JP2004004857A - Active matrix type liquid crystal indicator and driving method for the same - Google Patents

Active matrix type liquid crystal indicator and driving method for the same Download PDF

Info

Publication number
JP2004004857A
JP2004004857A JP2003147031A JP2003147031A JP2004004857A JP 2004004857 A JP2004004857 A JP 2004004857A JP 2003147031 A JP2003147031 A JP 2003147031A JP 2003147031 A JP2003147031 A JP 2003147031A JP 2004004857 A JP2004004857 A JP 2004004857A
Authority
JP
Japan
Prior art keywords
row
scanning
electrodes
frame
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147031A
Other languages
Japanese (ja)
Other versions
JP3871656B2 (en
Inventor
Kazuhiro Uehara
上原 和弘
Hisao Okada
岡田 久夫
Yasukuni Yamane
山根 康邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003147031A priority Critical patent/JP3871656B2/en
Publication of JP2004004857A publication Critical patent/JP2004004857A/en
Application granted granted Critical
Publication of JP3871656B2 publication Critical patent/JP3871656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0232Special driving of display border areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3666Control of matrices with row and column drivers using an active matrix with the matrix divided into sections

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active matrix type liquid crystal indicator and a driving method for the same, which attain a high display quality and a low power consumption even when adopting a driving method of interlaced scanning for pixel electrodes. <P>SOLUTION: The driving method is provided for the active matrix type liquid crystal indicator provided with a display part 30 having a plurality of pixel electrodes P arranged in a matrix and a scanning driver 32 for interlaced scanning of at least a part of the plurality of pixel electrodes P. At least a part of pixel electrodes P is divided into a plurality of areas in the column direction, and the scanning driver 32 performs interlaced scanning of pixel electrodes in the plurality of areas and pixel electrodes on both sides of boundaries of the plurality of areas in the order from an odd row to an even row in one frame and in the opposite order from an even row to an odd row in the next frame. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、TFT(薄膜トランジスタ)式液晶表示器に代表される、能動行列型(アクティブマトリクス型)液晶表示器及びその駆動方法に関し、特に、低消費電力が要求される携帯型機器等の表示装置として用いられる能動行列型液晶表示器及びその駆動方法に関する。
【0002】
【従来の技術】
図1は液晶表示器の概念図を示す。液晶表示器は、能動行列基板、対向基板及びそれらの間に挟まれている液晶層を含んでいる。能動行列基板上に、図1に示されるように、行列に配置されている複数の画素電極Pによる表示部30と、複数の画素電極Pに走査信号(ゲート電圧)を与えるための複数の行電極(走査線又はゲート電極)Gと、複数の画素電極Pにデータ信号(階調電圧)を与えるための複数の列電極(ソース電極)Sと、画素電極Pと行電極G及び列電極Sとを接続するためのスイッチ素子Tと、行電極Gを駆動する走査駆動器(ゲートドライバ)32と、列電極Sを駆動するデータ駆動器(データドライバ)34と、が設けられている。対向基板上には共通電極36が形成されている。
【0003】
走査駆動器32は、制御部38によって制御され、ゲート電圧発生回路40からゲート電圧を受ける。データ駆動器34は、制御部38によって制御され、階調電圧発生回路42から階調電圧を受ける。共通電極36は、共通電極駆動回路44から共通電極電圧Vcomを受けて駆動される。
【0004】
上記の能動行列型液晶表示器を駆動する場合、一般に、液晶に印加する電圧の極性を交互に反転すること(これを「液晶の交流駆動」と呼ぶ)で、液晶に直流電圧が印加されないような工夫がなされている。これは、液晶が直流電圧が印加されると特性が劣化してしまうという性質を持っているからである。液晶の交流駆動の中で従来最も広く用いられている方法は、図2に示す行反転方式(「ライン反転方式」とも呼ぶ)である。この方式によれば、液晶に印加される電圧の極性が、行(走査線)毎に且つフレーム毎に反転されている。行毎の極性反転に列毎の極性反転をも加えた場合は、図3に示す画素反転方式(「ドット反転」とも呼ぶ)である。画素反転方式は、その表示品位の高さから、特にXGA型以上の大型・高精細の表示器の駆動に対して主流になりつつある。
【0005】
図4は、最も単純化した1画素P(i,j)に対応する等価回路を示す。画素の容量は主として、画素電極と補助電極(付加電極)とによって構成されるが、図4ではその総和としての容量をCpとしている。
【0006】
図5は、図1に示す表示器の各部の駆動タイミングと印加される電圧波形を示す。図5ではVsyn及びHsynはそれぞれ垂直同期信号、水平同期信号を表す。j行に対応する走査駆動器の出力VG(j)が高電位となることによってj行の画素P(i,j)に対応するスイッチ素子T(i,j)がオンとなり、画素P(i,j)は、そのときのデータ駆動器の出力S(i)によって充電される。VG(j)が低電位となることでスイッチ素子T(i,j)はオフとなり、画素P(i,j)に充電された電荷は、次ぎにT(i,j)がオンとなるまで保存され、その間、画素電極と共通電極との間に充填されている液晶を駆動し続ける。なお、図5で、水平同期信号に付した番号は、該番号の行の画素に対する画像信号が送信される水平期間であることを表している。データ駆動器は、1行目のデータを標本化して記憶し次の水平期間に出力するため、対応する行の走査駆動器が出力を高電位にするのは、データが送信されてくる水平期間より1水平期間後となっている。
【0007】
図6は液晶表示器の1データ線の等価回路を示す。Cd及びRdはそれぞれ集中定数で表したデータ線の容量と抵抗を示し、Cpは画素容量、Ronはスイッチ素子のオン抵抗を示す。図6の回路がデータ駆動器の1つの出力に対する負荷となるが、画素容量Cpはデータ線容量Cdに対して2〜3桁小さい値であるので、駆動器の負荷としては無視してよい。従って、駆動器の負荷としては、データ線抵抗Rdとデータ線容量Cdを考えれば十分である。ところで図6の回路は、データ駆動器の出力に1対1に対応して存在しており、表示器全体では例えば現在では比較的中程度の解像度であるVGA型であってもカラーであれば640×3=1920本存在しており、全体としてのデータ駆動器の負荷はかなり大きなものとなる。各走査線毎にデータ駆動器の出力を反転する必要のある行反転方式や画素反転方式の駆動においては、出力動作毎に容量Cdを正負の極性の間で充放電するため、消費電力が増加するという問題が生じる。
【0008】
上記の消費電力の増加を防ぐ1つの方法として、特開平8−320674公報は飛び越し走査することを提案している。「飛び越し走査」というのは、すべての奇数行(又は偶数行)の画素電極をまず走査し、次ぎに残りの偶数行(又は奇数行)の画素電極を走査することである。この方法では、極性が同一となる画素の行を順次走査することになるので、上記消費電力の増加を抑えることが可能となる。1つのフレームの走査(即ち、奇数行と偶数行の両方の走査)が完了した時点では、図2又は図3と同様の状態が得られる。
【0009】
【発明が解決しようとする課題】
しかし、上記の飛び越し走査に伴う新たな問題としては、時に無視できないちらつき(フリッカ)や、動きの大きい動画像の画質劣化と、隣接行間の各画素電極間の結合容量の影響により発生する僅かな階調の違いによる微かな横縞の発生である。
【0010】
本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、画素電極に対して飛び越し走査するという駆動方法を用いる場合でも、フリッカ等の画質劣化又は隣接行間の階調の違いによる横縞が発生せず、高い表示品質と低い消費電力が図れる能動行列型液晶表示器及びその駆動方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明による能動行列型液晶表示器の駆動方法は、行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部を備え、該表示部の少なくとも第1区域の連続した複数の行電極と、該第1区域に隣接する第2区域の連続した複数の行電極とに対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に行う能動行列型液晶表示器の駆動方法であって、第2フレームにおいて前記第1および第2の区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記第1および第2の区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とをそれぞれ反対にする。
【0012】
前記第1区域および第2区域における行電極の境界の位置を、前記第1フレームと前記第2フレームとで異ならせる。
【0013】
本発明による能動行列型液晶表示器は、行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部と、該表示部の少なくとも第1区域の連続した複数の行電極と、該第1区域に隣接する第2区域の連続した複数の行電極とに対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に行う走査駆動器とを有する能動行列型液晶表示器であって、該走査駆動器は、第2フレームにおいて前記第1および第2の区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記第1および第2の区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にするようになっている。
【0014】
前記走査駆動器は、前記第1区域および第2区域における行電極の境界の位置を、前記第1フレームと前記第2フレームとで異ならせる。
【0015】
前記表示部の最上位の行及び最下位の行の画素電極は、遮光マスクに覆われている。
【0016】
前記表示部の最上位の行及び最下位の行の画素電極には、黒データが表示される。
【0017】
本発明による能動行列型液晶表示器の駆動方法は、行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部を備え、該表示部には、それぞれが連続した複数の行電極を有する3つ以上の区域が相互に隣接するように並んで設けられており、前記各区域の連続した複数の行電極に対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に各区域が並んでいる順番で連続して行う能動行列型液晶表示器の駆動方法であって、第2フレームにおいて前記各区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記各区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にする。
【0018】
本発明による能動行列型液晶表示器は、行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられるとともに、それぞれが連続した複数の行電極を有する3つ以上の区域が、相互に隣接するように並んで設けられた表示部と、該表示部における前記各区域の連続した複数の行電極に対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に各区域が並んでいる順番で連続して行う走査駆動器とを有する能動行列型液晶表示器であって、該走査駆動器は、第2フレームにおいて前記各区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記各区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にするようになっている。
【0019】
【発明の実施の形態】
上述した飛び越し走査によるフリッカや画質劣化の対策として、表示部を列方向に複数の区域に分割し、各区域毎に飛び越し走査を完了させる方法が提案されている(本出願人により既に出願されている特願平10−161199)。この方法では、消費電力の削減は確実に行え、ちらつき(フリッカ)や、動きの大きい動画像の画質劣化を抑えることができる。しかし、奇数行と偶数行で階調が僅かに異なってしまい、1行おきに微かな横縞が発生するという現象が依然として残っており、また各区域の境界が発生するという新たな問題が生じる。
【0020】
以下に上記の問題が発生する理由を説明する。なお、以下の説明では、同一行の画素の極性は同一である行反転様態で説明するが、画素反転様態の場合には列毎に極性が反転するだけで、説明の内容はそのまま適用できるので、画素反転様態の場合についての説明は省略する。
【0021】
<1行おきの横縞について>
図7(a)〜(d)は画素電極を飛び越し走査するときの電圧極性の状態遷移を示す。図7(a)は、新しいフレームが始まる直前の状態を示す。この時、各画素の電圧極性は行反転の状態にある。ここから奇数行のみを走査することにより奇数行の画素の電圧極性が反転され図7(b)の状態に移行する。次ぎに、偶数行が走査されることにより偶数行の画素の電圧極性が反転され図7(c)の状態に移行する。図7(c)の状態が1フレームの走査が完了した状態である。次のフレームでは同様に(但し極性は逆となって)図7(d)の状態を経て図7(a)の状態に移行する。
【0022】
図8は、列方向に隣接する4つの(即ち4行に渡る)画素電極Pを示す(TFTスイッチ素子は省略している)。各画素電極Pの間には走査線(ゲート線)が存在しており、走査線方向の辺が平行しているため、隣接する画素電極間に結合容量Cppが存在する。隣接する両画素電極の間の電圧差Vによって結合容量Cppに電荷が保持されるが、その電荷の大きさは、電圧差Vの函数であり、V=0のときに0であり、且つVに対する単調増加函数である(但しV≧0)。なお、液晶の誘電率はその配向状態によって変化するため、結合容量Cpp自体も電圧差Vの函数となる。
【0023】
図9(a)及び(b)はそれぞれ、結合容量Cppに電荷が生じるとき、及び結合容量Cppに電荷が生じないとき(即ち図8に示す4つの画素電極がすべて同一の電位にある)の4つの画素電極の等価回路を示す。画面全体に同一データを書き込む場合を想定する。なお、「データを書き込む」とは、データに対応する電圧で画素電極を充電することを意味する(以下同様)。
【0024】
図7(a)の状態から図7(b)の状態へ遷移するとき及び、図7(c)の状態から図7(d)の状態へ遷移するときは、結合容量Cppによる電荷は現れている状態から消滅する状態へ遷移する。単純化のため、図10(a)〜(d)を参照しながら、隣接2行の画素間の影響を説明する。偶数行のスイッチ素子Aが開いたまま、奇数行の画素が書かれる場合、電荷の移動状態は、図10(a)から図10(b)へ、又は図10(c)から図10(d)への遷移となる。偶数行のスイッチ素子Aは開いたままであるので、容量Cppに捕らえられていた−q又は+qの電荷は、容量Cppの両端の電圧差が消滅することで偶数行の画素電極に移動して、画素電極の電荷は−(Q+q)又は(Q+q)に増加する。即ち、1つの行(奇数行)の画素に対するデータの書き込は、隣接行(偶数行)の画素の電圧を深くするように働く。厳密に言えば、ここで生じた僅かな電位の違いにより、A、B間に僅かな電荷が容量Cppに残留するが、元の電荷qに対して極めて僅かであるので無視してよい。なお、「電圧が深くなる」とは、画素電極と共通電極との電位差が大きくなることを言う(以下同様)。
【0025】
また、図10(a)及び(c)において奇数行の画素の電荷がそれぞれQ−q、−(Q−q)となっているのは、以下の図11に関する説明で明らかになるように、その1つ前のフレームで図7(d)の状態から図7(a)の状態、又は図7(b)の状態から図7(c)の状態への遷移の影響を受けた結果である。隣接行というのは上記の場合では偶数行であるので、偶数行は本来の階調より電圧が深くかかることになる。
【0026】
同様の考察で図7(b)の状態から図7(c)の状態へ、又は図7(d)の状態から図7(a)の状態へ遷移する場合は、等価回路が図11(b)の状態から図11(c)又は図11(d)の状態から図11(a)の状態へ遷移することとなる。隣接行間の電圧差が現れることにより、画素電極の電荷が容量Cppに移動して隣接した行の画素に対して電圧が浅くなるように働く。「電圧が浅くなる」とは、画素電極と共通電極との電位差が小さくなることを言う(以下同様)。隣接する行とはこの場合奇数行であるので、奇数行は本来の階調より電圧が浅くなってしまうことになる。
【0027】
上記のように、ある電極の隣接電極に、その電極の電圧の極性と同じ極性の電位を書き込む場合には、その電極の電圧は深くなり、一方逆極性の電圧を書き込む場合には、その電極の電圧は浅くなるということである。これが理由で、ノーマリブラックの表示器の場合、奇数行は本来の階調より薄く、偶数行は濃くなることにより、偶数行と奇数行との間で僅かながらの階調差が生じ、これが一行おきの薄い横縞として観測されることになる。
【0028】
図12は、表示器が8行の画素電極及び走査線を含む場合における上記駆動の波形を示す。なお、以下簡略化のため、特に断らない限り、表示器の走査線を8本であるものとする。実際の表示器の走査線の数は例えば726本というように遥かに多いが、駆動の原理は全く同様である。図12において、VP(i,3)及びVP(i,4)は、それぞれ3行目及び4行目の画素電極の電位を表しており、斜線を付した部分がそれぞれの電位の変動部分を示す。
【0029】
上述したように、ある電極の隣接電極に、その電極の電圧の極性と同じ極性の電位を書き込む場合にはその電極の電圧は深くなり、一方逆極性の電圧を書き込む場合にはその電極の電圧は浅くなる。このことは図12に示す波形に反映されている。即ち、奇数行であるVP(i,3)は、連続したフレームで共に電圧が浅くなるように変動し、偶数行であるPV(i,4)は、逆に電圧が深くなるように変動している。
【0030】
なお、画素の電位を変動させる要因として、例えばゲートがオフするときの引き込み電圧等の他の要素も存在するが、それらは本発明には直接関係しないため煩雑を避けるため図示していない(以下同様)。また、電位の変動は視覚的に認識できるよう極めて誇張して記している。実際の電位変動の水準は表示器の特性によるので一概には言えないが、例えば共通電極に対する画素電極電位の約1パーセントというような値である。
【0031】
<区域の境界について>
以下に、表示部を列方向に複数の区域に分割し各区域毎に飛び越し走査を行う方法において、区域の境界が発生する原因を説明する。
【0032】
全画面飛び越し走査によるちらつき(フリッカ)や、動画像画質劣化の防止のために、表示器の画面を列方向に複数の区域に分割し各区域内で飛び越し走査を行う場合、上述した1行おきの薄い横縞の他に、画面上において横縞と異なる輝度パターンによって現れる区域の境界が発生する。
【0033】
例えば図13に示すように、8ラインの画素電極を持つ表示器に対して4ラインを1つの区域(区域1及び2)にし、飛び越し走査を奇数2ラインから偶数2ラインの順番で行う。この場合の各ラインの電圧変動は図14A〜14Dに示される。上述した現象(ある電極の隣接電極に、その電極の電圧の極性と同じ極性の電位を書き込む場合にはその電極の電圧は深くなり、逆極性の電圧を書き込む場合にはその電極の電圧は浅くなる)により、すべてのラインの画素の書き込みが終わった時点(i)及び(q)での各画素電極の電圧は、書き込み電荷±Qによる電圧を基準に以下のようになっている。
【0034】
ライン1:ライン2の影響により、電圧が電荷q分浅くなっている
ライン2:基準電圧
ライン3:ライン2及びライン4の影響により、電圧が電荷2q分浅くなっている
ライン4:ライン5の影響により、電圧が電荷q分浅くなっている
ライン5:ライン6の影響により、電圧が電荷q分浅くなっている
ライン6:基準電圧
ライン7:ライン6及びライン8の影響により、電圧が電荷2q分浅くなっている
ライン8:基準電圧
また、状態(i)及び(q)までの書き込み過程で現れる電圧は、電荷の浅い深いと言う点では、相対的に上記と同じ傾向である。即ち、ライン2、6及び8は深く、ライン1、4及び5は浅く、ライン3及び7は更に浅くなる。
【0035】
上記のライン間の電圧の差をノーマリブラックの表示器の表示として考えると、図14Bに示される[(i)の表示]、及び図14Dに示される[(q)の表示]のような表示となり、上記の一行おきの横縞の他に、淡淡(4,5行目)のパターンが境界として現れる(横縞だけならば、4,5行目は、濃淡のパターンになる)。
【0036】
なお、以上の説明は、先に奇数行の画素にデータを書き、その後偶数行の画素にデータを書く場合について説明したが、偶数行を先に書き、奇数行を後に書いた場合にも生じる問題の原因は同一であるので、説明は省略する。
【0037】
本発明は、低消費電力化を行うために、画面の全部又は一部を飛び越し走査を行う場合でも、以上のような同一列上での隣接画素間の結合容量に基づく画像の表示劣化を防ぎ、横縞及び区域境界のない高品位な表示を実現するためになされたものである。
【0038】
<本発明の基本的なコンセプト>
以上に考察したように、あるフィールドで画面の全部又は一部を飛び越し走査する場合、隣接行の画素の電圧極性が異なる状態から同一の状態になるように変化するときには、その前のフィールドで書き込まれた画素の電圧は深くなるように変化する。また、隣接行の画素の電圧極性が同一の状態から異なる状態に変化するときには、その前のフィールドで書き込まれた画素の電圧は浅くなるように変化する。
【0039】
この事情を考慮し、1行おきの横縞を消去するために、本発明は、ある行の画素があるフレームでは電圧が浅くなるように、そしてそれに続く次のフレームでは電圧が深くなるようにする。このことによって、連続したフレームで画素の電圧の変化が打ち消され、画素には実効値として均等な電圧が印加されることになる。より具体的には、飛び越し走査を行う部分において、あるフレームで、奇数行の画素電極の走査の後に偶数行の画素電極の走査を行うという第1の走査順序で走査する場合は、その次のフレームでは、第1の走査順序とは反対に偶数行の画素電極の走査の後に奇数行の画素電極の走査を行うという第2の走査順序で走査する。即ち、第1の走査順序と第2の走査順序とをフレーム毎に交替させることにより、1行おきの横縞を消去する。
【0040】
一方、区域境界の出現の原因は、境界を挟んだ2つのライン(奇数行と偶数行)間での書き込み順序が、境界前後の区域内の書き込み順序と逆になっていることにある。図13から分かるように、境界前後の区域内の書き込み順序は奇数→偶数であるが、境界を挟む上下ライン(第4ライン及び第5ライン)では、偶数→奇数となっている。このため、区域1の第4ラインを書き込んだ後に、逆の電圧を第5ラインに書き込むため、第4ラインの電圧は浅くなる。この書き込み順序が逆転することにより、本来境界前後のパターン(横縞)と同じはずである境界部のパターンが異なるパターンになり、区域の境界が現れる。図14Bにおける[(i)の表示]、及び図14Dにおける[(q)の表示]に示されるように、本来濃淡であるはずの境界上下のラインが、淡淡となっている。なお、この濃淡が表れる原因は横縞と同じである。
【0041】
上記の考察から、境界部で書き込み順序が逆転しないような走査をすれば、境界部を消去できることが分かる。具体的には、図15(a)及び(b)を参照しながら説明する。図15(a)及び(b)は、1行の画素を1ラインとして示した表示部30(図1)の概略図である。これらの図は、2フレーム((a)のフレーム及び(b)のフレーム)に渡る走査の順序を示す。左端に記した番号は画面上部から順に数えた画素行の番号であり、○内に示した番号は走査の順序を示している。図15(a)に示されるように、境界の上側のライン(第5ライン)をその区域での第1フィールドとし、境界の下側のライン(第6ライン)をその区域での第2フィールドとするように走査をすることにより境界をなくすことができる。例えば、上ラインが区域1の第1フィールドで奇数グループとして走査を行う時、下ラインは区域2の第2フィールドで偶数グループとして走査を行うようにする。又は、図15(b)に示されるように、上ライン(第4ライン)が区域1の第1フィールドで偶数グループとして走査を行う場合、下ライン(第5ライン)は区域2の第2フィールドで奇数グループとして走査を行うようにする。
【0042】
図15に示す方法により境界を消去しても横縞は残るので、それぞれの電圧変動を打ち消すようなもう一つの境界のないフレームを用意し、その2つのフレームを連続して走査することにより横縞も境界もない表示が可能になる。具体的には、上記の境界をなくす走査を行い、且つ走査順序(上記の第1の走査順序と第2の走査順序)が逆であるフレームを連続させる。例えば、図15(a)のフレームと図15(b)のフレームとを連続して走査する。
【0043】
上記のような横縞及び境界をなくすような走査を行っても、片方に隣接行の無い画面の最上位行と最下位行の画素は、他の行より階調が濃くなる。図16A、16B、17A及び17Bは、図15(a)及び(b)に示す駆動を行う時の電荷の動きを示す。すべてのラインの書き込みが終わった時点、図16Bにおける(i)と図17Bにおける(i)と、の電荷を足し算すると、第2ラインから第7ラインは+2qとなるが、第1ラインと第8ラインは+qとなっている。このことにより図15(a)のフレームと図15(b)のフレームとを交互に連続して走査する場合、第1ラインと第8ラインは他のラインより階調が濃くなることがわかる。
【0044】
上記の現象に対して、表示部の上下両端の行に、マスクを掛けこれらの行が見えなくなるようにすることで、全面に渡って階調差のない画面を実現できる。例えばVGAの場合は、482行の表示部を用意し、上下両端の行にマスクを掛けることにより、均一な480行の画面を得ることができる。
(第1の実施形態)
以下に、本発明による能動行列型液晶表示器の駆動方法の第1の実施形態を詳細に説明する。本発明における能動行列型液晶表示器は、図1に示す構成と基本的に同様な構成を有し、その説明を省略する。
【0045】
本実施形態の能動行列型液晶表示器の駆動方法を、図15(a)及び(b)を参照しながら説明する。まず(a)のフレームで、最初の区域(区域1)の第1、3及び5行の奇数行を走査し(第1フレーム第1区域第1フィールド)、次に第2及び4行の偶数行を走査する(第1フレーム第1区域第2フィールド)。次に区域2の第7行の奇数行を走査し(第1フレーム第2区域第1フィールド)、次に偶数行の第6及び8行を走査する(第1フレーム第2区域第2フィールド)。次の(b)のフレームでは、逆に、第2及び4行の偶数行を先に走査し(第2フレーム第1区域第1フィールド)、次ぎに第1及び3行の奇数行を走査する(第2フレーム第1区域第2フィールド)。次の区域(区域2)の第6及び8行の偶数行を走査し(第2フレーム第2区域第1フィールド)、次に奇数行の第5及び7行を走査する(第2フレーム第2区域第2フィールド)。
【0046】
次に、図16A及び16B並びに図17A及び17Bを参照しながら、上記の走査における画素電圧の極性の状態遷移を説明する。第1フレーム第1区域第1フィールドでは、第1、3及び5行の画素の電圧は正から負へ変化する。従って、隣接行(第2、4及び6行)の画素が第1、3及び5行の画素に対して異なる極性から同一極性の同一電位になるので、その前のフィールドで書かれた第2、4及び6行の画素の電圧は深くなる(実際には、浅くなっていた電位が元に戻る)。第1フレーム第1区域第2フィールドでは、第2、4行の画素電圧が負から正へ変化する。従って、隣接行(第1、3及び5行)の画素が同じ極性の同一電位から異なる極性になるので、その前のフィールドで書かれた第1、3及び5行の電圧が浅くなる。同様に、第1フレーム第2区域第1フィールドでは、同一極性への遷移なのでその前のフレームで書かれた第6及び8行の電位が深くなり(実際には、浅くなっていた電位が元に戻る)、第1フレーム第2区域第2フィールドでは、逆極性への遷移なので第5及び7行の画素電位が浅くなる。
【0047】
第2フレーム第1区域第1フィールドでは、隣接する行の画素の電位が同一極性への遷移なのでその前のフレームで書かれた第1、3及び5行が深くなり(実際には、浅くなっていた電位が元に戻る)、第2フレーム第1区域第2フィールドでは、隣接する行の画素の電位が逆極性への遷移なので第2及び4行の画素電位が浅くなる。第2フレーム第2区域第1フィールドでは、隣接する行の画素の電位が同一極性への遷移なのでその前のフレームで書かれた第5及び7行が深くなり(実際には、浅くなっていた電位が元に戻る)、第2フレーム第2区域第2フィールドでは、隣接する行の画素の電位が逆極性への遷移なので第4、6及び8行の画素電位が浅くなる。
【0048】
このように2つのフレームを交互に連続して走査することにより、奇数・偶数行での階調への影響は同一となり横縞及び境界は発生しなくなる。但し、最上位及び最下位行については、下ライン又は上ラインからの影響しか受けないため、他のラインより階調への影響は深くなり、階調は濃くなる。
【0049】
図18は、上記の駆動の波形を示す。奇数行の画素P(i,3)も偶数行の画素P(i,4)も共に、その負の時限における電位(VP(i,3)及びVP(i,4))が浅くなるように変動している。このため、奇数・偶数行での階調への影響は同一であり横縞が発生しなくなる。
【0050】
しかし、本実施形態は、図18のように正極性と負極性との駆動時間が異なっているため、平均値としては僅かながら直流が印加されることになる。しかしそれが直ぐ実用レベルでの問題となるわけではない。平均値としての直流が印加されても僅かの電圧であれば液晶の不可逆的な破壊には至らない。例えば残像が生じやすくなる等の問題が生じるが、それが実用的なレベルから見て問題がなければ構わないからである。その意味で、本実施形態は、表示器の使用目的によっては使用上十分なレベルの実用性を有する。
【0051】
なお、以上の説明では、分りやすくするために、全画面が同一階調を表示する場合について説明している。隣接行の画素の階調が異なる場合には、結合容量Cppには常に電荷が残ることになるが、同様の機構によって電荷の移動が生じ、本来の階調から僅かに異なってしまうことは同様である。以下の説明でも、全画面が同一階調を表示する場合を説明する。
(第2の実施形態)
以下に、本発明による能動行列型液晶表示器の駆動方法の第2の実施形態を説明する。本実施形態において、第1フレーム及び第2フレームの走査順序は第1の実施形態の場合と同一として、第3フレーム及び第4フレームは、第1フレーム及び第2フレームの場合と逆な走査順序にする。即ち、第3フレームでは偶数行を先に奇数行を後に走査し、第4フレームでは奇数行を先に偶数行を後に走査する。このような連続する4つのフレームの走査順序は図19(a)〜(d)に示されている。
【0052】
図20は上記駆動の波形を示す。図20に示されるように、3行目の画素P(i,3)の電圧VP(i,3)の正極性部(T(+)、T(+))及び負極性部(T(−)、T(−))の実効値は、それぞれ4行目の画素P(i,4)の電圧VP(i,4)の正極性部(T(+)、T(+))及び負極性部(T(−)、T(−))の実効値とほぼ等しくなる。従って(交流の)実効値としてはほぼ同一となり階調の差は生じず横縞及び境界は発生しない。
【0053】
なお、フレーム間での隣接行の書き込みタイミングは、図20に示すようにそれぞれの行間で異なるので、電圧浅深部の面積が行間で僅かに異なり実効値の違いが生じる。しかし、この違いは4つのフレームで数q程度なので、行間の実効値はほぼ同一であるとみてよい。例えば、図20に示す駆動の場合、3行目の画素と4行目の画素との電荷実効値の差は、4つのフレームで2qである。ここでqは、隣接電極から影響を受け移動する電荷量を示す。この走査をVGAで行った場合、3行目と4行目の画素の電荷の差は、約2000水平時間で2qとなり、4フレームでの電荷の差は、非常に小さな値となる。
【0054】
本実施形態が第1の実施形態より優れている点は、4つのフレームを1つの周期として、奇数行の画素も偶数行の画素も、正極性である時間と負極性である時間が同じになる点にある。画素P(i,3)及び画素P(i,4)は共に、T(+)とT(+)を加えた時間がT(−)とT(−)を加えた時間と等しくなるからである。従って、平均値としての直流電圧の印加を防ぐための液晶の交流駆動を犠牲にすることなく、横縞の発生を防ぐことができる。ただし、この場合も表示部の最上位及び最下位行画素の階調が濃くなる現象は残る。なお、1フレームの時間を1/60秒とすると、4フレームでの周期は1/15秒となるが、いまここで問題にしている電圧差は極めて僅かであるので、このことによりちらつきが発生することはない。
(第3の実施形態)
本発明の第3の実施形態では、上記第1及び第2の実施形態において残る画面の上下両端の行の横縞を無くす方法に関する。なお、表示器の駆動方法は上記第1又は第2の実施形態の方法と同一であるのでその説明を省略する。
【0055】
本実施形態によれば、表示部は、図21に示すように、必要行数(8行)にプラス2行の画素を含んでいる。上下両端の行(第1及び10行)の画素は、マスク50に覆われ遮光されている。この構成によって、画面の上下両端の行による横縞が見えなくなる。この上下両端の2行の画素に書き込むデータは、画面に表示するデータである必要がないので特に規定しない。なお、マスク50の材料としては、例えばタンタル、チタン及びアルミ等のような遮光効果のある材料を用いればよい。
【0056】
また、マスク50を用いる代わりに、上下両端の行に常時黒データを表示させることにより、これらの行を実際に表示に寄与する部分から隔離し、マスク50を掛けるのと同じ効果が得られる。この上下両端の行に表示するデータは、一様なデータであればよく、必ずしも黒データである必要はない。
【0057】
なお、図21では、画面サイズ8行にマスク50に覆われている2行を足して10行としたが、前にも述べたように、実際の表示器の画素の行数は遥かに多く、その場合にも本発明が適応できることは言うまでもない。
【0058】
【発明の効果】
表示部を列方向に複数の区域に分割し、各区域毎に飛び越し走査を行うことにより、消費電力が低減されると同時に、ちらつき(フリッカ)や動きの大きい動画像の画質劣化を抑えることができる。
【0059】
それに加えて、本発明では、複数の区域内の画素電極及び複数の区域の境界を挟む画素電極を、あるフレームで奇数行(又は偶数行)の画素電極を走査した後に偶数行(又は奇数行)の画素電極を走査する場合、その次のフレームでは偶数行(又は奇数行)の画素電極を走査した後に奇数行(又は偶数行)の画素電極を走査するという駆動方法を行う。このことにより、1行おきの横縞及び、区域の境界の発生を防止することができる。
【図面の簡単な説明】
【図1】液晶表示器の概念図
【図2】行反転方式の画素電圧の極性分布と遷移を示す図
【図3】画素反転方式の画素電圧の極性分布と遷移を示す図
【図4】TFTと画素の最も単純化した等価回路図
【図5】TFT液晶表示器の駆動タイミングと画素電圧の波形を示す図
【図6】データ線の等価回路図
【図7】(a)〜(d)は飛び越し走査するときの画素電圧の極性の状態遷移を示す図
【図8】同一列上の連続した画素電極を示す図
【図9】(a)及び(b)は同一列上の連続した画素電極の等価回路図
【図10】(a)〜(d)は奇数行の画素が充電されるときの等価回路の状態変化を示す図
【図11】(a)〜(d)は偶数行の画素が充電されるときの等価回路の状態変化を示す図
【図12】表示品質の劣化が生じる場合の表示器の駆動波形を示す図
【図13】区域の境界が生じる場合の走査順序を示す図
【図14A】区域の境界が生じる場合の画素電圧の極性の状態遷移を示す図
【図14B】図14Aの続きであり、区域の境界が生じる場合の画素電圧の極性の状態遷移を示す図
【図14C】図14Bの続きであり、区域の境界が生じる場合の画素電圧の極性の状態遷移を示す図
【図14D】図14Cの続きであり、区域の境界が生じる場合の画素電圧の極性の状態遷移を示す図
【図15】(a)及び(b)は、本発明の1実施形態における区域の境界と横縞がない場合の走査順序を示す図
【図16A】本発明の1実施形態における区域の境界と横縞がない場合の、画素電圧の極性の状態遷移を示す図
【図16B】図16Aの続きであり、区域の境界と横縞がない場合の画素電圧の極性の状態遷移を示す図
【図17A】本発明の1実施形態における区域の境界と横縞がない場合の、画素電圧の極性の状態遷移を示す図
【図17B】図17Aの続きであり、区域の境界と横縞がない場合の画素電圧の極性の状態遷移を示す図
【図18】本発明の1実施形態の駆動波形を示す図
【図19】(a)〜(d)は本発明の他の実施形態における走査順序を示す図
【図20】本発明の他の実施形態における駆動波形を示す図
【図21】本発明における表示部の1実施形態を示す図
【符号の説明】
30 表示部
32 走査駆動器(ゲートドライバ)
34 データ駆動器(データドライバ)
36 共通電極
38 制御部
40 ゲート電圧発生回路
42 階調電圧発生回路
44 共通電極駆動回路
50 マスク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an active matrix type (active matrix type) liquid crystal display typified by a TFT (thin film transistor) type liquid crystal display and a driving method thereof, and in particular, a display device of a portable device or the like which requires low power consumption. The present invention relates to an active matrix type liquid crystal display used as a device and a driving method thereof.
[0002]
[Prior art]
FIG. 1 is a conceptual diagram of a liquid crystal display. The liquid crystal display includes an active matrix substrate, a counter substrate, and a liquid crystal layer sandwiched therebetween. On the active matrix substrate, as shown in FIG. 1, a display unit 30 including a plurality of pixel electrodes P arranged in a matrix, and a plurality of rows for applying a scanning signal (gate voltage) to the plurality of pixel electrodes P. An electrode (scanning line or gate electrode) G, a plurality of column electrodes (source electrodes) S for applying a data signal (grayscale voltage) to the plurality of pixel electrodes P, a pixel electrode P, a row electrode G, and a column electrode S , A scan driver (gate driver) 32 for driving the row electrodes G, and a data driver (data driver) 34 for driving the column electrodes S. The common electrode 36 is formed on the counter substrate.
[0003]
The scan driver 32 is controlled by the control unit 38 and receives a gate voltage from the gate voltage generation circuit 40. The data driver 34 is controlled by the control unit 38 and receives a gray scale voltage from the gray scale voltage generation circuit 42. The common electrode 36 is driven by receiving the common electrode voltage Vcom from the common electrode drive circuit 44.
[0004]
When driving the above active matrix type liquid crystal display, generally, the polarity of the voltage applied to the liquid crystal is alternately inverted (this is called “AC driving of the liquid crystal”) so that no DC voltage is applied to the liquid crystal. Have been devised. This is because the liquid crystal has a property that the characteristics are deteriorated when a DC voltage is applied. The most widely used method of AC driving of a liquid crystal in the past is the row inversion method (also called “line inversion method”) shown in FIG. According to this method, the polarity of the voltage applied to the liquid crystal is inverted for each row (scanning line) and for each frame. When the polarity inversion for each row is added to the polarity inversion for each row, the pixel inversion method (also referred to as “dot inversion”) shown in FIG. The pixel inversion method is becoming mainstream especially for driving a large and high-definition display device of XGA type or higher due to its high display quality.
[0005]
FIG. 4 shows an equivalent circuit corresponding to the simplest one pixel P (i, j). The capacitance of the pixel is mainly composed of the pixel electrode and the auxiliary electrode (additional electrode). In FIG. 4, the total capacitance is Cp.
[0006]
FIG. 5 shows the drive timing of each part of the display shown in FIG. 1 and the applied voltage waveform. In FIG. 5, Vsyn and Hsyn represent a vertical synchronization signal and a horizontal synchronization signal, respectively. When the output VG (j) of the scan driver corresponding to the j-th row becomes high potential, the switch element T (i, j) corresponding to the pixel P (i, j) in the j-th row is turned on, and the pixel P (i) , J) are charged by the output S (i) of the data driver at that time. When VG (j) becomes low potential, the switching element T (i, j) is turned off, and the electric charge charged to the pixel P (i, j) continues until T (i, j) is turned on. During the storage, the liquid crystal filled between the pixel electrode and the common electrode is continuously driven. In FIG. 5, the number assigned to the horizontal synchronization signal indicates a horizontal period in which the image signal for the pixel of the row of the number is transmitted. Since the data driver samples and stores the data in the first row and outputs the data in the next horizontal period, the scanning driver in the corresponding row sets the output to a high potential only in the horizontal period during which data is transmitted. One horizontal period later.
[0007]
FIG. 6 shows an equivalent circuit of one data line of the liquid crystal display. Cd and Rd respectively indicate the capacitance and resistance of the data line represented by a lumped constant, Cp indicates the pixel capacitance, and Ron indicates the on-resistance of the switch element. Although the circuit of FIG. 6 becomes a load for one output of the data driver, the pixel capacitance Cp is smaller by two to three orders of magnitude than the data line capacitance Cd, and thus can be ignored as a load of the driver. Therefore, it is sufficient to consider the data line resistance Rd and the data line capacitance Cd as the load of the driver. By the way, the circuit of FIG. 6 exists in a one-to-one correspondence with the output of the data driver, and the entire display is, for example, a VGA type which has a relatively medium resolution at present, if it is a color display. There are 640 × 3 = 1920 lines, and the load of the data driver as a whole becomes considerably large. In a row inversion method or a pixel inversion method in which the output of the data driver needs to be inverted for each scanning line, the power consumption increases because the capacitor Cd is charged and discharged between positive and negative polarities for each output operation. Problem arises.
[0008]
As one method for preventing the above increase in power consumption, Japanese Patent Application Laid-Open No. 8-32067 proposes interlaced scanning. "Interlaced scanning" refers to scanning all the odd-numbered (or even-numbered) pixel electrodes first, and then scanning the remaining even-numbered (or odd-numbered) pixel electrodes. In this method, the rows of pixels having the same polarity are sequentially scanned, so that the increase in the power consumption can be suppressed. When scanning of one frame (that is, scanning of both odd and even rows) is completed, a state similar to that in FIG. 2 or FIG. 3 is obtained.
[0009]
[Problems to be solved by the invention]
However, new problems associated with the above-described interlaced scanning include a flicker that cannot be ignored sometimes, a deterioration in the image quality of a moving image having a large motion, and a slight problem caused by the influence of the coupling capacitance between the pixel electrodes between adjacent rows. This is the occurrence of slight horizontal stripes due to the difference in gradation.
[0010]
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the image quality such as flicker or the gradation between adjacent rows even when using a driving method of performing interlaced scanning on pixel electrodes. It is an object of the present invention to provide an active matrix type liquid crystal display capable of achieving high display quality and low power consumption without causing horizontal stripes due to the difference between the above and a driving method thereof.
[0011]
[Means for Solving the Problems]
The driving method of the active matrix type liquid crystal display according to the present invention comprises a plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scanning signal to the same row of pixel electrodes, and a plurality of pixel electrodes in the same column. A plurality of column electrodes each providing a data signal to the display section, and a plurality of continuous row electrodes in at least a first section of the display section and a second section adjacent to the first section. For a plurality of continuous row electrodes, after sequentially scanning either one of the odd-numbered rows or the even-numbered rows, the other row electrodes of the odd-numbered rows or the even-numbered rows are sequentially scanned in the same direction. A method of driving an active matrix liquid crystal display in which interlaced scanning is performed for each frame, wherein a scanning order of the interlaced scanning performed in each of the first and second areas in a second frame is defined as a first frame. At Serial respectively the odd and even rows of the scanning order of the interlace scanning for the opposite takes place in the first and second zones.
[0012]
The positions of the boundaries of the row electrodes in the first area and the second area are different between the first frame and the second frame.
[0013]
The active matrix type liquid crystal display according to the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes respectively providing scan signals to the same row of pixel electrodes, and a plurality of pixel electrodes in the same column. A display section provided with a plurality of column electrodes each providing a data signal; a plurality of continuous row electrodes in at least a first section of the display section; and a plurality of continuous row electrodes in a second section adjacent to the first section. For the row electrodes, respectively, after sequentially scanning either one of the odd-numbered rows or the even-numbered rows, the interlaced scanning of sequentially scanning the other row electrodes of the odd-numbered rows or the even-numbered rows in the same direction, An active matrix type liquid crystal display having a scan driver for each frame, wherein the scan driver performs a scan order of the interlaced scan performed in each of the first and second areas in a second frame. The first frame Is adapted to the opposite of the odd and even rows of the scanning order of the interlaced scanning is performed in said first and second zones in arm.
[0014]
The scan driver causes a position of a boundary between row electrodes in the first area and the second area to be different between the first frame and the second frame.
[0015]
The pixel electrodes in the uppermost row and the lowermost row of the display section are covered with a light shielding mask.
[0016]
Black data is displayed on the pixel electrodes in the uppermost row and the lowermost row of the display unit.
[0017]
The driving method of the active matrix type liquid crystal display according to the present invention comprises a plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scanning signal to the same row of pixel electrodes, and a plurality of pixel electrodes in the same column. And a display unit provided with a plurality of column electrodes each of which applies a data signal to the display unit, such that three or more areas each having a plurality of continuous row electrodes are adjacent to each other. It is provided side by side, for each of a plurality of continuous row electrodes of each area, after sequentially scanning one of the odd-numbered rows or even-numbered row electrodes, respectively, the other of the odd-numbered rows or even-numbered rows A method of driving an active matrix type liquid crystal display, in which interlaced scanning for sequentially scanning row electrodes in the same direction is performed continuously in the order in which each area is arranged for each frame, wherein each area is arranged in a second frame. Done at The interlaced scanning order of the scanning, to oppose said odd and even rows of the scanning order of the interlaced scanning is performed in each zone in the first frame that.
[0018]
The active matrix type liquid crystal display according to the present invention includes a plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes respectively providing scan signals to the same row of pixel electrodes, and a plurality of pixel electrodes in the same column. A display unit provided with a plurality of column electrodes each providing a data signal, and at least three areas each having a plurality of continuous row electrodes are provided so as to be adjacent to each other; After sequentially scanning one of the odd-numbered rows or the even-numbered rows, the other row electrodes of the odd-numbered rows or the even-numbered rows in the same direction are sequentially scanned with respect to the plurality of continuous row electrodes of the respective sections. An active matrix type liquid crystal display having a scanning driver for performing interlaced scanning for scanning in order, in which each area is lined up for each frame, in succession, in the second frame. Each of the above The scanning order of the interlaced scanning, respectively carried out in frequency, which is the the odd and even rows of the scanning order of the interlaced scanning is performed in each zone in the first frame to be reversed.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
As a countermeasure against flicker and image quality deterioration due to the above-described interlaced scanning, a method has been proposed in which the display unit is divided into a plurality of sections in the column direction and interlaced scanning is completed for each area. Japanese Patent Application No. Hei 10-161199). With this method, power consumption can be reliably reduced, and flickering and image quality deterioration of a moving image having large motion can be suppressed. However, the gradation is slightly different between the odd-numbered rows and the even-numbered rows, and the phenomenon that slight horizontal stripes are generated every other row still remains, and a new problem occurs in that the boundary of each area occurs.
[0020]
The reason why the above problem occurs will be described below. In the following description, the polarity of the pixels in the same row will be described in a row inversion mode in which the polarity is the same. However, in the pixel inversion mode, only the polarity is inverted for each column, and the content of the description can be applied as it is. The description of the pixel inversion mode is omitted.
[0021]
<About horizontal stripes every other line>
FIGS. 7A to 7D show the state transition of the voltage polarity when the pixel electrode is skipped and scanned. FIG. 7A shows a state immediately before a new frame starts. At this time, the voltage polarity of each pixel is in a row inversion state. By scanning only the odd-numbered rows from here, the voltage polarities of the pixels in the odd-numbered rows are inverted, and the state shifts to the state shown in FIG. Next, by scanning the even-numbered rows, the voltage polarities of the pixels in the even-numbered rows are inverted, and the state shifts to the state shown in FIG. The state in FIG. 7C is a state in which scanning of one frame is completed. In the next frame, the state shifts to the state of FIG. 7A via the state of FIG. 7D in the same manner (however, the polarity is reversed).
[0022]
FIG. 8 shows four (that is, over four rows) pixel electrodes P adjacent in the column direction (TFT switch elements are omitted). Since a scanning line (gate line) exists between the pixel electrodes P and the sides in the scanning line direction are parallel, a coupling capacitance Cpp exists between adjacent pixel electrodes. The charge is held in the coupling capacitance Cpp by the voltage difference V between the two adjacent pixel electrodes, and the magnitude of the charge is a function of the voltage difference V, and is 0 when V = 0, and V (Where V ≧ 0). Since the dielectric constant of the liquid crystal changes depending on the alignment state, the coupling capacitance Cpp itself is also a function of the voltage difference V.
[0023]
FIGS. 9A and 9B respectively show the case where charge is generated in the coupling capacitance Cpp and the case where charge is not generated in the coupling capacitance Cpp (that is, all four pixel electrodes shown in FIG. 8 are at the same potential). 4 shows an equivalent circuit of four pixel electrodes. It is assumed that the same data is written on the entire screen. Note that “writing data” means charging a pixel electrode with a voltage corresponding to data (the same applies hereinafter).
[0024]
When transitioning from the state of FIG. 7A to the state of FIG. 7B and transitioning from the state of FIG. 7C to the state of FIG. 7D, charges due to the coupling capacitance Cpp appear. The state changes from the existing state to the disappearing state. For simplicity, the effect between pixels in two adjacent rows will be described with reference to FIGS. When the pixels in the odd rows are written while the switch elements A in the even rows are open, the moving state of the electric charges is from FIG. 10A to FIG. 10B or from FIG. 10C to FIG. ). Since the switch element A in the even-numbered row remains open, the electric charge of −q or + q captured by the capacitance Cpp moves to the pixel electrode in the even-numbered row due to the disappearance of the voltage difference between both ends of the capacitance Cpp. The charge of the pixel electrode increases to-(Q + q) or (Q + q). That is, writing data to the pixels in one row (odd-numbered row) acts to increase the voltage of the pixels in the adjacent row (even-numbered row). Strictly speaking, due to the slight potential difference generated here, a small amount of charge remains between the capacitors A and B between the capacitors A and B, but can be ignored because it is extremely small with respect to the original charge q. Note that “deeper voltage” means that the potential difference between the pixel electrode and the common electrode becomes larger (the same applies hereinafter).
[0025]
In addition, in FIGS. 10A and 10C, the charges of the pixels in the odd-numbered rows are Qq and − (Qq), respectively, as will be apparent from the following description of FIG. This is the result of the influence of the transition from the state of FIG. 7D to the state of FIG. 7A or the state of FIG. 7B to the state of FIG. . Since the adjacent row is an even row in the above case, a voltage is applied to the even row deeper than the original gradation.
[0026]
When the state of FIG. 7B is changed from the state of FIG. 7B to the state of FIG. 7C or the state of FIG. 7D is changed to the state of FIG. ) From the state of FIG. 11 (c) or FIG. 11 (d) to the state of FIG. 11 (a). The appearance of a voltage difference between adjacent rows causes the electric charge of the pixel electrode to move to the capacitance Cpp, and acts to lower the voltage for the pixels in the adjacent row. “The voltage becomes shallow” means that the potential difference between the pixel electrode and the common electrode becomes small (the same applies hereinafter). In this case, the adjacent row is an odd-numbered row, so that the voltage of the odd-numbered row becomes shallower than the original gradation.
[0027]
As described above, when a potential having the same polarity as the voltage of the electrode is written to an electrode adjacent to a certain electrode, the voltage of the electrode becomes deep. Voltage becomes shallower. For this reason, in the case of a normally black display, the odd-numbered rows are thinner than the original gradations, and the even-numbered rows are darker, so that a slight gradation difference occurs between the even-numbered rows and the odd-numbered rows. It will be observed as thin horizontal stripes every other line.
[0028]
FIG. 12 shows the driving waveforms when the display includes eight rows of pixel electrodes and scanning lines. In the following, for the sake of simplicity, it is assumed that the display has eight scanning lines unless otherwise specified. Although the number of scanning lines of an actual display is much larger, for example, 726, the principle of driving is exactly the same. In FIG. 12, VP (i, 3) and VP (i, 4) represent the potentials of the pixel electrodes in the third and fourth rows, respectively. Show.
[0029]
As described above, when a potential having the same polarity as that of the voltage of the electrode is written to an electrode adjacent to a certain electrode, the voltage of the electrode becomes deeper, while when a voltage of the opposite polarity is written, the voltage of the electrode becomes higher. Becomes shallower. This is reflected in the waveform shown in FIG. That is, VP (i, 3), which is an odd row, changes so that the voltage becomes shallower in successive frames, and PV (i, 4), which is an even row, changes so that the voltage becomes deeper. ing.
[0030]
Note that other factors, such as a pull-in voltage when the gate is turned off, also exist as a factor that causes the potential of the pixel to fluctuate. Similar). In addition, the fluctuation of the potential is extremely exaggerated for visual recognition. Although the actual level of the potential fluctuation depends on the characteristics of the display and cannot be unconditionally determined, it is, for example, about 1% of the pixel electrode potential with respect to the common electrode.
[0031]
<About the boundaries of the area>
Hereinafter, a description will be given of a cause of the occurrence of the boundary of the area in the method of dividing the display unit into a plurality of areas in the column direction and performing interlaced scanning for each area.
[0032]
When the screen of the display is divided into a plurality of areas in the column direction and interlaced scanning is performed in each area in order to prevent flickering (flicker) due to interlaced scanning and deterioration of moving image quality, the above-mentioned every other row is used. In addition to the light horizontal stripes, boundaries of areas appearing on the screen by a luminance pattern different from the horizontal stripes are generated.
[0033]
For example, as shown in FIG. 13, four lines are made into one area (areas 1 and 2) for a display having eight lines of pixel electrodes, and interlaced scanning is performed in the order of odd two lines to even two lines. The voltage fluctuation of each line in this case is shown in FIGS. The above-mentioned phenomenon (when a potential having the same polarity as the voltage of the electrode is written to an electrode adjacent to a certain electrode, the voltage of that electrode becomes deep, and when a voltage of the opposite polarity is written, the voltage of that electrode becomes shallow. Accordingly, the voltages of the respective pixel electrodes at the time points (i) and (q) at which the writing of the pixels of all the lines is completed are as follows based on the voltage due to the writing charge ± Q.
[0034]
Line 1: The voltage is shallow by the charge q due to the influence of line 2.
Line 2: Reference voltage
Line 3: The voltage is reduced by the charge of 2q due to the influence of the lines 2 and 4.
Line 4: Due to the influence of line 5, the voltage becomes shallower by charge q.
Line 5: Due to the influence of line 6, the voltage becomes shallower by charge q.
Line 6: Reference voltage
Line 7: The voltage is reduced by the charge of 2q due to the influence of lines 6 and 8.
Line 8: Reference voltage
The voltages appearing in the writing process up to states (i) and (q) have the same tendency as described above in that the charge is shallow and deep. That is, lines 2, 6 and 8 are deep, lines 1, 4 and 5 are shallow, and lines 3 and 7 are even shallower.
[0035]
Considering the voltage difference between the above lines as a display of a normally black display, [display of (i)] shown in FIG. 14B and [display of (q)] shown in FIG. 14D The display is displayed, and in addition to the horizontal stripes every other line, a light and light (4th and 5th lines) pattern appears as a boundary (if only horizontal stripes are present, the 4th and 5th lines become dark and light patterns).
[0036]
The above description has been given of the case where data is first written to the odd-numbered rows of pixels, and then the data is written to the even-numbered rows of pixels. However, this also occurs when the even-numbered rows are written first and the odd-numbered rows are written later. Since the cause of the problem is the same, the description is omitted.
[0037]
The present invention prevents display deterioration of an image based on the coupling capacitance between adjacent pixels on the same column as described above even when performing interlaced scanning of the entire screen or a part of the screen in order to reduce power consumption. This is intended to realize a high-quality display without horizontal stripes and area boundaries.
[0038]
<Basic concept of the present invention>
As discussed above, when all or part of the screen is interlacedly scanned in a certain field, when the voltage polarity of the pixels in the adjacent row changes from a different state to the same state, writing is performed in the previous field. The voltage of the shifted pixel changes to be deeper. When the voltage polarity of the pixels in the adjacent row changes from the same state to a different state, the voltage of the pixel written in the previous field changes so as to be shallow.
[0039]
In view of this situation, in order to eliminate the horizontal stripes in every other row, the present invention makes the voltage of a row of pixels low in one frame and the voltage of the next frame increases in the next frame. . As a result, the change in the voltage of the pixel is canceled in the consecutive frames, and a uniform voltage is applied to the pixel as an effective value. More specifically, in a part where interlaced scanning is performed, in a certain frame, when scanning is performed in the first scanning order in which scanning of odd-numbered pixel electrodes is performed after scanning of odd-numbered pixel electrodes in a certain frame, In the frame, scanning is performed in a second scanning order in which scanning of odd-numbered pixel electrodes is performed after scanning of even-numbered pixel electrodes in the opposite order to the first scanning order. That is, the first scanning order and the second scanning order are alternated for each frame, thereby eliminating horizontal stripes every other row.
[0040]
On the other hand, the cause of the appearance of the area boundary is that the writing order between two lines (odd and even lines) sandwiching the boundary is opposite to the writing order in the area before and after the boundary. As can be seen from FIG. 13, the order of writing in the area before and after the boundary is odd → even, but the upper and lower lines (fourth and fifth lines) sandwiching the boundary are even → odd. For this reason, after writing the fourth line of the area 1, the opposite voltage is written to the fifth line, so that the voltage of the fourth line becomes shallower. By reversing the writing order, the boundary pattern, which should be the same as the pattern (horizontal stripe) before and after the boundary, becomes a different pattern, and the boundary of the area appears. As shown in [display of (i)] in FIG. 14B and [display of (q)] in FIG. 14D, the lines above and below the boundary, which should be originally shaded, are shaded. Note that the cause of this shading is the same as that of horizontal stripes.
[0041]
From the above considerations, it can be seen that the boundary can be erased by performing scanning so that the writing order is not reversed at the boundary. Specifically, description will be made with reference to FIGS. FIGS. 15A and 15B are schematic diagrams of the display unit 30 (FIG. 1) showing one row of pixels as one line. These figures show the order of scanning over two frames (frame (a) and frame (b)). The numbers written on the left end are the numbers of the pixel rows counted in order from the top of the screen, and the numbers shown in circles indicate the order of scanning. As shown in FIG. 15A, the line above the boundary (fifth line) is the first field in the area, and the line below the boundary (sixth line) is the second field in the area. The boundary can be eliminated by scanning as follows. For example, when the upper line scans as an odd group in the first field of area 1, the lower line scans as an even group in the second field of area 2. Alternatively, as shown in FIG. 15B, when the upper line (fourth line) is scanned as an even group in the first field of the area 1, the lower line (fifth line) is scanned in the second field of the area 2 To perform scanning as an odd group.
[0042]
Even if the boundaries are erased by the method shown in FIG. 15, horizontal stripes remain, so another frame without boundaries that cancels out the respective voltage fluctuations is prepared, and by scanning the two frames continuously, the horizontal stripes are also removed. A display without borders becomes possible. More specifically, scanning for eliminating the above-described boundary is performed, and frames in which the scanning order (the first scanning order and the second scanning order described above) are reversed are continued. For example, the frame of FIG. 15A and the frame of FIG. 15B are continuously scanned.
[0043]
Even when scanning is performed to eliminate horizontal stripes and boundaries as described above, the uppermost row and the lowermost row of pixels of a screen having no adjacent row on one side have a higher gradation than the other rows. FIGS. 16A, 16B, 17A and 17B show the movement of the electric charges when the driving shown in FIGS. 15A and 15B is performed. At the time when the writing of all the lines is completed, by adding the charges of (i) in FIG. 16B and (i) in FIG. 17B, the second line to the seventh line become + 2q, but the first line and the eighth line The line is + q. Thus, when the frame of FIG. 15A and the frame of FIG. 15B are alternately and continuously scanned, it can be understood that the first line and the eighth line have a higher gradation than the other lines.
[0044]
In response to the above-mentioned phenomenon, masks are applied to the upper and lower rows of the display unit so that these rows become invisible, thereby realizing a screen having no gradation difference over the entire surface. For example, in the case of a VGA, a display section of 482 lines is prepared, and masks are applied to both upper and lower lines, whereby a uniform screen of 480 lines can be obtained.
(1st Embodiment)
Hereinafter, a first embodiment of a method of driving an active matrix type liquid crystal display according to the present invention will be described in detail. The active matrix type liquid crystal display of the present invention has a configuration basically similar to the configuration shown in FIG. 1, and a description thereof will be omitted.
[0045]
A method of driving the active matrix type liquid crystal display of the present embodiment will be described with reference to FIGS. First, in the frame of (a), the first, third and fifth odd lines of the first area (area 1) are scanned (first field, first area, first field), and then the even numbers of the second and fourth lines are scanned. Scan the row (first frame, first area, second field). Next, the odd-numbered row of the seventh row in the section 2 is scanned (first field, second section, first field), and then the sixth and eighth rows of the even-numbered row are scanned (first frame, second section, second field). . Conversely, in the next frame (b), the even rows of the second and fourth rows are scanned first (first field, first field of the second frame), and then the odd rows of the first and third rows are scanned. (Second frame, first area, second field). The even and sixth rows of the next area (area 2) are scanned (first field of the second area in the second frame), and then the fifth and seventh rows of the odd number are scanned (second frame of the second frame). Area second field).
[0046]
Next, the state transition of the polarity of the pixel voltage in the above scanning will be described with reference to FIGS. 16A and 16B and FIGS. 17A and 17B. In the first field, the first area, and the first field, the voltages of the pixels in the first, third, and fifth rows change from positive to negative. Therefore, the pixels in the adjacent rows (second, fourth, and sixth rows) have the same potential from the different polarity to the same potential with respect to the pixels in the first, third, and fifth rows. The voltages of the pixels in rows 4, 4 and 6 become deeper (actually, the potential that has become shallower returns). In the first field, first area, second field, the pixel voltages of the second and fourth rows change from negative to positive. Therefore, since the pixels in the adjacent rows (first, third and fifth rows) have different polarities from the same potential having the same polarity, the voltages of the first, third and fifth rows written in the previous field become shallower. Similarly, in the first field of the second area of the first frame, since the transition is to the same polarity, the potentials of the sixth and eighth rows written in the previous frame become deeper (actually, the potential that became shallower becomes the original). In the second field of the second area of the first frame, since the transition is to the opposite polarity, the pixel potentials of the fifth and seventh rows become shallower.
[0047]
In the first field of the first area of the second frame, since the potentials of the pixels in the adjacent rows transition to the same polarity, the first, third and fifth rows written in the previous frame become deeper (actually, shallower). In the second field, the first field and the second field of the second frame, the potentials of the pixels in the adjacent rows transition to the opposite polarities, so that the pixel potentials in the second and fourth rows become shallower. In the second field, second area, first field, the potentials of the pixels in the adjacent rows transition to the same polarity, so the fifth and seventh rows written in the previous frame become deeper (actually, they became shallower). In the second field of the second frame, in the second field, the potentials of the pixels in the adjacent rows transition to the opposite polarities, so that the pixel potentials in the fourth, sixth, and eighth rows become shallower.
[0048]
By scanning two frames alternately and continuously in this manner, the influence on the gradation in the odd and even rows is the same, and horizontal stripes and boundaries do not occur. However, since the uppermost and lowermost rows are affected only by the lower line or the upper line, the influence on the gradation is deeper than the other lines, and the gradation is darker.
[0049]
FIG. 18 shows a waveform of the above driving. Both the odd-numbered pixel P (i, 3) and the even-numbered pixel P (i, 4) are set so that the potentials (VP (i, 3) and VP (i, 4)) in the negative time period become shallower. Fluctuating. For this reason, the influence on the gradation in the odd-numbered and even-numbered rows is the same, and horizontal stripes do not occur.
[0050]
However, in the present embodiment, since the driving times of the positive polarity and the negative polarity are different as shown in FIG. 18, a small amount of DC is applied as an average value. But that is not immediately a problem at the practical level. Even if a direct current as an average value is applied, a slight voltage does not lead to irreversible destruction of the liquid crystal. For example, there is a problem that an afterimage is likely to occur, but it is sufficient if there is no problem from a practical level. In this sense, this embodiment has a sufficient level of practicality depending on the purpose of use of the display.
[0051]
In the above description, a case where all screens display the same gradation is described for easy understanding. When the gradation of the pixels in the adjacent row is different, the charge always remains in the coupling capacitance Cpp. However, the movement of the charge is caused by the same mechanism, and the difference is slightly different from the original gradation. It is. Also in the following description, a case where all screens display the same gradation will be described.
(Second embodiment)
Hereinafter, a second embodiment of the driving method of the active matrix type liquid crystal display according to the present invention will be described. In this embodiment, the scanning order of the first frame and the second frame is the same as that of the first embodiment, and the third frame and the fourth frame are the scanning order opposite to that of the first frame and the second frame. To That is, in the third frame, the even-numbered rows are scanned first and then in the fourth frame, and in the fourth frame, the odd-numbered rows are scanned first and the even-numbered rows are scanned later. The scanning order of such four consecutive frames is shown in FIGS.
[0052]
FIG. 20 shows waveforms of the above driving. As shown in FIG. 20, the positive polarity portion (T) of the voltage VP (i, 3) of the pixel P (i, 3) in the third row 1 (+), T 2 (+)) And the negative polarity part (T 1 (-), T 2 The effective value of (−)) is the positive part (T) of the voltage VP (i, 4) of the pixel P (i, 4) in the fourth row. 1 (+), T 2 (+)) And the negative polarity part (T 1 (-), T 2 (−)) Becomes substantially equal to the effective value. Therefore, the effective values (alternating current) are almost the same, no difference in gradation occurs, and no horizontal stripes and boundaries occur.
[0053]
Note that the write timing of adjacent rows between frames differs between rows as shown in FIG. 20, so that the area of the shallow portion of the voltage is slightly different between rows and the effective value differs. However, since this difference is about several q in the four frames, it can be considered that the effective values between rows are almost the same. For example, in the case of the driving shown in FIG. 20, the difference in the effective charge value between the pixels in the third row and the pixels in the fourth row is 2q in four frames. Here, q indicates the amount of charge that moves under the influence of the adjacent electrode. When this scanning is performed by VGA, the charge difference between the pixels in the third and fourth rows is 2q in about 2000 horizontal times, and the charge difference in four frames is a very small value.
[0054]
The point that the present embodiment is superior to the first embodiment is that, with four frames as one cycle, the time of positive polarity and the time of negative polarity are the same for both the odd-numbered pixels and the even-numbered pixels. It is in the point. Pixel P (i, 3) and pixel P (i, 4) are both T 1 (+) And T 2 The time when (+) is added is T 1 (-) And T 2 This is because it becomes equal to the time obtained by adding (-). Therefore, it is possible to prevent the occurrence of horizontal stripes without sacrificing the AC driving of the liquid crystal for preventing the application of the DC voltage as an average value. However, also in this case, the phenomenon that the gradation of the uppermost and lowermost row pixels of the display unit is darkened remains. If the time of one frame is 1/60 second, the period of four frames is 1/15 second. However, since the voltage difference in question here is extremely small, this causes flickering. I will not.
(Third embodiment)
The third embodiment of the present invention relates to a method of eliminating horizontal stripes in upper and lower ends of a screen remaining in the first and second embodiments. Note that the method of driving the display is the same as the method of the first or second embodiment, and a description thereof will be omitted.
[0055]
According to the present embodiment, as shown in FIG. 21, the display unit includes the required number of rows (eight rows) plus two rows of pixels. Pixels in both upper and lower rows (first and tenth rows) are covered with the mask 50 and shielded from light. With this configuration, horizontal stripes due to the upper and lower rows of the screen are not visible. The data to be written to the two rows of pixels at the upper and lower ends need not be data to be displayed on the screen, and thus is not particularly defined. As a material of the mask 50, a material having a light shielding effect, such as tantalum, titanium, and aluminum, may be used.
[0056]
Also, instead of using the mask 50, by displaying black data on both upper and lower rows at all times, these rows can be isolated from the portion that actually contributes to display, and the same effect as applying the mask 50 can be obtained. The data displayed in the upper and lower ends of the row may be uniform data, and need not necessarily be black data.
[0057]
In FIG. 21, two rows covered by the mask 50 are added to eight rows of the screen size to make ten rows. However, as described above, the actual number of rows of pixels of the display is much larger. Needless to say, the present invention can be applied to such a case.
[0058]
【The invention's effect】
By dividing the display unit into a plurality of sections in the column direction and performing interlaced scanning for each section, power consumption is reduced, and at the same time, flicker (flicker) and image quality deterioration of a moving image having large motion are suppressed. it can.
[0059]
In addition, according to the present invention, the pixel electrodes in the plurality of areas and the pixel electrodes sandwiching the boundaries of the plurality of areas are scanned after scanning the odd-numbered (or even-numbered) pixel electrodes in a certain frame. In the case of scanning the pixel electrodes of (1) and (2), in the next frame, a driving method is performed in which the pixel electrodes of even-numbered rows (or odd-numbered rows) are scanned and then the pixel electrodes of odd-numbered rows (or even-numbered rows) are scanned. As a result, it is possible to prevent the occurrence of horizontal stripes every other row and the boundary between areas.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a liquid crystal display.
FIG. 2 is a diagram showing a polarity distribution and transition of a pixel voltage in a row inversion method;
FIG. 3 is a diagram showing a polarity distribution and transition of a pixel voltage in a pixel inversion method;
FIG. 4 is a simplified equivalent circuit diagram of a TFT and a pixel.
FIG. 5 is a diagram showing a drive timing of a TFT liquid crystal display and a waveform of a pixel voltage.
FIG. 6 is an equivalent circuit diagram of a data line.
FIGS. 7A to 7D are diagrams showing a state transition of the polarity of a pixel voltage during interlaced scanning.
FIG. 8 is a diagram showing continuous pixel electrodes on the same column.
FIGS. 9A and 9B are equivalent circuit diagrams of continuous pixel electrodes on the same column.
10A to 10D are diagrams showing a state change of an equivalent circuit when pixels in odd rows are charged.
11A to 11D are diagrams showing a state change of an equivalent circuit when pixels in an even-numbered row are charged.
FIG. 12 is a diagram showing a driving waveform of a display device when display quality is deteriorated.
FIG. 13 is a diagram showing a scanning order in a case where an area boundary occurs.
FIG. 14A is a diagram showing a state transition of the polarity of a pixel voltage when an area boundary occurs.
FIG. 14B is a continuation of FIG. 14A, showing a state transition of the polarity of the pixel voltage when an area boundary occurs.
FIG. 14C is a continuation of FIG. 14B, showing a state transition of the polarity of the pixel voltage when an area boundary occurs.
FIG. 14D is a continuation of FIG. 14C, showing a state transition of the polarity of the pixel voltage when an area boundary occurs.
FIGS. 15A and 15B are diagrams showing a scanning order when there is no area boundary and no horizontal stripe in one embodiment of the present invention; FIGS.
FIG. 16A is a diagram showing the state transition of the polarity of the pixel voltage when there is no area boundary and no horizontal stripe according to the embodiment of the present invention;
FIG. 16B is a continuation of FIG. 16A, showing a state transition of the polarity of the pixel voltage when there is no area boundary and no horizontal stripes;
FIG. 17A is a diagram showing a state transition of the polarity of a pixel voltage when there is no area boundary and no horizontal stripe according to the embodiment of the present invention;
FIG. 17B is a continuation of FIG. 17A, showing a state transition of the polarity of the pixel voltage when there is no boundary between areas and no horizontal stripes;
FIG. 18 is a diagram showing driving waveforms according to the embodiment of the present invention.
FIGS. 19A to 19D are views showing a scanning order in another embodiment of the present invention.
FIG. 20 is a diagram showing driving waveforms according to another embodiment of the present invention.
FIG. 21 is a diagram showing one embodiment of a display unit according to the present invention.
[Explanation of symbols]
30 Display
32 scan driver (gate driver)
34 Data Driver (Data Driver)
36 common electrode
38 Control unit
40 Gate voltage generation circuit
42 gradation voltage generation circuit
44 Common electrode drive circuit
50 mask

Claims (8)

行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部を備え、
該表示部の少なくとも第1区域の連続した複数の行電極と、該第1区域に隣接する第2区域の連続した複数の行電極とに対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に行う能動行列型液晶表示器の駆動方法であって、
第2フレームにおいて前記第1および第2の区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記第1および第2の区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とをそれぞれ反対にする、能動行列型液晶表示器の駆動方法。
A plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scan signal to the same row of pixel electrodes, and a plurality of column electrodes each providing a data signal to the same column of pixel electrodes are provided. Comprising a display unit provided,
At least one of an odd-numbered row and an even-numbered row with respect to a plurality of continuous row electrodes in at least a first area of the display unit and a plurality of continuous row electrodes in a second area adjacent to the first area. After sequentially scanning the row electrodes, an interlaced scan for sequentially scanning the other row electrodes of the odd-numbered rows or even-numbered rows in the same direction, a driving method of an active matrix type liquid crystal display for each frame,
The scanning order of the interlaced scanning performed in the first and second areas in the second frame, respectively, is an odd-numbered row of the scanning order of the interlaced scanning performed in the first and second areas in the first frame. And a method for driving an active matrix type liquid crystal display in which the even rows are reversed.
前記第1区域および第2区域における行電極の境界の位置を、前記第1フレームと前記第2フレームとで異ならせる、請求項1に記載の能動行列型液晶表示器の駆動方法。The method of driving an active matrix type liquid crystal display according to claim 1, wherein the positions of the boundaries of the row electrodes in the first area and the second area are different between the first frame and the second frame. 行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部と、
該表示部の少なくとも第1区域の連続した複数の行電極と、該第1区域に隣接する第2区域の連続した複数の行電極とに対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に行う走査駆動器とを有する能動行列型液晶表示器であって、
該走査駆動器は、第2フレームにおいて前記第1および第2の区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記第1および第2の区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にするようになっている、能動行列型液晶表示器。
A plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scan signal to the same row of pixel electrodes, and a plurality of column electrodes each providing a data signal to the same column of pixel electrodes are provided. A display unit provided,
At least one of an odd-numbered row and an even-numbered row with respect to a plurality of continuous row electrodes in at least a first area of the display unit and a plurality of continuous row electrodes in a second area adjacent to the first area. After scanning the row electrodes in order, the interlaced scanning for sequentially scanning the other row electrodes of the odd or even rows in the same direction is performed by an active matrix type liquid crystal display device having a scan driver for each frame. So,
The scan driver sets the order of the interlaced scanning performed in the first and second areas in a second frame to the interlaced scanning performed in the first and second areas in a first frame. An active matrix type liquid crystal display, wherein odd rows and even rows in the scanning order are reversed.
前記走査駆動器は、前記第1区域および第2区域における行電極の境界の位置を、前記第1フレームと前記第2フレームとで異ならせる、請求項3に記載の能動行列型液晶表示器。4. The active matrix type liquid crystal display according to claim 3, wherein the scan driver changes a position of a boundary of a row electrode in the first area and the second area between the first frame and the second frame. 5. 前記表示部の最上位の行及び最下位の行の画素電極は、遮光マスクに覆われている請求項3または4に記載の能動行列型液晶表示器。5. The active matrix type liquid crystal display according to claim 3, wherein the pixel electrodes in the uppermost row and the lowermost row of the display unit are covered with a light shielding mask. 前記表示部の最上位の行及び最下位の行の画素電極には、黒データが表示される請求項3または4に記載の能動行列型液晶表示器。5. The active matrix type liquid crystal display according to claim 3, wherein black data is displayed on the pixel electrodes in the uppermost row and the lowermost row of the display unit. 行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられた表示部を備え、
該表示部には、それぞれが連続した複数の行電極を有する3つ以上の区域が相互に隣接するように並んで設けられており、
前記各区域の連続した複数の行電極に対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に各区域が並んでいる順番で連続して行う能動行列型液晶表示器の駆動方法であって、
第2フレームにおいて前記各区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記各区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にする、能動行列型液晶表示器の駆動方法。
A plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scan signal to the same row of pixel electrodes, and a plurality of column electrodes each providing a data signal to the same column of pixel electrodes are provided. Comprising a display unit provided,
In the display unit, three or more areas each having a plurality of continuous row electrodes are provided side by side so as to be adjacent to each other,
After sequentially scanning one of the odd-numbered rows or the even-numbered rows with respect to a plurality of continuous row electrodes in each area, the other row electrodes of the odd-numbered rows or even-numbered rows are sequentially aligned in the same direction. A method of driving an active matrix type liquid crystal display that performs interlaced scanning continuously in the order in which each area is arranged for each frame,
Reversing the scanning order of the interlaced scanning performed in each of the sections in the second frame and the odd and even rows in the scanning order of the interlaced scanning performed in each of the sections in the first frame; Driving method of matrix type liquid crystal display.
行列に配置されている複数の画素電極と、同一行の画素電極に対して走査信号をそれぞれ与える複数の行電極と、同一列の画素電極に対してデータ信号をそれぞれ与える複数の列電極とが設けられるとともに、それぞれが連続した複数の行電極を有する3つ以上の区域が、相互に隣接するように並んで設けられた表示部と、
該表示部における前記各区域の連続した複数の行電極に対して、それぞれ、奇数行又は偶数行のいずれか一方の行電極を順番に走査した後に、奇数行又は偶数行の他方の行電極を同方向に順番に走査する飛び越し走査を、各フレーム毎に各区域が並んでいる順番で連続して行う走査駆動器とを有する能動行列型液晶表示器であって、
該走査駆動器は、第2フレームにおいて前記各区域にてそれぞれ行われる前記飛び越し走査の走査順序を、第1フレームにおいて前記各区域にて行われる前記飛び越し走査の走査順序の奇数行と偶数行とを反対にするようになっている、能動行列型液晶表示器。
A plurality of pixel electrodes arranged in a matrix, a plurality of row electrodes each providing a scan signal to the same row of pixel electrodes, and a plurality of column electrodes each providing a data signal to the same column of pixel electrodes are provided. A display unit provided, wherein three or more areas each having a plurality of continuous row electrodes are provided so as to be adjacent to each other;
After sequentially scanning one of the odd-numbered rows or the even-numbered rows, the other row electrodes of the odd-numbered rows or the even-numbered rows are sequentially scanned with respect to a plurality of continuous row electrodes of each section in the display unit. An active matrix type liquid crystal display device having a scanning driver for performing interlaced scanning in order in the same direction, and a scanning driver that continuously performs each area in the order in which each area is arranged for each frame,
The scan driver sets the scanning order of the interlaced scanning performed in each of the sections in the second frame to an odd-numbered row and an even-numbered row of the scanning order of the interlaced scanning performed in each of the sections in the first frame. An active matrix type liquid crystal display which is designed to reverse the above.
JP2003147031A 2003-05-23 2003-05-23 Active matrix type liquid crystal display and driving method thereof Expired - Fee Related JP3871656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147031A JP3871656B2 (en) 2003-05-23 2003-05-23 Active matrix type liquid crystal display and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147031A JP3871656B2 (en) 2003-05-23 2003-05-23 Active matrix type liquid crystal display and driving method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04724899A Division JP3449467B2 (en) 1999-02-24 1999-02-24 Active matrix type liquid crystal display and driving method thereof

Publications (2)

Publication Number Publication Date
JP2004004857A true JP2004004857A (en) 2004-01-08
JP3871656B2 JP3871656B2 (en) 2007-01-24

Family

ID=30438153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147031A Expired - Fee Related JP3871656B2 (en) 2003-05-23 2003-05-23 Active matrix type liquid crystal display and driving method thereof

Country Status (1)

Country Link
JP (1) JP3871656B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018800A1 (en) * 2004-08-13 2006-02-23 Koninklijke Philips Electronics N.V. Matrix addressing circuitry and liquid crystal display device using the same.
NL1029392C2 (en) * 2004-07-01 2006-08-08 Samsung Electronics Co Ltd Liquid crystal display panel, has gate line shift circuit to set gate line scanning order between each pair of adjacent gate lines in each unit based on interleaving method in response to received gate-on signal
JP2006243185A (en) * 2005-03-01 2006-09-14 Sharp Corp Liquid crystal display apparatus suitable for displaying moving image
KR100795984B1 (en) 2005-05-30 2008-01-21 프라임 뷰 인터내셔널 코오포레이션 리미티드 Driving method for liquid crystal display panel
JP2009229858A (en) * 2008-03-24 2009-10-08 Sony Corp Liquid crystal display device and method, and display control device and method
JP2009229857A (en) * 2008-03-24 2009-10-08 Sony Corp Liquid crystal display and its display method, display control unit and method therefor
CN1770237B (en) * 2004-09-27 2012-01-18 株式会社半导体能源研究所 Active display device and driving method thereof
WO2012161704A1 (en) * 2011-05-24 2012-11-29 Apple Inc. Scanning orders in inversion schemes of displays
US8581821B2 (en) 2008-03-24 2013-11-12 Sony Corporation Liquid crystal display device, liquid crystal display method, display control device, and display control method
US8614701B2 (en) 2007-05-30 2013-12-24 Sharp Kabushiki Kaisha Scan signal line driver circuit, display device, and method of driving scan signal lines
US8698850B2 (en) 2008-12-25 2014-04-15 Sharp Kabushiki Kaisha Display device and method for driving same
US8736544B2 (en) 2008-11-26 2014-05-27 Sharp Kabushiki Kaisha Liquid crystal display device, liquid crystal display device drive method, and television receiver
US8743047B2 (en) 2008-11-26 2014-06-03 Sharp Kabushiki Kaisha Liquid crystal display device, method for driving liquid crystal display device, and television receiver
CN104751802A (en) * 2015-04-20 2015-07-01 广东威创视讯科技股份有限公司 LED display screen scanning method, LED display screen control device and system
WO2018202150A1 (en) * 2017-05-05 2018-11-08 惠科股份有限公司 Display panel driving method, driving device and display device
CN112017605A (en) * 2019-05-31 2020-12-01 京东方科技集团股份有限公司 Display panel and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6768480B2 (en) 2016-12-09 2020-10-14 株式会社ジャパンディスプレイ Liquid crystal display device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710377B2 (en) 2004-07-01 2010-05-04 Samsung Electronics Co., Ltd. LCD panel including gate drivers
NL1029392C2 (en) * 2004-07-01 2006-08-08 Samsung Electronics Co Ltd Liquid crystal display panel, has gate line shift circuit to set gate line scanning order between each pair of adjacent gate lines in each unit based on interleaving method in response to received gate-on signal
WO2006018800A1 (en) * 2004-08-13 2006-02-23 Koninklijke Philips Electronics N.V. Matrix addressing circuitry and liquid crystal display device using the same.
JP2008510178A (en) * 2004-08-13 2008-04-03 ティーピーオー、ホンコン、ホールディング、リミテッド Matrix drive circuit and liquid crystal display device using the same
US7928948B2 (en) 2004-08-13 2011-04-19 TPO Hong Kong Holdings Limited Corp. Matrix addressing circuitry and liquid crystal display device using the same
CN1770237B (en) * 2004-09-27 2012-01-18 株式会社半导体能源研究所 Active display device and driving method thereof
JP2006243185A (en) * 2005-03-01 2006-09-14 Sharp Corp Liquid crystal display apparatus suitable for displaying moving image
KR100795984B1 (en) 2005-05-30 2008-01-21 프라임 뷰 인터내셔널 코오포레이션 리미티드 Driving method for liquid crystal display panel
US8654115B2 (en) 2007-05-30 2014-02-18 Sharp Kabushiki Kaisha Scan signal line driver circuit, display device, and method of driving scan signal lines
US8614701B2 (en) 2007-05-30 2013-12-24 Sharp Kabushiki Kaisha Scan signal line driver circuit, display device, and method of driving scan signal lines
JP2009229857A (en) * 2008-03-24 2009-10-08 Sony Corp Liquid crystal display and its display method, display control unit and method therefor
JP2009229858A (en) * 2008-03-24 2009-10-08 Sony Corp Liquid crystal display device and method, and display control device and method
US8581821B2 (en) 2008-03-24 2013-11-12 Sony Corporation Liquid crystal display device, liquid crystal display method, display control device, and display control method
US8736544B2 (en) 2008-11-26 2014-05-27 Sharp Kabushiki Kaisha Liquid crystal display device, liquid crystal display device drive method, and television receiver
US8743047B2 (en) 2008-11-26 2014-06-03 Sharp Kabushiki Kaisha Liquid crystal display device, method for driving liquid crystal display device, and television receiver
US8698850B2 (en) 2008-12-25 2014-04-15 Sharp Kabushiki Kaisha Display device and method for driving same
WO2012161704A1 (en) * 2011-05-24 2012-11-29 Apple Inc. Scanning orders in inversion schemes of displays
US8786586B2 (en) 2011-05-24 2014-07-22 Apple Inc. Scanning orders in inversion schemes of displays
CN104751802A (en) * 2015-04-20 2015-07-01 广东威创视讯科技股份有限公司 LED display screen scanning method, LED display screen control device and system
CN104751802B (en) * 2015-04-20 2017-12-08 广东威创视讯科技股份有限公司 LED display scan method, LED display screen control device and system
WO2018202150A1 (en) * 2017-05-05 2018-11-08 惠科股份有限公司 Display panel driving method, driving device and display device
US11120754B2 (en) 2017-05-05 2021-09-14 HKC Corporation Limited Display panel driving method, driving device and display device
CN112017605A (en) * 2019-05-31 2020-12-01 京东方科技集团股份有限公司 Display panel and display device

Also Published As

Publication number Publication date
JP3871656B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US7301518B2 (en) Driving method for electro-optical apparatus, electro-optical apparatus and electronic equipment
JP3871656B2 (en) Active matrix type liquid crystal display and driving method thereof
JP3428550B2 (en) Liquid crystal display
US8035611B2 (en) Electrophoretic display device and driving method for same
US10417984B2 (en) Method of driving odd and even gate lines of a display panel, and display apparatus for performing the same
JP2004061590A (en) Liquid crystal display and its driving method
JP2005018077A (en) Liquid crystal display device and its driving method
US6320562B1 (en) Liquid crystal display device
KR20030005448A (en) Liquid Crystal Display Device and Driving Method for the same
JP2007065454A (en) Liquid crystal display and its driving method
JP3454744B2 (en) Active matrix type liquid crystal display and driving method thereof
JP3653732B2 (en) Method for driving liquid crystal display device, liquid crystal display device, electronic device and drive circuit
KR101031667B1 (en) Liquid crystal display device
JP2009251608A (en) Liquid crystal module and liquid crystal display driving method
JP4010308B2 (en) Display device and driving method of display device
US20080158125A1 (en) Liquid crystal display device
JP3449467B2 (en) Active matrix type liquid crystal display and driving method thereof
JP3586023B2 (en) Liquid crystal display device and driving method thereof
US6603454B1 (en) Display panel having pixels arranged in matrix
KR101030535B1 (en) A driving method for a liquid crystal display device
JP2006072211A (en) Liquid crystal display and driving method of liquid crystal display
JPH07104245A (en) Method for driving active matrix substrate
JPH0338617A (en) Liquid crystal display device
JPH11218736A (en) Driving method of liquid crystal panel
KR100977224B1 (en) liquid crystal display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20131027

LAPS Cancellation because of no payment of annual fees