JP2004004199A - Method for driving liquid crystal display device - Google Patents

Method for driving liquid crystal display device Download PDF

Info

Publication number
JP2004004199A
JP2004004199A JP2002158347A JP2002158347A JP2004004199A JP 2004004199 A JP2004004199 A JP 2004004199A JP 2002158347 A JP2002158347 A JP 2002158347A JP 2002158347 A JP2002158347 A JP 2002158347A JP 2004004199 A JP2004004199 A JP 2004004199A
Authority
JP
Japan
Prior art keywords
liquid crystal
potential
voltage
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158347A
Other languages
Japanese (ja)
Inventor
Kazuhiro Monzen
門前 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP2002158347A priority Critical patent/JP2004004199A/en
Publication of JP2004004199A publication Critical patent/JP2004004199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent display quality in displaying by applying voltage to a liquid crystal while reducing a transient current accompanying the voltage application to prevent air bubbles in a liquid crystal display device. <P>SOLUTION: In the case of obtaining a desired display by applying a voltage to the liquid crystal between a selected scanning electrode and each of signal electrodes, a selection period is divided into a plurality of periods and the applied voltage is varied for each of the divided periods. In this case, the liquid crystal display device is driven to make the voltage applied to the liquid crystal higher when each of the divided periods is switched between themselves. The transient current accompanying the voltage variation is reduced by stepwise elevating the applied voltage for each of the divided periods of the selection period. Consequently air bubbles in the liquid crystal display device are prevented and excellent display quality is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置の駆動方法に関し、特に、駆動電圧が高い液晶を用いた液晶表示装置の駆動方法に関する。
【0002】
【従来の技術】
カイラルネマチック液晶(コレステリック液晶)、強誘電性液晶等は、メモリ性液晶として知られている。これらのメモリ性液晶は、しきい値以上の電圧が印加されると所定の配向状態に遷移する。そして、その配向状態に遷移した後に電圧が印加されなくても遷移後の配向状態を維持し続けるという特徴を有する。従って、メモリ性液晶を備える液晶表示装置では、表示を書き換えるときに液晶に電圧を印加すればよい。電圧を印加して所望の表示を書き込んだ後は、電圧を印加しなくても書き込んだ表示を維持することができる。
【0003】
一対の平行な基板間にカイラルネマチック液晶(コレステリック液晶)を挟持し、液晶のディレクタが一定周期毎に回転するねじれ構造のねじれの中心軸(ヘリカル軸と呼ぶ。)が基板に対して平均的に垂直方向になるように配列させると、特定の波長の光を反射する。この状態をプレナー状態という。また、複数の液晶ドメインのヘリカル軸が基板に対してランダムな方向を向くと、特定の波長の光を反射しなくなる。この状態をフォーカルコニック状態という。基板の背面に吸収層を設け、液晶をフォーカルコニック状態にすると吸収層の色の表示が得られる。カイラルネマチック液晶等をプレナー状態やフォーカルコニック状態にするには、それぞれ所定の電圧を印加すればよい。プレナー状態やフォーカルコニック状態になった液晶は、次に電圧が印加されるまでその状態を維持する。
【0004】
また、強誘電性液晶の場合、所定の電圧が印加されると、強誘電性液晶分子の向きが変化する。図8は、電圧印加にともなう強誘電性液晶分子の挙動を示す模式図である。図8の左側に示す状態が強誘電性液晶分子の初期配向状態であるものとする。初期配向状態において各液晶分子は同じ方向を向く。初期配向状態の強誘電液晶にしきい値以上の電圧(ここでは正電圧とする)を印加すると、図8の右側に示すように液晶分子の向きが変化する。電圧の印加を停止しても強誘電性液晶は、図8の右側の配向状態を維持する。また、この状態の強誘電性液晶にしきい値以上の負電圧を印加すると強誘電性液晶は初期配向状態に戻り、電圧印加を停止した後も初期配向状態を維持する。強誘電性液晶を用いて表示を行う場合、互いに偏光軸が直交する二枚の偏光板の間に強誘電性液晶を配置し、印加電圧を変化させて液晶分子の向きを制御する。
【0005】
これらのメモリ性液晶の駆動電圧は、ネマチック液晶に比べると高い。また、図8に示す二つの液晶分子の状態を実現できる液晶として反強誘電性液晶がある。この反強誘電性液晶も、ネマチック液晶に比べると駆動電圧が高い。
【0006】
【発明が解決しようとする課題】
カイラルネマチック液晶、強誘電性液晶および反強誘電性液晶等のように、駆動電圧として高い電圧を用いる必要がある場合には、以下のような問題が生じていた。図9(a)は、液晶に印加される電圧波形の例を示す説明図である。また、図9(b)は、電圧印加に伴って生じる電流の変化を示す説明図である。液晶に電圧を印加すると、電圧印加直後に過渡電流が流れる。そして、液晶に高電圧(例えば20V)を印加すると、図9(b)に示すように電圧印加直後に生じる過渡電流も多くなる。すると、液晶パネル内で発泡が生じやすくなる。発泡は、液晶分子の向きが不均一である部分(液晶セル内に混入してしまった小さな異物の周囲やセルギャップにむらが生じた箇所等)、比抵抗の低い部分、スペーサの周囲等で生じる。以下、この発泡を発熱発泡と記す。発熱発泡は、耐湿試験において顕著に現れる。
【0007】
本発明は、比較的高い電圧で液晶表示装置を駆動しなければならない場合であっても、発熱発泡の発生を防止して良好な表示品位が得られる液晶表示装置の駆動方法を提案することを目的とする。
【0008】
【課題を解決するための手段】
本発明の態様1は、複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、走査電極を選択しながら走査電極を走査し、選択した走査電極と各信号電極との間の液晶を所望の状態にするために液晶に電圧を印加する場合に、走査電極の選択期間を複数の期間に分割し、分割した各期間が切り替わるたびに液晶に印加する電圧の絶対値を大きくすることを特徴とする液晶表示装置の駆動方法を提供する。
【0009】
本発明の態様2は、選択期間から分割する各期間の長さを等しくする液晶表示装置の駆動方法を入力する。
【0010】
本発明の態様3は、分割した各期間が切り替わるたびに、選択した走査電極の電位と信号電極の電位との高低関係を逆にする液晶表示装置の駆動方法を提供する。
【0011】
本発明の態様4は、分割した各期間が切り替わるたびに、選択する走査電極の電位を、所定の基準電位より高い正電位と所定の電位より低い負電位とに交互に設定し、選択期間内で選択した走査電極の電位を正電位とする期間の実効値電圧と、選択期間内で選択した走査電極の電位を負電位とする期間の実効値電圧との差に応じて、非選択行の走査電極の電位を基準電位からずらして設定する液晶表示装置の駆動方法を提供する。
【0012】
本発明の態様5は、nを自然数としたときに、全ての走査電極を1回ずつ選択する走査電極の走査をn回行うたびに、選択した走査電極の電位と信号電極の電位との高低関係を逆にする液晶表示装置の駆動方法を提供する。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1に本発明の駆動方法で駆動される液晶表示装置の例を示す模式的断面図を示す。図1に示す液晶表示装置は、ガラス基板1、1、電極2、2、高分子薄膜3、3、および液晶組成物(カイラルネマチック液晶)4が配置され、フォーカルコニック状態とプレナー状態を安定に表示する液晶パネルである。また、液晶表示装置の背面側には黒色の光吸収体5が配置される。電極2、2はそれぞれ透明電極である。以下の説明では、電極2が信号電極であり、電極2が走査電極であるものとする。なお、液晶組成物4と電極2、2とが直接接する構成であってもよい。
【0014】
図2は、液晶表示装置を駆動する駆動装置の構成例を示すブロック図である。コントローラ11は、走査電極ドライバ12に各走査電極2の電位を設定するように指示し、信号電極ドライバ13に各信号電極2の電位を設定するように指示する。走査電極ドライバ12および信号電極ドライバ13は、コントローラ11の指示に従い、各電極の電位を設定する。電源装置14は、走査電極ドライバ12および信号電極ドライバ13に必要な電圧を供給する。コントローラ11は、走査電極ドライバ12および信号電極ドライバ13によって各電極の電位を切り替えて、各画素に配置されたカイラルネマチック液晶4をプレナー状態やフォーカルコニック状態に移行させる。以下、プレナー状態とフォーカルコニック状態による二値表示を行う場合を例に説明する。
【0015】
次に、液晶表示装置15に表示を書き込むときの駆動装置の動作について説明する。駆動装置は、走査電極2を一本ずつ選択しながら線順次走査し、選択行の画素に配置されたカイラルネマチック液晶4をプレナー状態またはフォーカルコニック状態に移行させるための電圧を印加する。駆動装置は、各選択期間を複数の期間に分割する。そして、一つの選択期間から分割した各期間では、期間が切り替わると選択行の画素に印加される電圧の高さが高くなるように(電圧の絶対値が大きくなるように)液晶表示装置15を駆動する。
【0016】
図3は、走査電極および信号電極に設定される電位の変化および液晶に印加される電圧の変化の例を示す。走査電極ドライバ12は、コントローラ11の制御に従って、各走査電極を順次選択する。一本の走査電極の選択期間において、走査電極ドライバ12は選択行の走査電極および非選択行の走査電極の電位をそれぞれ設定する。
【0017】
選択行の走査電極の電位を設定する場合、走査電極ドライバ12は、コントローラ11に従い選択期間を複数の期間に分割する。そして、分割した各期間毎に所定の基準電位(ここでは0Vとする)と選択行の電位との差(絶対値)が大きくなるように選択行の電位を設定する。図3に示す例では、選択期間をT〜Tの期間に分割し、各期間毎に選択行の電位をV,−V,Vに設定する。ただし、V<V<Vである。なお、選択期間を分割した各期間T〜Tの長さは任意である。
【0018】
また、信号電極ドライバ13は、選択行の画素をプレナー状態またはフォーカルコニック状態にするように、各信号電極の電位を設定する。図3に示す電位±Vは、選択した走査電極と信号電極との間の液晶をプレナー状態にするときの信号電極の電位であり、±Vはフォーカルコニック状態にするときの信号電極の電位である。信号電極ドライバ13は、走査電極ドライバ12と同様に選択期間を複数の期間に分割し、各期間毎に信号電極の電位をVや−V(または、Vや−V)に設定する。図3では、各期間毎に電位を−V,V,−V(または−V,V,−V)と定める場合の例を示す。なお、V、Vの値は、電圧V,Vを液晶4に印加しても液晶の状態に影響を及ぼさない値として定める。
【0019】
この結果、選択行の各画素には、期間TにおいてV+V(またはV+V)の電圧が印加される。続く期間Tでは−V−V(または−V−V)の電圧が印加される。さらに、次の期間TではV+V(またはV+V)の電圧が印加される。このように、期間がT,Tと切り替わる度に、画素に印加される電圧の高さ(絶対値)を大きくする。
【0020】
図4(a)は、図3に示す選択期間において液晶に印加される電圧を示す。また、図4(b)は、この電圧に伴って生じる電流量の変化を示す。なお、図4では、選択期間以外で印加される電圧は無視して0Vとした。各期間毎に段階的に電圧を上げていくと、一度に高い電圧が印加されなくて済む。従って、印加電圧を変化させる度にわずかな過渡電流が生じるものの、電圧の変化量が少ないため図9に示すような多くの過渡電流が生じることはない。このため、液晶表示装置15の内部において、液晶分子の向きが不均一である部分や、水分や不純物によって局所的に比抵抗が低下している部分、あるいはスペーサの周囲等で発熱発泡の発生を防止することができる。その結果、良好な表示品位が得られる。
【0021】
図3に示す例では、選択期間を分割して得られる各期間の長さを任意としたが、各期間の長さを等しくしてもよい。また、図3では、選択期間を三つの期間に分割する場合を示したが分割数は三に限定されない。
【0022】
選択した走査電極の電位が信号電極の電位より高くなるように駆動することを正極性駆動という。選択した走査電極の電位が信号電極の電位より低くなるように駆動することを負極性駆動という。また、所定の基準電位(本実施の形態では0V)より高い電位を正電位とし、所定の基準電位より低い電位を負電位とする。走査電極ドライバ12は、正極性駆動時には、選択した走査電極の電位を正電位に設定し、負極性駆動時には、選択した走査電極の電位を負電位に設定する。
【0023】
正極性駆動と負極性駆動とを切り替えると、いずれか一方の駆動時の実効値電圧(実効値として表される電圧)がもう一方の駆動時の実効値電圧より高くなる場合がある。図5は、選択期間を四等分し各期間Tにおいて液晶に電圧V11,−V12,V13,−V14を印加するときの駆動波形である。ただし、V11<V12<V13<V14である。この場合、負極性駆動時の実電圧(−V12,−V14)の方が正極性駆動時の実電圧(V11,V13)より高いので、実効値電圧も負極性駆動の場合の方が高くなる。非選択行の走査電極の電位を基準電位からずらすことによって、1フレーム期間全体における実効値電圧の偏りを防止してもよい。すなわち、選択期間において負極性駆動時の実効値電圧が高くなる場合には、非選択期間で正極性駆動時の実効値電圧が高くなるようにして、1フレーム期間全体ではいずれか一方の実効値が高くなることがないようにしてもよい。
【0024】
矩形波で表される電圧の実効値の算出について説明する。ある期間内での正極性駆動時(選択行の電位を正電位とする期間)の実効値電圧を算出する場合、正極性駆動時の実電圧毎に、正極性駆動時間に対する各実電圧の印加時間の比を求め、その値に各実電圧の二乗を乗じる。各実電圧毎にこの値を算出し、その総和の平方根を求めることによって、正極性駆動時の実効値電圧が得られる。例えば、図5に示す選択期間内における正極性駆動時間は2・Tである。この時間に対する実電圧V11の印加時間の比は、T/(2・T)=1/2である。この値に実電圧V11の二乗を乗じると(1/2)・V11 となる。実電圧V13についても同様に計算を行うと(1/2)・V13 となる。実電圧毎に計算した結果の総和の平方根を求めると、正極性駆動時の実効値電圧(Vrms+と記す)は式1に示すようになる。
【0025】
rms+=√((V11 +V13 )/2)            式1
【0026】
負極性駆動時の実効値電圧の算出も同様に行うことができる。すなわち、ある期間における負極性駆動時(選択行の電位を負電位とする期間)の実効値電圧を算出する場合、負極性駆動時の実電圧毎に、負極性駆動時間に対する各実電圧の印加時間の比を求め、その値に各実電圧の二乗を乗じる。実電圧毎にこの値を算出し、その総和の平方根を求めることによって、負極性駆動時の実効値電圧(Vrms−と記す)が得られる。図5に示す選択期間内におけるVrms−を求めると式2に示すようになる。
【0027】
rms−=√((V12 +V14 )/2)            式2
【0028】
図6は、非選択期間における走査電極の電位を基準電位(0V)よりもVだけ高くした場合の駆動波形を示す。1フレーム期間内の非選択期間における走査電極の電位を高くすることにより、非選択期間では正極性駆動時の実効値電圧が負極性駆動時の実効値電圧よりも高くなる。この結果、選択期間内では負極性駆動時の実効値電圧が正極性駆動時の実効値電圧より高くても、1フレーム期間全体としては偏りがなくなる。Vの算出法について図5,6を例に説明する。まず、選択期間内におけるVrms+とVrms−との差(Armsとする)を求める。Armsが、正極性駆動時の実効値電圧と負極性駆動時の実効値電圧との差になる。非選択期間(T)での実効値電圧がArmsだけ高くなれば、1フレーム期間全体としての偏りがなくなる。
【0029】
非選択期間T全体にわたって電位Vを上昇させたことによる実効値電圧の増加分を算出する。非選択期間Tに対する電位Vを上昇させた期間の比はT/T=1である。この値に上昇させた電位(電圧)Vの二乗を乗じるとV となる。ここでは、電位(電圧)Vを上昇させる非選択期間を一つの期間として考えているので、V の平方根を算出すれば、電位Vの上昇に伴う実効値の増加分が求められる。この増加分が、Armsに等しければ実効値の偏りがなくなる。従って、基準電位に対してずらすべき電位Vは、式3に示す値になる。
【0030】
=√(Arms )                     式3
【0031】
選択期間内で負極性駆動時の実効値電圧の方が高ければ、非選択期間における走査電極(非選択行の走査電極)の電位を基準電位よりV高くすればよい。また、選択期間内で正極性駆動時の実効値電圧の方が高ければ、非選択期間における走査電極(非選択行の走査電極)の電位を基準電位よりV低くすればよい。
【0032】
なお、このように駆動した場合、非選択行の画素には±V+Vあるいは±V+Vの電圧が印加されるが、これらの電圧が液晶4の状態に影響を及ぼさない値となるように、VやVを定める。
【0033】
図3,6に示す駆動波形では、選択期間内で正極性駆動と負極性駆動とを切り替える場合の例を示したが、1フレーム期間毎に正極性駆動と負極性駆動とを切り替えてもよい。この場合の駆動波形の例を図7に示す。最初のフレーム期間では、コントローラ11は、走査電極ドライバ12および信号電極ドライバ13に正極性駆動を指示する。この場合、信号電極ドライバ13は、選択期間中、各信号電極の電位を−Vまたは−Vに設定する。一方、走査電極ドライバ12は、コントローラ11に従い選択期間を複数の期間に分割し、分割した各期間毎に基準電位と選択行の電位との差(絶対値)が大きくなるように選択行の電位を設定する。このとき、各期間毎に設定される電位は、正電位である。この結果、選択行の画素に印加される電圧は、分割した各期間が切り替わるたびに極性を維持したまま高くなる。
【0034】
次のフレーム期間では、コントローラ11は、走査電極ドライバ12および信号電極ドライバ13に負極性駆動を指示する。この場合、信号電極ドライバ13は、選択期間中、各信号電極の電位をVまたはVに設定する。一方、走査電極ドライバ12は、コントローラ11に従い選択期間を複数の期間に分割し、分割した各期間毎に基準電位と選択行の電位との差(絶対値)が大きくなるように選択行の電位を設定する。ただし、各期間毎に設定される電位は、負電位である。この結果、選択行の画素に印加される電圧は、分割した各期間が切り替わるたびに極性を維持したまま高くなる。なお、図7では、1フレーム期間毎に正極性駆動と負極性駆動とを切り替える場合を示したが、nフレーム期間毎(nは自然数)に切り替えてもよい。また、1フレーム期間では、全ての走査電極を1回ずつ選択する走査電極の走査が1回行われる。
【0035】
また、ここでは二値表示を行う場合の例を示したが、信号電極への設定電位を複数も受けて、中間調表示を行ってもよい。例えば、図3に示す例において、信号電極ドライバ13が±V,±V以外に、V以上V以下(または、−V以上−V以下)の電位も設定し、プレナー状態とフォーカルコニック状態の間の中間調表示を行ってもよい。このように信号電極の電位を中間調に応じた電位に設定する場合においても、分割した各期間が切り替わる毎に印加電圧の高さを高くすることで、発熱発泡を防止できる。
【0036】
図1では、液晶組成物4としてカイラルネマチック液晶を用いる場合を示したが、液晶組成物4はカイラルネマチック液晶に限定されない。液晶組成物4として、コレステリック液晶、強誘電性液晶または反強誘電性液晶等を用いてもよい。高い駆動電圧(例えば15V以上の駆動電圧)を必要とする液晶を液晶組成物4として用いた液晶表示装置に、本発明の駆動方法を適用すれば、発熱発泡を防止して良好な表示品位を得ることができる。また、従来の駆動方法で駆動しても発熱発泡が生じないTN液晶やSTN液晶を備えた液晶表示装置に本発明の駆動方法を適用してもよい。なお、液晶表示装置15の構成は、液晶組成物4に合わせて変更すればよい。例えば、強誘電性液晶または反強誘電性液晶を用いる場合、液晶パネルには光吸収体5を設けず、各ガラス基板1、1に偏光板を設ける。
【0037】
また、液晶組成物4としてカイラルネマチック液晶を用いた場合、選択行の各画素にはプレナー状態にするための電圧とフォーカルコニック状態にするための電圧のいずれか一方を印加する。液晶組成物4として強誘電性液晶を用いた場合、選択行の各画素には配向状態を変えるための電圧あるいは、所定のしきい値以下の電圧を印加して所望の画像を表示する。選択行の画素に所定のしきい値以下の電圧を印加する場合、選択する走査電極との電位差が所定のしきい値以下になるように信号電極の電位を設定すればよい。
【0038】
【実施例】
[例1]面抵抗20ΩのITO(Indium Tin Oxide)付ガラス基板を所定の表示パターンにエッチングし、一対のガラス基板を作成した。各基板に、MICおよび配向膜を転写、焼成して薄膜を生成した。なお、MICとは、ミドルコート(middle coat)膜の略称であり、絶縁膜である。この一対の基板の周辺にシール材を配設して空セルを作成した。さらに、この空セルにカイラルネマチック液晶を注入し、液晶表示装置を作成した。
【0039】
この液晶表示装置に対して耐湿試験を行った。耐湿試験は、温度80℃、湿度90%の槽に液晶表示装置を静置し、予め定めた時間が経過したときに液晶表示装置を槽から取り出して、良好な表示が得られるか否かを確認することにより行った。槽に入れる直前に、図3,6,7に示す駆動波形で液晶表示装置に画像を表示させたところ良好な表示が得られた。また、槽に液晶表示装置を静置してから72時間後、144時間後、300時間後、504時間後に槽から液晶表示装置を取り出して、図3,6,7に示す駆動波形で画像を表示させた。いずれの場合も良好な表示が得られた。また、コントラストも良好であった。
【0040】
[例2]面抵抗4ΩのITO付ガラス基板を用いて例1と同様に液晶表示装置を作成し、例1と同様に耐湿試験を行った。ただし、画像を表示させるときには、図3に示す駆動波形で駆動した。例1の場合と、同様に良好な表示が得られた。また、コントラストも良好であった。このことから、ITOの抵抗値を低くした場合であっても、良好な表示が得られることがわかる。
【0041】
[比較例]例1と同じ液晶表示装置を作成し、例1と同様に耐湿試験を行った。ただし、画像を表示させるときには、液晶への印加電圧を段階的に変化させるのではなく、図9(a)に示す波形で電圧が印加されるように駆動した。この場合、槽に液晶表示装置を入れる直前と、槽に入れてから72時間後には良好な表示が得られたものの、144時間後に駆動したときには発泡が発生し、良好な表示が得られなかった。
【0042】
例1,2および比較例の結果を表1に示す。表1において、「○」は発泡が発生せず良好な表示が得られたことを示す。「×」は発泡が発生し良好な表示が得られなかったことを示す。
【0043】
【表1】

Figure 2004004199
【0044】
表1に示すように、本発明の駆動方法で液晶表示装置を駆動することにより、発熱発泡を抑制し、長期間表示品位を保たせることができることがわかる。
【0045】
【発明の効果】
本発明の駆動方法によれば、液晶に駆動電圧を印加するときに多くの過渡電流が流れることを防止し、液晶表示装置の内部において、液晶分子の向きが不均一である部分や、水分や不純物によって局所的に比抵抗が低下している部分、あるいはスペーサの周囲等で発熱発泡の発生を防止することができる。この結果、良好な表示品位で画像を表示することができる。
【図面の簡単な説明】
【図1】液晶表示装置の例を示す模式的断面図。
【図2】液晶表示装置を駆動する駆動装置の構成例を示すブロック図。
【図3】本発明の駆動方法による駆動波形の例を示す説明図。
【図4】液晶への印加電圧および印加電圧により生じる電流の変化を示す説明図。
【図5】本発明の駆動方法による駆動波形の例を示す説明図。
【図6】本発明の駆動方法による駆動波形の例を示す説明図。
【図7】本発明の駆動方法による駆動波形の例を示す説明図。
【図8】電圧印加にともなう強誘電性液晶分子の挙動を示す模式図。
【図9】従来の駆動方法による液晶への印加電圧により生じる電流の変化を示す説明図。
【符号の説明】
、1 ガラス基板
、2 電極
4 液晶組成物
11 コントローラ
12 走査電極ドライバ
13 信号電極ドライバ
14 電源装置
15 液晶表示装置(液晶パネル)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for driving a liquid crystal display device, and more particularly, to a method for driving a liquid crystal display device using liquid crystal having a high driving voltage.
[0002]
[Prior art]
Chiral nematic liquid crystal (cholesteric liquid crystal), ferroelectric liquid crystal, and the like are known as memory liquid crystals. These memory-like liquid crystals transition to a predetermined alignment state when a voltage higher than a threshold is applied. Then, even after no voltage is applied after the transition to the alignment state, the alignment state after the transition is maintained. Therefore, in a liquid crystal display device including a memory-type liquid crystal, a voltage may be applied to the liquid crystal when rewriting display. After a desired display is written by applying a voltage, the written display can be maintained without applying a voltage.
[0003]
A chiral nematic liquid crystal (cholesteric liquid crystal) is sandwiched between a pair of parallel substrates, and the director of the liquid crystal rotates at regular intervals. When arranged in the vertical direction, light of a specific wavelength is reflected. This state is called a planar state. Further, when the helical axes of the plurality of liquid crystal domains are oriented in random directions with respect to the substrate, light of a specific wavelength is not reflected. This state is called a focal conic state. When an absorbing layer is provided on the back surface of the substrate and the liquid crystal is brought into a focal conic state, the color of the absorbing layer can be displayed. To bring the chiral nematic liquid crystal or the like into the planar state or the focal conic state, a predetermined voltage may be applied to each. The liquid crystal in the planar state or the focal conic state maintains the state until the next voltage is applied.
[0004]
In the case of a ferroelectric liquid crystal, when a predetermined voltage is applied, the direction of the ferroelectric liquid crystal molecules changes. FIG. 8 is a schematic diagram showing the behavior of the ferroelectric liquid crystal molecules when a voltage is applied. The state shown on the left side of FIG. 8 is the initial alignment state of the ferroelectric liquid crystal molecules. In the initial alignment state, each liquid crystal molecule faces in the same direction. When a voltage higher than the threshold (here, a positive voltage) is applied to the ferroelectric liquid crystal in the initial alignment state, the direction of the liquid crystal molecules changes as shown on the right side of FIG. Even if the application of the voltage is stopped, the ferroelectric liquid crystal maintains the alignment state on the right side in FIG. When a negative voltage equal to or higher than the threshold is applied to the ferroelectric liquid crystal in this state, the ferroelectric liquid crystal returns to the initial alignment state, and maintains the initial alignment state even after the voltage application is stopped. When a display is performed using a ferroelectric liquid crystal, a ferroelectric liquid crystal is arranged between two polarizing plates whose polarization axes are orthogonal to each other, and the direction of liquid crystal molecules is controlled by changing an applied voltage.
[0005]
The driving voltage of these memory liquid crystals is higher than that of nematic liquid crystals. An antiferroelectric liquid crystal is a liquid crystal that can realize the state of the two liquid crystal molecules shown in FIG. This antiferroelectric liquid crystal also has a higher driving voltage than a nematic liquid crystal.
[0006]
[Problems to be solved by the invention]
When a high driving voltage needs to be used, such as a chiral nematic liquid crystal, a ferroelectric liquid crystal, and an anti-ferroelectric liquid crystal, the following problems have occurred. FIG. 9A is an explanatory diagram illustrating an example of a voltage waveform applied to the liquid crystal. FIG. 9B is an explanatory diagram showing a change in a current caused by applying a voltage. When a voltage is applied to the liquid crystal, a transient current flows immediately after the voltage is applied. When a high voltage (for example, 20 V) is applied to the liquid crystal, the transient current generated immediately after the application of the voltage increases as shown in FIG. 9B. Then, foaming easily occurs in the liquid crystal panel. Foaming occurs in areas where the orientation of liquid crystal molecules is non-uniform (around small foreign substances mixed in the liquid crystal cell, areas where the cell gap becomes uneven, etc.), in areas with low specific resistance, around spacers, etc. Occurs. Hereinafter, this foaming is referred to as exothermic foaming. Exothermic foaming is noticeable in a moisture resistance test.
[0007]
The present invention proposes a method of driving a liquid crystal display device that can prevent heat generation and foaming and obtain good display quality even when the liquid crystal display device must be driven at a relatively high voltage. Aim.
[0008]
[Means for Solving the Problems]
Embodiment 1 of the present invention is a method for driving a liquid crystal display device in which liquid crystal is sandwiched between a plurality of scanning electrodes and a plurality of signal electrodes, wherein the scanning electrodes are scanned while selecting the scanning electrodes, and the selected scanning electrodes are scanned. When applying a voltage to the liquid crystal in order to bring the liquid crystal between the pixel electrode and each signal electrode into a desired state, the selection period of the scanning electrode is divided into a plurality of periods, and the voltage is applied to the liquid crystal every time the divided period is switched. A method for driving a liquid crystal display device, characterized in that the absolute value of the applied voltage is increased.
[0009]
In a second aspect of the present invention, a driving method of a liquid crystal display device in which the lengths of the periods divided from the selection period are equal is input.
[0010]
Embodiment 3 of the present invention provides a method for driving a liquid crystal display device in which the height relationship between the potential of the selected scan electrode and the potential of the signal electrode is reversed each time each divided period is switched.
[0011]
Aspect 4 of the present invention sets the potential of the selected scan electrode alternately to a positive potential higher than a predetermined reference potential and a negative potential lower than the predetermined potential each time each of the divided periods is switched. According to the difference between the effective value voltage during the period in which the potential of the scanning electrode selected in the above is set to the positive potential and the effective value voltage in the period during which the potential of the scanning electrode selected in the selection period is the negative potential, Provided is a method for driving a liquid crystal display device in which the potential of a scan electrode is set to be shifted from a reference potential.
[0012]
In a fifth aspect of the present invention, when n is a natural number, every time n times of scanning of the scanning electrodes for selecting all the scanning electrodes is performed n times, the potential of the selected scanning electrode and the potential of the signal electrode are changed. Provided is a method for driving a liquid crystal display device in which the relationship is reversed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of a liquid crystal display device driven by the driving method of the present invention. The liquid crystal display device shown in FIG. 1 includes a glass substrate 1 A , 1 B , electrodes 2 A , 2 B , polymer thin films 3 A , 3 B , and a liquid crystal composition (chiral nematic liquid crystal) 4 arranged in a focal conic state. And a liquid crystal panel that stably displays the planar state. Further, a black light absorber 5 is arranged on the back side of the liquid crystal display device. Electrodes 2 A, 2 B are transparent electrodes, respectively. In the following description, it is assumed that the electrode 2A is a signal electrode and the electrode 2B is a scanning electrode. The liquid crystal composition 4 and the electrode 2 A, 2 and B may be configured to direct contact.
[0014]
FIG. 2 is a block diagram illustrating a configuration example of a driving device that drives the liquid crystal display device. The controller 11 is instructed to set the potentials of the scanning electrodes 2 B to the scan electrode driver 12, an instruction to set the potentials of the signal electrodes 2 A to the signal electrode driver 13. The scanning electrode driver 12 and the signal electrode driver 13 set the potential of each electrode according to an instruction from the controller 11. The power supply 14 supplies necessary voltages to the scan electrode driver 12 and the signal electrode driver 13. The controller 11 switches the potential of each electrode by the scanning electrode driver 12 and the signal electrode driver 13 to shift the chiral nematic liquid crystal 4 arranged in each pixel to a planar state or a focal conic state. Hereinafter, a case will be described as an example where binary display is performed in the planar state and the focal conic state.
[0015]
Next, the operation of the driving device when writing display on the liquid crystal display device 15 will be described. The driving device performs line-sequential scanning while selecting the scanning electrodes 2B one by one, and applies a voltage for shifting the chiral nematic liquid crystal 4 arranged in the pixel of the selected row to the planar state or the focal conic state. The driving device divides each selection period into a plurality of periods. In each of the periods divided from one selection period, the liquid crystal display device 15 is controlled so that the voltage applied to the pixels in the selected row is increased (the absolute value of the voltage is increased) when the period is switched. Drive.
[0016]
FIG. 3 shows an example of a change in the potential set for the scanning electrode and the signal electrode and a change in the voltage applied to the liquid crystal. The scan electrode driver 12 sequentially selects each scan electrode under the control of the controller 11. In the selection period of one scan electrode, the scan electrode driver 12 sets the potentials of the scan electrodes of the selected row and the scan electrodes of the non-selected rows, respectively.
[0017]
When setting the potential of the scanning electrode in the selected row, the scanning electrode driver 12 divides the selection period into a plurality of periods according to the controller 11. Then, the potential of the selected row is set so that the difference (absolute value) between the predetermined reference potential (here, 0 V) and the potential of the selected row is increased in each of the divided periods. In the example shown in FIG. 3, by dividing the selection period in a period of T 1 through T 3, it sets the potential of the selected row to V 1, -V 2, V 3 for each period. Note that V 1 <V 2 <V 3 . The length of each of the divided periods T 1 to T 3 is arbitrary.
[0018]
The signal electrode driver 13 sets the potential of each signal electrode so that the pixels in the selected row are in the planar state or the focal conic state. The potential ± V p shown in FIG. 3 is the potential of the signal electrode when the liquid crystal between the selected scanning electrode and the signal electrode is brought into the planar state, and ± V f is the potential of the signal electrode when the liquid crystal is brought into the focal conic state. Potential. Signal electrode driver 13, similarly to the selection period to the scanning electrode driver 12 is divided into a plurality of periods, setting the potential of the signal electrodes in each period V p and -V p (or, V f and -V f) I do. In Figure 3, shows an example in determining the potential for each period -V p, V p, -V p ( or -V f, V f, -V f ) and. Note that the value of V p, V f defines a voltage V p, V f as a value also does not affect the liquid crystal state is applied to the liquid crystal 4.
[0019]
As a result, each pixel of the selected row, the voltage of V 1 + V p (or V 1 + V f) is applied in period T 1. In the subsequent period T 2 voltage -V 2 -V p (or -V 2 -V f) is applied. Further, the voltage of the next in the period T 3 V 3 + V p (or V 3 + V f) is applied. As described above, every time the period is switched between T 2 and T 3 , the height (absolute value) of the voltage applied to the pixel is increased.
[0020]
FIG. 4A shows a voltage applied to the liquid crystal during the selection period shown in FIG. FIG. 4B shows a change in the amount of current caused by the voltage. In FIG. 4, the voltage applied during periods other than the selection period is set to 0 V, ignoring. If the voltage is increased stepwise in each period, a high voltage need not be applied at once. Therefore, although a slight transient current occurs every time the applied voltage is changed, a large amount of transient current as shown in FIG. 9 does not occur because the amount of change in the voltage is small. For this reason, inside the liquid crystal display device 15, generation of heat generation bubbles occurs in a portion where the orientation of liquid crystal molecules is non-uniform, a portion where the specific resistance is locally reduced by moisture or impurities, or around a spacer. Can be prevented. As a result, good display quality can be obtained.
[0021]
In the example shown in FIG. 3, the length of each period obtained by dividing the selection period is arbitrary, but the length of each period may be equal. FIG. 3 shows a case where the selection period is divided into three periods, but the number of divisions is not limited to three.
[0022]
Driving such that the potential of the selected scanning electrode is higher than the potential of the signal electrode is referred to as positive polarity driving. Driving such that the potential of the selected scanning electrode is lower than the potential of the signal electrode is called negative polarity driving. Further, a potential higher than a predetermined reference potential (0 V in this embodiment) is defined as a positive potential, and a potential lower than the predetermined reference potential is defined as a negative potential. The scan electrode driver 12 sets the potential of the selected scan electrode to a positive potential during positive drive, and sets the potential of the selected scan electrode to a negative potential during negative drive.
[0023]
When switching between the positive polarity drive and the negative polarity drive, the effective value voltage (voltage expressed as an effective value) in one of the driving cases may be higher than the effective value voltage in the other driving. FIG. 5 shows drive waveforms when the selection period is divided into four equal parts and the voltages V 11 , −V 12 , V 13 , and −V 14 are applied to the liquid crystal during each period T. However, a V 11 <V 12 <V 13 <V 14. In this case, since the actual voltages (−V 12 , −V 14 ) at the time of the negative polarity driving are higher than the actual voltages (V 11 , V 13 ) at the time of the positive polarity driving, the effective value voltage is also lower in the case of the negative polarity driving. Is higher. By shifting the potential of the scanning electrodes in the non-selected rows from the reference potential, bias of the effective value voltage in the entire one frame period may be prevented. That is, when the effective value voltage during the negative drive is increased during the selection period, the effective value voltage during the positive drive is increased during the non-selection period, and either one of the effective values is applied during the entire frame period. May not be increased.
[0024]
The calculation of the effective value of the voltage represented by the rectangular wave will be described. When calculating an effective value voltage during positive driving (a period during which the potential of the selected row is set to a positive potential) within a certain period, application of each real voltage to the positive driving time for each real voltage during positive driving Determine the time ratio and multiply that value by the square of each actual voltage. By calculating this value for each actual voltage and determining the square root of the sum, an effective value voltage during positive polarity driving can be obtained. For example, the positive drive time in the selection period shown in FIG. 5 is 2 · T. The ratio of the application time of the actual voltage V 11 for this time is T / (2 · T) = 1/2. When multiplied by the square of the actual voltage V 11 to this value becomes (1/2) · V 11 2. Doing calculations Similarly, the actual voltage V 13 (1/2) a · V 13 2. When the square root of the sum of the results calculated for each actual voltage is obtained, the effective value voltage (referred to as Vrms + ) at the time of positive polarity driving is as shown in Expression 1.
[0025]
V rms + = √ ((V 11 2 + V 13 2) / 2) Equation 1
[0026]
The calculation of the effective value voltage at the time of the negative polarity driving can be similarly performed. That is, when calculating the effective value voltage during the negative drive in a certain period (a period during which the potential of the selected row is set to a negative potential), the application of each actual voltage to the negative drive time is performed for each actual voltage during the negative drive. Determine the time ratio and multiply that value by the square of each actual voltage. By calculating this value for each actual voltage and calculating the square root of the sum, an effective value voltage ( referred to as Vrms- ) at the time of negative polarity driving can be obtained. Equation 2 is obtained when Vrms- in the selection period shown in FIG. 5 is obtained.
[0027]
V rms- = √ ((V 12 2 + V 14 2) / 2) Equation 2
[0028]
Figure 6 shows a drive waveform when higher by V n than the reference potential the potential of the scan electrodes in the non-selection period (0V). By increasing the potential of the scan electrode in the non-selection period in one frame period, the effective value voltage in the positive drive becomes higher than the effective value voltage in the negative drive in the non-selection period. As a result, even during the selection period, even if the effective value voltage at the time of negative drive is higher than the effective value voltage at the time of positive drive, there is no bias in the entire one frame period. Figure 5 and 6 will be explained as an example for the method of calculating V n. First, a difference between V rms + and V rms-within the selection period (the A rms). Arms is the difference between the effective value voltage during positive drive and the effective value voltage during negative drive. If the effective value voltage in the non-selection period (T n ) is increased by Arms , the bias in the entire one frame period is eliminated.
[0029]
Calculating the increase in effective voltage due to the increased potential V n across unselected entire period T n. The ratio of the period to increase the potential V n for the non-selection period T n is T n / T n = 1. A V n 2 is multiplied by the square of this value to the potential was raised (voltage) V n. Here, since the thinking non-selection period to raise the potential (voltage) V n as one period, by calculating the square root of V n 2, the increase in the effective value due to the rise in the potential V n is determined . This increase is, deviation of the effective value is eliminated equal to A rms. Accordingly, the potential V n to shift with respect to the reference potential has a value shown in Equation 3.
[0030]
V n = √ (A rms 2 ) Equation 3
[0031]
The higher towards the effective voltage of the negative polarity driving in the selection period, the potential of the scan electrodes in the non-selection period (the non-selected rows of the scanning electrodes) may be increased V n than the reference potential. Also, the higher the better the effective voltage of the positive polarity driving in the selection period, the potential of the scan electrodes in the non-selection period (the non-selected rows of the scanning electrodes) may be V n lower than the reference potential.
[0032]
Incidentally, when driven in this way, although the pixels of the non-selected row voltage of ± V f + V n or ± V p + V n is applied, the value of these voltages does not affect the state of the liquid crystal 4 Vp and Vf are determined so that
[0033]
In the drive waveforms shown in FIGS. 3 and 6, an example in which the positive drive and the negative drive are switched within the selection period has been described. However, the positive drive and the negative drive may be switched every frame period. . FIG. 7 shows an example of the driving waveform in this case. In the first frame period, the controller 11 instructs the scan electrode driver 12 and the signal electrode driver 13 to perform positive drive. In this case, the signal electrode driver 13 during the selection period, setting the potential of the signal electrodes to -V p or -V f. On the other hand, the scan electrode driver 12 divides the selection period into a plurality of periods in accordance with the controller 11, and sets the potential of the selected row such that the difference (absolute value) between the reference potential and the potential of the selected row increases for each of the divided periods. Set. At this time, the potential set for each period is a positive potential. As a result, the voltage applied to the pixels in the selected row increases while maintaining the polarity each time the divided periods are switched.
[0034]
In the next frame period, the controller 11 instructs the scan electrode driver 12 and the signal electrode driver 13 to perform a negative drive. In this case, the signal electrode driver 13 sets the potential of each signal electrode to Vp or Vf during the selection period. On the other hand, the scan electrode driver 12 divides the selection period into a plurality of periods in accordance with the controller 11, and sets the potential of the selected row such that the difference (absolute value) between the reference potential and the potential of the selected row increases for each of the divided periods. Set. Note that the potential set for each period is a negative potential. As a result, the voltage applied to the pixels in the selected row increases while maintaining the polarity each time the divided periods are switched. Although FIG. 7 shows a case in which the positive drive and the negative drive are switched every frame period, the drive may be switched every n frame periods (n is a natural number). Further, in one frame period, scanning of the scanning electrodes for selecting all the scanning electrodes once is performed once.
[0035]
Although an example in which binary display is performed is described here, halftone display may be performed by receiving a plurality of potentials set to the signal electrodes. For example, in the example shown in FIG. 3, the signal electrode driver 13 is ± V p, in addition to ± V f, more V f V p less (or, -V p or -V f below) the potential of the set, planar state A halftone display between and the focal conic state may be performed. Even in the case where the potential of the signal electrode is set to a potential corresponding to the halftone as described above, it is possible to prevent heat generation and foaming by increasing the height of the applied voltage every time the divided periods are switched.
[0036]
FIG. 1 shows a case where a chiral nematic liquid crystal is used as the liquid crystal composition 4, but the liquid crystal composition 4 is not limited to a chiral nematic liquid crystal. As the liquid crystal composition 4, a cholesteric liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like may be used. When the driving method of the present invention is applied to a liquid crystal display device using a liquid crystal that requires a high driving voltage (for example, a driving voltage of 15 V or more) as the liquid crystal composition 4, heat generation and bubbling can be prevented and good display quality can be obtained. Obtainable. Further, the driving method of the present invention may be applied to a liquid crystal display device including a TN liquid crystal or an STN liquid crystal that does not generate heat even when driven by a conventional driving method. Note that the configuration of the liquid crystal display device 15 may be changed according to the liquid crystal composition 4. For example, when using a ferroelectric liquid crystal or anti-ferroelectric liquid crystal, without providing the light-absorbing member 5 on the liquid crystal panel, a polarizing plate is provided on the glass substrates 1 A, 1 B.
[0037]
When a chiral nematic liquid crystal is used as the liquid crystal composition 4, one of a voltage for setting a planar state and a voltage for setting a focal conic state is applied to each pixel in a selected row. When a ferroelectric liquid crystal is used as the liquid crystal composition 4, a voltage for changing the alignment state or a voltage equal to or lower than a predetermined threshold is applied to each pixel in the selected row to display a desired image. When a voltage lower than a predetermined threshold is applied to the pixels in the selected row, the potential of the signal electrode may be set so that the potential difference between the selected scanning electrode and the pixel is lower than the predetermined threshold.
[0038]
【Example】
[Example 1] A glass substrate with ITO (Indium Tin Oxide) having a sheet resistance of 20Ω was etched into a predetermined display pattern to form a pair of glass substrates. The MIC and the alignment film were transferred and fired on each substrate to form a thin film. The MIC is an abbreviation for a middle coat film, and is an insulating film. An empty cell was created by disposing a sealing material around the pair of substrates. Further, a chiral nematic liquid crystal was injected into the empty cell, thereby producing a liquid crystal display device.
[0039]
This liquid crystal display device was subjected to a moisture resistance test. In the moisture resistance test, the liquid crystal display device was allowed to stand still in a bath at a temperature of 80 ° C. and a humidity of 90%, and after a predetermined time had elapsed, the liquid crystal display device was taken out of the bath to determine whether or not good display was obtained. It was done by confirmation. Immediately before putting in the tank, an image was displayed on the liquid crystal display device with the driving waveforms shown in FIGS. Also, the liquid crystal display device was taken out of the tank 72 hours, 144 hours, 300 hours, and 504 hours after the liquid crystal display device was allowed to stand still in the tank, and images were taken with the driving waveforms shown in FIGS. Displayed. In each case, good display was obtained. The contrast was also good.
[0040]
[Example 2] A liquid crystal display device was prepared in the same manner as in Example 1 using a glass substrate with ITO having a sheet resistance of 4Ω, and a moisture resistance test was performed in the same manner as in Example 1. However, when an image was displayed, it was driven with the drive waveform shown in FIG. Good display was obtained similarly to the case of Example 1. The contrast was also good. This shows that good display can be obtained even when the resistance value of ITO is reduced.
[0041]
Comparative Example The same liquid crystal display device as in Example 1 was prepared, and a moisture resistance test was performed in the same manner as in Example 1. However, when displaying an image, the voltage applied to the liquid crystal was not changed stepwise but driven so that the voltage was applied with the waveform shown in FIG. 9A. In this case, good display was obtained immediately before the liquid crystal display device was put in the tank and 72 hours after the liquid crystal display device was put in the tank, but when driven after 144 hours, foaming occurred and good display was not obtained. .
[0042]
Table 1 shows the results of Examples 1 and 2 and Comparative Example. In Table 1, “○” indicates that good display was obtained without foaming. “X” indicates that foaming occurred and good display was not obtained.
[0043]
[Table 1]
Figure 2004004199
[0044]
As shown in Table 1, it can be seen that by driving the liquid crystal display device by the driving method of the present invention, heat generation and foaming can be suppressed, and display quality can be maintained for a long period of time.
[0045]
【The invention's effect】
According to the driving method of the present invention, it is possible to prevent a large amount of transient current from flowing when a driving voltage is applied to a liquid crystal, and in a liquid crystal display device, a portion where directions of liquid crystal molecules are non-uniform, moisture, or the like. It is possible to prevent the occurrence of heat generation and foaming in a portion where the specific resistance is locally reduced due to impurities, or around a spacer. As a result, an image can be displayed with good display quality.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating an example of a liquid crystal display device.
FIG. 2 is a block diagram illustrating a configuration example of a driving device that drives a liquid crystal display device.
FIG. 3 is an explanatory diagram showing an example of a driving waveform according to the driving method of the present invention.
FIG. 4 is an explanatory diagram showing an applied voltage to a liquid crystal and a change in current caused by the applied voltage.
FIG. 5 is an explanatory diagram showing an example of a driving waveform according to the driving method of the present invention.
FIG. 6 is an explanatory diagram showing an example of a driving waveform according to the driving method of the present invention.
FIG. 7 is an explanatory diagram showing an example of a driving waveform according to the driving method of the present invention.
FIG. 8 is a schematic diagram showing the behavior of ferroelectric liquid crystal molecules when a voltage is applied.
FIG. 9 is an explanatory diagram showing a change in current caused by a voltage applied to a liquid crystal by a conventional driving method.
[Explanation of symbols]
Reference Signs List 1 A , 1 B glass substrate 2 A , 2 B electrode 4 Liquid crystal composition 11 Controller 12 Scanning electrode driver 13 Signal electrode driver 14 Power supply device 15 Liquid crystal display (liquid crystal panel)

Claims (5)

複数の走査電極と複数の信号電極との間に液晶を挟持する液晶表示装置の駆動方法であって、
走査電極を選択しながら走査電極を走査し、
選択した走査電極と各信号電極との間の液晶を所望の状態にするために前記液晶に電圧を印加する場合に、前記走査電極の選択期間を複数の期間に分割し、分割した各期間が切り替わるたびに液晶に印加する電圧の絶対値を大きくする
ことを特徴とする液晶表示装置の駆動方法。
A method for driving a liquid crystal display device that sandwiches liquid crystal between a plurality of scanning electrodes and a plurality of signal electrodes,
Scan the scan electrode while selecting the scan electrode,
When applying a voltage to the liquid crystal in order to bring the liquid crystal between the selected scan electrode and each signal electrode into a desired state, the selection period of the scan electrode is divided into a plurality of periods, and each of the divided periods is A driving method of a liquid crystal display device, wherein the absolute value of a voltage applied to a liquid crystal is increased each time switching is performed.
分割する各期間の長さを等しくする請求項1に記載の液晶表示装置の駆動方法。2. The driving method for a liquid crystal display device according to claim 1, wherein the lengths of the divided periods are made equal. 分割した各期間が切り替わるたびに、選択した走査電極の電位と信号電極の電位との高低関係を逆にする請求項1または請求項2に記載の液晶表示装置の駆動方法。3. The driving method for a liquid crystal display device according to claim 1, wherein the level relationship between the potential of the selected scanning electrode and the potential of the signal electrode is reversed each time each of the divided periods is switched. 分割した各期間が切り替わるたびに、選択する走査電極の電位を、所定の基準電位より高い正電位と所定の電位より低い負電位とに交互に設定し、
選択期間内で選択した走査電極の電位を正電位とする期間の実効値電圧と、選択期間内で選択した走査電極の電位を負電位とする期間の実効値電圧との差に応じて、非選択行の走査電極の電位を基準電位からずらして設定する
請求項3に記載の液晶表示装置の駆動方法。
Each time the divided periods are switched, the potential of the selected scan electrode is alternately set to a positive potential higher than a predetermined reference potential and a negative potential lower than a predetermined potential,
In accordance with the difference between the effective value voltage during the period when the potential of the selected scan electrode is positive during the selection period and the effective value voltage during the period when the potential of the selected scan electrode is negative during the selection period, 4. The driving method for a liquid crystal display device according to claim 3, wherein the potential of the scanning electrode in the selected row is set to be shifted from the reference potential.
nを自然数としたときに、全ての走査電極を1回ずつ選択する走査電極の走査をn回行うたびに、選択した走査電極の電位と信号電極の電位との高低関係を逆にする請求項1または請求項2に記載の液晶表示装置の駆動方法。When n is a natural number, every time n times of scanning of a scanning electrode for selecting all of the scanning electrodes is performed n times, the height relationship between the potential of the selected scanning electrode and the potential of the signal electrode is reversed. The method for driving a liquid crystal display device according to claim 1 or 2.
JP2002158347A 2002-05-30 2002-05-30 Method for driving liquid crystal display device Pending JP2004004199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158347A JP2004004199A (en) 2002-05-30 2002-05-30 Method for driving liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158347A JP2004004199A (en) 2002-05-30 2002-05-30 Method for driving liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2004004199A true JP2004004199A (en) 2004-01-08

Family

ID=30428661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158347A Pending JP2004004199A (en) 2002-05-30 2002-05-30 Method for driving liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2004004199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864206B2 (en) 2015-01-12 2018-01-09 Samsung Display Co., Ltd. Optical modulation device including liquid crystals, driving method thereof, and optical display device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864206B2 (en) 2015-01-12 2018-01-09 Samsung Display Co., Ltd. Optical modulation device including liquid crystals, driving method thereof, and optical display device using the same

Similar Documents

Publication Publication Date Title
JPH06230751A (en) Liquid crystal display device having two metastable state and its driving method
JPH0544009B2 (en)
JP2004029477A (en) Driving method of liquid crystal display, and liquid crystal display
JPH0535848B2 (en)
JP2004004199A (en) Method for driving liquid crystal display device
US6344840B1 (en) Plasma-addressed liquid crystal display device
JPH08248450A (en) Ferroelectric liquid crystal display element
JPS6246845B2 (en)
JP2584767B2 (en) Driving method of liquid crystal device
JP2566149B2 (en) Optical modulator
JP2614220B2 (en) Display device
JPH0799415B2 (en) Liquid crystal device
JPH0823636B2 (en) Driving method of optical modulator
JP5052363B2 (en) Liquid crystal element
JP2004094265A (en) Method for driving liquid crystal display element, liquid crystal display and reflective field-sequential projector using the same
JPH0553091A (en) Matrix type liquid crystal display device and driving method for the same
JPH08101371A (en) Liquid crystal display device driving method and liquid crystal display device
JPS6391634A (en) Driving method for optical modulating element
JPS62289816A (en) Driving method for optical modulation element
JPS63306424A (en) Driving device
JPH02157816A (en) Method for driving ferroelectric liquid crystal panel
JP2000056308A (en) Liquid crystal element
JPS6249608B2 (en)
JPH04314026A (en) Liquid crystal display device
JPH0743676A (en) Liquid crystal display device