JP2004009751A - Vehicle speed control device - Google Patents

Vehicle speed control device Download PDF

Info

Publication number
JP2004009751A
JP2004009751A JP2002161517A JP2002161517A JP2004009751A JP 2004009751 A JP2004009751 A JP 2004009751A JP 2002161517 A JP2002161517 A JP 2002161517A JP 2002161517 A JP2002161517 A JP 2002161517A JP 2004009751 A JP2004009751 A JP 2004009751A
Authority
JP
Japan
Prior art keywords
vehicle speed
vehicle
speed
brake
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161517A
Other languages
Japanese (ja)
Other versions
JP4151883B2 (en
Inventor
Tomio Yasuma
安間 富男
Koichi Taketomi
武富 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2002161517A priority Critical patent/JP4151883B2/en
Publication of JP2004009751A publication Critical patent/JP2004009751A/en
Application granted granted Critical
Publication of JP4151883B2 publication Critical patent/JP4151883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle speed control device capable of traveling at an appropriate slow speed even when traveling down a steep slope and preventing erroneous restart by actuating a parking brake surely after the vehicle stops. <P>SOLUTION: The vehicle speed control device is equipped with an engine 9 for driving the vehicle, a rotational frequency sensor 12 of the engine 9, a throttle opening sensor 8 interlocked with an accelerator 1, vehicle speed sensors 4 and 5 for detecting the speed of the vehicle, and a control circuit 3 for making the engine 9 and brakes 18, 19 automatically operate according to an indicated vehicle speed. The control circuit 3 controls the brakes 18 and 19 during a normal traveling according to a first indicated vehicle speed limiting the maximum speed of the vehicle to a certain speed, and when the braking force of the brakes 18 and 19, the rotational frequency of the engine 9, and the throttle opening meet the prescribed set condition, the brakes 18 and 19 are controlled according to a slower second indicated vehicle speed in place of the first indicated vehicle speed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ゴルフカート等の車両の速度を制限する車速制御装置に関する。
【0002】
【従来の技術】
車両の車速制御は運転者がアクセルとブレーキを操作することによって行われているが、ゴルフカート等の車両では自動走行を可能とするためにブレーキペダルと別にブレーキを自動にかけるブレーキモータが備わる。車両には車両駆動源(例えばエンジン)を駆動制御する制御回路(CPU)が備わる。CPUは通常の走行時に最大速度を制限した指示車速に基づいてブレーキモータを駆動する。これにより車速を制限して最高速度をある一定速度(指示車速)にして安全性を確保している。
【0003】
一方、車両にはこのような車速制御のためのブレーキとは別に電磁ブレーキ(パーキングブレーキ)が備わり、車両が停止して運転者が降車した後の車両の誤走行を防止している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の車速制御装置を有するゴルフカート等の車両においては、指示車速により最大速度を制限しても急な下り坂等では速度が速すぎると感じられる場合があった。またゴルフカート等ではエンジンからの駆動力を被駆動側の車軸に伝達するためにベルト式無段変速機(CVT)が用いられている。このCVTはベルト式のためエンジンブレーキがかかりにくいため、車両が急な坂道を下る時、高速になりやすく適切な車速制御が難しかった。
【0005】
また、車両の誤走行を防ぐパーキングブレーキは、例えばゴルフカートの場合、プレーを急ぐあまりに確実にパーキングブレーキをかけなかったりすることがあり、車両を止めた場所が坂道だった場合はそのまま車両が走行するおそれがあった。このようなパーキングブレーキのかけ忘れ等を防止するために自動パーキングブレーキが従来用いられていた。しかしながら、従来の自動パーキングブレーキは、車両が停止したこと(車速ゼロ)を検知して作動するため、車両が極低速状態の時に運転者が車両の停止前に降車した場合、運転者の停止意思にかかわらず自動パーキングブレーキは作動せず、車両を止めた場所が坂道だった場合はそのまま車両が走行するおそれがあった。
【0006】
本発明は上記従来技術を考慮したものであって、急な坂道を下る時においても適切なゆっくりした速度で走行でき、車両が停止した後のパーキングブレーキを確実に動作させて車両の誤走行を防止する車速制御装置の提供を目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明では、車両を駆動する駆動源と、該駆動源の回転数センサと、運転者により操作されるアクセルに連結された駆動源の出力制御パラメータのセンサと、車両の速度を検出する車速センサと、指示車速に基づいて自動的に駆動源及びブレーキを動作させる制御回路とを備えた車速制御装置において、前記制御回路は通常走行時に前記車両の最高速度を一定の速度に制限する第1指示車速に基づいてブレーキを制御し、前記ブレーキの制動力と、前記出力制御パラメータが所定の設定条件のときに前記第1指示車速に代えてこれより制限速度が遅い第2指示車速に基づいてブレーキを制御することを特徴とする車速制御装置を提供する。
【0008】
この構成によれば、車両が走行する下り坂等の斜度に応じてこの斜度を予め斜度に対応したブレーキ制動力と、駆動源の出力制御パラメータ(例えばエンジンのスロットル開度や電動モータの電流値等)の設定条件に基づいて判別し、設定条件が満たされた場合に最高速度を制限する指示車速を第1指示車速からこれより遅い第2指示車速に変えるため、特に急な下り坂において、適切なゆっくりした速度で安心感をもって走行することができる。
【0009】
好ましい構成例においては、前記ブレーキの制動力は、前記車速センサにより検出された車速と前記指示車速との差に基づいて前記制御回路が算出することを特徴としている。
【0010】
この構成によれば、指示車速と実際の速度との差に基づいてブレーキ制動力が算出され、これに基づいて斜度が判別されるため、傾斜センサ等を用いることなく、従来より車両に備わるCPUを使用して斜度を検出して車速制御することができる。
【0011】
好ましい構成例においては、前記設定条件が満たされない時に、アクセルの操作状態に応じて、アクセルオフであれば第2指示車速に基づき、アクセルパーシャルであれば第1指示車速に基づき、アクセル全開であれば第1指示車速に基づいてブレーキを制御することを特徴としている。
【0012】
この構成によれば、第1指示車速から第2指示車速に切換える設定条件が満たされない時に、アクセルの操作状態を判別し、アクセルオフであれば減速の意思があると判断して第2指示車速に切換えて制限速度を遅くする。これにより、実質上エンジンブレーキの効果が得られる。
【0013】
さらに、本発明では、車両の速度を検出する車速センサと、ブレーキを動作させるブレーキ操作手段と、車両駆動源の出力を調整するアクセルと、前記ブレーキ操作手段とは別にブレーキを動作させるブレーキモータと、停止した車両の誤走行を防止するパーキングブレーキとを有する車速制御装置において、前記アクセルとブレーキ操作手段がオフであり、かつ車両速度が所定速度より遅い場合に前記ブレーキモータを駆動して車両を停止させた後、前記パーキングブレーキを自動で動作させる制御回路を有することを特徴とする車速制御装置を提供する。
【0014】
この構成によれば、所定の低速以下でしかもアクセル及びブレーキペダルがオフであれば搭乗者が既に降車した状態と判別し、ブレーキモータを作動させて車両を停止させ、その後、自動でパーキングブレーキを動作させることができ、パーキングブレーキのかけ忘れや不十分なパーキングブレーキ操作を防止できる。
【0015】
【発明の実施の形態】
図1は本発明に係る車速制御装置の概略ブロック図である。
ゴルフカート等の車両にはアクセルペダル1及びブレーキペダル2が備わり、運転者によるこれらの操作量が車両に搭載されたCPU(制御回路)3に入力される。エンジン9に気化器11が備わり、そのスロットル弁(不図示)の開度を検出するスロットル開度センサ8が備わる。エンジン9にはエンジン回転数センサ12が備わる。スロットル開度センサ8及びエンジン回転数センサ12の検出出力はCPU3に入力される。エンジン9の出力はベルト式の自動変速機13を介してトランスミッション6に伝達され、後輪14を駆動する。トランスミッション6には車速センサ4,5が設けられ車速検出データがCPUに入力される。トランスミッション6には電磁ブレーキからなるパーキングブレーキ10が設けられる。
【0016】
ブレーキペダル2はブレーキ駆動機構15に連結され、ワイヤ16を介して前輪17のドラムブレーキ18及び後輪14のドラムブレーキ19をそれぞれ動作させる。ブレーキ駆動機構15にはさらにブレーキモータ20が連結される。ブレーキモータ20はブレーキモータドライバ21により駆動される。ブレーキモータドライバ21はCPU3により駆動される。CPU3はエンジン回転数センサ12、スロットル開度センサ8、車速センサ4,5及びアクセルペダル1の踏込み量を検出するアクセル開度センサ21やブレーキペダル2の踏込み量検出センサ(不図示)に連結され、これらの検出信号に基づいて、気化器11のスロットル弁やブレーキモータ20を駆動制御し、車速を制御する。
【0017】
図2は本発明に係る車速制御を示すフローチャートである。
車両は所定の速度(第1指示車速)に最高速度が制限されて走行する(ステップS1)。この第1指示車速は平坦な道を安全に走行できる速度に設定する。走行中、CPU3(図1)は平均制動力が設定値A以上であるか、スロットル開度が設定値B未満であるか、または必要に応じて平均エンジン回転数が設定値C未満であるかの降坂自動減速判定をする(ステップS2)。このエンジン回転数の判定は、上述した平均制動力とスロットル開度の判定のみでは車両が発進加速後に第1指示車速を超えた場合も誤認識してしまうために設けた条件式である。エンジン回転数の条件に代えて、例えば発進後の時間をタイマーで測定する等の別手段を用いて判定することも可能である。平均制動力とは、実際の車速を車速センサ4,5(図1)で検出してこの実際の車速と指示車速の差に対応する力の値である。スロットル開度はスロットル開度センサ8(図1)で検出する。平均エンジン回転数は回転数センサ12(図1)が計測する。設定値A,B,Cは車両が坂道を下る時の斜度に応じた値を予め測定して入力しておく。
【0018】
以上の条件を全て満たす場合、車両が坂道を下っていると判断して最高速度を第1指示車速より遅い速度の第2指示車速に設定する(ステップS3)。これによりブレーキモータドライバ7(図1)がブレーキモータ20(図1)を駆動させてさらに車両に制動力をかけるのでエンジンブレーキがかかりにくいベルト式無段変速機を有するゴルフカート等も坂道を適切なゆっくりとした速度で安全に走行することができる。もし、降坂自動減速判定のパラメータのうち一つでも当てはまらない場合は第1指示車速のままである(ステップS4)。
【0019】
第2指示車速のとき、CPU3(図1)は平均制動力が設定値D未満でありかつ平均エンジン回転数が設定値E以上であるかの降坂自動減速解除判定をする(ステップS5)。この条件に当てはまらない場合、CPUはさらにスロットル開度が設定値Fより上であり、そのスロットル開度以上のまま所定時間を経過しているかを判定する(ステップS6)。これに当てはまらない場合、車両はまだ坂道を下っていると判断して第2指示車速を維持する(ステップS7)。ステップS5及びS6の条件に一つでも当てはまる場合、車両は坂道を下り降りたと判断して第1指示車速に戻す(ステップS8)。設定値D,E,Fは車両が斜度の小さい坂を下るときの斜度に応じた値を予め計測して入力しておく。
【0020】
このように、急な坂道と緩い坂道又は下り終えた時の指示車速を変えることにより、車両の走行状態に応じた適切な指示車速を与え、適切なゆっくりとした速度で安全に走行することができ、斜度の判別に際して傾斜センサ等を用いることなく、従来より車両に備わるCPUを使用して斜度を検出して車速制御することができる。なお、このフローチャートはエンジンを駆動源とする車両の例であるが、電動モータを駆動源とする電気自動車にも適用可能であり、その際は、図中におけるE/G回転数はモータ回転数に代えて判断し、駆動源の出力を制御するスロットル開度はモータ電流に置き換えて判断する。
【0021】
図3は本発明の別の車速制御を示すフローチャートである。
車両は第1指示車速で走行する(ステップT1)。走行中、CPU3(図1)は平均制動力が設定値A以上であるか、スロットル開度が設定値B未満であるか、平均エンジン回転数が設定値C未満であるかの降坂自動減速判定をして(ステップT2)、全ての条件を満たした場合に第2指示車速にする(ステップT3)。この条件を1つでも満たさなかった場合、CPUはアクセルワーク(アクセルペダルの踏込み量)を判別する(ステップT4)。運転者がアクセルを踏んでない、すなわちアクセルオフの場合、例えステップT2において降坂運転中でないと判断しても運転者がスピードを出したくない意思があると判断して第2指示車速とし、ブレーキモータドライバ7(図1)が作動して車両の走行を制動する(ステップT5)。これにより、アクセルオフの場合は常に第2指示車速となって最高速度が制限されるため、実質上エンジンブレーキの作用が得られ、運転者の意思に適切に対応した車速制御ができる。
【0022】
運転者が微妙にアクセルを踏み込んでいる時、すなわちアクセルパーシャルの場合、指示車速は変更せず第1指示車速の範囲内でアクセル操作量に応じた速度で車両を走行させる(ステップT6)。運転者がアクセルを全開に踏んでいる場合は第1指示車速を維持する(ステップT7)。これにより、車両が降坂走行中であるなしにかかわらず、運転者の意思も考慮して車両を制動することができるので、より安全に車速を制御することができる。
【0023】
図4は本発明に係るパーキングブレーキの自動動作制御のフローチャートである。
車両が走行中(ステップU1)、CPU3(図1)は車両の現車速(実際の車速)が所定速度G未満であり、アクセルがオフであり、ブレーキペダルの操作がオフであるかを判断する。この条件を1つでも満たさない場合は走行は続行される(ステップU3)。この条件を全て満たすとき、運転者は止まる意思があるか、若しくは確実に車両が停止しないまま降車した状態と判断してブレーキモータ20(図1)を作動させて車両の制動し(ステップU4)、停止させる(ステップU5)。所定速度Gとしては車両が止まりかけ程度の低速の値を設定しておく。この後、CPUは電磁ブレーキ(パーキングブレーキ)を自動的にONにして、確実に車両を停止させる。これにより、確実に車両を停止することができるので、坂道等で車両が誤走行することはない。
【0024】
【発明の効果】
以上説明したように、本発明では、車両が走行する下り坂等の斜度に応じて、この斜度を、予め斜度に対応したブレーキ制動力と、エンジン回転数(又はモータ回転数)と、スロットル開度(又はモータ電流値)の設定条件に基づいて判別し、これに応じて最高速度を制限する指示車速を第1指示車速からこれより遅い第2指示車速に変えるため、特に急な下り坂において、適切なゆっくりした速度で安心感をもって走行することができる。
【0025】
また、指示車速と実際の速度との差に基づいてブレーキ制動力が算出され、これに基づいて斜度が判別されるため、傾斜センサ等を用いることなく、従来より車両に備わるCPUを使用して斜度を判別して車速制御することができる。
【0026】
また、第1指示車速から第2指示車速に切換える設定条件が満たされない時に、アクセルの操作状態を判別し、アクセルオフであれば減速の意思があると判断して第2指示車速に切換えて制限速度を遅くする。これにより、実質上エンジンブレーキの効果が得られる。
【0027】
さらに、所定の低速以下でしかもアクセル及びブレーキペダルがオフであれば搭乗者が既に降車した状態と判別し、ブレーキモータを作動させて車両を停止させ、その後、自動でパーキングブレーキを動作させることができ、パーキングブレーキのかけ忘れや不十分なパーキングブレーキ操作を防止できる。
【図面の簡単な説明】
【図1】本発明に係る車速制御装置の概略ブロック図。
【図2】本発明に係る車速制御を示すフローチャート。
【図3】本発明の別の車速制御を示すフローチャート。
【図4】本発明に係るパーキングブレーキの自動動作制御のフローチャート。
【符号の説明】
1:アクセルペダル、2:ブレーキペダル、3:CPU、4:車速センサ、
5:車速センサ、6:トランスミッション、7:ブレーキモータドライバ、
8:スロットル開度検出器、9:エンジン、10:電磁ブレーキ、
11:気化器、12:回転数センサ、13:自動変速機、14:後輪、
15:ブレーキ駆動機構、16:ワイヤ、17:前輪、
18:ドラムブレーキ、19:ドラムブレーキ、20:ブレーキモータ、
21:アクセル開度センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle speed control device that limits the speed of a vehicle such as a golf cart.
[0002]
[Prior art]
The vehicle speed control of the vehicle is performed by the driver operating an accelerator and a brake, but a vehicle such as a golf cart has a brake motor for automatically applying a brake separately from a brake pedal to enable automatic traveling. The vehicle is provided with a control circuit (CPU) for driving and controlling a vehicle drive source (for example, an engine). The CPU drives the brake motor based on the instructed vehicle speed with the maximum speed limited during normal running. In this way, the vehicle speed is limited and the maximum speed is set to a certain constant speed (instructed vehicle speed) to ensure safety.
[0003]
On the other hand, the vehicle is provided with an electromagnetic brake (parking brake) separately from the brake for controlling the vehicle speed to prevent the vehicle from running erroneously after the vehicle stops and the driver gets off the vehicle.
[0004]
[Problems to be solved by the invention]
However, in a vehicle such as a golf cart having the above-described conventional vehicle speed control device, even if the maximum speed is limited by the indicated vehicle speed, the speed may be felt to be too fast on a steep downhill. In a golf cart or the like, a belt-type continuously variable transmission (CVT) is used to transmit a driving force from an engine to an axle on a driven side. Since the CVT is a belt type, it is difficult to apply an engine brake, so that when the vehicle goes down a steep hill, the vehicle tends to be at a high speed, and it is difficult to appropriately control the vehicle speed.
[0005]
Parking brakes that prevent erroneous running of the vehicle, for example, in the case of a golf cart, may not apply the parking brake too quickly when playing quickly, and when the vehicle is stopped on a slope, the vehicle will continue running There was a risk of doing so. Automatic parking brakes have conventionally been used to prevent such forgetting to apply the parking brake. However, since the conventional automatic parking brake operates by detecting that the vehicle has stopped (vehicle speed is zero), if the driver gets off before the vehicle stops when the vehicle is in a very low speed state, the driver's intention to stop is given. Regardless of the above, the automatic parking brake did not operate, and when the vehicle was stopped on a slope, there was a possibility that the vehicle would travel as it was.
[0006]
The present invention has been made in consideration of the above-described conventional technology, and can travel at an appropriate slow speed even when descending a steep hill, and reliably operates a parking brake after the vehicle stops to prevent erroneous traveling of the vehicle. It is an object of the present invention to provide a vehicle speed control device for preventing the vehicle speed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a drive source for driving a vehicle, a rotation speed sensor of the drive source, a sensor for an output control parameter of the drive source connected to an accelerator operated by a driver, and a vehicle A vehicle speed sensor that detects the speed of the vehicle, and a control circuit that automatically operates a drive source and a brake based on the indicated vehicle speed, wherein the control circuit keeps the maximum speed of the vehicle constant during normal running. A brake is controlled based on a first command vehicle speed that is limited to a speed, and a braking force of the brake and a speed limit that is lower than the first command vehicle speed when the output control parameter is a predetermined setting condition is replaced with the first command vehicle speed. (2) Provided is a vehicle speed control device that controls a brake based on a designated vehicle speed.
[0008]
According to this configuration, in accordance with the gradient of a downhill or the like on which the vehicle travels, the gradient is determined in advance by a brake braking force corresponding to the gradient and an output control parameter of a drive source (for example, an engine throttle opening or an electric motor). The current vehicle speed is determined on the basis of the set condition of the current value of the vehicle, and when the set condition is satisfied, the command vehicle speed for limiting the maximum speed is changed from the first command vehicle speed to the second command vehicle speed lower than the first command vehicle speed. On a slope, the vehicle can travel with a sense of security at an appropriate slow speed.
[0009]
In a preferred configuration example, the braking force of the brake is calculated by the control circuit based on a difference between a vehicle speed detected by the vehicle speed sensor and the indicated vehicle speed.
[0010]
According to this configuration, the brake braking force is calculated based on the difference between the instructed vehicle speed and the actual speed, and the inclination is determined based on the calculated braking force. The vehicle speed can be controlled by detecting the inclination using the CPU.
[0011]
In a preferred configuration example, when the setting condition is not satisfied, the accelerator may be fully opened based on the second instruction vehicle speed if the accelerator is off, or based on the first instruction vehicle speed if the accelerator is partial, depending on the accelerator operation state. For example, the brake is controlled based on the first designated vehicle speed.
[0012]
According to this configuration, when the setting condition for switching from the first instruction vehicle speed to the second instruction vehicle speed is not satisfied, the operation state of the accelerator is determined, and if the accelerator is off, it is determined that there is an intention to decelerate, and the second instruction vehicle speed is determined. To reduce the speed limit. Thereby, the effect of the engine brake is substantially obtained.
[0013]
Further, in the present invention, a vehicle speed sensor for detecting the speed of the vehicle, a brake operating means for operating the brake, an accelerator for adjusting the output of the vehicle drive source, and a brake motor for operating the brake separately from the brake operating means A vehicle speed control device having a parking brake that prevents erroneous traveling of a stopped vehicle, wherein the accelerator and the brake operating means are off, and the vehicle is driven by driving the brake motor when the vehicle speed is lower than a predetermined speed. There is provided a vehicle speed control device having a control circuit for automatically operating the parking brake after stopping.
[0014]
According to this configuration, if the speed is lower than the predetermined low speed and the accelerator and the brake pedal are off, it is determined that the occupant has already exited, the brake motor is operated to stop the vehicle, and then the parking brake is automatically activated. It can be operated to prevent forgetting to apply the parking brake and insufficient parking brake operation.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic block diagram of a vehicle speed control device according to the present invention.
A vehicle such as a golf cart is provided with an accelerator pedal 1 and a brake pedal 2, and the operation amounts of these by a driver are input to a CPU (control circuit) 3 mounted on the vehicle. The engine 9 has a carburetor 11 and a throttle opening sensor 8 for detecting the opening of a throttle valve (not shown). The engine 9 is provided with an engine speed sensor 12. The detection outputs of the throttle opening sensor 8 and the engine speed sensor 12 are input to the CPU 3. The output of the engine 9 is transmitted to the transmission 6 via the automatic transmission 13 of a belt type, and drives the rear wheels 14. The transmission 6 is provided with vehicle speed sensors 4 and 5, and vehicle speed detection data is input to the CPU. The transmission 6 is provided with a parking brake 10 composed of an electromagnetic brake.
[0016]
The brake pedal 2 is connected to a brake drive mechanism 15, and operates a drum brake 18 of a front wheel 17 and a drum brake 19 of a rear wheel 14 via wires 16. A brake motor 20 is further connected to the brake drive mechanism 15. The brake motor 20 is driven by a brake motor driver 21. The brake motor driver 21 is driven by the CPU 3. The CPU 3 is connected to an engine speed sensor 12, a throttle opening sensor 8, vehicle speed sensors 4 and 5, an accelerator opening sensor 21 for detecting an amount of depression of an accelerator pedal 1, and a depression amount detection sensor (not shown) for the brake pedal 2. Based on these detection signals, the driving of the throttle valve of the carburetor 11 and the brake motor 20 are controlled to control the vehicle speed.
[0017]
FIG. 2 is a flowchart showing the vehicle speed control according to the present invention.
The vehicle travels with the maximum speed limited to a predetermined speed (first instruction vehicle speed) (step S1). The first designated vehicle speed is set to a speed at which the vehicle can safely travel on a flat road. During traveling, the CPU 3 (FIG. 1) determines whether the average braking force is equal to or greater than the set value A, the throttle opening is less than the set value B, or the average engine speed is less than the set value C as necessary. (Step S2). The determination of the engine speed is a conditional expression provided so that the determination of the average braking force and the throttle opening described above may cause erroneous recognition even when the vehicle exceeds the first instructed vehicle speed after the start acceleration. Instead of the condition of the engine speed, the determination can be made by using another means such as measuring the time after the start using a timer. The average braking force is a value of a force corresponding to a difference between the actual vehicle speed and the indicated vehicle speed when the actual vehicle speed is detected by the vehicle speed sensors 4 and 5 (FIG. 1). The throttle opening is detected by a throttle opening sensor 8 (FIG. 1). The average engine speed is measured by the speed sensor 12 (FIG. 1). As the set values A, B, and C, values corresponding to the gradients when the vehicle goes down the slope are measured and input in advance.
[0018]
If all of the above conditions are satisfied, it is determined that the vehicle is traveling down a hill, and the maximum speed is set to the second instruction vehicle speed lower than the first instruction vehicle speed (step S3). As a result, the brake motor driver 7 (FIG. 1) drives the brake motor 20 (FIG. 1) to further apply a braking force to the vehicle. You can drive safely at a slow speed. If at least one of the parameters for the automatic downhill deceleration determination does not apply, the vehicle remains at the first designated vehicle speed (step S4).
[0019]
When the vehicle is at the second designated vehicle speed, the CPU 3 (FIG. 1) determines whether or not the average braking force is less than the set value D and the average engine speed is equal to or more than the set value E to release the automatic deceleration for descending slope (step S5). If this condition is not met, the CPU further determines whether or not the throttle opening is above the set value F and a predetermined time has elapsed with the throttle opening still being greater than or equal to the throttle opening (step S6). If this is not the case, it is determined that the vehicle is still down the slope, and the second designated vehicle speed is maintained (step S7). If at least one of the conditions in steps S5 and S6 is satisfied, the vehicle is determined to have descended down a hill and is returned to the first designated vehicle speed (step S8). As the set values D, E, and F, a value corresponding to the inclination when the vehicle goes down a slope having a small inclination is measured and input in advance.
[0020]
In this way, by changing the indicating vehicle speed when the vehicle is on a steep slope, a gentle slope, or when the vehicle has finished descending, it is possible to provide an appropriate indicating vehicle speed according to the running state of the vehicle and to drive safely at an appropriate slow speed. Thus, the inclination can be detected and the vehicle speed can be controlled by using a CPU provided in a conventional vehicle without using an inclination sensor or the like when determining the inclination. Although this flowchart is an example of a vehicle using an engine as a drive source, it is also applicable to an electric vehicle using an electric motor as a drive source. In this case, the E / G rotation speed in the figure is the motor rotation speed. And the throttle opening for controlling the output of the drive source is replaced with the motor current.
[0021]
FIG. 3 is a flowchart showing another vehicle speed control according to the present invention.
The vehicle runs at the first designated vehicle speed (step T1). During traveling, the CPU 3 (FIG. 1) automatically determines whether the average braking force is equal to or greater than the set value A, the throttle opening is less than the set value B, or the average engine speed is less than the set value C. A determination is made (step T2), and if all the conditions are satisfied, the second designated vehicle speed is set (step T3). If even one of these conditions is not satisfied, the CPU determines the accelerator work (the amount of depression of the accelerator pedal) (step T4). When the driver does not step on the accelerator, that is, when the accelerator is off, even if it is determined in step T2 that the vehicle is not driving downhill, it is determined that the driver has an intention not to speed up, and the second instruction vehicle speed is set. The motor driver 7 (FIG. 1) operates to brake the running of the vehicle (step T5). As a result, when the accelerator is off, the maximum speed is always set to the second designated vehicle speed, so that the effect of the engine brake is substantially obtained, and vehicle speed control appropriately corresponding to the driver's intention can be performed.
[0022]
When the driver is slightly depressing the accelerator, that is, in the case of the accelerator partial, the vehicle is driven at a speed corresponding to the accelerator operation amount within the range of the first instruction vehicle speed without changing the instruction vehicle speed (step T6). If the driver has fully depressed the accelerator, the first commanded vehicle speed is maintained (step T7). Thus, regardless of whether the vehicle is traveling on a downhill or not, the vehicle can be braked in consideration of the driver's intention, so that the vehicle speed can be controlled more safely.
[0023]
FIG. 4 is a flowchart of the automatic operation control of the parking brake according to the present invention.
While the vehicle is running (step U1), the CPU 3 (FIG. 1) determines whether the current vehicle speed (actual vehicle speed) of the vehicle is lower than the predetermined speed G, the accelerator is off, and the operation of the brake pedal is off. . If at least one of the conditions is not satisfied, the traveling is continued (step U3). When all of these conditions are satisfied, the driver intends to stop, or determines that the vehicle has got off without stopping without fail, and operates the brake motor 20 (FIG. 1) to brake the vehicle (step U4). And stop (step U5). The predetermined speed G is set to a low value such that the vehicle is about to stop. Thereafter, the CPU automatically turns on the electromagnetic brake (parking brake) to surely stop the vehicle. As a result, the vehicle can be reliably stopped, and the vehicle does not run erroneously on a slope or the like.
[0024]
【The invention's effect】
As described above, according to the present invention, in accordance with the gradient of a downhill or the like on which the vehicle travels, the gradient is determined in advance by the braking force corresponding to the gradient, the engine speed (or the motor speed). In order to change the instruction vehicle speed for limiting the maximum speed from the first instruction vehicle speed to the second instruction vehicle speed lower than the first instruction vehicle speed, the determination is made based on the setting condition of the throttle opening (or the motor current value). On a downhill, it is possible to travel with a sense of security at an appropriate slow speed.
[0025]
Further, since the braking force is calculated based on the difference between the instructed vehicle speed and the actual speed, and the inclination is determined based on the braking force, the CPU provided in the vehicle is conventionally used without using a tilt sensor or the like. The vehicle speed can be controlled by determining the inclination.
[0026]
When the setting condition for switching from the first instruction vehicle speed to the second instruction vehicle speed is not satisfied, the operation state of the accelerator is determined. If the accelerator is off, it is determined that there is an intention to decelerate, and the operation is switched to the second instruction vehicle speed to limit the operation. Decrease speed. Thereby, the effect of the engine brake is substantially obtained.
[0027]
Further, if the speed is lower than a predetermined low speed and the accelerator and the brake pedal are off, it is determined that the occupant has already got off the vehicle, the brake motor is operated to stop the vehicle, and then the parking brake is automatically operated. It is possible to prevent forgetting to apply the parking brake and insufficient parking brake operation.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a vehicle speed control device according to the present invention.
FIG. 2 is a flowchart showing vehicle speed control according to the present invention.
FIG. 3 is a flowchart showing another vehicle speed control of the present invention.
FIG. 4 is a flowchart of an automatic operation control of the parking brake according to the present invention.
[Explanation of symbols]
1: accelerator pedal, 2: brake pedal, 3: CPU, 4: vehicle speed sensor,
5: vehicle speed sensor, 6: transmission, 7: brake motor driver,
8: throttle opening detector, 9: engine, 10: electromagnetic brake,
11: vaporizer, 12: rotation speed sensor, 13: automatic transmission, 14: rear wheel,
15: brake drive mechanism, 16: wire, 17: front wheel,
18: drum brake, 19: drum brake, 20: brake motor,
21: accelerator opening sensor.

Claims (4)

車両を駆動する駆動源と、
該駆動源の回転数センサと、
運転者により操作されるアクセルに連結された駆動源の出力制御パラメータのセンサと、
車両の速度を検出する車速センサと、
指示車速に基づいて自動的に駆動源及びブレーキを動作させる制御回路とを備えた車速制御装置において、
前記制御回路は通常走行時に前記車両の最高速度を一定の速度に制限する第1指示車速に基づいてブレーキを制御し、前記ブレーキの制動力と、前記出力制御パラメータが所定の設定条件のときに前記第1指示車速に代えてこれより制限速度が遅い第2指示車速に基づいてブレーキを制御することを特徴とする車速制御装置。
A drive source for driving the vehicle,
A rotation speed sensor of the drive source,
A sensor of an output control parameter of a drive source connected to an accelerator operated by a driver,
A vehicle speed sensor for detecting the speed of the vehicle,
A control circuit for automatically operating the drive source and the brake based on the instructed vehicle speed,
The control circuit controls a brake based on a first instruction vehicle speed that limits the maximum speed of the vehicle to a constant speed during normal traveling, and when the braking force of the brake and the output control parameter are under predetermined setting conditions, A vehicle speed control device, wherein a brake is controlled based on a second instruction vehicle speed having a lower speed limit than the first instruction vehicle speed.
前記ブレーキの制動力は、前記車速センサにより検出された車速と前記指示車速との差に基づいて前記制御回路が算出することを特徴とする請求項1に記載の車速制御装置。The vehicle speed control device according to claim 1, wherein the control circuit calculates the braking force of the brake based on a difference between a vehicle speed detected by the vehicle speed sensor and the instructed vehicle speed. 前記設定条件が満たされない時に、アクセルの操作状態に応じて、アクセルオフであれば第2指示車速に基づき、アクセルパーシャルであれば第1指示車速に基づき、アクセル全開であれば第1指示車速に基づいてブレーキを制御することを特徴とする請求項1に記載の車速制御装置。When the set conditions are not satisfied, the accelerator operation state is based on the second instruction vehicle speed if the accelerator is off, the first instruction vehicle speed if the accelerator is partial, and the first instruction vehicle speed if the accelerator is fully open, depending on the accelerator operation state. The vehicle speed control device according to claim 1, wherein the brake is controlled based on the vehicle speed. 車両の速度を検出する車速センサと、
ブレーキを動作させるブレーキ操作手段と、
車両駆動源の出力を調整するアクセルと、
前記ブレーキ操作手段とは別にブレーキを動作させるブレーキモータと、
停止した車両の誤走行を防止するパーキングブレーキとを有する車速制御装置において、
前記アクセルとブレーキ操作手段がオフであり、かつ車両速度が所定速度より遅い場合に前記ブレーキモータを駆動して車両を停止させた後、前記パーキングブレーキを自動で動作させる制御回路を有することを特徴とする車速制御装置。
A vehicle speed sensor for detecting the speed of the vehicle,
Brake operating means for operating the brake;
An accelerator for adjusting the output of the vehicle drive source;
A brake motor that operates a brake separately from the brake operation means,
A vehicle speed control device having a parking brake that prevents erroneous running of a stopped vehicle,
When the accelerator and the brake operating means are off and the vehicle speed is slower than a predetermined speed, the control circuit operates the parking brake automatically after driving the brake motor to stop the vehicle. Vehicle speed control device.
JP2002161517A 2002-06-03 2002-06-03 Vehicle speed control device Expired - Fee Related JP4151883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161517A JP4151883B2 (en) 2002-06-03 2002-06-03 Vehicle speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161517A JP4151883B2 (en) 2002-06-03 2002-06-03 Vehicle speed control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007316829A Division JP2008114849A (en) 2007-12-07 2007-12-07 Vehicle speed control device

Publications (2)

Publication Number Publication Date
JP2004009751A true JP2004009751A (en) 2004-01-15
JP4151883B2 JP4151883B2 (en) 2008-09-17

Family

ID=30430561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161517A Expired - Fee Related JP4151883B2 (en) 2002-06-03 2002-06-03 Vehicle speed control device

Country Status (1)

Country Link
JP (1) JP4151883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980079B1 (en) * 2007-10-29 2010-09-06 텍스트론 인크. Hill hold for an electric vehicle
WO2015016326A1 (en) * 2013-07-31 2015-02-05 株式会社アドヴィックス Vehicle control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980079B1 (en) * 2007-10-29 2010-09-06 텍스트론 인크. Hill hold for an electric vehicle
WO2015016326A1 (en) * 2013-07-31 2015-02-05 株式会社アドヴィックス Vehicle control device
JP2015030313A (en) * 2013-07-31 2015-02-16 株式会社アドヴィックス Vehicle control device
CN105431337A (en) * 2013-07-31 2016-03-23 株式会社爱德克斯 Vehicle control device
US20160185327A1 (en) * 2013-07-31 2016-06-30 Advics Co., Ltd. Vehicle control device
US9694794B2 (en) 2013-07-31 2017-07-04 Advics Co., Ltd. Vehicle control device

Also Published As

Publication number Publication date
JP4151883B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US8086384B2 (en) Stop determination apparatus, inclination determination apparatus, and electric parking brake controller
US6033041A (en) Regenerative braking control system for electric vehicle
JP3675240B2 (en) Vehicle tracking control device
US8862303B2 (en) Industrial vehicle
US6246944B1 (en) Apparatus for controlling brake of vehicle
JP2000052956A (en) Method for controlling down slope speed of off-road vehicle
JP2007046774A (en) Control device of continuously variable transmission and vehicle provided with it
US20110251771A1 (en) Vehicular Drive Control Device
JPH1132404A (en) Travel motion control equipment for electric vehicle
JP2003063365A (en) Parking brake system
JP2585055B2 (en) Transmission creep torque control device
JP4151883B2 (en) Vehicle speed control device
JP3893831B2 (en) Auto cruise control method
KR101870633B1 (en) Electronic parking brake system control method
JP2008114849A (en) Vehicle speed control device
JP3885347B2 (en) Vehicle travel control device
KR20150029465A (en) Apparatus and method for transmission control using engine brake at downhill
JP2005096508A (en) Control device of vehicle
JP4147951B2 (en) Drum brake control system for autonomous vehicles
JPH0577662A (en) Running control device for automobile
JP4408434B2 (en) Vehicle control method, tilt determination method, electric parking brake control method, vehicle control device, tilt determination device, and electric parking brake control device
JP3689953B2 (en) Braking force holding device for electric vehicle
KR100657579B1 (en) Hill descent control Apparatus for vehicle
JP3743366B2 (en) Automatic vehicle speed control device
JPH11208437A (en) Auxiliary brake control device of vehicle and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees