotating shaft that extends along a left-handed virtual spiral that is drawn coaxially with the rotating shaft outside the rotating shaft. A plurality of transport members arranged on the outer peripheral surface at intervals and having a transport surface intersecting with the virtual spiral. Here, the left-hand thread shape refers to a ridge shape of a screw thread that advances when the external thread is turned counterclockwise, and the transport surface is a surface having a function of contacting the transport object and moving the transport object. Say.
[0016]
The plurality of transport members are arranged on the outer periphery of the rotary shaft along a left-handed virtual spiral, and the transport surface is provided so as to intersect with the virtual spiral. The object collides with any one of the plurality of transport members rotating together with the rotation shaft and is repelled in the transport direction, but the transport member rotating immediately thereafter is displaced in a direction opposite to the transport direction. Therefore, the repelled transport target does not collide with the transport surface of the transport member rotating immediately after, and collides with the transport surface of the transport member rotating later after separating one or more transport members. Will be played. Therefore, the acceleration in the transport direction is smaller than that in the case where the transport target object collides with the transport surfaces of all the transport members one after another along the arrangement order of the transport members and is repelled in the transport direction. The increase in the moving speed of the vehicle is suppressed.
[0017]
That is, since the transport target is repelled in the transport direction while intermittently colliding with the transport surfaces of the plurality of transport members arranged at intervals, other conditions such as the number of rotations of the rotating shaft and the interval between the transport members are different. Are the same, the increase in the speed of the transfer object in the transfer direction is smaller than in the case of the transfer screw 90 in which the transfer object collides with all the transfer members 91 in order and is repelled in the transfer direction. Therefore, stirring of the object to be conveyed, even if the rotation speed of the rotating shaft is increased for the purpose of enhancing the crushing action, an increase in the conveyance speed is suppressed, and the object to be conveyed is a solid particle aggregate containing water. Can also be conveyed at a relatively slow speed without generating lumps.
[0018]
Here, it is desirable to arrange the transport members such that the rotation passage areas of the transport surfaces of the transport members adjacent to each other in the virtual spiral direction have a common area with each other. With such an arrangement, when the plurality of conveying members are rotating together with the rotating shaft, there is no area through which the conveying surface does not pass. Since the object to be transported always collides with the transport surface of one of the transport members and is repelled in the transport direction, the transport object does not stay between the adjacent transport members.
[0019]
Further, it is desirable that the shape of the conveying member is a square plate shape with one side fixed to the outer periphery of the rotating shaft. By adopting such a shape, not only the function of moving the object by colliding the object to be carried, but also the function of stirring, disturbing, or moving the air in the passage area of the conveying member also occurs. Therefore, the function of preventing the object to be conveyed from agglomerating can be further enhanced, and the simple shape can reduce the manufacturing cost. In addition, when the transfer screw is used in an okara drying device or the like, the heat transfer area can be increased or decreased by increasing or decreasing the thickness of the rectangular plate-shaped transfer member, and the heating state can be changed. Can be controlled relatively finely.
[0020]
On the other hand, it is desirable to dispose a transport restraining member having a restraining surface intersecting the transport direction between transport members adjacent in the axial direction of the rotation shaft. By providing such a transport restraining member, a part of the transport target that collides with the transport surface of the transport member and is repelled in the transport direction collides with the restraint surface of the transport restraint member and moves in a direction different from the transport direction. Since it is repelled, it is possible to enhance the stirring and crushing action on the object to be conveyed, and further suppress an increase in speed in the conveying direction. That is, it is possible to enhance the stirring and crushing action on the transport target, and to transport the transport target at a lower speed.
[0021]
In this case, if the shape of the restraining surface of the transport restraining member is a fan shape that radially spreads radially from the rotation axis, a restraining surface having an area that increases as the distance from the center of the rotation shaft in the radial direction increases can be formed. In addition, it is possible to accurately bounce back the object to be conveyed, which collides with the conveying member and spreads in a direction away from the rotation axis, on the deterrent surface, thereby enhancing the function of suppressing an increase in the conveying speed. In addition, if the area of the suppression surface is increased by increasing the spread angle of the fan shape, the moving speed of the object to be transferred in the transfer direction is reduced. If the spread angle is reduced and the area of the suppression surface is reduced, the movement speed is increased. Since it increases, the transport speed of the transport object can be controlled relatively finely by increasing or decreasing the spread angle of the fan shape.
[0022]
Further, by disposing the leading end in the rotation direction of the inhibiting surface of the transport inhibiting member in the rotational direction more than the leading end in the rotating direction of the transport surface of the transport member adjacent to the rotating shaft in the axial direction, Almost all of the objects to be conveyed that collide with the conveyance member and are repelled in the direction of the rotation axis will accurately collide with the restraining surfaces of the conveyance restraining members that are adjacent in the conveyance direction and be repelled, thereby increasing the conveyance speed. Can be further enhanced. Also, when the displacement is increased, the moving speed of the object to be conveyed in the conveying direction is reduced, and when the displacement is reduced, the moving speed is increased. It can be controlled relatively finely.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
1 is a partial perspective view showing a transport screw according to the first embodiment, FIG. 2A is a partial front view of the transport screw shown in FIG. 1, and FIG. 1B is a side view of the transport screw shown in FIG. FIG. 3 is a partially developed view of the outer peripheral surface of the rotating shaft showing the arrangement of the blades of the transport screw shown in FIG.
[0024]
As shown in FIGS. 1 and 2, the transport screw 1 of the present embodiment has a cylindrical shape that rotates counterclockwise (counterclockwise) when viewed from the start end in the transport direction P by driving a motor (not shown). And a plurality of transport members 5 arranged at 120-degree intervals along the virtual spiral 3 drawn outside the rotary shaft 2 and having a transport surface 5a intersecting the virtual spiral 3 at a fixed angle. ing. The shape of the virtual spiral 3 serving as the arrangement reference of the transport surface 5a is a left-handed screw shape, and is drawn coaxially with the rotating shaft 2.
[0025]
Each transport member 5 has a rectangular plate shape, and one side thereof is fixed to the outer peripheral surface 2 a of the rotating shaft 2. The transport surface 5a of the transport member 5 is disposed so as to form a downward slope in the transport direction P with a displacement angle 5b of about 25 degrees with respect to the axial direction 2b with respect to the axial direction 2b of the rotating shaft 2. I have. Further, a drive shaft 2c for rotatably supporting the rotating shaft 2 is provided so as to protrude from the center of the end surface of the rotating shaft 2 in the axial direction 2b. The displacement angle 5b can be arbitrarily set within a range of about 10 degrees to 30 degrees according to the use conditions. For example, the transfer screw 1 is used for the okara drying apparatus described below (FIG. 7). When the water content of okara, which is the object to be conveyed, is high, it is desirable to set the displacement angle 5b to an angle close to 30 degrees, and as the water content decreases, the displacement angle 5b becomes an angle close to 10 degrees. It is desirable to set to.
[0026]
Therefore, when the object to be conveyed is put on the starting end side of the conveying direction P (near the right end of the rotating shaft 2 in FIGS. 1 and 2) in a state where the rotating shaft 2 is rotated in the rotating direction L, Collides with the transport surface 5a of the transport member 5 sequentially rotating in the rotation direction L together with the rotating shaft 3, and moves in the transport direction P through a process described later.
[0027]
As shown in FIG. 3, the plurality of transport members 5 are arranged on the outer peripheral surface 2a of the rotary shaft 2 along the left-handed virtual spiral 3 and the transport surface 2a intersects the virtual spiral 3 at a fixed angle, Are arranged with a downward gradient in the transport direction P by a displacement angle 5b with respect to the axial direction 2b, the transport target S input at the start end side (near the right end in FIG. 3) of the transport direction P rotates. It collides with any one of the transport surfaces 5a of the plurality of transport members 5 rotating together with the shaft 2, and is repelled in the transport direction P.
[0028]
Here, assuming that the input transport target S collides with the transport surface 5a of the transport member 5C shown in FIG. 3, the transport target S is generated by the axial component x of the rotational force y of the rotating shaft 2. The sheet is flipped in the transfer direction P and jumps out in the transfer direction P beyond the passage area 50C of the transfer member 5C, but the transfer member 5B rotating immediately thereafter is located at a position displaced in the opposite direction to the transfer direction P from the transfer member 5C. Therefore, the transfer target S that has protruded in the transfer direction P beyond the passage area 50C does not collide with the transfer surface 5a of the transfer member 5B, and the transfer surface of the transfer member 5D that rotates immediately after the transfer member 5B. It collides with 5a and is flipped in the transport direction P.
[0029]
The transport target S flipped on the transport surface 5a of the transport member 5D jumps out of the transit area 50D in the transport direction P, but the transport member 5C rotating immediately after that moves in the transport direction P from the transport member 5D. Since the transport target S is in the position displaced in the opposite direction, the transport target S that has jumped out collides with the transport surface 5a of the transport member 5E rotating immediately after the transport member C, and jumps out in the transport direction P. The transport target S that has protruded thereafter moves in the transport direction P while being alternately hit and repelled by the transport members 5 arranged in a left-hand spiral form at 120-degree intervals.
[0030]
Therefore, as shown in FIG. 12, the transport target S continuously collides with all the transport surfaces 92a of the transport members 92 arranged in the right-hand spiral form, rebounds, and moves in the transport direction P. The acceleration of the transport target S in the transport direction P is smaller than that of the conventional transport screw 90, and an increase in the moving speed in the transport direction P is suppressed.
[0031]
That is, in the case of the transport screw 1, the transport target S collides with the transport surface 5 a of the transport members 5 arranged in a left-handed spiral at an interval in the form of a stepping stone, resiliently moves in the transport direction P. Therefore, if other conditions such as the number of rotations of the rotating shaft 2 and the arrangement interval of the transport members 5 are the same, the transport target S continuously collides with all the transport members 92, rebounds, and moves in the transport direction P. The speed increase of the transport target S in the transport direction P is smaller than in the case of the transporting screw 90 that moves.
[0032]
Therefore, even if the rotation speed of the rotating shaft 2 is increased for the purpose of increasing the stirring and crushing action on the transport target S, the increase in the transport speed is relatively small, and the transport target S is not hydrated like okara or shochu slag. Can be conveyed at a relatively slow and moderate speed without generating lumps.
[0033]
As shown in FIG. 3, the rotation passing areas of the transport surfaces 5a of the transport members 5 adjacent to each other in the virtual spiral 3 direction, for example, the rotation passing areas 50C of the transport surface 5a of the transport member 5C and the transport of the transport member 5D. The transport members 5C and 5D are arranged so as to have a common area 50M with the rotation passage area 50D of the surface 5a. Since all the transport members 5 are arranged in such a manner, the transport target S input into the rotation passage area of the transport surface 5a of the transport member 5 always collides with the transport surface 5a of any transport member 5. Therefore, the object S to be transported does not stay between the adjacent transport members 5.
[0034]
Further, in the transport screw 1, the transport member 5 has a rectangular plate shape with one side fixed to the outer peripheral surface 2a of the rotating shaft 2, so that the transport target S is caused to collide with and move the transport target S. In addition, since the air in the passage area of the conveying member 5 can be agitated and disturbed, and the air can be moved, the function of preventing the consolidation of the object S to be conveyed is excellent, and the shape is simple. Therefore, the production cost is low.
[0035]
Next, a transport screw 21 according to a second embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 4 and 5, in the transport screw 21, as in the transport screw 1 described above, the transport members are provided at 120 ° intervals on the outer peripheral surface 22 a of the rotating shaft 22 along the left-handed virtual spiral 22 a. 6, and further, as shown in FIG. 6 and the like, between the transport members 25 adjacent to each other in the axial direction 22b of the rotating shaft 22, a restraining member 26 having a transport restraining surface 26a orthogonal to the transport direction P is provided. Are placed. In order to support or drive the rotating shaft 22, drive shafts 22c are provided on both end surfaces of the rotating shaft 22 so as to protrude along the axial direction 22b.
[0036]
By providing such a restraining member 26, as illustrated in FIG. 6, a part of the transport target S that collides with the transport surface 25 a of the transport member 25 and is repelled in the transport direction P is transported by the restraining member 26. Since the collision occurs with the deterrent surface 26a and is repelled in a direction different from the transport direction P, the agitation and crushing action on the transport target S is increased, and the speed of the transport target S in the transport direction P is increased for transport. It becomes more suppressed than in the case of the screw 1. In other words, the transport target S can be transported at a lower speed while maintaining the stirring and crushing action on the transport target S higher than that of the transport screw 1.
[0037]
In the present embodiment, since the shape of the restraining surface 26a of the transport restraining member 26 is a fan shape radially extending from the rotation shaft 22 in the radial direction, the restraint whose area increases as the distance from the center of the rotation shaft 2 in the radial direction increases. The surface 26a is formed, and the transport object S that collides with the transport member 25 and diffuses in a direction away from the rotary shaft 22 can be accurately bounced back on the deterrent surface 25a, thereby suppressing an increase in transport speed. The work of fixing the conveyance restraining member 26 to the rotating shaft 22 is also easy.
[0038]
In addition, the rotation-direction foremost portion 26b of the restraining surface 26a of the transport restraining member 26 is rotated by an offset 27 from the rotation-direction foremost portion 25b of the transporting surface 25a of the transporting member 25 adjacent to the rotating shaft 22 in the axial direction 22b. L, almost all of the transport target S colliding with the transport member 25 and being repelled in the axial direction 22b of the rotary shaft 22 becomes a restraining surface of the transport restraining member 26 adjacent in the transport direction. The object 26 is accurately collided with the object 26a and repelled, thereby suppressing an increase in the conveying speed of the object S and promoting agitation and crushing of the object S. Other functions, effects, and the like are the same as those of the transport screw 1 described above.
[0039]
Next, with reference to FIG. 7 and FIG. 8, an okara drying apparatus using the transport screw 1 will be described. FIG. 7 is a schematic view showing an okara drying apparatus using the conveying screw 1. FIG. 8 (a) is a partially cutaway plan view of a drying unit constituting the okara drying apparatus, and FIG. FIG. 3C is a partially cutaway front view of the drying unit, and FIG. 3C is a partially cutaway side view of the drying unit.
[0040]
In the okara drying apparatus shown in FIG. 7, four drying units 31 each having a substantially cylindrical shape are horizontally arranged so as to be parallel to each other to form a parallel body 32, and the parallel bodies 32 are vertically arranged in three stages. It is constituted by doing. As shown in FIG. 8, each drying unit 31 has a structure in which the conveying screw 1 is coaxially arranged in a cylindrical casing 30, and the drive shaft 2 c is projected outward from both ends of the casing 30. In the vicinity of both ends of the casing 30, an inlet 30a for introducing an okara, which is an object to be conveyed (an object to be dried), into the casing 30, and an outlet 30b for discharging the okara in the casing 30, respectively. Are provided.
[0041]
As shown in FIG. 8A, the positions of the inlet 30 a and the outlet 30 b are basically the front part and the rear part of the casing 30, respectively. Since the introduction position and the discharge direction of the target object change depending on the positional relationship with another drying unit 31, the object is provided on the upper surface portion or the lower surface portion of the casing 30 as shown in FIG. .
[0042]
The drying units 31 that are horizontally adjacent to each other in the parallel body 32 are arranged such that the transport directions P thereof are opposite to each other, and the outlet 30a formed in the casing 30 at the end side of the drying unit 31 in the transport direction P is The outlet 30b of the drying unit 31 which is connected to the inlet 30b formed at the start end side of the casing 30 of the adjacent drying unit 31 and is located at the last part of the parallel body 32 is connected to the inlet 30a of the drying unit 31 located immediately below. Is communicated to. The transport screw 1 built in each drying unit 31 is driven by a motor so as to rotate in the rotation direction P shown in FIG. 8, and all the drying units 31 are heated by heating means (not shown). ing.
[0043]
As shown in FIG. 7, if an okara, which is an object to be conveyed (an object to be dried), is put into the casing 30 from the inlet 30 a of the drying unit 31 a located at the forefront of the parallel body 32 at the uppermost stage, the inside is built-in. It is conveyed in the conveying direction P by the conveying screw 1 that has been discharged, discharged from the discharge port 30b at the terminal end of the casing 30, and moved into the casing 30 from the inlet 30a of another adjacent drying unit 31. Since such a movement is repeated, that is, the okara is heated while moving as shown by the arrow 33, the water and the like contained in the okara gradually evaporate, and finally the okara is at the bottom. The dried okara is discharged from a discharge port (not shown) of the drying unit 31z located at the rearmost part of the parallel body 32.
[0044]
Since the transport screw 1 built in each drying unit 31 constituting the okara drying device can sufficiently transport the okara while stirring and crushing by the above-described stirring and crushing action, the okara nodule It is possible to produce dried okara that does not cause burning or scorch and is free from insufficient drying and poor drying. In addition, since the speed of conveying okara by the conveying screw 1 is lower than that of the conventional conveying screw 90, the conveying path indicated by the arrow 33 can be shortened as compared with the conventional case.
[0045]
Here, with reference to FIG. 9, a description will be given of a difference in drying performance between the drying unit 31 having the transport screw 1 built therein and the conventional drying unit having the same structure having the transport screw 90 built therein. FIG. 9 shows an example of the okara drying apparatus of FIG. 7 in which twelve drying units 31 are arranged and the same okara drying apparatus in which twelve drying units of the same structure including a conventional conveying screw 90 are arranged. It is a graph which shows each drying performance at the time of drying a rate of okara. The drying unit number on the horizontal axis indicates the number of the drying unit positioned from the first drying unit, and the vertical axis indicates the water content of okara sampled from each drying unit.
[0046]
As can be seen from FIG. 9, the difference between the moisture content of the soybeans sampled from the drying unit 31 and the conventional drying unit from the beginning to the vicinity of the fourth drying unit is small, but the drainage of the sixth drying unit 31 is small. The water content of the okara sampled from the outlet 30b is about 43%, while the water content of the okara sampled from the sixth conventional drying unit is about 62%, and the water content of the okara sampled from the drying unit 31 is The water content is lower by about 20%.
[0047]
The water content of okara discharged from the twelfth conventional drying unit located at the final stage is 40% or more, and a further drying step is required. It can be seen that the water content of okara has dropped to about 2%, and the okara product is ready to be shipped.
[0048]
As described above, if the drying unit 31 incorporating the transport screw 1 is used, the okara can be transported at a relatively low speed while sufficiently stirring and crushing the okara. Therefore, the drying unit incorporating the conventional transport screw 90 is used. It is possible to configure the okara drying apparatus with a smaller number of arrangements, thereby reducing the space occupied by the apparatus and the energy for operating the apparatus. As described above, when the moisture content of the soybean that is the object to be transported is high, the displacement angle 5b of the transport member 5 is set to an angle close to 30 degrees, and the displacement angle 5b is set to 10 degrees as the moisture content decreases. It is desirable to set the angle close to.
[0049]
Next, the drying unit 35 formed using the transport screw 21 shown in FIG. 4 will be described with reference to FIG. The drying unit 35 has a structure in which the transport screw 21 is coaxially arranged in a cylindrical casing 36 and the drive shaft 22c projects outward from both ends of the casing 30, similarly to the above-described drying unit 31. In the vicinity of both ends of the casing 36, there are provided an inlet 36a for introducing okara, which is an object to be conveyed (an object to be dried), into the casing 36, and an outlet 36b for discharging okara inside the casing 36, respectively. Is provided.
[0050]
Three discharge members 37 are tangent to the rotation shaft 22 of the transfer screw 21 built in the casing 36 at intervals of 120 degrees in order to sweep out the transfer target conveyed to the end portion from the discharge port 36b. The conveying member 25 is provided on the outer periphery of the rotating shaft 22 in a direction opposite to the conveying member 25 in order to prevent the object to be conveyed that has been conveyed to near the end of the casing 36 from being conveyed earlier than the discharge port 36. The three reversing members 38, which are greatly displaced, are erected in the radial direction at intervals of 120 degrees. The structure of the drying unit 35 is the same as that of the drying unit 31 except that the built-in conveyance screw 21 includes a conveyance restraining member 26, a discharge member 37, and a reversing member 38.
[0051]
In the case of the drying unit 35, since the transport screw 21 includes the transport inhibiting member 26, the transport target can be transported at a lower speed than the drying unit 31. It is suitable for the transporting step and drying step of a substance that easily forms odor, and if used in an okara drying apparatus, the drying path can be further shortened.
[0052]
Since the present invention is not limited to the above-described embodiments, the pitch of the virtual spiral, the interval between the transport members arranged along the virtual spiral, the intersection angle between the transport surface and the virtual spiral, the rotation axis The displacement angle between the axial direction and the transfer surface, the shape and area of the transfer member and transfer surface, and the shape, area, arrangement position, and arrangement interval of the transfer suppression member should be set appropriately according to the properties of the transfer target. Can be.
[0053]
【The invention's effect】
The present invention has the following effects.
[0054]
(1) An interval is formed on the outer peripheral surface of the rotating shaft along a rotating shaft that rotates counterclockwise when viewed from the starting end side in the transport direction and a left-handed virtual spiral that is drawn coaxially with the rotating shaft outside the rotating shaft. And a plurality of transfer members having a transfer surface intersecting with the virtual spiral are arranged in the transfer object, the transfer target is arranged along a left-handed virtual spiral, and a plurality of transfer members rotating counterclockwise. Since it moves in the transport direction while intermittently colliding with the transport surface, an increase in the transport speed due to an increase in the number of rotations is suppressed, and even if the transport target is a solid particle aggregate containing water, the aggregates are reduced. It is possible to convey at a relatively slow speed without generating.
[0055]
(2) If the conveying members are arranged such that the rotation passing areas of the conveying surfaces of the conveying members adjacent to each other in the virtual spiral direction have a common area, there is no area where the conveying surface does not pass through rotation. The object does not stay between the adjacent transport members.
[0056]
(3) By making the shape of the transfer member a square plate shape with one side fixed to the outer periphery of the rotating shaft, not only the function of causing the transfer object to collide and move, but also stirring the air in the passage area of the transfer member, Since the action of disturbing or moving the air is also generated, the function of preventing the consolidation of the objects to be conveyed can be further enhanced, and the simple shape can reduce the production cost.
[0057]
(4) By arranging a transport restraining member having a restraining surface crossing the transport direction between transport members adjacent in the axial direction of the rotation shaft, the transport restraining member collides with the transport surface of the transport member and is repelled in the transport direction. A part of the transported object collides with the restraining surface of the transport restraining member, and is repelled in a direction different from the transport direction. It can be transported.
[0058]
(5) By making the shape of the restraining surface of the transport restraining member a fan shape radially extending from the rotation axis in the radial direction, it is possible to form a restraining surface having an area that increases as the distance from the center of the rotation axis increases in the radial direction. Therefore, it is possible to accurately bounce back the object to be conveyed, which collides with the conveying member and spreads away from the rotation axis, on the deterrent surface, thereby improving the function of suppressing an increase in the conveying speed.
[0059]
(6) By disposing the leading end in the rotational direction of the inhibiting surface of the transport inhibiting member in the rotational direction more than the leading end in the rotational direction of the transport surface of the transport member adjacent in the axial direction of the rotating shaft, Almost all of the transported objects that collide with the transport member and are repelled in the direction of the rotation axis accurately collide with the restraining surfaces of the transport restraining members adjacent in the transport direction and are repelled. The function of suppressing the increase can be further enhanced.
[Brief description of the drawings]
FIG. 1 is a partial perspective view illustrating a transport screw according to a first embodiment.
2A is a partial front view of the transport screw shown in FIG. 1, and FIG. 2B is a side view of the transport screw shown in FIG.
FIG. 3 is a partial development view of an outer peripheral surface of a rotating shaft constituting the transport screw shown in FIG. 1;
FIG. 4 is a partial perspective view illustrating a transport screw according to a second embodiment.
5A is a partial front view of the transport screw shown in FIG. 4, and FIG. 5B is a side view of the transport screw shown in FIG.
6 is a partially developed view of an outer peripheral surface of a rotating shaft that constitutes the transport screw shown in FIG.
7 is a schematic configuration diagram of an okara drying apparatus using the transport screw shown in FIG.
8 (a) is a partially cutaway plan view of a drying unit constituting the okara drying apparatus shown in FIG. 7, (b) is a partially cutaway front view of the drying unit, and (c) is a view of the drying unit. It is a partially notched side view.
9 is a graph showing the drying performance of the okara drying apparatus shown in FIG.
10A is a partially cutaway plan view of a drying unit using the transport screw shown in FIG. 4, FIG. 10B is a partially cutaway front view of the drying unit, and FIG. It is a partial notch side view.
FIG. 11A is a partial perspective view showing a conventional transport screw, and FIG. 11B is a side view showing the transport screw.
12 is a partially developed view of the outer peripheral surface of a rotating shaft that constitutes the transport screw shown in FIG.
[Explanation of symbols]
1,11,21 Transfer screw
2,22 rotation axis
2a, 22a Outer peripheral surface
2b, 22b axial direction
2c, 22c drive shaft
3,23 virtual spiral
5,5A-5C conveying member
5a Transfer surface
5b Displacement angle
30,36 Casing
30a, 36a intake
30b, 36b outlet
31, 31a, 31z, 35 Drying unit
32 parallel objects
33 arrow
34 Inlet
37 Discharge member
38 Reversing member
50C, 50D, 50E rotation passage area
50M common area

Claims (6)

搬送方向の始端側から見て左回りに回転する回転軸と、前記回転軸の外側に前記回転軸と同軸上に描かれた左ねじ形状の仮想螺旋に沿って前記回転軸の外周面に間隔をおいて配列され前記仮想螺旋と交差する搬送面を有する複数の搬送部材とを備えたことを特徴とする搬送用スクリュー。A rotating shaft that rotates counterclockwise when viewed from the starting end side in the transport direction, and an outer circumferential surface of the rotating shaft along a left-handed virtual spiral that is drawn coaxially with the rotating shaft outside the rotating shaft. A plurality of conveying members arranged at a position and having a conveying surface intersecting the virtual spiral. 前記仮想螺旋方向に隣り合う前記搬送部材の搬送面の回転通過領域同士が互いに共通領域を有するように前記搬送部材を配列した請求項1記載の搬送用スクリュー。The transport screw according to claim 1, wherein the transport members are arranged such that rotation passage areas of transport surfaces of the transport members adjacent to each other in the virtual spiral direction have a common area. 前記搬送部材の形状を、前記回転軸外周に一辺が固着された四角板形状とした請求項1または2記載の搬送用スクリュー3. The transport screw according to claim 1, wherein the shape of the transport member is a square plate shape having one side fixed to the outer periphery of the rotation shaft. 4. 前記回転軸の軸方向に隣り合う前記搬送部材同士の間に、前記搬送方向と交差する抑止面を有する搬送抑止部材を配置した請求項1ないし3のいずれかに記載の搬送用スクリュー。4. The transport screw according to claim 1, wherein a transport restraining member having a restraining surface intersecting with the transport direction is disposed between the transport members adjacent to each other in the axial direction of the rotation shaft. 5. 前記搬送抑止部材の抑止面の形状を、前記回転軸から径方向に放射状に広がる扇形状とした請求項4記載の搬送用スクリュー。5. The transport screw according to claim 4, wherein the shape of the restraining surface of the transport restraining member is a fan shape radially extending from the rotation axis in a radial direction. 前記抑止部材の抑止面の回転方向の最先端部を、前記回転軸の軸方向に隣り合う前記搬送部材の搬送面の回転方向の最先端部よりも前記回転方向へ変位させて配置した請求項5記載の搬送用スクリュー。The rotation-direction foremost portion of the restraining surface of the restraining member is displaced in the rotation direction from the foremost portion of the transporting surface of the transporting member adjacent in the axial direction of the rotating shaft in the rotation direction. 5. The transport screw according to 5.
JP2002163233A 2002-06-04 2002-06-04 Transfer screw Expired - Lifetime JP3599719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163233A JP3599719B2 (en) 2002-06-04 2002-06-04 Transfer screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163233A JP3599719B2 (en) 2002-06-04 2002-06-04 Transfer screw

Publications (2)

Publication Number Publication Date
JP2004010213A true JP2004010213A (en) 2004-01-15
JP3599719B2 JP3599719B2 (en) 2004-12-08

Family

ID=30431769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163233A Expired - Lifetime JP3599719B2 (en) 2002-06-04 2002-06-04 Transfer screw

Country Status (1)

Country Link
JP (1) JP3599719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062835A (en) * 2004-08-27 2006-03-09 Yasumitsu Kubo Propeller, agitating machine, and conveyor
KR101429609B1 (en) 2006-06-12 2014-08-13 소마라키스 인바이런멘탈 시스템즈, 엘엘씨 Pin conveyor for pasty materials such as animal waste
CN107826803A (en) * 2017-11-29 2018-03-23 广州市新望谷环保科技有限公司 A kind of combined type cracking apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062835A (en) * 2004-08-27 2006-03-09 Yasumitsu Kubo Propeller, agitating machine, and conveyor
KR101429609B1 (en) 2006-06-12 2014-08-13 소마라키스 인바이런멘탈 시스템즈, 엘엘씨 Pin conveyor for pasty materials such as animal waste
CN107826803A (en) * 2017-11-29 2018-03-23 广州市新望谷环保科技有限公司 A kind of combined type cracking apparatus

Also Published As

Publication number Publication date
JP3599719B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US7178262B2 (en) Air dryer system and method employing a jet engine
US20080000100A1 (en) System and Method Employing Turbofan Jet Engine for Drying Bulk Materials
EP0537637B1 (en) A system for drying moist sludge
TW201604509A (en) Method for drying material being processed, and horizontal rotary dryer
JP3599719B2 (en) Transfer screw
CN103597306A (en) Crushing and drying device
JP6347542B2 (en) Mushroom waste medium drying apparatus, mushroom waste medium processing method, recycle material preparation method and dry waste medium preparation method
WO2016203108A1 (en) Apparatus and method for processing sludge
JP2001348252A (en) Facilities for treating stainless steel slag
JP3192301U (en) Mushroom waste medium drying equipment
JP2003135948A (en) Stirrer
JP2010243032A (en) Dryer
CN116576630A (en) Powder dehumidification fluidized bed drying equipment
JP2008151430A (en) Drying apparatus
KR20170142049A (en) Device of drying waste particles
JP2013047592A (en) Stirring drying device
WO2015156205A1 (en) Horizontal rotary dryer
CN116022993B (en) Hierarchical pulverization high-efficient desiccation system of water-containing material
JP2002079072A (en) Method for granulating incinerated poultry manure
CN207713689U (en) A kind of coal slime drying equipment
JP3074656B2 (en) Crushing equipment
JP2000329467A (en) Dryer
JPS60159578A (en) Vacuum drier and method of operating said drier
CN108387082B (en) Drying device
JP6192217B2 (en) Processing system controller, processing system condition setting device using the processing system controller, and processing system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Ref document number: 3599719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term