JP2004003844A - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP2004003844A
JP2004003844A JP2003164028A JP2003164028A JP2004003844A JP 2004003844 A JP2004003844 A JP 2004003844A JP 2003164028 A JP2003164028 A JP 2003164028A JP 2003164028 A JP2003164028 A JP 2003164028A JP 2004003844 A JP2004003844 A JP 2004003844A
Authority
JP
Japan
Prior art keywords
moisture
regeneration
path
air
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164028A
Other languages
Japanese (ja)
Other versions
JP3933606B2 (en
JP2004003844A5 (en
Inventor
Haruhito Miyazaki
宮崎 治仁
Toyokazu Shirouchi
城内 豊和
Yoshihiro Uramoto
浦元 嘉弘
Hirosuke Kubo
久保 博亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003164028A priority Critical patent/JP3933606B2/en
Publication of JP2004003844A publication Critical patent/JP2004003844A/en
Publication of JP2004003844A5 publication Critical patent/JP2004003844A5/ja
Application granted granted Critical
Publication of JP3933606B2 publication Critical patent/JP3933606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a dry type dehumidifier using a moisture absorbing agent wherein heating is performed for regenerating the moisture absorbing agent, hence heat quantity discharged out of the dehumidifier is large, room temperature is raised, power consumption is increased, and the dehumidifier is larger than a compressor type dehumidifier. <P>SOLUTION: A recovering circuit for recovering remaining heat of air 7b for regeneration heated by heater 5 for regeneration is formed of a heat radiation zone 2ba of a moisture absorber 2, a regeneration zone 2bb, and a heat receiving zone 2bc. The heat quantity discharged out of the dehumidifier is reduced, and the power consumption is reduced. Moisture absorption efficiency of the moisture absorber 2 is improved by taking the air 7d for regeneration into a moisture absorption passage A, condensation efficiency of a condenser 3 is improved by constituting the condenser 3 so that condensed water 19 is not reserved in the bottom of the condenser 3, and hence the dehumidifier 1 is miniaturized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、除湿機に関し、特に吸湿剤を用いて除湿を行う、乾式除湿機に関するものである。
【0002】
【従来の技術】
従来の除湿機は、図1に示すように、除湿機1外部から送風機4によって取り入れられた吸湿用空気14aが、2経路を持った凝縮器3の一方の通路(以下、低温通路3aと呼ぶ)を通った後、内部にシリカゲルなどの吸湿剤26が充填され、風路を2分割された回転式の吸湿器2の一方の風路(以下、吸湿部2aと呼ぶ)を通って吸湿され、除湿機1の外部へ乾燥空気14bが放出される吸湿経路Aが構成されている。
【0003】
また、吸湿用空気14aに含まれる水分を吸収した吸湿剤26を再生するために、除湿機1外部から送風機6によって取り入れられた再生用空気7aは、再生用ヒータ5によって昇温され(7b)、吸湿器2内の吸湿剤26を乾燥させる。水分を含んだ高温の再生用空気7cは、前記凝縮器3の他方の通路(以下、高温通路3bと呼ぶ)を通ることで、低温通路3a内を通る吸湿用空気14aと熱交換されて冷却及び凝縮され、除湿機1の外部へ放出される再生経路Bが構成されている。
【0004】
凝縮器3に流入する再生用空気7cは、冷却されるため、水分が凝縮され、凝縮水19となって落下する。この時に飽和水蒸気量が少ないほうが、多くの水分を凝縮できるので、できるだけ低温に冷却した方が望ましい。また、再生経路B内に凝縮水19が溜まらないように、凝縮水19を受ける貯水部10と、貯水部10にあけられた孔10aから落下する凝縮水20を受ける貯水槽27が配されている。
【0005】
また、図2は、他の従来例を示し、再生経路Bが、循環した閉回路を構成した再生用空気循環式除湿機である。凝縮器3を通過後の再生用空気7dは、再生用ヒータ5で、昇温され、吸湿器2の再生部2bを通って吸湿剤26を再生し、凝縮器3で凝縮される。この構成によると、凝縮後の高湿度の再生用空気7dが除湿機1外へ放出されないため、前述の例と比較して除湿効果が高くなる。
【0006】
また、図3に凝縮器3の詳細を示す。凝縮器3は、図3における(a)に示すように、吸湿経路Aの低温通路3aと再生経路Bの高温通路3bとは直交しており、図3における(b)に示すような、内部が多数の通路に分割されたシート22,23が互いに直交して複数段交互に積層固着されて構成されている。シート22,23の固着面22a,23aは、極力薄く、また接触面積が大きく形成され、低温通路3aを通る吸湿用空気14aと、高温通路3bを通る再生用空気7cとの間の熱交換の効率を向上させている。
【0007】
熱交換によって冷却された再生用空気7cは、図3における(c)に示す高温通路3bの断面図のように、水分が凝縮されて、凝縮水19となり、凝縮水19は自重により高温通路3b内を落下して排出される。
【0008】
【発明が解決しようとする課題】
このような構成の除湿機において、吸湿器2が吸湿用空気14aから水分を吸収する際には吸着熱が発生し、凝縮器3が、再生用空気7cを凝縮する際には凝縮熱が発生する。また、吸湿剤26を再生するためには、再生用空気7bは、約140℃以上に加熱される必要があるため、再生用ヒータ5には、送風機6により決定される風量の再生用空気7bを昇温させる電力が必要である。
【0009】
再生用空気7bの昇温時に再生用ヒータ5によって発生する余熱は、前記の吸着熱と凝縮熱とともに、除湿機1から放出されて、使用される部屋の室温を上昇させ、ユーザに不快感を与える要因となる。また、余熱分のエネルギーが再生用ヒータ5によって余分に消費されるので、除湿機1の消費電力を大きくしていた。
【0010】
また、乾式の除湿機は、コンプレッサ式除湿機などと比較し、静音であるが形状が大きくなるという欠点があった。
【0011】
また、図3における(c)に示すように、高温通路3b内を壁面に伝って成長しながら落下してきた凝縮水19は、凝縮器3の下端面30で表面張力によってある程度の重量になるまでは落下せずに留まり、大きな水滴19aとなって高温通路3bを塞でいた。
【0012】
この水滴19aによって、高温通路3bが部分的に塞がれることにより、再生用空気7cの通過面積が減少して熱交換を行う面積が少なくなり、さらに、通過面積が減少し、送風機6による風量が一定であるために再生用空気7cが凝縮器3を通過する速度が速くなることで、凝縮効率を悪化させる要因となっていた。
【0013】
また、再生用空気循環式除湿機においては、凝縮器3の貯水部10に開けられた孔10aは、再生用空気7dが閉じた再生経路Bからできる限り漏れないように、最小限の大きさに開けられている。しかし、再生経路Bにおいて、凝縮器3の高温通路3bが細管状となっているため最も通気抵抗が大きく、凝縮器3を通過後の再生用空気7dの気圧が大気圧よりも低くなり、孔10aから凝縮水19が排出されにくくなることによって再生経路Bに凝縮水19が溜まる要因となっていた。
【0014】
また、除湿機1を運転する際に、湿度は、温度に比較して体感しにくいため、ユーザが除湿効果を確認しにくかった。
【0015】
また、再生経路Bは、高湿度状態であり、除湿機1を運転停止後に、再生経路Bが室温まで低下した際には、再生経路Bのほぼ全体が露点温度に達している。再生経路Bは、高湿度の再生用空気7dの排出を少なくするために、細い経路で構成されているので(例えば吸湿経路Aの1/10)、除湿機1の運転停止後長時間放置しても乾燥しにくく、かびの発生、雑菌の繁殖、金属部の腐食などの問題があった。
【0016】
本発明は、外部へ放出される熱を低減し、消費電力の少ない除湿機を提供することを目的とする。
【0017】
また、本発明は、小型でコストパフォーマンスに優れた除湿機を提供することを目的とする。
【0018】
また、本発明は、安定した凝縮効率を得ることのできる除湿機を提供することを目的とする。
【0019】
また、本発明は、凝縮水の排出をスムーズに行うことが可能な除湿機を提供することを目的とする。
【0020】
また、本発明は、運転効果を容易に確認可能な除湿機を提供することを目的とする。
【0021】
また、本発明は、かびや雑菌の発生及び金属の腐食を防止した除湿機を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記目的を達成する達成するために、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1、第2、第3の区域に風路を分割され、前記再生用空気が、前記第1の区域、前記再生用ヒータ、前記第2の区域、前記第3の区域の順に通過し、前記吸湿器から熱回収する。
【0023】
この構成によると、再生用ヒータで昇温された再生用空気は、吸湿器の再生部における再生区域を通り、吸湿剤を再生した後、再生区域の吸湿器回転方向後方に位置する受熱区域を通り、吸湿剤に余熱を与える第1の熱回収回路を構成する。また、再生用ヒータを通る前に、再生区域の吸湿器回転方向前方に位置する放熱区域を通り、吸湿剤から余熱を受け取る第2の熱回収回路を構成する。
【0024】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、低温流体と高温流体との間で熱交換を行う熱交換器を有し、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1、第2の区域に風路を分割され、前記再生用空気は、前記再生用ヒータ、前記第1の区域、前記熱交換器の順に通過し、前記吸湿用空気の一部は、前記熱交換器、前記第2の区域の順に通過し、前記吸湿器から熱回収する。
【0025】
この構成によると、再生用ヒータで昇温された再生用空気は、吸湿器の再生部における吸湿器回転方向前方を通り、吸湿剤を再生した後、熱交換器を通り熱交換器に余熱を与える。また、吸湿用空気の一部は、再生用空気が通った熱交換器の区域と隣接した区域を通って熱交換器の伝導熱を受け取り、吸湿器の再生部における吸湿器回転方向後方を通り、吸湿剤に予熱を与える熱回収回路を構成する。
【0026】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、低温流体と高温流体との間で熱交換を行う回転式の熱交換器を有し、前記熱交換器は、前記熱交換器の回転方向前方より順に、第1熱交換区域と第2熱交換区域に風路を分割され、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1再生区域と第2再生区域に風路を分割されており、前記再生用空気は、前記再生用ヒータ、前記第1再生区域、前記第2熱交換区域の順に通過し、前記吸湿用空気の一部は、前記第1熱交換区域、前記第2再生区域の順に通過し、前記吸湿器から熱回収する。
【0027】
この構成によると、再生用ヒータで昇温された再生用空気は、吸湿器の再生部における吸湿器回転方向前方を通り、吸湿剤を再生した後、回転式の熱交換器を通り余熱を与える。また、吸湿用空気の一部は、熱交換器内の再生経路と隣接した該熱交換器の回転方向後方を通って熱を受け取り、吸湿器の再生部における吸湿器回転方向後方を通り、吸湿剤に予熱を与える熱回収回路を構成する。
【0028】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生用空気を、前記吸湿経路における前記吸湿器の前に合流させている。
【0029】
この構成によると、凝縮器を通った相対湿度100%の再生用空気は、吸湿器の吸湿部を通って吸湿された後除湿機外に放出され、吸湿剤に吸収された水分は、再生経路を通って凝縮される。
【0030】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記再生経路における前記凝縮器の出口側形状を、長溝状としている。
【0031】
この構成によると、凝縮器の出口付近の凝縮水は、長溝部を下方に伝って、長溝の下方端部で表面張力によって留まり、適当な重量となって、凝縮器より落下する。
【0032】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生経路の一部に通気抵抗を設けている。
【0033】
この構成によると、循環した再生経路において、凝縮器を通過した再生用空気は、通気抵抗を受け、凝縮器の出口付近の気圧が高くなる。
【0034】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生経路を構成する部材が、前記再生経路内部の少なくとも一部を可視できる材料で構成されている。
【0035】
この構成によると、凝縮器を通った後の再生経路の一部は、除湿機外より視認できる状態で、除湿が行われる。
【0036】
また、本発明は、回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記吸湿経路の送風機を停止時に、前記再生経路の送風機と前記再生用ヒータとを運転可能としている。
【0037】
この構成によると、除湿機の運転停止後に、再生経路の送風機を運転した際に、吸湿用空気は流れずに、高温の乾燥した再生用空気が再生経路に流れる。
【0038】
【発明の実施の形態】
本発明における第1の実施形態を図4及び図5を参照して説明する。図4は、第1実施形態の構成図であり、図5は吸湿器2の部分を説明する概略図である。なお、従来例と同一の構成部材においては、同一の番号を付している。
【0039】
図において、吸湿器2は、吸湿器2の回転方向(矢印24)の前方より順に放熱区域2ba、再生区域2bb、受熱区域2bcに、風路を分割されている。再生用ヒータ5によって昇温された再生用空気7bは、吸湿器2の再生部2aの再生区域2bbを通り、吸湿剤26の再生を行う。再生区域2bbを通過した再生用空気7b2は、再生用空気7bよりも温度が下がっているが、まだ高温状態であるので、再度、吸湿器2の再生部2bにおける、受熱区域2bcを通って吸湿剤26に余熱を与える。予熱された受熱区域2bcの吸湿剤26は、吸湿器2の矢印24方向の回転に伴い前記の再生区域2bbへ移動する
【0040】
受熱区域2bcを通った再生用空気7cは、凝縮器3を通って冷却及び凝縮され、冷却された再生用空気7dは、吸湿器2の放熱区域2baを通る。再生区域2bbで加熱された吸湿剤26は、吸湿器2の回転に伴い放熱区域2baへ移動しているので、再生用空気7dは、吸湿剤26から予熱され、再生用空気7d2となって再生用ヒータ5によって昇温される。
【0041】
この構成によると、図5に示すように、再生用空気7d2が、放熱区域2baと再生区域2bbを介して吸湿剤26の熱を回収する第1の熱回収回路Dが形成されることにより、再生用空気7d2は、再生用ヒータ5で加熱される前に予め昇温されるので、再生用ヒータ5の、加熱エネルギーを低減可能となる。
【0042】
また、受熱区域2bcの吸湿剤26が、再生用空気7b2の予熱を回収して再生区域2bbに引き渡す第2の熱回収回路Eが形成されることにより、吸湿剤26が再生区域に位置する前に予め昇温されるので、吸湿剤26の再生に必要な温度まで再生空気7bを昇温させる、再生用ヒータ5の加熱エネルギーを低減可能である。
【0043】
なお、図4において、再生経路Bを循環した閉回路としているが、放熱区域2baに入る再生用空気7dを除湿機1の外部から取り入れ、凝縮器3を通過した再生用空気7dを除湿機1の外部へ放出する開回路でも同様の効果を得ることができる。
【0044】
次に、第2実施形態を図6及び図7を参照して説明する。図6は、第2実施形態の構成図であり、図7は吸湿器2及び熱交換器8の部分を説明する概略図である。なお、従来例と同一の構成部材においては、同一の番号を付している。
【0045】
同図において、吸湿器2に隣接して、吸湿器2の再生部2bから吸湿部2aの一部にかけて形成される熱交換器8が配置され、再生用ヒータ5によって昇温された再生用空気7bは、吸湿器2の再生部2bを通って吸湿剤26を再生した後、熱交換器8内の再生経路B1を通って凝縮器3へ送られる。熱交換器8は、伝熱性の高い材料で形成され、吸湿器2を通ったまだ高温状態の再生用空気7bは、熱交換器8に余熱を与える。
【0046】
吸湿経路Aから分岐した吸湿経路A2を通る吸湿用空気14cは、熱交換器8内の再生経路B1と隣接した吸湿経路A1を通って、再生経路B1からの伝導熱を与えられ、吸湿器2の再生部2bと隣接して回転方向(矢印24)の後方側に位置する受熱部2cを通り吸湿剤26に予熱を与え、受熱部2c内の吸湿剤26は回転によって再生部2bへ移動する。吸湿器2を通った吸湿用空気14dは、吸湿剤26により水分を除去されているので吸湿経路Aに戻り、除湿機1外へ放出される。
【0047】
この構成によると、昇温された再生用空気7bの余熱を熱交換器8と吸湿用空気7bを介して吸湿剤26が回収する回収回路Fが形成されることにより、吸湿剤26が再生区域に位置する前に予め昇温されるので、吸湿剤26の再生に必要な温度まで再生空気7bを昇温させる、再生用ヒータ5の加熱エネルギーを低減可能である。
【0048】
なお、図6において、吸湿経路A2が、吸湿経路Aから分岐した構成を示しているが、吸湿経路Aの一部が熱交換器8内の吸湿経路A1にかかるように構成すれば、吸湿経路A2を分岐させなくても同様の効果を期待することができる。
【0049】
次に、第3実施形態を図8及び図9を参照して説明する。図8は、第3実施形態の構成図であり、図9は吸湿器2及び回転式の熱交換器9の部分を説明する概略示図である。なお、従来例と同一の構成部材においては、同一の番号を付している。
【0050】
同図において、吸湿器2に隣接した位置に回転式の熱交換器9が配置され、再生用ヒータ5によって昇温された再生用空気7bは、吸湿器2の再生部2bを通って吸湿剤26を再生した後、熱交換器9内の受熱部9aを通って凝縮器3へ送られる。吸湿器2を通ったまだ高温状態の再生用空気7bは、熱交換器9に余熱を与える。
【0051】
吸湿経路Aから分岐した吸湿経路A2を通る吸湿用空気14cは、熱交換器9内の受熱部9aと隣接した放熱部9bを通る。熱交換器9の受熱部9aの吸湿剤26は、熱交換器9の矢印25方向の回転によって放熱部9bに移動しているため、吸湿用空気14cは熱交換器9の放熱部9bから熱を与えられ、吸湿器2の再生部2aと隣接して回転方向(矢印24)の後方側に位置する吸湿器2の受熱部2cを通り吸湿剤26に予熱を与え、吸湿器2の受熱部2c内の吸湿剤26は矢印24方向の回転によって再生部2bへ移動する。吸湿器2を通った吸湿用空気14dは、吸湿剤26により水分を除去されているので吸湿経路Aに戻り、除湿機1外へ放出される。
【0052】
この構成によると、昇温された再生用空気7bの余熱を熱交換器9と吸湿用空気7bを介して吸湿剤26が回収する熱回収回路Gが形成されることにより、吸湿剤26が再生区域に位置する前に予め昇温されるので、吸湿剤26の再生に必要な温度まで再生空気7bを昇温させる、再生用ヒータ5の加熱エネルギーを低減可能である。
【0053】
なお、図8において、吸湿経路A2が、吸湿経路Aから分岐した構成を示しているが、吸湿経路Aの一部が熱交換器9内の放熱部9aにかかるように構成すれば、吸湿経路A2を分岐させなくても同様の効果を期待することができる。
【0054】
以上の第1、第2及び第3の実施形態によると、再生用ヒータ5によって加熱された再生用空気7b及び吸湿剤26の余熱を回収することから、除湿機1外に放出される熱量が低減されるとともに、再生用ヒータ5が加熱を行うために必要な加熱エネルギーが低減され、再生用ヒータ5の消費電力を低減することができる。
【0055】
なお、第2及び第3実施形態において、熱交換器8及び熱交換器9は、必ずしも吸湿器2に隣接する必要はなく離れた位置に構成しても同様の効果を得ることが可能であるが、できるだけ近い位置に配置した方が、熱交換器8,9と吸湿器2との間の、再生経路B及び吸湿経路A2を短くでき、再生経路B及び吸湿経路A2からの放熱量を少なくできるので望ましい。
【0056】
また、第2及び第3実施形態において、再生経路B及び吸湿経路A2は、対向流としているが、必ずしも対向流とする必要はなく図14に示すように、平行流でも構成可能で、同様の効果を得ることが可能であるが、対向流とした方が、熱交換器8,9と吸湿器2との間の、再生経路B及び吸湿経路A2を短くでき、再生経路B及び吸湿経路A2からの放熱量を少なくできるので望ましい。
【0057】
また、第3実施形態において、熱交換器9と吸湿器2の回転方向を逆方向としているが、必ずしも逆方向とする必要はなく図15に示すように、同一方向でも構成可能で、同様の効果を得ることが可能であるが、逆方向とした方が、熱交換器9と吸湿器2との間の、再生経路B及び吸湿経路A2を短くでき、再生経路B及び吸湿経路A2からの放熱量を少なくできるので望ましい。
【0058】
次に、第4実施形態を図10を参照して説明する。なお、従来例と同一の構成部材においては、同一の番号を付している。図10において凝縮器3を通過した再生用空気7dは、吸湿経路Aにおける吸湿器2の上流側に合流し、吸湿器2の吸湿部2aで、吸湿用空気14aとともに水分を吸収され除湿機1外へ放出される。
【0059】
この構成によると、凝縮後、相対湿度がほぼ100%の再生用空気7dを吸湿経路Aに合流させることで、吸湿用空気14aの水分濃度を上げ、再生用空気7dに含まれた水分も吸湿器2によって吸湿することになるので、除湿効果を向上させることができるため、吸湿器2を小型化することが可能である。
【0060】
次に、第5実施形態を図11を参照して説明する。先に説明した図3と同一の構成部材においては、同一の番号を付している。図11において、(a)は、第5実施形態における凝縮器3の斜視図を示し、(b)は、高温通路3bの縦断面図を示している。これによると、低温通路3aのシート22は、高温通路3bのシート23よりも下方に突出して積層されており、突出部3dと、厚みt,奥行きdの長溝部3cとを形成している。
【0061】
凝縮器3に流入した再生用空気7cは、凝縮されて凝縮水19を生成して高温通路3b内を成長しながら内壁面を伝って落下する。凝縮水19が高温通路3bを構成するシート23の下端面30に達すると、凝縮水19に表面張力が低温通路3aを構成するシート22の側面32との間で働くことで、凝縮水19は留まらずに、シート22の側面32を伝ってシート22の下端面31まで落下する。シート22の下端面31では、凝縮水19に、側面32及び下端面31との間で表面張力が働くため落下しにくくなり、適当時間留まって大きな凝縮水19aとなり、ある程度の自重になってから、貯水部10に落下する。
【0062】
このように、凝縮水19は、高温通路3bの下端面30で留まることが無くなるため、高温通路3bを通った再生空気7cは、下端面30と凝縮水19aとの隙間から流出し、高温通路3bを塞いで再生用空気7cの通過面積を減少させることなく常にほぼ最大に維持することが可能で、安定した凝縮効率を得ることができる。
【0063】
次に、第6実施形態を図12を参照して説明する。なお、従来例と同一の構成部材においては、同一の番号を付している。図12において、除湿機1は、再生用空気循環式に構成されており、凝縮器3を通過した後の再生経路Bの一部分を、凝縮器3の貯水部10の気圧が大気圧よりも高くなるように、他よりも細くして通気抵抗13を形成している。これによって、貯水部10の孔10aからスムーズに凝縮水20が貯水槽27に落下し、再生経路Bに凝縮水20が大量に溜まることを防止している。
【0064】
次に、第7実施形態を図13を参照して説明する。なお、従来例と同一の構成部材においては、同一の番号を付している。図13において、凝縮器3の貯水部10と、除湿機1の窓部18は、透明な材料で形成され、除湿機1外からユーザが貯水部19の内部を見られるようになっている。これによると、除湿機1の運転開始後に凝縮水19,20が溜まっていくのをユーザが視認でき、運転効果を確認できるようになる。
【0065】
次に、第8実施形態を説明する。先に述べたように、除湿機1の運転停止後の再生経路Bは、室温まで低下した際には、再生経路Bのほぼ全体が露点温度に達しており、除湿機1の運転停止後長時間放置しても乾燥しにくい。
【0066】
これに対し、除湿機1を運転停止し、吸湿用の送風機4を停止させたときに、再生用の送風機6と再生用ヒータ5とを運転可能なスイッチを設け、ユーザによってこのスイッチが入れられるかまたは吸湿器の停止後自動的に、適当時間再生用の送風機6を運転し、ユーザによりまたは自動的に停止させるようにすることで、低温通路3a内の吸湿用空気14aは送風機4が停止していることから、停留し再生経路Bとの熱交換によって高温となるため、再生経路Bの凝縮が行われなくなる。
【0067】
この状態で、送風機6と再生用ヒータ5の運転を続け、再生経路B内を乾燥させた後、送風機6と再生用ヒータ5の運転を停止させることで、除湿機内を乾燥させた状態で維持できる。
【0068】
【発明の効果】
請求項1乃至請求項3の発明によると、除湿機外に放出される熱が低減され使用される部屋の室温上昇を低くすることが可能である。また、再生用ヒータの消費電力を低減可能である。
【0069】
請求項4の発明によると、吸湿効率を向上させることができるので、吸湿器を小型化でき、除湿器本体を小型化し低コストで構成可能となる。
【0070】
請求項5の発明によると、再生経路における凝縮器出口の有効面積は常に一定するので、安定した凝縮効率を得ることが可能となる。
【0071】
請求項6の発明によると、再生用空気循環式除湿機において、再生経路における凝縮器出口部の気圧を大気圧よりも高く維持できるので、凝縮水の排出がスムーズに行われる。
【0072】
請求項7の発明によると、除湿効果をユーザが視認可能となる。
【0073】
請求項8の発明によると、再生経路内を乾燥した状態に維持できるので、かびの発生、雑菌の繁殖、金属部の腐食などを防止することができる。
【図面の簡単な説明】
【図1】従来の乾式除湿機の構成図である。
【図2】従来の再生回路が閉回路である乾式除湿機の構成図である。
【図3】従来の乾式除湿機の凝縮器を説明する図である。
【図4】本発明の第1実施形態を示す構成図である。
【図5】本発明の第1実施形態における吸湿器を示す平面図である。
【図6】本発明の第2実施形態を示す構成図である。
【図7】本発明の第2実施形態における吸湿器を示す概略図である。
【図8】本発明の第3実施形態を示す構成図である。
【図9】本発明の第3実施形態における吸湿器を示す概略図である。
【図10】本発明の第4実施形態を示す構成図である。
【図11】本発明の第5実施形態における凝縮器を説明する図である。
【図12】本発明の第6実施形態を示す構成図である。
【図13】本発明の第7実施形態を示す構成図である。
【図14】本発明の第2、第3の実施形態における他の経路を示す概略図である。
【図15】本発明の第3の実施形態における他の経路を示す概略図である。
【符号の説明】
1  除湿機
2  吸湿器
2a 吸湿部
2b 再生部
3  凝縮器
4  送風機(吸湿経路用)
5  再生用ヒータ
6  送風機(再生経路用)
7a,7b,7c,7d  再生用空気
8,9    熱交換器
14a,14c   吸湿用空気
14b 乾燥空気
19,20  凝縮水
22,23  シート
27    貯水漕
A  吸湿経路
B  再生経路
D,E,F,G  熱回収回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dehumidifier, and more particularly to a dry dehumidifier that performs dehumidification using a moisture absorbent.
[0002]
[Prior art]
As shown in FIG. 1, in the conventional dehumidifier, the air 14a for moisture absorption taken in from the outside of the dehumidifier 1 by the blower 4 is connected to one of two paths of the condenser 3 having two paths (hereinafter, referred to as a low-temperature path 3a). ), The interior is filled with a desiccant 26 such as silica gel, and the moisture is absorbed through one of the two air passages (hereinafter, referred to as the moisture absorbing portion 2a) of the rotary moisture absorber 2 having two divided air passages. A moisture absorption path A through which the dry air 14b is discharged to the outside of the dehumidifier 1 is configured.
[0003]
The regeneration air 7a introduced by the blower 6 from the outside of the dehumidifier 1 to regenerate the moisture absorbent 26 that has absorbed the moisture contained in the moisture absorption air 14a is heated by the regeneration heater 5 (7b). Then, the moisture absorbent 26 in the moisture absorber 2 is dried. The high-temperature regeneration air 7c containing water passes through the other passage (hereinafter, referred to as a high-temperature passage 3b) of the condenser 3 and exchanges heat with the moisture-absorbing air 14a passing through the low-temperature passage 3a to be cooled. And a regeneration path B that is condensed and discharged to the outside of the dehumidifier 1 is configured.
[0004]
Since the regeneration air 7c flowing into the condenser 3 is cooled, the water is condensed and falls as condensed water 19. At this time, since the smaller the amount of saturated water vapor is, the more water can be condensed, it is desirable to cool to as low a temperature as possible. Further, a water storage section 10 for receiving the condensed water 19 and a water storage tank 27 for receiving the condensed water 20 falling from the hole 10a formed in the water storage section 10 are provided so that the condensed water 19 does not accumulate in the regeneration path B. I have.
[0005]
FIG. 2 shows another conventional example, in which the regeneration path B is a regeneration air circulation type dehumidifier in which a closed circuit is circulated. The temperature of the regeneration air 7 d after passing through the condenser 3 is increased by the regeneration heater 5, passes through the regeneration section 2 b of the moisture absorber 2 to regenerate the moisture absorbent 26, and is condensed by the condenser 3. According to this configuration, since the high-humidity regeneration air 7d after condensation is not released to the outside of the dehumidifier 1, the dehumidifying effect is higher than in the above-described example.
[0006]
FIG. 3 shows details of the condenser 3. In the condenser 3, as shown in FIG. 3A, the low-temperature passage 3a of the moisture absorption path A and the high-temperature passage 3b of the regeneration path B are orthogonal to each other, and as shown in FIG. The sheets 22 and 23 divided into a number of passages are stacked and fixed alternately at a plurality of levels orthogonally to each other. The fixing surfaces 22a and 23a of the sheets 22 and 23 are formed as thin as possible and have a large contact area. The heat exchange between the moisture absorbing air 14a passing through the low temperature passage 3a and the regeneration air 7c passing through the high temperature passage 3b is performed. Improving efficiency.
[0007]
As shown in the cross-sectional view of the high-temperature passage 3b shown in FIG. 3C, the regeneration air 7c cooled by the heat exchange is condensed with water to form condensed water 19, and the condensed water 19 is owed to its own weight. Drops inside and is discharged.
[0008]
[Problems to be solved by the invention]
In the dehumidifier having such a configuration, heat of adsorption is generated when the moisture absorber 2 absorbs moisture from the air 14a, and heat of condensation is generated when the condenser 3 condenses the regeneration air 7c. I do. Further, in order to regenerate the moisture absorbent 26, the regeneration air 7b needs to be heated to about 140 ° C. or higher, so that the regeneration heater 5 is provided with the regeneration air 7b having the air volume determined by the blower 6. Requires power to raise the temperature.
[0009]
The residual heat generated by the regeneration heater 5 when the temperature of the regeneration air 7b rises is released from the dehumidifier 1 together with the above-mentioned heat of adsorption and heat of condensation, and raises the room temperature of the room in which it is used. It becomes a factor to give. Further, since the energy of the residual heat is excessively consumed by the regeneration heater 5, the power consumption of the dehumidifier 1 is increased.
[0010]
Further, the dry type dehumidifier has a disadvantage that it is quieter but has a larger shape than a compressor type dehumidifier.
[0011]
As shown in FIG. 3 (c), the condensed water 19 that has grown and propagated along the wall surface in the high-temperature passage 3b is dropped on the lower end surface 30 of the condenser 3 by a surface tension to a certain weight. Stayed without falling, and became a large water droplet 19a, blocking the high-temperature passage 3b.
[0012]
The high-temperature passage 3b is partially blocked by the water droplets 19a, so that the passage area of the regeneration air 7c is reduced and the area for heat exchange is reduced, and the passage area is further reduced. Is constant, the speed at which the regeneration air 7c passes through the condenser 3 is increased, which is a factor of deteriorating the condensation efficiency.
[0013]
In the regeneration air circulating dehumidifier, the hole 10a formed in the water reservoir 10 of the condenser 3 has a minimum size so that the regeneration air 7d does not leak from the closed regeneration path B as much as possible. It is open to. However, in the regeneration path B, since the high-temperature passage 3b of the condenser 3 has a thin tubular shape, the ventilation resistance is the highest, and the pressure of the regeneration air 7d after passing through the condenser 3 is lower than the atmospheric pressure, and This makes it difficult for the condensed water 19 to be discharged from 10a, thereby causing the condensed water 19 to accumulate in the regeneration path B.
[0014]
Further, when the dehumidifier 1 is operated, it is difficult for the user to confirm the dehumidifying effect because the humidity is less sensible than the temperature.
[0015]
Further, the regeneration path B is in a high humidity state, and when the operation of the dehumidifier 1 is stopped and the regeneration path B drops to room temperature, almost the entire regeneration path B has reached the dew point temperature. Since the regeneration path B is constituted by a narrow path (for example, 1/10 of the moisture absorption path A) in order to reduce the discharge of the high humidity regeneration air 7d, the regeneration path B is left for a long time after the operation of the dehumidifier 1 is stopped. However, it is difficult to dry, and there are problems such as generation of mold, propagation of various bacteria, and corrosion of metal parts.
[0016]
An object of the present invention is to provide a dehumidifier that reduces heat released to the outside and consumes less power.
[0017]
Another object of the present invention is to provide a dehumidifier having a small size and excellent cost performance.
[0018]
Another object of the present invention is to provide a dehumidifier capable of obtaining stable condensation efficiency.
[0019]
Another object of the present invention is to provide a dehumidifier capable of smoothly discharging condensed water.
[0020]
Another object of the present invention is to provide a dehumidifier capable of easily confirming a driving effect.
[0021]
Another object of the present invention is to provide a dehumidifier that prevents the occurrence of mold and germs and the corrosion of metals.
[0022]
[Means for Solving the Problems]
Means for Solving the Problems To achieve the above object, the present invention provides a rotary type moisture absorber, a moisture absorbing agent filled inside the moisture absorber and absorbing moisture, and a moisture absorbing portion having a divided air passage in the moisture absorber. Through, a moisture absorption path for absorbing moisture from the moisture absorption air, a regeneration path divided through an air path in the moisture absorber, a regeneration path for regeneration of the moisture absorbent, and a regeneration air passing through the regeneration path. In the dehumidifier equipped with a regeneration heater that raises the temperature and a condenser that condenses and removes moisture in the regeneration air, the regeneration section of the moisture absorber is sequentially arranged from the front in the rotation direction of the moisture absorber. , The air path is divided into first, second, and third sections, and the regeneration air passes through the first section, the regeneration heater, the second section, and the third section in this order. The heat is recovered from the moisture absorber.
[0023]
According to this configuration, the regeneration air heated by the regeneration heater passes through the regeneration section in the regeneration section of the humidifier, regenerates the moisture absorbent, and then passes through the heat receiving area located behind the regeneration section in the rotational direction of the humidifier. As a result, a first heat recovery circuit that gives residual heat to the moisture absorbent is configured. In addition, before passing through the regeneration heater, a second heat recovery circuit that receives the residual heat from the hygroscopic agent through the heat radiation area located in front of the regeneration area in the rotational direction of the moisture absorber is configured.
[0024]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. A condenser for condensing and removing moisture in the regeneration air, comprising a heat exchanger for performing heat exchange between a low-temperature fluid and a high-temperature fluid, wherein the regeneration of the moisture absorber is performed. The unit is divided into an air path into first and second sections in order from the front in the rotation direction of the moisture absorber, and the regeneration air is supplied in the order of the regeneration heater, the first section, and the heat exchanger. Passing, a part of the air for moisture absorption passes in the order of the heat exchanger and the second zone, Recovering heat from the serial moisture absorption device.
[0025]
According to this configuration, the regeneration air heated by the regeneration heater passes forward in the rotation direction of the moisture absorber in the regeneration section of the moisture absorber, regenerates the moisture absorbent, passes through the heat exchanger, and transfers residual heat to the heat exchanger. give. In addition, a part of the moisture-absorbing air receives the conduction heat of the heat exchanger through an area adjacent to the area of the heat exchanger through which the regeneration air has passed, and passes through the rear of the regeneration section of the moisture-absorber in the rotational direction of the moisture-absorber. And a heat recovery circuit for preheating the hygroscopic agent.
[0026]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. A dehumidifier provided with a condenser for condensing and removing moisture in the regeneration air, comprising: a rotary heat exchanger for performing heat exchange between a low-temperature fluid and a high-temperature fluid; The air passage is divided into a first heat exchange section and a second heat exchange section in order from the front in the rotation direction of the heat exchanger, and the regenerating section of the moisture absorber is arranged in order from the front in the rotation direction of the moisture absorber. , The air path is divided into a first regeneration section and a second regeneration section, and the regeneration air is The heater passes through the regeneration heater, the first regeneration section, and the second heat exchange section in this order, and a part of the moisture absorbing air passes through the first heat exchange section, the second regeneration section in this order, and the moisture absorber From the heat.
[0027]
According to this configuration, the regeneration air heated by the regeneration heater passes forward in the rotation direction of the moisture absorber in the regeneration section of the moisture absorber, regenerates the moisture absorbent, passes through the rotary heat exchanger, and gives residual heat. . In addition, a part of the air for moisture absorption passes through the rear of the heat exchanger in the rotational direction of the heat exchanger adjacent to the regeneration path in the heat exchanger to receive heat, passes through the rear of the regeneration section of the moisture absorber in the rotational direction of the moisture absorber, and absorbs moisture. Construct a heat recovery circuit to preheat the agent.
[0028]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. A condenser for condensing and removing water in the regeneration air, wherein the regeneration air after passing through the condenser is joined before the moisture absorber in the moisture absorption path. I have.
[0029]
According to this configuration, the regeneration air having a relative humidity of 100% that has passed through the condenser is absorbed through the moisture absorbing portion of the moisture absorber and then released to the outside of the dehumidifier. Condensed through.
[0030]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. And a condenser for condensing and removing moisture in the regeneration air, wherein the outlet side shape of the condenser in the regeneration path is a long groove.
[0031]
According to this configuration, the condensed water near the outlet of the condenser travels down the long groove, stays at the lower end of the long groove by surface tension, becomes an appropriate weight, and falls from the condenser.
[0032]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. And a condenser for condensing and removing moisture in the regeneration air, wherein a ventilation resistance is provided in a part of the regeneration path after passing through the condenser.
[0033]
According to this configuration, in the circulating regeneration path, the regeneration air that has passed through the condenser receives ventilation resistance, and the air pressure near the outlet of the condenser increases.
[0034]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. A condenser that condenses and removes moisture in the regeneration air, wherein a member that constitutes the regeneration path after passing through the condenser makes at least a part of the inside of the regeneration path visible. It is made of materials that can be used.
[0035]
According to this configuration, dehumidification is performed while part of the regeneration path after passing through the condenser is visible from outside the dehumidifier.
[0036]
Further, the present invention provides a rotary type moisture absorber, a moisture absorbent filled in the interior of the moisture absorber to absorb moisture, and a moisture absorption part having a wind path in the moisture absorber divided into two sections. A regeneration path that passes through a regeneration section that divides the air path inside the moisture absorber to regenerate the desiccant, and a regeneration heater that passes through the regeneration path and raises the temperature of regeneration air. A dehumidifier provided with a condenser for condensing and removing moisture in the regeneration air, wherein the blower in the regeneration path and the regeneration heater are operable when the blower in the moisture absorption path is stopped.
[0037]
According to this configuration, when the blower in the regeneration path is operated after the operation of the dehumidifier is stopped, the air for moisture absorption does not flow, and the high-temperature dry regeneration air flows to the regeneration path.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a configuration diagram of the first embodiment, and FIG. 5 is a schematic diagram illustrating a portion of the moisture absorber 2. Note that the same components as those of the conventional example are denoted by the same reference numerals.
[0039]
In the drawing, the air path of the moisture absorber 2 is divided into a heat radiation area 2ba, a regeneration area 2bb, and a heat receiving area 2bc in order from the front in the rotation direction (arrow 24) of the moisture absorber 2. The regeneration air 7 b heated by the regeneration heater 5 passes through the regeneration section 2 bb of the regeneration section 2 a of the moisture absorber 2 to regenerate the moisture absorbent 26. Although the temperature of the regeneration air 7b2 that has passed through the regeneration section 2bb is lower than that of the regeneration air 7b, it is still in a high temperature state, so the moisture is absorbed again through the heat receiving section 2bc in the regeneration section 2b of the moisture absorber 2. The agent 26 is given residual heat. The moisture absorbent 26 in the preheated heat receiving area 2bc moves to the regeneration area 2bb as the moisture absorber 2 rotates in the direction of the arrow 24.
[0040]
The regeneration air 7c passing through the heat receiving area 2bc is cooled and condensed through the condenser 3, and the cooled regeneration air 7d passes through the heat radiation area 2ba of the moisture absorber 2. Since the moisture absorbent 26 heated in the regeneration section 2bb moves to the heat radiation area 2ba with the rotation of the moisture absorber 2, the regeneration air 7d is preheated from the moisture absorbent 26 and becomes regeneration air 7d2. The temperature is raised by the heater 5.
[0041]
According to this configuration, as shown in FIG. 5, a first heat recovery circuit D is formed in which the regeneration air 7d2 recovers the heat of the desiccant 26 via the heat radiation area 2ba and the regeneration area 2bb. Since the temperature of the regeneration air 7d2 is raised before it is heated by the regeneration heater 5, the heating energy of the regeneration heater 5 can be reduced.
[0042]
Further, the second heat recovery circuit E is formed, in which the moisture absorbent 26 in the heat receiving area 2bc recovers the preheating of the regeneration air 7b2 and passes it to the regeneration area 2bb, so that the moisture absorbent 26 is located in the regeneration area. Since the temperature is raised in advance, the heating energy of the regeneration heater 5 for raising the temperature of the regeneration air 7b to a temperature required for regeneration of the moisture absorbent 26 can be reduced.
[0043]
In FIG. 4, although the regeneration path B is a closed circuit circulating, the regeneration air 7d entering the heat radiation area 2ba is taken in from the outside of the dehumidifier 1, and the regeneration air 7d passing through the condenser 3 is supplied to the dehumidifier 1 The same effect can be obtained with an open circuit that discharges to the outside.
[0044]
Next, a second embodiment will be described with reference to FIGS. FIG. 6 is a configuration diagram of the second embodiment, and FIG. 7 is a schematic diagram illustrating portions of the moisture absorber 2 and the heat exchanger 8. Note that the same components as those of the conventional example are denoted by the same reference numerals.
[0045]
In the figure, a heat exchanger 8 formed from the regeneration section 2b of the moisture absorber 2 to a part of the moisture absorption section 2a is arranged adjacent to the moisture absorber 2 and the regeneration air heated by the regeneration heater 5 is heated. 7 b is sent to the condenser 3 through the regeneration path B 1 in the heat exchanger 8 after regenerating the desiccant 26 through the regeneration section 2 b of the moisture absorber 2. The heat exchanger 8 is formed of a material having a high heat conductivity, and the regeneration air 7 b in a still high temperature state that has passed through the moisture absorber 2 gives residual heat to the heat exchanger 8.
[0046]
The moisture-absorbing air 14c passing through the moisture-absorbing path A2 branched from the moisture-absorbing path A passes through the moisture-absorbing path A1 adjacent to the regeneration path B1 in the heat exchanger 8, and is given conduction heat from the regeneration path B1. Is preheated to the desiccant 26 through the heat receiving part 2c located in the rotation direction (arrow 24) adjacent to the regenerating part 2b, and the desiccant 26 in the heat receiving part 2c moves to the regenerating part 2b by rotation. . The moisture absorbing air 14 d that has passed through the moisture absorber 2 returns to the moisture absorption path A because the moisture has been removed by the moisture absorbent 26, and is discharged outside the dehumidifier 1.
[0047]
According to this configuration, the recovery circuit F that recovers the residual heat of the heated regeneration air 7b via the heat exchanger 8 and the moisture absorption air 7b is formed. , The heating energy of the regeneration heater 5 for raising the temperature of the regeneration air 7b to a temperature required for regeneration of the moisture absorbent 26 can be reduced.
[0048]
Although FIG. 6 shows a configuration in which the moisture absorption path A2 is branched from the moisture absorption path A, if the moisture absorption path A is configured to partially extend to the moisture absorption path A1 in the heat exchanger 8, the moisture absorption path A2 Similar effects can be expected without branching A2.
[0049]
Next, a third embodiment will be described with reference to FIGS. FIG. 8 is a configuration diagram of the third embodiment, and FIG. 9 is a schematic diagram illustrating portions of the moisture absorber 2 and the rotary heat exchanger 9. Note that the same components as those of the conventional example are denoted by the same reference numerals.
[0050]
In the same figure, a rotary heat exchanger 9 is arranged at a position adjacent to the moisture absorber 2, and the regeneration air 7 b heated by the regeneration heater 5 passes through the regeneration section 2 b of the moisture absorber 2 and absorbs moisture. After regenerating 26, it is sent to the condenser 3 through the heat receiving section 9a in the heat exchanger 9. The high-temperature regeneration air 7b that has passed through the moisture absorber 2 gives residual heat to the heat exchanger 9.
[0051]
The moisture-absorbing air 14c passing through the moisture-absorbing path A2 branched from the moisture-absorbing path A passes through the heat-radiating section 9b adjacent to the heat-receiving section 9a in the heat exchanger 9. Since the desiccant 26 in the heat receiving part 9a of the heat exchanger 9 is moved to the heat radiating part 9b by the rotation of the heat exchanger 9 in the direction of the arrow 25, the moisture absorbing air 14c generates heat from the heat radiating part 9b of the heat exchanger 9. , And preheats the hygroscopic agent 26 through the heat receiving portion 2c of the moisture absorber 2 located on the rear side in the rotational direction (arrow 24) adjacent to the regenerating portion 2a of the moisture absorber 2 so that the heat absorbing portion 26 of the moisture absorber 2 is heated. The moisture absorbent 26 in 2c moves to the reproducing unit 2b by rotation in the direction of arrow 24. The moisture absorbing air 14 d that has passed through the moisture absorber 2 returns to the moisture absorption path A because the moisture has been removed by the moisture absorbent 26, and is discharged outside the dehumidifier 1.
[0052]
According to this configuration, the heat recovery circuit G that recovers the residual heat of the heated regeneration air 7b via the heat exchanger 9 and the moisture absorption air 7b is formed, whereby the moisture absorption agent 26 is regenerated. Since the temperature is raised before being located in the zone, the heating energy of the regeneration heater 5 for raising the temperature of the regeneration air 7b to a temperature necessary for regeneration of the moisture absorbent 26 can be reduced.
[0053]
Although FIG. 8 shows a configuration in which the moisture absorption path A2 is branched from the moisture absorption path A, if the moisture absorption path A is configured to partially extend to the heat radiating portion 9a in the heat exchanger 9, the moisture absorption path A2 will be described. Similar effects can be expected without branching A2.
[0054]
According to the above-described first, second and third embodiments, since the regenerating air 7 b heated by the regenerating heater 5 and the residual heat of the desiccant 26 are recovered, the amount of heat released outside the dehumidifier 1 is reduced. In addition to the reduction, the heating energy required for the regeneration heater 5 to perform heating is reduced, and the power consumption of the regeneration heater 5 can be reduced.
[0055]
Note that, in the second and third embodiments, the heat exchanger 8 and the heat exchanger 9 do not necessarily need to be adjacent to the moisture absorber 2, and the same effects can be obtained even if they are configured at distant positions. However, by arranging them as close as possible, the regeneration path B and the moisture absorption path A2 between the heat exchangers 8, 9 and the moisture absorber 2 can be shortened, and the amount of heat radiation from the regeneration path B and the moisture absorption path A2 is reduced. It is desirable because it can be done.
[0056]
In addition, in the second and third embodiments, the regeneration path B and the moisture absorption path A2 are counterflow, but need not necessarily be counterflow, and can be configured with parallel flow as shown in FIG. Although it is possible to obtain the effect, the counter flow makes it possible to shorten the regeneration path B and the moisture absorption path A2 between the heat exchangers 8 and 9 and the moisture absorber 2, and the regeneration path B and the moisture absorption path A2 This is desirable because the amount of heat radiation from the surface can be reduced.
[0057]
Further, in the third embodiment, the rotation directions of the heat exchanger 9 and the moisture absorber 2 are set in opposite directions. However, it is not always necessary to set the rotation directions in opposite directions, and as shown in FIG. Although it is possible to obtain the effect, the reverse direction can shorten the regeneration path B and the moisture absorption path A2 between the heat exchanger 9 and the moisture absorber 2, and the direction from the regeneration path B and the moisture absorption path A2 can be shortened. This is desirable because the amount of heat radiation can be reduced.
[0058]
Next, a fourth embodiment will be described with reference to FIG. Note that the same components as those of the conventional example are denoted by the same reference numerals. In FIG. 10, the regeneration air 7d that has passed through the condenser 3 joins the upstream side of the moisture absorber 2 in the moisture absorption path A, and the moisture is absorbed by the moisture absorption section 2a of the moisture absorber 2 together with the moisture absorption air 14a. Released outside.
[0059]
According to this configuration, after the condensation, the regeneration air 7d having a relative humidity of about 100% is joined to the moisture absorption path A to increase the moisture concentration of the moisture absorption air 14a, and the moisture contained in the regeneration air 7d also absorbs moisture. Since moisture is absorbed by the device 2, the dehumidifying effect can be improved, so that the size of the device 2 can be reduced.
[0060]
Next, a fifth embodiment will be described with reference to FIG. The same components as those of FIG. 3 described above are denoted by the same reference numerals. In FIG. 11, (a) shows a perspective view of the condenser 3 in the fifth embodiment, and (b) shows a longitudinal sectional view of the high temperature passage 3b. According to this, the sheet 22 of the low-temperature passage 3a is laminated so as to protrude below the sheet 23 of the high-temperature passage 3b, and forms a protruding portion 3d and a long groove 3c having a thickness t and a depth d.
[0061]
The regeneration air 7c that has flowed into the condenser 3 is condensed to generate condensed water 19 and drops along the inner wall surface while growing in the high-temperature passage 3b. When the condensed water 19 reaches the lower end surface 30 of the sheet 23 forming the high-temperature passage 3b, the surface tension of the condensed water 19 acts between the condensed water 19 and the side surface 32 of the sheet 22 forming the low-temperature passage 3a. Instead of stopping, it falls along the side surface 32 of the sheet 22 to the lower end surface 31 of the sheet 22. At the lower end surface 31 of the sheet 22, the condensed water 19 is hardly dropped due to surface tension acting between the side surface 32 and the lower end surface 31. After a suitable time, the condensed water 19 becomes large condensed water 19a. , Falls into the water storage unit 10.
[0062]
As described above, since the condensed water 19 does not stay at the lower end surface 30 of the high-temperature passage 3b, the regenerated air 7c passing through the high-temperature passage 3b flows out of the gap between the lower end surface 30 and the condensed water 19a, and the high-temperature passage It is possible to keep almost the maximum without reducing the passage area of the regeneration air 7c by closing 3b, so that stable condensation efficiency can be obtained.
[0063]
Next, a sixth embodiment will be described with reference to FIG. Note that the same components as those of the conventional example are denoted by the same reference numerals. In FIG. 12, the dehumidifier 1 is configured as a regeneration air circulation system. The dehumidifier 1 partially regenerates the regeneration path B after passing through the condenser 3 and the pressure of the water storage unit 10 of the condenser 3 is higher than the atmospheric pressure. Thus, the ventilation resistance 13 is formed to be thinner than the others. This prevents the condensed water 20 from dropping into the water storage tank 27 smoothly from the hole 10a of the water storage unit 10, and prevents a large amount of the condensed water 20 from accumulating in the regeneration path B.
[0064]
Next, a seventh embodiment will be described with reference to FIG. Note that the same components as those of the conventional example are denoted by the same reference numerals. In FIG. 13, the water reservoir 10 of the condenser 3 and the window 18 of the dehumidifier 1 are formed of a transparent material so that a user can see the inside of the water reservoir 19 from outside the dehumidifier 1. According to this, the user can visually recognize the accumulation of the condensed water 19 and 20 after the start of the operation of the dehumidifier 1 and can confirm the operation effect.
[0065]
Next, an eighth embodiment will be described. As described above, when the regeneration path B after the operation of the dehumidifier 1 has been stopped has dropped to room temperature, almost the entire regeneration path B has reached the dew point temperature, and the length of time after the operation of the dehumidifier 1 has been stopped is long. Hard to dry even if left for a long time.
[0066]
On the other hand, when the operation of the dehumidifier 1 is stopped and the blower 4 for absorbing moisture is stopped, a switch capable of operating the blower 6 for regeneration and the heater 5 for regeneration is provided, and this switch is turned on by the user. By automatically operating the blower 6 for regeneration for an appropriate time after the stop of the humidifier or by stopping the blower 4 by the user or automatically, the blower 4 stops the humidifying air 14a in the low-temperature passage 3a. Therefore, the temperature of the regeneration path B becomes high due to heat exchange with the regeneration path B, so that the regeneration path B is not condensed.
[0067]
In this state, the operation of the blower 6 and the regeneration heater 5 is continued, and after the inside of the regeneration path B is dried, the operation of the blower 6 and the regeneration heater 5 is stopped, so that the inside of the dehumidifier is kept dry. it can.
[0068]
【The invention's effect】
According to the first to third aspects of the present invention, the heat released to the outside of the dehumidifier is reduced, and the rise in the room temperature of the room in which the dehumidifier is used can be reduced. Further, the power consumption of the regeneration heater can be reduced.
[0069]
According to the invention of claim 4, since the moisture absorption efficiency can be improved, the moisture absorber can be reduced in size, and the dehumidifier body can be reduced in size and configured at low cost.
[0070]
According to the invention of claim 5, since the effective area of the condenser outlet in the regeneration path is always constant, it is possible to obtain a stable condensation efficiency.
[0071]
According to the invention of claim 6, in the regeneration air circulation type dehumidifier, the pressure at the outlet of the condenser in the regeneration path can be maintained higher than the atmospheric pressure, so that the condensed water can be discharged smoothly.
[0072]
According to the invention of claim 7, the user can visually recognize the dehumidifying effect.
[0073]
According to the invention of claim 8, since the inside of the regeneration path can be maintained in a dry state, it is possible to prevent the occurrence of mold, propagation of various bacteria, corrosion of metal parts, and the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a conventional dry dehumidifier.
FIG. 2 is a configuration diagram of a dry dehumidifier in which a conventional regeneration circuit is a closed circuit.
FIG. 3 is a diagram illustrating a condenser of a conventional dry dehumidifier.
FIG. 4 is a configuration diagram showing a first embodiment of the present invention.
FIG. 5 is a plan view showing the moisture absorber according to the first embodiment of the present invention.
FIG. 6 is a configuration diagram showing a second embodiment of the present invention.
FIG. 7 is a schematic view showing a moisture absorber according to a second embodiment of the present invention.
FIG. 8 is a configuration diagram showing a third embodiment of the present invention.
FIG. 9 is a schematic view showing a moisture absorber according to a third embodiment of the present invention.
FIG. 10 is a configuration diagram showing a fourth embodiment of the present invention.
FIG. 11 is a diagram illustrating a condenser according to a fifth embodiment of the present invention.
FIG. 12 is a configuration diagram showing a sixth embodiment of the present invention.
FIG. 13 is a configuration diagram showing a seventh embodiment of the present invention.
FIG. 14 is a schematic diagram showing another route in the second and third embodiments of the present invention.
FIG. 15 is a schematic diagram showing another route according to the third embodiment of the present invention.
[Explanation of symbols]
1 Dehumidifier
2 Moisture absorber
2a Moisture absorption section
2b Reproduction unit
3 condenser
4 blower (for moisture absorption path)
5 Regeneration heater
6 blower (for reproduction route)
7a, 7b, 7c, 7d Air for regeneration
8,9 heat exchanger
14a, 14c Air for moisture absorption
14b dry air
19,20 Condensed water
22, 23 sheets
27 water tank
A moisture absorption route
B Reproduction path
D, E, F, G Heat recovery circuit

Claims (8)

回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1、第2、第3の区域に風路を分割され、前記再生用空気が、前記第1の区域、前記再生用ヒータ、前記第2の区域、前記第3の区域の順に通過し、前記吸湿器から熱回収することを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and And a condenser for condensing and removing the moisture of the humidifier, wherein the regenerating unit of the humidifier includes first, second, and third air passages in order from the front in the rotation direction of the humidifier. Wherein the regeneration air passes through the first section, the regeneration heater, the second section, and the third section in this order, and recovers heat from the moisture absorber. Machine. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、低温流体と高温流体との間で熱交換を行う熱交換器を有し、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1、第2の区域に風路を分割され、前記再生用空気は、前記再生用ヒータ、前記第1の区域、前記熱交換器の順に通過し、前記吸湿用空気の一部は、前記熱交換器、前記第2の区域の順に通過し、前記吸湿器から熱回収することを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A condenser for condensing and removing the moisture of the dehumidifier, comprising a heat exchanger for exchanging heat between a low-temperature fluid and a high-temperature fluid, wherein the regeneration unit of the moisture absorber comprises the moisture absorber The air path is divided into a first section and a second section in this order from the front in the direction of rotation, and the regeneration air passes through the regeneration heater, the first section, and the heat exchanger in this order, and Part of the air passes through the heat exchanger and the second zone in this order, Dehumidifier, characterized in that the yield. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、低温流体と高温流体との間で熱交換を行う回転式の熱交換器を有し、前記熱交換器は、前記熱交換器の回転方向前方より順に、第1熱交換区域と第2熱交換区域に風路を分割され、前記吸湿器の前記再生部は、前記吸湿器の回転方向前方より順に、第1再生区域と第2再生区域に風路を分割されており、前記再生用空気は、前記再生用ヒータ、前記第1再生区域、前記第2熱交換区域の順に通過し、前記吸湿用空気の一部は、前記第1熱交換区域、前記第2再生区域の順に通過し、前記吸湿器から熱回収することを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A dehumidifier comprising a condenser for condensing and removing the water of the present invention, comprising a rotary heat exchanger for performing heat exchange between a low-temperature fluid and a high-temperature fluid, wherein the heat exchanger comprises the heat exchanger. The air path is divided into a first heat exchange section and a second heat exchange section in order from the front in the rotation direction of the vessel, and the regenerating section of the moisture absorber has a first regeneration section and a The air path is divided into a second regeneration section, and the regeneration air is supplied to the regeneration heater, The air passes through the first regeneration section and the second heat exchange section in this order, and a part of the moisture-absorbing air passes through the first heat exchange section and the second regeneration section in order to recover heat from the moisture absorber. Dehumidifier characterized by the above-mentioned. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生用空気を、前記吸湿経路における前記吸湿器の前に合流させたことを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A condenser for condensing and removing the moisture of the dehumidifier, wherein the regeneration air after passing through the condenser is joined before the moisture absorber in the moisture absorption path. Machine. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記再生経路における前記凝縮器の出口側形状を、長溝状としたことを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A condenser for condensing and removing the water of claim 1, wherein the outlet side of the condenser in the regeneration path has a long groove shape. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生経路の一部に通気抵抗を設けたことを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A dehumidifier comprising: a condenser for condensing and removing the moisture of the dehumidifier, wherein ventilation resistance is provided in a part of the regeneration path after passing through the condenser. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記凝縮器を通過後の前記再生経路を構成する部材が、前記再生経路内部の少なくとも一部を可視できる材料で構成されていることを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A condenser that condenses and removes the moisture of the dehumidifier, wherein the member that constitutes the regeneration path after passing through the condenser is made of a material that allows at least a part of the interior of the regeneration path to be visible. A dehumidifier. 回転式の吸湿器と、前記吸湿器内部に充填され、水分を吸収する吸湿剤と、前記吸湿器内の風路を分割された吸湿部を通り、吸湿用空気から水分を吸収する吸湿経路と、前記吸湿器内の風路を分割された再生部を通り、前記吸湿剤を再生する再生経路と、前記再生経路内を通り再生用空気を昇温する再生用ヒータと、前記再生用空気内の水分を凝縮させて除去する凝縮器とを備えた除湿機において、前記吸湿経路の送風機を停止時に、前記再生経路の送風機と前記再生用ヒータとを運転可能としたことを特徴とする除湿機。A rotary-type moisture absorber, a moisture-absorbing agent that is filled inside the moisture absorber and absorbs moisture, and a moisture-absorbing path that absorbs moisture from the moisture-absorbing air through a moisture-absorbing portion in which an air path in the moisture absorber is divided. A regeneration path for regenerating the hygroscopic agent through a regenerating section in which a wind path in the moisture absorber is divided, a regeneration heater for increasing the temperature of regeneration air passing through the regeneration path, and A condenser for condensing and removing the moisture of the dehumidifier, wherein the blower in the regeneration path and the heater for regeneration are operable when the blower in the moisture absorption path is stopped. .
JP2003164028A 2003-06-09 2003-06-09 Dehumidifier Expired - Lifetime JP3933606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164028A JP3933606B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164028A JP3933606B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29594397A Division JP3554158B2 (en) 1997-10-28 1997-10-28 Dehumidifier

Publications (3)

Publication Number Publication Date
JP2004003844A true JP2004003844A (en) 2004-01-08
JP2004003844A5 JP2004003844A5 (en) 2005-07-07
JP3933606B2 JP3933606B2 (en) 2007-06-20

Family

ID=30438272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164028A Expired - Lifetime JP3933606B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Country Status (1)

Country Link
JP (1) JP3933606B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669687A2 (en) * 2004-12-07 2006-06-14 LG Electronics Inc. Dehumidifying apparatus
JP2007029879A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029880A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029833A (en) * 2005-07-26 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029834A (en) * 2005-07-26 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
KR100707447B1 (en) * 2005-03-21 2007-04-13 엘지전자 주식회사 Absorptive dehumidifier
KR100707440B1 (en) * 2005-03-08 2007-04-13 엘지전자 주식회사 Humidifier
JP2016534870A (en) * 2013-08-30 2016-11-10 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Schienenfahrzeuge GmbH Method and apparatus for regenerating a two-chamber air dryer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669687A2 (en) * 2004-12-07 2006-06-14 LG Electronics Inc. Dehumidifying apparatus
EP1669687A3 (en) * 2004-12-07 2007-08-15 LG Electronics Inc. Dehumidifying apparatus
KR100707440B1 (en) * 2005-03-08 2007-04-13 엘지전자 주식회사 Humidifier
KR100707447B1 (en) * 2005-03-21 2007-04-13 엘지전자 주식회사 Absorptive dehumidifier
JP2007029833A (en) * 2005-07-26 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029834A (en) * 2005-07-26 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029879A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007029880A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Dehumidifier
JP2016534870A (en) * 2013-08-30 2016-11-10 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Schienenfahrzeuge GmbH Method and apparatus for regenerating a two-chamber air dryer

Also Published As

Publication number Publication date
JP3933606B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
CN100476308C (en) Humidity controller
JP4945956B2 (en) Dehumidifier
JP3596549B2 (en) Humidity control device
JP2019511697A (en) Air conditioning with multi-phase plate heat exchanger
JP2010131583A (en) Dehumidifying apparatus of low power consumption
TW200307111A (en) Dehumidifier
JP3891207B2 (en) Humidity control device
JP2007029833A (en) Dehumidifier
KR100655015B1 (en) Dehumidifying apparatus
JP2000337661A (en) Air-conditioning instrument
JP2010260472A (en) Dehumidifier system for vehicle
JP3933606B2 (en) Dehumidifier
JP4103563B2 (en) Air conditioner
JP3554158B2 (en) Dehumidifier
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JP2005262068A (en) Dehumidifier
WO2006103968A1 (en) Humidity regulation device
JP3596547B2 (en) Humidity control device
KR20130074944A (en) Dehumidification apparatus
KR20100035765A (en) Regenerating device for desiccant wheel dehumidifier
KR20140122357A (en) Dehumidifier using desicant
KR101174638B1 (en) Heat and material exchanger for a dehumidifier using liquid desiccant
KR200192952Y1 (en) Heat collection ventilator with moisturer
JP2006145092A (en) Air conditioning system and building
JPH09222244A (en) Humidify control air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term