JP2004008851A - Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus - Google Patents

Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus Download PDF

Info

Publication number
JP2004008851A
JP2004008851A JP2002163051A JP2002163051A JP2004008851A JP 2004008851 A JP2004008851 A JP 2004008851A JP 2002163051 A JP2002163051 A JP 2002163051A JP 2002163051 A JP2002163051 A JP 2002163051A JP 2004008851 A JP2004008851 A JP 2004008851A
Authority
JP
Japan
Prior art keywords
chlorine
electrodialysis
circulating water
oxidizing agent
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163051A
Other languages
Japanese (ja)
Inventor
Masatoshi Ogawa
小川 正俊
Takahiko Saito
斉藤 隆彦
Tomoko Igarashi
五十嵐 とも子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP2002163051A priority Critical patent/JP2004008851A/en
Publication of JP2004008851A publication Critical patent/JP2004008851A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the adhesion of microorganism-derived contaminants to an electrodialysis vessel and prevent the damage of an ion-exchange membrane. <P>SOLUTION: A water treatment is conducted while a chlorine-based oxidizing agent is injected only into concentrated circulation water circulated and supplied to a concentration chamber 55 of an electrodialysis vessel 5; and the adhesion of the microorganism-derived contaminants to the electrodialysis vessel is prevented by using the chlorine-based oxidizing agent, and the damage of an ion-exchange membrane is prevented by chlorine without using a reducing agent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気透析槽への微生物由来汚染物の付着防止方法および電気透析装置に関し、更に詳しくは、微生物由来汚染物が電気透析槽に付着するのを塩素系酸化剤を用いて防止すると共に還元剤を用いることなくイオン交換膜の損傷を防止できるようにした電気透析槽への微生物由来汚染物の付着防止方法および電気透析装置に関する。
【0002】
【従来の技術】
「膜処理技術大系 第6章第2節 脱塩用電気透析システム 第877頁〜第887頁 1991年3月15日 株式会社フジ・テクノシステム発行」には、電気透析槽に微生物由来汚染物が付着するのを防止するために、脱塩循環水に次亜塩素酸ナトリウム添加や塩素吹込みなどの酸化剤注入を行う方法が記載されている。
また、上記文献には、電気透析槽のイオン交換膜が酸化剤によって性能低下を起こすのを防ぐために、酸化剤注入を行った脱塩循環水が電気透析槽に入る前に還元剤を入れて中和しておく必要があると記載されている。
【0003】
【発明が解決しようとする課題】
しかし、脱塩循環水に還元剤を入れて中和するのは、処理コストがかかる問題点がある。
そこで、本発明の目的は、微生物由来汚染物が電気透析槽に付着するのを塩素系酸化剤を用いて防止すると共に還元剤を用いることなくイオン交換膜の損傷を防止できるようにした電気透析槽への微生物由来汚染物の付着防止方法および電気透析装置を提供することにある。
【0004】
【課題を解決するための手段】
第1の観点では、本発明は、電気透析槽の濃縮室に循環供給する濃縮循環水に塩素系酸化剤を注入しながら水処理することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法を提供する。
本願発明者らが鋭意研究したところ、微生物由来汚染物の付着する所は、主として濃縮室を形成するガスケットのスペーサや連通孔の表面であることを見出した。
そこで、上記第1の観点による付着防止方法では、濃縮循環水に塩素系酸化剤を注入しながら水処理することとした。これにより、濃縮室での微生物の繁殖が阻止され、濃縮室を形成するガスケットのスペーサや連通孔の表面に微生物由来汚染物が付着することを防止できる。一方、濃縮室側から脱塩室側へは有効塩素が移動せず、つまり、有効塩素がイオン交換膜を通過しないため、イオン交換膜の損傷を生じない。よって、微生物由来汚染物が電気透析槽に付着するのを塩素系酸化剤を用いて防止できると共に、還元剤を用いなくてもイオン交換膜の損傷を防止できる。
【0005】
第2の観点では、本発明は、上記構成の付着防止方法において、残留塩素濃度が0.1mg/L以上、5mg/L以下になるように濃縮循環水に塩素系酸化剤を注入することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法を提供する。
本願発明者らが鋭意研究したところ、残留塩素濃度が0.1mg/L以上で微生物の繁殖を十分阻止でき、5mg/L以下でイオン交換膜の損傷を十分防止できることが判った。
そこで、上記第2の観点による付着防止方法では、残留塩素濃度が0.1mg/L以上、5mg/L以下になるように濃縮循環水に塩素系酸化剤を注入することとした。
【0006】
第3の観点では、本発明は、上記構成の付着防止方法において、塩素系酸化剤を間欠的に注入して水処理することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法を提供する。
本願発明者らが鋭意研究したところ、塩素系酸化剤を連続的に注入するのではなく、間欠的に注入しても、微生物の繁殖を十分阻止できると共にイオン交換膜の損傷を十分防止できることが判った。
そこで、上記第3の観点による付着防止方法では、濃縮循環水に間欠的に塩素系酸化剤を注入することとした。
【0007】
第4の観点では、本発明は、上記構成の付着防止方法において、塩素系酸化剤が次亜塩素酸ナトリウムであることを特徴とする電気透析槽への微生物由来汚染物の付着防止方法を提供する。
上記第4の観点による付着防止方法では、次亜塩素酸ナトリウムを用いるが、これは浄水処理で広く用いられており、入手しやすく、安全性も高く、取り扱いが容易となる。
【0008】
第5の観点では、本発明は、電気透析槽と、該電気透析槽の脱塩室に脱塩循環水を循環供給する脱塩循環水循環供給手段と、前記電気透析槽の濃縮室に濃縮循環水を循環供給する濃縮循環水循環供給手段と、前記濃縮循環水に塩素系酸化剤を注入する塩素系酸化剤注入手段とを具備したことを特徴とする電気透析装置を提供する。
上記第5の観点による電気透析装置では、上記第1〜第4の観点による付着防止方法を好適に実施できる。
【0009】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。なお、これにより本発明が限定されるものではない。
【0010】
図1は、本発明の一実施形態にかかる電気透析装置の構成図である。
この電気透析装置100において、海水やかん水のような原水は、原水槽1に貯留され、原水槽1から原水ポンプP1により、砂ろ過あるいは繊維ろ材を用いた前処理用ろ過器2に送られる。前処理用ろ過器では、原水を除濁処理し、濁度0.1度程度にする。そして、除濁された原水は、脱塩循環水槽3と濃縮循環水槽6とに送られる。濃縮循環水槽6にも送るのは、濃縮循環水の濃度が高くなり過ぎないようにするためである。
【0011】
脱塩循環水循環ポンプP3は、脱塩循環水槽3から脱塩循環水を電気透析槽5の脱塩室55へ送る。脱塩室55を通過した脱塩循環水は、脱塩循環水槽3に戻る。また、脱塩循環水の一部が原水循環槽3から処理水として配水池20に貯留される。
【0012】
濃縮循環水循環ポンプP6は、濃縮循環水槽6から濃縮循環水を電気透析槽5の濃縮室56へ送る。濃縮室56を通過した濃縮循環水は、濃縮循環水槽6に戻る。
【0013】
電気透析槽5は、−濃縮室56−陰イオン交換膜A−脱塩室55−陽イオン交換膜K−という積層単位を多数積層した構造であり、両端に陽極室53と陰極室54とが設けてある。そして、陽極室53と陰極室54とには、電解液ポンプP8により電解液槽8から電解液が循環供給される。
【0014】
pH調整液供給ポンプP10は、pH調整液槽10からpH調整液を濃縮循環水槽6および電解液槽8へ送る。電解槽8へ送るのは、pH値を一定に保って、電極への生成物の付着を防止するためである。
【0015】
塩素系酸化剤液供給ポンプP12は、塩素系酸化剤液槽12から塩素系酸化剤液を濃縮循環水槽6へ送る。また、必要に応じて、前処理用ろ過器2にも塩素系酸化剤液を送る。例えば、前処理用ろ過器2の逆流洗浄時毎に次亜塩素酸ナトリウムを塩素注入率10mg/L程度で注入し消毒処理すれば、電気透析槽5に供給される原水の微生物低減に効果的である。
【0016】
図2は、電気透析槽5の脱塩室55と濃縮室56の構造を示す斜視図である。
脱塩室55は、ガスケット55gのスペーサ55bにより形成され、陰極側の陽イオン交換膜Kと陽極側の陰イオン交換膜Aとに挟まれており、連通孔55aで脱塩循環水の流路と連通している。
濃縮室56は、ガスケット56gのスペーサ56bにより形成され、陰極側の陰イオン交換膜Aと陽極側の陽イオン交換膜Kとに挟まれており、連通孔56aで濃縮循環水の流路と連通している。
【0017】
[実施例1]
スチレン−ジビニルベンゼン共重合樹脂製の陽イオン交換膜Kおよび陰イオン交換膜Aを40対積層した電気透析槽5を用いた。有効膜面積は0.485m/対である。
図3に示す原水を用い、残留塩素濃度10mg/L,5mg/L,0.1mg/L,0.05mg/Lとなるように濃縮循環水槽6のみへ次亜塩素酸ナトリウムを注入しつつ2ヶ月間連続運転したところ、図4に示す結果を得た。
この結果から、濃縮循環水に残留塩素濃度5mg/L〜0.1mg/Lの塩素系酸化剤を注入しながら水処理することで、微生物由来汚染物の付着を防止できると共に、還元剤を用いなくても、イオン交換膜K,Aが損傷を受けないことが判った。
【0018】
[比較例1]
スチレン−ジビニルベンゼン共重合樹脂製の陽イオン交換膜Kおよび陰イオン交換膜Aを40対積層した電気透析槽5を用いた。有効膜面積は0.485m/対である。
原水として地下水(pH:7.1、NO−N:13.8mg/L、電気伝導度:322μS/cm、濁度:0度、色度:0.4度、鉄:0.02mg/L、マンガン:<0.01mg/L、KMnO消費量:1.1mg/L)を用い、残留塩素濃度0.2〜0.3mg/Lとなるように脱塩循環水槽3および濃縮循環水槽6へ次亜塩素酸ナトリウムを注入しつつ2ヶ月間連続運転したところ、脱塩室55および濃縮室56の両方に微生物由来汚染物の付着は認められなかった。また、陽イオン交換膜Kの膜抵抗値には、変化が認められなかった。しかしながら、陰イオン交換膜Aの膜抵抗値は、20%増加した。これは、陰イオン交換膜Aが残留塩素により損傷を受けたことを現している。
【0019】
[実施例2]
スチレン−ジビニルベンゼン共重合樹脂製の陽イオン交換膜Kおよび陰イオン交換膜Aを190対積層したものを1スタックとし、これを4スタック重ね締め付けした構造の電気透析槽5を用いた。有効膜面積は0.485m/対である。
図3に示す原水を用い、濃縮排水量2.5m/hに対して塩素注入率2mg/Lで濃縮循環水槽6のみへ次亜塩素酸ナトリウムを1日1回、2時間添加しつつ連続運転したところ、図5に示す結果を得た。
この結果から、濃縮循環水に塩素注入率2mg/Lで塩素系酸化剤を間欠的に注入しながら水処理することで、濃縮循環水中の従属性栄養細菌を0〜300個/mLの間に留めることができることが判った。
【0020】
また、同じ条件で1年間連続運転したところ、図6に示す結果を得た。
この結果から、濃縮循環水ライン圧力(濃縮循環水ポンプ圧力)は、当初約0.04MPaであり、1年間連続運転しても約0.05MPaであり、濃縮循環水ライン圧力の上昇は殆ど認められなかった。つまり、微生物由来汚染物の付着を防止できた。
【0021】
なお、原水中にマンガンイオンが含まれている場合、塩素系酸化剤(次亜塩素酸ナトリウム)を連続的に注入すると、マンガンイオンが酸化析出してイオン交換膜K,Aに付着し、透析機能を損なうことがあるが、短時間の間欠注入であれば、マンガンイオンが酸化析出しない。従って、マンガンイオンを含有する原水に対しては、塩素系酸化剤(次亜塩素酸ナトリウム)を間欠注入するのが好ましい。
【0022】
塩素系酸化剤として、次亜塩素酸ナトリウムの代わりに、クロラミンを添加しても、同様な効果が得られる。ただし、クロラミンは、次亜塩素酸ナトリウムに比べて殺菌力が弱いため、次亜塩素酸ナトリウムの4倍以上の注入率が必要となる。
【0023】
[比較例2]
スチレン−ジビニルベンゼン共重合樹脂製の陽イオン交換膜Kおよび陰イオン交換膜Aを190対積層したものを1スタックとし、これを4スタック重ね締め付けした構造の電気透析槽5を用いた。有効膜面積は0.485m/対である。
図3に示す原水を用い、濃縮排水量2.5m/hに対して次亜塩素酸ナトリウムを添加しないで連続運転したところ、図7に示す結果を得た。
この結果から、濃縮循環水ラインの圧力は1ヶ月〜2ヶ月で約2倍程度まで上昇することが判る。さらに、濃縮室56内の流速分布が不均一となるためにスケールが形成されて電気抵抗が増大し、電気透析槽5の機能を損なうため、解体洗浄を余儀なくされた。
【0024】
【発明の効果】
本発明の電気透析槽への微生物由来汚染物の付着防止方法および電気透析装置によれば、微生物由来汚染物が電気透析槽に付着するのを塩素系酸化剤を用いて防止することが出来ると共に、還元剤を用いることなく、塩素でイオン交換膜が損傷するのを防止できるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる電気透析装置を示す構成図である。
【図2】電気透析増の構造を示す斜視図である。
【図3】原水の水質を示す図表である。
【図4】本発明の実施例1の結果を示す図表である。
【図5】本発明の実施例2の結果を示す図表である。
【図6】本発明の実施例2の結果を示す図表である。
【図7】比較例2の結果を示す図表である。
【符号の説明】
5    電気透析槽
6    濃縮循環水槽
12   塩素系酸化剤液槽
55   脱塩室
56   濃縮室
A    陰イオン交換膜
K    陽イオン交換膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank and an electrodialysis device, and more particularly, to preventing a microorganism-derived contaminant from adhering to an electrodialysis tank using a chlorine-based oxidizing agent. The present invention relates to a method for preventing microbial contaminants from adhering to an electrodialysis tank and an electrodialysis apparatus capable of preventing damage to an ion exchange membrane without using a reducing agent.
[0002]
[Prior art]
"Membrane Treatment Technology, Chapter 6, Section 2, Electrodialysis System for Desalination, pp. 877 to 887, published by Fuji Techno System Co., Ltd., March 15, 1991," contains microbial contaminants in electrodialysis tanks. A method of injecting an oxidizing agent such as addition of sodium hypochlorite or blowing of chlorine into desalinated circulating water in order to prevent the deposition of water is described.
Also, in the above document, in order to prevent the performance of the ion exchange membrane of the electrodialysis tank from being degraded by the oxidizing agent, a reducing agent is added before the desalted circulating water injected with the oxidizing agent enters the electrodialysis tank. It is stated that it must be neutralized.
[0003]
[Problems to be solved by the invention]
However, the neutralization of the desalting circulating water by adding a reducing agent has a problem that the treatment cost is high.
Accordingly, an object of the present invention is to provide an electrodialysis apparatus which prevents contamination of microorganism-derived contaminants from adhering to an electrodialysis tank using a chlorine-based oxidizing agent and prevents damage to an ion exchange membrane without using a reducing agent. An object of the present invention is to provide a method for preventing adhesion of microorganism-derived contaminants to a tank and an electrodialysis apparatus.
[0004]
[Means for Solving the Problems]
In a first aspect, the present invention provides a method for treating microbial-derived contaminants in an electrodialysis tank, wherein water is treated while a chlorine-based oxidizing agent is injected into concentrated circulating water supplied to the concentrating chamber of the electrodialysis tank. A method for preventing adhesion is provided.
The inventors of the present application have conducted extensive studies and found that the places where microorganism-derived contaminants adhere are mainly on the surfaces of the spacers and communication holes of the gasket forming the concentration chamber.
Therefore, in the adhesion preventing method according to the first aspect, water treatment is performed while pouring a chlorine-based oxidizing agent into the concentrated circulating water. This prevents the growth of microorganisms in the concentration chamber, and prevents the contamination of microorganism-derived contaminants from adhering to the surfaces of the spacers and communication holes of the gasket forming the concentration chamber. On the other hand, the available chlorine does not move from the concentration chamber side to the desalting chamber side, that is, the available chlorine does not pass through the ion exchange membrane, so that the ion exchange membrane is not damaged. Therefore, it is possible to prevent the microorganism-derived contaminants from adhering to the electrodialysis tank using the chlorine-based oxidizing agent, and to prevent the ion exchange membrane from being damaged without using the reducing agent.
[0005]
In a second aspect, the present invention provides the method for preventing adhesion according to the above configuration, wherein a chlorine-based oxidizing agent is injected into the concentrated circulating water such that the residual chlorine concentration becomes 0.1 mg / L or more and 5 mg / L or less. Disclosed is a method for preventing microbial contaminants from adhering to an electrodialysis tank.
The present inventors have conducted intensive studies and found that the residual chlorine concentration of 0.1 mg / L or more can sufficiently prevent the growth of microorganisms and the residual chlorine concentration of 5 mg / L or less can sufficiently prevent damage to the ion exchange membrane.
Therefore, in the adhesion preventing method according to the second aspect, the chlorine-based oxidizing agent is injected into the concentrated circulating water so that the residual chlorine concentration becomes 0.1 mg / L or more and 5 mg / L or less.
[0006]
In a third aspect, the present invention provides the method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank, wherein the method comprises the steps of intermittently injecting a chlorine-based oxidizing agent and treating the water with water. I will provide a.
The inventors of the present application have conducted intensive research and have found that even if the chlorine-based oxidizing agent is not injected continuously but intermittently, the propagation of microorganisms can be sufficiently prevented and the ion exchange membrane can be sufficiently prevented from being damaged. understood.
Therefore, in the adhesion preventing method according to the third aspect, the chlorine-based oxidizing agent is intermittently injected into the concentrated circulating water.
[0007]
In a fourth aspect, the present invention provides the method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank, wherein the chlorine-based oxidizing agent is sodium hypochlorite in the method for preventing adhesion of the above structure. I do.
In the adhesion preventing method according to the fourth aspect, sodium hypochlorite is used, which is widely used in water purification treatment, is easily available, has high safety, and is easy to handle.
[0008]
In a fifth aspect, the present invention provides an electrodialysis tank, a desalting circulating water circulating supply means for circulating desalinating circulating water to a desalting chamber of the electrodialysis tank, and a condensing circuit for concentrating and circulating water in a concentrating chamber of the electrodialysis tank. An electrodialysis apparatus comprising: a concentrated circulating water circulating / supplying means for circulating and supplying water; and a chlorine-based oxidizing agent injecting means for injecting a chlorine-based oxidizing agent into the concentrated circulating water.
In the electrodialysis apparatus according to the fifth aspect, the adhesion preventing methods according to the first to fourth aspects can be suitably performed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to this.
[0010]
FIG. 1 is a configuration diagram of an electrodialysis apparatus according to one embodiment of the present invention.
In the electrodialysis apparatus 100, raw water such as seawater or brackish water is stored in a raw water tank 1 and sent from the raw water tank 1 to a pretreatment filter 2 using sand filtration or a fiber filter medium by a raw water pump P1. In the pretreatment filter, the raw water is subjected to a turbidity treatment to make the turbidity about 0.1 degree. The clarified raw water is sent to the desalination circulating water tank 3 and the concentrated circulating water tank 6. The reason why the concentrated circulating water is also sent to the concentrated circulating water tank 6 is to prevent the concentration of the concentrated circulating water from becoming too high.
[0011]
The desalting circulating water circulation pump P3 sends the desalting circulating water from the desalting circulating water tank 3 to the desalting chamber 55 of the electrodialysis tank 5. The desalted circulating water that has passed through the desalting chamber 55 returns to the desalting circulating water tank 3. In addition, part of the desalinated circulating water is stored in the distribution reservoir 20 as treated water from the raw water circulation tank 3.
[0012]
The concentrated circulating water circulation pump P6 sends the concentrated circulating water from the concentrated circulating water tank 6 to the concentration chamber 56 of the electrodialysis tank 5. The concentrated circulating water that has passed through the concentration chamber 56 returns to the concentrated circulating water tank 6.
[0013]
The electrodialysis tank 5 has a structure in which a large number of laminated units of-a concentration chamber 56-an anion exchange membrane A-a desalination chamber 55-a cation exchange membrane K-are laminated, and an anode chamber 53 and a cathode chamber 54 are provided at both ends. It is provided. The electrolyte is circulated and supplied from the electrolyte tank 8 to the anode chamber 53 and the cathode chamber 54 by the electrolyte pump P8.
[0014]
The pH adjusting liquid supply pump P10 sends the pH adjusting liquid from the pH adjusting liquid tank 10 to the concentrated circulating water tank 6 and the electrolytic solution tank 8. The reason why the solution is sent to the electrolytic cell 8 is to keep the pH value constant and prevent the product from adhering to the electrode.
[0015]
The chlorine-based oxidant liquid supply pump P12 sends the chlorine-based oxidant liquid from the chlorine-based oxidant liquid tank 12 to the concentrated circulating water tank 6. In addition, if necessary, the chlorine-based oxidant solution is also sent to the pretreatment filter 2. For example, if sodium hypochlorite is injected at a chlorine injection rate of about 10 mg / L and disinfected each time the pretreatment filter 2 is backwashed, it is effective in reducing microorganisms in the raw water supplied to the electrodialysis tank 5. It is.
[0016]
FIG. 2 is a perspective view showing the structure of the desalting chamber 55 and the concentration chamber 56 of the electrodialysis tank 5.
The desalting chamber 55 is formed by the spacer 55b of the gasket 55g, and is sandwiched between the cation exchange membrane K on the cathode side and the anion exchange membrane A on the anode side. Is in communication with
The concentration chamber 56 is formed by a spacer 56b of a gasket 56g, and is sandwiched between the anion exchange membrane A on the cathode side and the cation exchange membrane K on the anode side, and communicates with the flow path of the concentrated circulating water through the communication hole 56a. are doing.
[0017]
[Example 1]
An electrodialysis tank 5 in which 40 pairs of a cation exchange membrane K and an anion exchange membrane A made of a styrene-divinylbenzene copolymer resin were used was used. The effective membrane area is 0.485 m 2 / pair.
Using the raw water shown in FIG. 3, sodium hypochlorite was injected only into the concentrated circulating water tank 6 so that the residual chlorine concentration became 10 mg / L, 5 mg / L, 0.1 mg / L, and 0.05 mg / L. After continuous operation for months, the results shown in FIG. 4 were obtained.
From these results, it is possible to prevent the attachment of microorganism-derived contaminants by performing water treatment while injecting a chlorine-based oxidant having a residual chlorine concentration of 5 mg / L to 0.1 mg / L into the concentrated circulating water, and using a reducing agent. It was found that the ion exchange membranes K and A were not damaged even if they were not.
[0018]
[Comparative Example 1]
An electrodialysis tank 5 in which 40 pairs of a cation exchange membrane K and an anion exchange membrane A made of a styrene-divinylbenzene copolymer resin were used was used. The effective membrane area is 0.485 m 2 / pair.
Groundwater as raw water (pH: 7.1, NO 3 -N: 13.8 mg / L, electric conductivity: 322 μS / cm, turbidity: 0 °, chromaticity: 0.4 °, iron: 0.02 mg / L) , Manganese: <0.01 mg / L, KMnO 4 consumption: 1.1 mg / L) and the desalting circulating water tank 3 and the condensing circulating water tank 6 so that the residual chlorine concentration becomes 0.2 to 0.3 mg / L. As a result of continuous operation for two months while injecting sodium hypochlorite, adhesion of microbial contaminants to both the desalting chamber 55 and the concentrating chamber 56 was not observed. No change was observed in the membrane resistance value of the cation exchange membrane K. However, the membrane resistance of the anion exchange membrane A increased by 20%. This indicates that the anion exchange membrane A was damaged by the residual chlorine.
[0019]
[Example 2]
An electrodialysis tank 5 having a structure in which a 190-layer stack of a cation exchange membrane K and an anion exchange membrane A made of a styrene-divinylbenzene copolymer resin was used as one stack and four stacks were tightened was used. The effective membrane area is 0.485 m 2 / pair.
Using the raw water shown in FIG. 3, continuous operation while adding sodium hypochlorite once a day for 2 hours only to the concentrated circulating water tank 6 at a chlorine injection rate of 2 mg / L with respect to the concentrated wastewater amount of 2.5 m 3 / h Then, the result shown in FIG. 5 was obtained.
From this result, by performing water treatment while intermittently injecting a chlorine-based oxidizing agent into the concentrated circulating water at a chlorine injection rate of 2 mg / L, the heterotrophic bacteria in the concentrated circulating water can be reduced to 0 to 300 bacteria / mL. It turned out that it could be stopped.
[0020]
Moreover, when the continuous operation was performed under the same conditions for one year, the result shown in FIG. 6 was obtained.
From these results, the concentrated circulating water line pressure (concentrated circulating water pump pressure) was initially about 0.04 MPa, and even after one year of continuous operation, was about 0.05 MPa. I couldn't. That is, adhesion of microbial contaminants could be prevented.
[0021]
In the case where manganese ions are contained in the raw water, when a chlorine-based oxidizing agent (sodium hypochlorite) is continuously injected, the manganese ions are oxidized and deposited, adhere to the ion exchange membranes K and A, and are dialyzed. Although the function may be impaired, manganese ions are not oxidized and precipitated when intermittently implanted for a short time. Therefore, it is preferable to intermittently inject a chlorine-based oxidizing agent (sodium hypochlorite) into raw water containing manganese ions.
[0022]
A similar effect can be obtained by adding chloramine instead of sodium hypochlorite as the chlorine-based oxidizing agent. However, chloramine has a weaker bactericidal activity than sodium hypochlorite, and therefore requires an injection rate four times or more that of sodium hypochlorite.
[0023]
[Comparative Example 2]
An electrodialysis tank 5 having a structure in which a 190-layer stack of a cation exchange membrane K and an anion exchange membrane A made of a styrene-divinylbenzene copolymer resin was used as one stack and four stacks were tightened was used. The effective membrane area is 0.485 m 2 / pair.
Using the raw water shown in FIG. 3 and continuously operating without adding sodium hypochlorite to the concentrated wastewater amount of 2.5 m 3 / h, the results shown in FIG. 7 were obtained.
From this result, it is understood that the pressure of the concentrated circulating water line increases to about twice in one to two months. Further, since the flow rate distribution in the concentration chamber 56 becomes non-uniform, a scale is formed and the electric resistance is increased, and the function of the electrodialysis tank 5 is impaired.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank and the electrodialysis apparatus of the present invention, it is possible to prevent the microorganism-derived contaminants from adhering to the electrodialysis tank using a chlorine-based oxidizing agent. In addition, it is possible to prevent chlorine from damaging the ion exchange membrane without using a reducing agent.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an electrodialysis apparatus according to one embodiment of the present invention.
FIG. 2 is a perspective view showing the structure of an electrodialysis booster.
FIG. 3 is a table showing the quality of raw water.
FIG. 4 is a table showing the results of Example 1 of the present invention.
FIG. 5 is a table showing the results of Example 2 of the present invention.
FIG. 6 is a chart showing the results of Example 2 of the present invention.
FIG. 7 is a table showing the results of Comparative Example 2.
[Explanation of symbols]
5 Electrodialysis tank 6 Concentrating circulating water tank 12 Chlorine oxidizing agent liquid tank 55 Desalination room 56 Concentration room A Anion exchange membrane K Cation exchange membrane

Claims (5)

電気透析槽の濃縮室に循環供給する濃縮循環水に塩素系酸化剤を注入しながら水処理することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法。A method for preventing microbial contaminants from adhering to an electrodialysis tank, wherein water is treated while a chlorine-based oxidizing agent is injected into concentrated circulating water supplied to a concentrating chamber of the electrodialysis tank. 請求項1に記載の付着防止方法において、残留塩素濃度が0.1mg/L以上、5mg/L以下になるように濃縮循環水に塩素系酸化剤を注入することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法。The method for preventing adhesion according to claim 1, wherein a chlorine-based oxidizing agent is injected into the concentrated circulating water so that the residual chlorine concentration is 0.1 mg / L or more and 5 mg / L or less. A method for preventing adhesion of microorganism-derived contaminants. 請求項1または請求項2に記載の付着防止方法において、塩素系酸化剤を間欠的に注入して水処理することを特徴とする電気透析槽への微生物由来汚染物の付着防止方法。The method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank according to claim 1 or 2, wherein a chlorine-based oxidizing agent is intermittently injected to perform water treatment. 請求項1から請求項3のいずれかに記載の付着防止方法において、塩素系酸化剤が次亜塩素酸ナトリウムであることを特徴とする電気透析槽への微生物由来汚染物の付着防止方法。The method for preventing adhesion of microorganism-derived contaminants to an electrodialysis tank according to any one of claims 1 to 3, wherein the chlorine-based oxidizing agent is sodium hypochlorite. 電気透析槽と、該電気透析槽の脱塩室に脱塩循環水を循環供給する脱塩循環水循環供給手段と、前記電気透析槽の濃縮室に濃縮循環水を循環供給する濃縮循環水循環供給手段と、前記濃縮循環水に塩素系酸化剤を注入する塩素系酸化剤注入手段とを具備したことを特徴とする電気透析装置。An electrodialysis tank, a desalting circulating water circulating supply means for circulating desalinating circulating water to the desalting chamber of the electrodialysis tank, and a condensing circulating water circulating supplying means for circulating the condensing circulating water to the concentrating chamber of the electrodialysis tank An electrodialysis apparatus comprising: a chlorine-based oxidizing agent injecting a chlorine-based oxidizing agent into the concentrated circulating water.
JP2002163051A 2002-06-04 2002-06-04 Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus Pending JP2004008851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163051A JP2004008851A (en) 2002-06-04 2002-06-04 Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163051A JP2004008851A (en) 2002-06-04 2002-06-04 Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus

Publications (1)

Publication Number Publication Date
JP2004008851A true JP2004008851A (en) 2004-01-15

Family

ID=30431629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163051A Pending JP2004008851A (en) 2002-06-04 2002-06-04 Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus

Country Status (1)

Country Link
JP (1) JP2004008851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051453A (en) * 2016-09-27 2018-04-05 オルガノ株式会社 Electric type deionized water production device and method for driving the same
CN109475674A (en) * 2016-07-27 2019-03-15 日本多宁股份有限公司 The cleaning method of dialyzate manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475674A (en) * 2016-07-27 2019-03-15 日本多宁股份有限公司 The cleaning method of dialyzate manufacturing device
JP2018051453A (en) * 2016-09-27 2018-04-05 オルガノ株式会社 Electric type deionized water production device and method for driving the same

Similar Documents

Publication Publication Date Title
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
US9309138B2 (en) Fresh water production method
JP2002509802A (en) Water treatment system and water treatment method including pH control
JP2008100180A (en) Water treatment apparatus
GB2249307A (en) Process for purifying water by means of a combination of electrodialysis and reverse osmosis
JP4478996B2 (en) Treatment method of polarizing plate manufacturing waste liquid
JP6778591B2 (en) Ultrapure water production method and ultrapure water production system
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2001259376A (en) Deionized water making apparatus
US8518235B2 (en) All-electric coagulant generation system
CN105668873B (en) A kind of circulating desk type water dispenser
JP4505965B2 (en) Pure water production method
JPS6336890A (en) Apparatus for producing high-purity water
JP2004008851A (en) Method for preventing adhesion of microorganism-derived contaminant to electrodialysis vessel and electrodialysis apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2003103259A (en) Method for cleaning filter and reverse osmosis membrane
JP3148849B2 (en) Seawater desalination method by reverse osmosis
KR102117548B1 (en) Photo-electro-dialysis water treatment apparatus and water treatment method for simultaneous desalination and pollutants oxidation
Di Salvo et al. Experimental analysis of a continuously operated reverse electrodialysis unit fed with wastewaters
JP3353810B2 (en) Reverse osmosis seawater desalination system
KR20230009916A (en) Improved chlorine tolerance of continuous electrical deionization modules
JPH06254356A (en) Ph adjusting method of salt water incorporating hardly soluble salt group
JP3271744B2 (en) Desalting method using electrodialysis equipment
JP3700244B2 (en) Pure water production equipment
JP3463421B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711