JP2004006045A - Phase change optical disk and method for playing phase change optical disk - Google Patents

Phase change optical disk and method for playing phase change optical disk Download PDF

Info

Publication number
JP2004006045A
JP2004006045A JP2003319785A JP2003319785A JP2004006045A JP 2004006045 A JP2004006045 A JP 2004006045A JP 2003319785 A JP2003319785 A JP 2003319785A JP 2003319785 A JP2003319785 A JP 2003319785A JP 2004006045 A JP2004006045 A JP 2004006045A
Authority
JP
Japan
Prior art keywords
optical disk
recording layer
phase change
change optical
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319785A
Other languages
Japanese (ja)
Inventor
Shuichi Okubo
大久保 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003319785A priority Critical patent/JP2004006045A/en
Publication of JP2004006045A publication Critical patent/JP2004006045A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change optical disk from which recorded information can be stably reproduced without erasing the recorded information and to provide a method for playing the phase change optical disk using a blue (wavelength 400-450 nm) laser beam. <P>SOLUTION: On a substrate 1, a first dielectric layer 2, a second dielectric layer 3, a third dielectric layer 4, a recording layer 5, a fourth dielectric layer 6 and a reflection layer 7 are sequentially laminated. When the recording layer 5 is in an amorphous state, the absorption index of the recording layer is defined as ≤70%, when the recording layer 5 is in a crystal state, its reflectivity is defined as ≥3% and ≤15%, and its reproducing power is defined as 0.5-0.9 mW. Because the reflectivity of the recording layer 5 is low, the amount of temperature rising when the blue laser beam having high energy density is emitted as a reproducing laser beam is suppressed to prevent an amorphous part in the recording layer 5 from being cystalized, which stably reproduces the recorded information without erasing the recorded information. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、レーザ光の照射により情報の記録、再生を行う光学情報記録媒体に関し、特に相変化光ディスクおよび相変化光ディスクの再生方法に関する。 The present invention relates to an optical information recording medium for recording and reproducing information by irradiating a laser beam, and more particularly to a phase change optical disk and a method for reproducing a phase change optical disk.

 相変化光ディスクは、情報の記録、消去、再生が可能な光ディスクとして提案されており、情報の記録に際してはレーザ光を光ディスクに対して集光して非晶質化する。記録された情報の再生時には、光ディスクに対してレーザ光を集光し、非晶質部と結晶部との反射率、あるいは透過率の相違により情報を読みだす。さらに、情報の消去では、非晶質化した部分をレーザ光により結晶化状態にすることで行われている。ところで、このような情報の記録、消去、再生に用いるレーザ光の集光スポットサイズを狭小化することは、光ディスクの高密度化に対する有力な手法であり、スポットサイズの狭小化には、レーザ光源の短波長化が不可欠である。現在DVD−ROMやDVD−RAM等の光ディスクでは、波長650nm前後の赤色の半導体レーザが用いられているが、波長410nm前後の青色の半導体レーザに関する研究も着実に進展しており、室温で安定に連続発振が可能なレーザも開発されている。数年のうちには青色の半導体レーザが量産され、市場に供されるようになる可能性が非常に高い。
特開平8−63781号公報
A phase-change optical disk has been proposed as an optical disk capable of recording, erasing, and reproducing information. When recording information, a laser beam is focused on the optical disk to make it amorphous. When reproducing recorded information, a laser beam is focused on the optical disk, and information is read out based on the difference in the reflectance or transmittance between the amorphous portion and the crystal portion. Further, in erasing information, an amorphous portion is crystallized by laser light. By the way, narrowing the focused spot size of a laser beam used for recording, erasing, and reproducing such information is a powerful technique for increasing the density of an optical disc, and narrowing the spot size requires a laser light source. It is essential to shorten the wavelength. Currently, red semiconductor lasers having a wavelength of about 650 nm are used in optical discs such as DVD-ROMs and DVD-RAMs. Research on blue semiconductor lasers having a wavelength of about 410 nm has been steadily progressing, and stable at room temperature. Lasers capable of continuous oscillation have also been developed. It is very likely that blue semiconductor lasers will be mass-produced in a few years and will be available on the market.
JP-A-8-63781

 しかしながら、青色レーザ光源では、前記したように短波長化に伴って集光スポットサイズが赤色光源の時に比べて小さくなるため、集光スポットの単位面積当たりの光エネルギ量、すなわち、エネルギ密度が高くなり、結果としてレーザ光を光ディスクに照射した際の光ディスクの昇温量が大きくなる。例えば、記録層における光エネルギの吸収率が赤色光と青色光とで同一と仮定した場合、1mWの赤色光源のレーザ光を照射した際の記録膜の昇温量が100℃であった場合、青色光源では約200℃の昇温量が生じることになる。相変化光ディスクに用いられている記録層の結晶化温度は150〜300℃程度であるので、情報を記録した記録層に対して情報を再生するために青色光源のレーザ光を照射したときには、前記した200℃の昇温によって非晶質状態の記録情報が結晶化されて、記録情報が消去されるという問題が生じる可能性が非常に高くなる。 However, in the blue laser light source, as described above, the condensed spot size becomes smaller than that of the red light source as the wavelength becomes shorter, so that the amount of light energy per unit area of the condensed spot, that is, the energy density is higher. As a result, the amount of temperature rise of the optical disk when the laser light is irradiated on the optical disk increases. For example, assuming that the absorption rate of light energy in the recording layer is the same for red light and blue light, and when the temperature rise amount of the recording film when irradiating the laser light of the red light source of 1 mW is 100 ° C. With a blue light source, a temperature rise of about 200 ° C. will occur. Since the crystallization temperature of the recording layer used in the phase change optical disk is about 150 to 300 ° C., when the recording layer on which information is recorded is irradiated with laser light from a blue light source to reproduce the information, Due to the temperature rise of 200 ° C., the possibility that the recorded information in the amorphous state is crystallized and the recorded information is erased is very likely to occur.

 このような、再生レーザ光による記録層の結晶化を防ぐには、情報を再生する際のレーザパワーをできるだけ低くすれば良いが、レーザパワーを低くすると、レーザノイズの増加や再生信号振幅の低下が生じ、信号品質が劣化してしまう。特に、従来の相変化光ディスクでは、非晶質状態における反射率は0%に近くなるように設計され、その結果、非晶質状態における記録層の吸収率は90%以上となっていることが多い。再生レーザ光を照射した時の記録層での昇温量は、レーザのパワーと記録層での吸収率によって決まるので、このような記録層の吸収率では、レーザパワーをある程度低減するのみでは、非晶質部の結晶化を防止することは困難である。 In order to prevent such crystallization of the recording layer due to the reproduction laser beam, the laser power at the time of reproducing the information should be reduced as much as possible. However, when the laser power is lowered, the laser noise increases and the reproduction signal amplitude decreases. And signal quality is degraded. In particular, in a conventional phase change optical disk, the reflectance in the amorphous state is designed to be close to 0%, and as a result, the absorption of the recording layer in the amorphous state is 90% or more. Many. The amount of temperature rise in the recording layer when irradiating the reproduction laser beam is determined by the power of the laser and the absorptivity in the recording layer. It is difficult to prevent crystallization of the amorphous part.

 本発明の目的は、波長400〜450nmの青色光源のレーザ光を用いた光ディスク装置を構成した場合においても、光ディスクに記録した記録情報を消去すること無く安定に再生することができる相変化光ディスクおよびその再生方法を提供することにある。 An object of the present invention is to provide a phase change optical disk capable of stably reproducing recorded information recorded on an optical disk without erasing even when an optical disk device using a laser beam of a blue light source having a wavelength of 400 to 450 nm is configured. An object of the present invention is to provide a reproducing method.

 上記課題を解決するために、本発明にかかる相変化光ディスクは、相変化光ディスクに形成されている記録層が非晶質状態にあるときの当該記録層における光の吸収率が70%以下であることを特徴とする。また、この場合、好ましくは、前記記録層が結晶状態にあるときの反射率が3%以上15%以下であることを特徴とする。さらに、前記記録層が非晶質状態にあるときの反射率が、前記記録層が結晶状態にあるときの反射率より高くする。また、記録層の直上に設けられる誘電体層の膜厚を50nm以下とする。 In order to solve the above problems, a phase change optical disk according to the present invention has a light absorption rate of 70% or less in a recording layer formed on the phase change optical disk when the recording layer is in an amorphous state. It is characterized by the following. Further, in this case, preferably, the reflectance when the recording layer is in a crystalline state is 3% or more and 15% or less. Further, the reflectance when the recording layer is in an amorphous state is higher than the reflectance when the recording layer is in a crystalline state. The thickness of the dielectric layer provided immediately above the recording layer is set to 50 nm or less.

 また、本発明の光ディスクの再生方法では、前記本発明の光ディスクに対し、再生光として波長400〜450nmのレーザ光を用い、かつ前記レーザ光のレーザパワーを0.5mW以上0.9mW以下とすることを特徴とする。 Further, in the optical disk reproducing method of the present invention, a laser beam having a wavelength of 400 to 450 nm is used as reproducing light for the optical disk of the present invention, and the laser power of the laser light is 0.5 mW or more and 0.9 mW or less. It is characterized by the following.

 本発明では、青色光源に対する記録層の吸収率を70%以下としているので、再生レーザ光照射時の記録層の昇温量を抑制することが可能である。また、記録層が結晶状態にある時の反射率を3%以上、15%以下としているので、十分な再生信号振幅を得るとともに、光ヘッドでのフォーカスやトラッキングのサーボ動作を安定に保持することが可能である。さらに、記録層上の第4誘電体層の膜厚を50nm以下とすることで、記録層から反射層への熱の放熱性を高めることが可能である。また、情報の再生時は、レーザ光のパワーを0.5〜0.9mWとすることにより、レーザノイズの上昇、再生信号振幅の低下を防ぐとともに、記録層での結晶化を確実に防止することが可能となる。 According to the present invention, since the absorption rate of the recording layer with respect to the blue light source is set to 70% or less, it is possible to suppress an increase in the temperature of the recording layer during irradiation with the reproduction laser beam. In addition, since the reflectivity when the recording layer is in a crystalline state is 3% or more and 15% or less, a sufficient reproduction signal amplitude is obtained, and the focus and tracking servo operations of the optical head are stably maintained. Is possible. Further, by setting the thickness of the fourth dielectric layer on the recording layer to 50 nm or less, it is possible to enhance the heat dissipation from the recording layer to the reflection layer. Further, at the time of reproducing information, by setting the power of the laser beam to 0.5 to 0.9 mW, it is possible to prevent an increase in laser noise and a decrease in the amplitude of a reproduction signal, and to surely prevent crystallization in the recording layer. It becomes possible.

 以上説明したように、本発明は、記録層が非晶質状態にあるときの光の吸収率を70%以下とすることにより、青色レーザ光を用いて情報の再生を行う場合でも、記録層における昇温を抑制し、非晶質部の結晶化が防止でき、青色レーザ光を用いて情報の再生を安定に行なうことが可能となる。また、記録層が結晶状態にある時の反射率を3%以上、15%以下としているので、十分な再生信号振幅を得るとともに、光ヘッドでのフォーカスやトラッキングのサーボ動作を安定に保持することが可能となる。さらに、記録層上の直上の誘電層の膜厚を50nm以下とすることで、記録層から反射層への熱の放熱性を高めることが可能である。また、情報の再生時は、レーザ光のパワーを0.5〜0.9mWとすることにより、レーザノイズの上昇、再生信号振幅の低下を防ぐとともに、録層での結晶化を確実に防止することも可能となる。 As described above, according to the present invention, even when information is reproduced using a blue laser beam, the recording layer is made to have an absorptivity of light of 70% or less when the recording layer is in an amorphous state. , The crystallization of the amorphous portion can be prevented, and information can be reproduced stably using blue laser light. In addition, since the reflectivity when the recording layer is in a crystalline state is 3% or more and 15% or less, a sufficient reproduction signal amplitude is obtained, and the focus and tracking servo operations of the optical head are stably maintained. Becomes possible. Further, by setting the thickness of the dielectric layer immediately above the recording layer to 50 nm or less, it is possible to enhance the heat dissipation from the recording layer to the reflective layer. Further, at the time of reproducing information, by setting the power of the laser beam to 0.5 to 0.9 mW, it is possible to prevent an increase in laser noise and a decrease in the amplitude of a reproduced signal, and to reliably prevent crystallization in the recording layer. It is also possible.

 次に、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の相変化光ディスクを説明するための図であり、光ディスク11の断面構造を拡大図示するように、透明基板1の表面には同心円または螺旋状の案内溝12が形成されており、この透明基板1の表面上に第1誘電体層2、第2反射層3、第3誘電体層4、記録層5、第4誘電体層6、反射層7が順に積層されている。前記基板1としてポリカーボネートが用いられ、前記案内溝の半径方向のピッチ(トラックピッチ)は1.0μmにされる。また、前記第1誘電体層2としてZnS−SiO2 を30nm、第2誘電体層3としてSiO2 を90nm、第3誘電体層4としてZnS−SiO2 を20nm、記録層5としてGe2 Sb2 Te5 を13nm、第4誘電体層6としてZnS−SiO2 を40nm、反射層7としてAl(アルミニウム)を120nmとし、これらは順次スパッタリングにより積層される。 Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view for explaining a phase change optical disk of the present invention. As shown in an enlarged view of a sectional structure of an optical disk 11, a concentric or spiral guide groove 12 is formed on the surface of a transparent substrate 1. On the surface of the transparent substrate 1, a first dielectric layer 2, a second reflective layer 3, a third dielectric layer 4, a recording layer 5, a fourth dielectric layer 6, and a reflective layer 7 are sequentially laminated. The substrate 1 is made of polycarbonate, and a pitch (track pitch) of the guide grooves in the radial direction is set to 1.0 μm. Further, ZnS-SiO2 is 30 nm as the first dielectric layer 2, SiO2 is 90 nm as the second dielectric layer 3, ZnS-SiO2 is 20 nm as the third dielectric layer 4, Ge2 Sb2 Te5 is 13 nm as the recording layer 5, and The fourth dielectric layer 6 is made of ZnS-SiO2 of 40 nm, and the reflective layer 7 is made of Al (aluminum) of 120 nm. These are sequentially laminated by sputtering.

 なお、図1において、光ディスクに対しては、前記基板1の裏面側に光ヘッド20が対向されており、レーザ光源21からの光をレンズ光学系22により前記記録層5に集光して情報の記録、消去を行う。また、前記記録層5からの反射光をビームスプリッタ23で分離し、フォトダイオード24で受光することで情報の再生を行っている。前記レーザ光源21としては、400〜450nmの青色レーザ光を出射可能なレーザ素子が用いられる。また、前記光ヘッド20には、光ディスク11の前記案内溝12に対するトラッキング制御や記録層5に対するフォーカシング制御を行う制御系が設けられているが、この種の光ヘッドの構成は既に広く知られているので、ここでは詳細な説明は省略する。 In FIG. 1, an optical head 20 is opposed to the back surface of the substrate 1 with respect to the optical disk, and the light from a laser light source 21 is condensed on the recording layer 5 by a lens optical system 22 to store information. Recording and erasing. Also, information is reproduced by separating the reflected light from the recording layer 5 by the beam splitter 23 and receiving the light by the photodiode 24. As the laser light source 21, a laser element capable of emitting blue laser light of 400 to 450 nm is used. The optical head 20 is provided with a control system for performing tracking control on the guide groove 12 of the optical disc 11 and focusing control on the recording layer 5. The configuration of this type of optical head is already widely known. Therefore, detailed description is omitted here.

 以上の構成の光ディスクにおいては、記録層5と基板1との間に第1誘電体層2、第2誘電体層3、第3誘電体層4を形成した三層構造の誘電体層を介在させており、しかも第1誘電体層2の屈折率をn1、第2誘電体層3の屈折率をn2、第3誘電体層4の屈折率をn3としたとき、n1>n2、かつ、n3>n2の関係を満たすことにより、記録層5が非晶質状態にある時の屈折率との関係から、記録層5での反射率が高くされ、記録層5の吸収率が低くされている。そのため、光ヘッド20のレーザ光源として青色レーザ光源を用いた場合に、青色レーザ光の短波長化に伴って集光スポットサイズが赤色光源の時に比べて小さくなり、集光スポットエネルギ密度が高くなったとしても、記録層5に情報が記録された非晶質部での反射率が高くされ、その吸収率が低くされていることにより、情報を再生するために青色レーザ光が記録層5に照射されたときの昇温が抑制され、記録情報が結晶化されて記録情報が消去されるという問題が解消されることになる。 In the optical disk having the above configuration, a three-layer dielectric layer having the first dielectric layer 2, the second dielectric layer 3, and the third dielectric layer 4 interposed between the recording layer 5 and the substrate 1. When the refractive index of the first dielectric layer 2 is n1, the refractive index of the second dielectric layer 3 is n2, and the refractive index of the third dielectric layer 4 is n3, n1> n2, and By satisfying the relationship of n3> n2, the reflectance of the recording layer 5 is increased and the absorption of the recording layer 5 is decreased from the relationship with the refractive index when the recording layer 5 is in the amorphous state. I have. Therefore, when a blue laser light source is used as the laser light source of the optical head 20, the condensed spot size becomes smaller and the condensed spot energy density increases as the wavelength of the blue laser light becomes shorter as compared with the red light source. Even when the information is recorded on the recording layer 5, the reflectivity at the amorphous portion is increased and the absorptance is reduced, so that blue laser light is applied to the recording layer 5 to reproduce information. The temperature rise upon irradiation is suppressed, and the problem that the recorded information is crystallized and the recorded information is erased is solved.

 ここで、記録層5が非晶質状態にある時の反射率を高くしているので、大きな再生信号振幅を得るには、記録層5が結晶状態にある時の反射率をできるだけ低く、15%以下とすることが望ましい。しかしながら、記録前の反射率が低すぎると光ヘッド20でのフォーカスやトラッキングのサーボ動作が不安定になるので、記録層5が結晶状態にある時の反射率は最低でも3%以上であることが望ましい。また、記録層5が非晶質状態にある時の吸収率を低くして再生レーザ光による記録層5の昇温を抑制することは可能であるが、記録層5の上層に隣接する第4誘電体層の膜厚が厚すぎると、記録層5から反射層7への熱の逃げが悪くなり、記録層4の昇温量が増大する要因となるので、第4誘電体層の膜厚は50nm以下とすることが望ましい。さらに、情報の再生時は、レーザ光のパワーを0.5〜0.9mWとすることが好ましい。レーザ光のパワーを0.5mW以上としているのは、レーザノイズの上昇、再生信号振幅の低下を防ぐためであり、一方、再生レーザ光が高すぎると記録層5での結晶化が生じ情報が失われてしまうので、レーザ光は0.9mW以下とすることが望ましい。 Here, since the reflectance when the recording layer 5 is in the amorphous state is high, in order to obtain a large reproduction signal amplitude, the reflectance when the recording layer 5 is in the crystalline state is as low as possible. % Is desirable. However, if the reflectance before recording is too low, the focus and tracking servo operations of the optical head 20 become unstable. Therefore, the reflectance when the recording layer 5 is in a crystalline state is at least 3% or more. Is desirable. Although it is possible to suppress the temperature rise of the recording layer 5 due to the reproduction laser beam by lowering the absorptivity when the recording layer 5 is in the amorphous state, the fourth layer adjacent to the upper layer of the recording layer 5 can be suppressed. If the thickness of the dielectric layer is too large, the escape of heat from the recording layer 5 to the reflective layer 7 becomes worse, which causes an increase in the temperature rise of the recording layer 4. Is desirably 50 nm or less. Further, at the time of reproducing information, the power of the laser beam is preferably set to 0.5 to 0.9 mW. The reason why the power of the laser light is set to 0.5 mW or more is to prevent an increase in laser noise and a decrease in reproduction signal amplitude. On the other hand, when the reproduction laser light is too high, crystallization occurs in the recording layer 5 and information is lost. Since the laser light is lost, it is desirable that the laser light be 0.9 mW or less.

 因みに、前記光ディスク11においては、記録層5が非晶質状態にある時の記録層5の吸収率Aaは55%、記録層5が結晶状態にある時の反射率Rcは10%であった。前記光ディスク11を線速5m/sで回転し、波長660nm、レンズ光学系22の対物レンズの開口数NAが0.6の光ヘッドを用いて記録を行ない、波長430nm、対物レンズの開口数NAが0.6の光ヘッドを用いて再生を行なった。光ディスク11の案内溝12間に構成されるランド部に1MHz、デューティ(duty)=50%の信号を記録した後、再生パワー0.6mWで信号を繰り返し再生し、キャリアおよびノイズの変化を調べた。その結果、図2に示すように、10万回再生後もキャリアの低下やノイズの上昇はなく、記録膜の結晶化が生じなかった。 Incidentally, in the optical disk 11, when the recording layer 5 was in the amorphous state, the absorption Aa of the recording layer 5 was 55%, and when the recording layer 5 was in the crystalline state, the reflectance Rc was 10%. . The optical disk 11 is rotated at a linear velocity of 5 m / s, recording is performed using an optical head having a wavelength of 660 nm and a numerical aperture NA of the objective lens of the lens optical system 22 of 0.6, and a wavelength of 430 nm and a numerical aperture NA of the objective lens. Was reproduced using an optical head having a 0.6. After a signal of 1 MHz and a duty (duty) of 50% was recorded on a land portion formed between the guide grooves 12 of the optical disk 11, the signal was repeatedly reproduced at a reproduction power of 0.6 mW, and changes in carrier and noise were examined. . As a result, as shown in FIG. 2, there was no decrease in carrier and no increase in noise even after reproduction 100,000 times, and no crystallization of the recording film occurred.

また、前記光ディスクと同じ構成の相変化光ディスクを用い、ディスクを線速5m/sで回転し、波長660nm、対物レンズの開口数NAが0.6の光ヘッドを用いて記録を行ない、波長430nm、対物レンズの開口数NAが0.6の光ヘッドを用いて再生を行なった。ランド部に1MHz、duty=50%の信号を記録した後、異なる再生パワで信号を再生し再生パワとC/Nの関係を調べた。図3に示すように、再生パワーが0.5mW以下ではC/Nが低下したことが確認された。 Using a phase change optical disk having the same configuration as the optical disk, the disk is rotated at a linear velocity of 5 m / s, recording is performed using an optical head having a wavelength of 660 nm and a numerical aperture NA of the objective lens of 0.6, and a wavelength of 430 nm. Reproduction was performed using an optical head having a numerical aperture NA of an objective lens of 0.6. After recording a signal of 1 MHz and duty = 50% on the land, the signals were reproduced with different reproduction powers and the relationship between the reproduction power and C / N was examined. As shown in FIG. 3, it was confirmed that the C / N was reduced when the reproducing power was 0.5 mW or less.

 本発明の他の実施形態として、光ディスク11の基板1としてポリカーボネートを用い、第1誘電体層2としてZnS−SiO2 を30nm、第2誘電体層3としてSiO2 を80nm、第3誘電体層4としてZn−SiO2 を140nm、記録層5としてGe2 Sb2 Te5 を14nm、第4誘電体層6としてZnS−SiO2 を50nm、反射層7としてAlを100nmを順次スパッタリングにより積層した。トラックピッチは前記実施形態と同様に1.0μmとした。この光ディスクでは、記録層5が非晶質状態にある時の吸収率Aaは70%、記録層5が結晶状態にある時の反射率Rcは7%であった。また、この光ディスクに対し、再生1回目のキャリアC1と再生10万回目のキャリアC2との差と再生パワーの関係を調べたところ、図4に示すように、再生パワーが0.9mWを越えるとキャリアの低下が生じたことが確認された。 As another embodiment of the present invention, polycarbonate is used as the substrate 1 of the optical disk 11, ZnS-SiO2 is 30 nm as the first dielectric layer 2, SiO2 is 80 nm as the second dielectric layer 3, and the third dielectric layer 4 is 140 nm of Zn-SiO2, 14 nm of Ge2 Sb2 Te5 as the recording layer 5, 50 nm of ZnS-SiO2 as the fourth dielectric layer 6, and 100 nm of Al as the reflective layer 7 were sequentially laminated by sputtering. The track pitch was 1.0 μm as in the above embodiment. In this optical disc, the absorption Aa when the recording layer 5 was in the amorphous state was 70%, and the reflectance Rc when the recording layer 5 was in the crystalline state was 7%. In addition, the relationship between the difference between the carrier C1 in the first reproduction and the carrier C2 in the 100,000th reproduction and the reproduction power was examined on this optical disc. As shown in FIG. 4, when the reproduction power exceeded 0.9 mW, It was confirmed that the carrier had decreased.

 以上の実施形態を含め、本発明者の検討によれば、記録層が非晶質状態にあるときの吸収率を70%以下にすることでその目的が達成でき、かつ好ましくは、記録層が結晶状態にあるときの吸収率を3%以上15%以下にすることが好ましいことが確認された。 According to the studies of the present inventors including the above embodiments, the object can be achieved by setting the absorptivity when the recording layer is in an amorphous state to 70% or less, and preferably, the recording layer is It was confirmed that it is preferable to set the absorptance in the crystalline state to 3% or more and 15% or less.

本発明に係る相変化光ディスクの構成を示す図である。FIG. 2 is a diagram showing a configuration of a phase change optical disc according to the present invention. 本発明に係る相変化光ディスクについて、再生回数とキャリヤ、ノイズの関係を示す図である。FIG. 4 is a diagram showing the relationship between the number of times of reproduction, carrier, and noise in the phase change optical disk according to the present invention. 本発明に係る相変化光ディスクについて、再生パワとキャリヤ、ノイズの関係を示す図である。FIG. 3 is a diagram showing the relationship between reproduction power, carrier, and noise in the phase change optical disk according to the present invention. 本発明に係る相変化光ディスクについて、再生パワとキャリヤの変化の関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a reproduction power and a change in a carrier in the phase change optical disk according to the present invention.

符号の説明Explanation of reference numerals

1 基板
2 第1誘電体層
3 第2誘電体層
4 第3誘電体層
5 記録層
6 第4誘電体層
7 反射層
11 光ディスク
12 案内溝
20 光ヘッド
21 レーザ光源
22 レンズ光学系
23 ビームスプリッタ
24 フォトダイオード
DESCRIPTION OF SYMBOLS 1 Substrate 2 1st dielectric layer 3 2nd dielectric layer 4 3rd dielectric layer 5 Recording layer 6 4th dielectric layer 7 Reflective layer 11 Optical disk 12 Guide groove 20 Optical head 21 Laser light source 22 Lens optical system 23 Beam splitter 24 Photodiode

Claims (6)

 波長400〜450nmのレーザ光を用いて、情報の記録、消去、再生を行なう相変化光ディスクであって、
 基板上に、第1誘電体層、第2誘電体層、第3誘電体層、前記記録層、第4誘電体層、反射層が順に形成され、
 前記第1誘電体層の屈折率n1、第2誘電体層の屈折率n2、第3誘電体層の屈折率n3が、n1>n2、かつ、n3>n2の関係を満たすことを特徴とする相変化光ディスク。
A phase change optical disc for recording, erasing, and reproducing information by using laser light having a wavelength of 400 to 450 nm,
A first dielectric layer, a second dielectric layer, a third dielectric layer, the recording layer, a fourth dielectric layer, and a reflective layer are sequentially formed on a substrate;
The refractive index n1 of the first dielectric layer, the refractive index n2 of the second dielectric layer, and the refractive index n3 of the third dielectric layer satisfy a relationship of n1> n2 and n3> n2. Phase change optical disk.
 前記相変化光ディスクに形成されている記録層が非晶質状態にあるときの当該記録層における光の吸収率が70%以下であることを特徴とする請求項1に記載の相変化光ディスク。 2. The phase change optical disk according to claim 1, wherein the light absorption of the recording layer formed on the phase change optical disk is 70% or less when the recording layer is in an amorphous state.  前記記録層が結晶状態にあるときの反射率が3%以上15%以下であることを特徴とする請求項1〜2に記載の相変化光ディスク。 3. The phase change optical disk according to claim 1, wherein the reflectance when the recording layer is in a crystalline state is 3% or more and 15% or less.  前記記録層が非晶質状態にあるときの反射率が、前記記録層が結晶状態にあるときの反射率より高いことを特徴とする請求項1〜3に記載の相変化光ディスク。 4. The phase change optical disk according to claim 1, wherein the reflectance when the recording layer is in an amorphous state is higher than the reflectance when the recording layer is in a crystalline state.  前記第4誘電体層の膜厚が50nm以下であることを特徴とする請求項1〜5に記載の相変化光ディスク。 6. The phase change optical disk according to claim 1, wherein the thickness of the fourth dielectric layer is 50 nm or less.  請求項1ないし5に記載の相変化光ディスクに対して記録した情報を再生する再生方法であって、再生光として波長400〜450nmのレーザ光を用い、かつ前記レーザ光のレーザパワーを0.5mW以上0.9mW以下とすることを特徴とする相変化光ディスクの再生方法。 6. A reproducing method for reproducing information recorded on the phase change optical disk according to claim 1, wherein a laser beam having a wavelength of 400 to 450 nm is used as the reproducing beam, and the laser power of the laser beam is set to 0.5 mW. A method for reproducing a phase change optical disk, wherein the power is not less than 0.9 mW or less.
JP2003319785A 2003-09-11 2003-09-11 Phase change optical disk and method for playing phase change optical disk Pending JP2004006045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319785A JP2004006045A (en) 2003-09-11 2003-09-11 Phase change optical disk and method for playing phase change optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319785A JP2004006045A (en) 2003-09-11 2003-09-11 Phase change optical disk and method for playing phase change optical disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11057165A Division JP2000260061A (en) 1999-03-04 1999-03-04 Phase change optical disk and method for reproducing the same

Publications (1)

Publication Number Publication Date
JP2004006045A true JP2004006045A (en) 2004-01-08

Family

ID=30439040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319785A Pending JP2004006045A (en) 2003-09-11 2003-09-11 Phase change optical disk and method for playing phase change optical disk

Country Status (1)

Country Link
JP (1) JP2004006045A (en)

Similar Documents

Publication Publication Date Title
US7292525B2 (en) Optical information recording method and apparatus for multiple recording layer medium
JP4022119B2 (en) Optical information recording method, optical information recording / reproducing apparatus, and optical information recording medium
KR20050086305A (en) Super resolution information storage medium and method for making reproducing signal stable
US7813258B2 (en) Optical information recording medium and optical information reproducing method
JP4296772B2 (en) Optical disk device
JP2005196942A (en) Optical information recording medium and its manufacturing method
JP3356488B2 (en) Optical recording medium recording method and manufacturing method
JP2001052376A (en) Phase change optical disk
JP4327045B2 (en) Information reproducing method and information recording medium
JP2004006045A (en) Phase change optical disk and method for playing phase change optical disk
JP2000260061A (en) Phase change optical disk and method for reproducing the same
JP2008097794A (en) Single-side double-layer optical recording medium
JP4468951B2 (en) Optical information recording medium and optical information recording / reproducing system
JP2006509320A (en) Apparatus and method for recording information on a write once optical record carrier using an oval spot profile
JP5321175B2 (en) Optical information recording medium and manufacturing method thereof
JP2003173573A (en) Optical information recording medium and optical disk drive
JP2007026503A (en) Optical information recording medium and optical information recording and reproducing apparatus
JP2006031936A (en) Method of recording optical information
JP3964357B2 (en) Recording / reproducing method of phase change type optical information recording medium
JP2000113505A (en) Phase transition type optical disk
JP2005158257A (en) Information reproducing and recording method
JP2008269748A (en) Information recording medium and reproduction power determination method in signal reproduction
JPH1040577A (en) Optical information-recording medium
JP2000113491A (en) Optical information recording and reproducing device
JP2005129176A (en) Optical recording medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729