JP2004003713A - Molten slag cooling method and its apparatus - Google Patents

Molten slag cooling method and its apparatus Download PDF

Info

Publication number
JP2004003713A
JP2004003713A JP2002158743A JP2002158743A JP2004003713A JP 2004003713 A JP2004003713 A JP 2004003713A JP 2002158743 A JP2002158743 A JP 2002158743A JP 2002158743 A JP2002158743 A JP 2002158743A JP 2004003713 A JP2004003713 A JP 2004003713A
Authority
JP
Japan
Prior art keywords
slag
molten slag
cooling
hood
collection hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002158743A
Other languages
Japanese (ja)
Other versions
JP4045128B2 (en
Inventor
Eiji Ikezaki
池崎 英二
Toshitaka Yuki
湯木 敏隆
Takayuki Kaneyasu
兼安 孝幸
Yuji Hiramoto
平本 祐二
Yoshiichi Nagao
長尾 由一
Morio Tsuchiya
土谷 森男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Original Assignee
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamada Heavy Industries Co Ltd, Nippon Steel Corp filed Critical Hamada Heavy Industries Co Ltd
Priority to JP2002158743A priority Critical patent/JP4045128B2/en
Publication of JP2004003713A publication Critical patent/JP2004003713A/en
Application granted granted Critical
Publication of JP4045128B2 publication Critical patent/JP4045128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molten slag cooling method and its apparatus which prevents pulverization of a slag by maximizing quench effect of the slag and by minimizing variation of the quench effect due to variation of slag pouring speed in equipment for mechanically shearing, granulating and distributing the molten slag and cooling it in a rotating scavenging hood. <P>SOLUTION: In a method for mechanically shearing and granulating molten slag by pouring it over a rotating drum having a plurality of blades arranged and rotating at a high speed, a spray cooling water amount (ton / minute) in a rotating scavenging hood is controlled in the range of 0.5 to 2.5 times of a slag pouring speed (ton / minute). Also, in the above cooling method, a collision board shielding 10 to 90% of the cross sectional area of the rotating scavenging hood is installed at 0.1 to 0.5 L location in the rotating scavenging hood from the rear end board. L is the length of the rotating scavenging hood. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融スラグを機械的に剪断粒化分散させ回転式捕集フード内で冷却する設備において、スラグの急冷効果を最大限発揮させると共に注滓速度変動による急冷効果の変動を極小化することによりスラグの粉化を防止する溶融スラグの冷却方法およびその装置に関するものである。
【0002】
【従来の技術】
従来、転炉、電気炉等の鉄鋼精錬炉から排出されるスラグ中には通常炉内精錬過程で大量に使用されるCaOあるいはCaCOが十分にスラグ化せず、いわゆる未滓化石灰として0.1〜4%程度残留している。また、鉄鋼精錬炉内張り耐火物からスラグ中に溶出したり、熱的スポーリング現象で剥落しスラグ中に混入した内張り耐火物のMgO成分、さらには炉体内張り耐火物保護のため、スラグ中に投入されたレンガ屑に由来するMgO分も含まれており、これらのMgO分のうち未滓化MgOも0.1〜2%程度残留している。
【0003】
これらの未滓化CaO、未滓化MgOがスラグ中に残留した状態で路盤材、細骨材、仮設材等に使用されると長い年月の間に使用環境中の水分とCaO+HO→Ca(OH)、MgO+HO→Mg(OH)なる水和反応を生じ約2倍程度の体積膨張を生じる。この体積膨張は、当該スラグが施工された道路に局所的な盛り上がりを生じたり、或いはテトラポットの如き成型品に使用された場合亀裂剥離欠落を生じるため、上記土木用材等に出荷する前に、予めこれら製鋼スラグ中に通常、大気圧下で蒸気を3〜4日間吹き込む80〜100℃の雰囲気下で水和反応を促進し、残存膨張代が殆どない状態まで事前処理する、いわゆる蒸気エージング処理が実施されている。
【0004】
この処理方式は、0.5%以下という低い残留膨張率にすることが可能な反面、蒸気を大量に使用するため多大な蒸気コストがかかり、かつ蒸気供給設備の設備投資、さらには広い面積の蒸気エージング処理場を必要とするなどの難点があった。また、蒸気エージング処理場へ製鋼スラグを搬送搬出するために運搬費用、積み付け用重機用車費用もかかる他、スラグハンドリングの際の発塵等、作業環境を悪化させる問題もあった。
【0005】
一方、転炉、電気炉等の鉄鋼精錬炉から排出されるスラグ処理は、従来一旦溶融スラグ容器に受けた後スラグ処理場へ搬送しスラグ容器を傾動し土間に流し自然放冷で固化させた後、塊砕し前記の蒸気エージング処理を施し出荷されていた。この固化方式は設備投資が少なくて済み、かつ冷却固化も自然放冷で行うため、用役コストが少ない等の利点があり広く採用されている。一方、広大な土間の占有面積を必要とし、高熱で発塵を伴うため、作業環境のみならず周辺環境悪化等の問題があり、特に住宅地あるいは商用地に近接した工場では、これらの環境改善が切実な問題となっている。
【0006】
しかるに、溶融スラグ容器を傾動させ流下するスラグ流を高速回転する羽根車に当て、その羽根車で剪断粒化すると共に飛散粒化スラグ捕集容器内にスプレー散水し急冷固化する方式が普及してきている。また、流下するスラグ流の背面から高圧水を噴射し高圧水のエネルギーで粒化処理すると共に急冷固化する方式も検討されて来た。いずれの方式も冷却水を用いる湿式処理を基本としており、コンパクトな占有面積で、かつ高熱と発塵を伴う作業環境に加えて周辺環境を大幅に改善することが可能な利点を有している。
【0007】
この中でも、例えば特公平7−96458号公報や特公平7−96459号公報に開示されている溶融スラグを粒化分散させ回転式捕集フード内で水ミストおよび通風により冷却する方式が開示されているが、回転ドラムから飛散した粒化スラグは回転式捕集フードに衝突した後、回転式捕集フード下部に落下し流下した蒸発残りの冷却水により冷却されるものと直接回転式捕集フード排出孔に飛び込むものとに大別される。前者は間断なく冷却されるため300〜400℃程度まで急冷されるが、後者は冷却時間が短いため800〜1000℃程度の高温状態のまま排出される。急冷効果にあずかれない後者のスラグは、その後著しい粉化現象を呈するため、処理スラグ品質のバラツキを生じていた。
【0008】
【発明が解決しようとする課題】
しかしながら、溶融スラグ容器からの注滓速度は、表面の皮張り状況容器形状の変形スラグの粘性、容器の傾動速度変動等により大きく左右される。過注入発生時は粒化スラグ同士の溶着合体、回転式捕集フード内壁への溶着等の問題が発生するのみならず粒化スラグの冷却速度が著しく減少するため2CaO・SiOの変態に起因するスラグの粉化現象を誘起する等の問題があった。また、注滓作業は注滓速度の変動を極力抑制するため、溶融スラグ容器からの注滓流の流動状況を注意深く監視しながら傾動させる必要があることから、回転式捕集フード内から噴出する水蒸気が容器側へ流出し注滓流監視を妨げることがないよう回転式捕集フード後部から排気ブロアーで速やかに系外へ排出することが必要であり、そのために排気に関する設備費の増大と電力費の増大を招いていた。
【0009】
【課題を解決するための手段】
転炉、電気炉等から排出されるダイカルシュームシリケート(2CaO・SiO)を含有する溶融スラグは大気中で徐冷されるとγ相に変態し、10〜15%程度の体積膨張がするため粉化するという難点があった。上述した従来の問題を解消するために、発明者らは、溶融スラグを30℃/秒以上の冷却速度が必要であることから、赤外イメージ炉を用いた試験の結果、加えて約600℃以下、好ましくは400℃まで間断なく急冷することで体積膨張が極めて少ないβ相に変態し、粉化を抑制し得る方法およびその装置を見出し発明に至った。
【0010】
その発明の要旨とするところは、
(1)溶融スラグを複数の羽根を配設し高速回転する回転ドラム上に注滓し機械的に剪断粒化する方法において、回転式捕集フード内に散水冷却水量(ton/分)を注滓速度(ton/分)の0.5〜2.5倍の範囲に制御することを特徴とする溶融スラグの冷却方法。
(2)前記(1)に記載の溶融スラグの冷却方法において、回転式捕集フード内に後部鏡板から0.1〜0.5L位置に回転式捕集フード断面積の10〜90%を遮蔽してなる衝突板を設置することを特徴とする溶融スラグの冷却方法。ただし、Lは回転式捕集フード長さ
【0011】
(3)前記(1)または(2)記載の溶融スラグの冷却方法において、注滓流を赤外線監視装置で観測し溶融スラグ容器を傾動制御することを特徴とする溶融スラグの冷却方法。
(4)溶融スラグを剪断する複数の羽根を取り付けた回転ドラムと該回転ドラムから飛ばされた粒化スラグを覆って散水して冷却しながら排出するフードを備えた溶融スラグの粒化装置であって、該フードの内部に、該フードの断面積の10〜90%を遮蔽してなる粒化スラグの衝突板を設けたことを特徴とする溶融スラグの粒化装置。
【0012】
(5)前記(4)に記載の溶融スラグの粒化装置において、フード全長Lに対し、該フードの後端から0.1〜0.5Lの位置に設置していることを特徴とする溶融スラグの粒化装置。
(6)前記(4)または(5)に記載の溶融スラグの粒化装置において、回転ドラムに注湯する溶融スラグの量を検出する赤外線監視装置を設けたことを特徴とする溶融スラグの粒化装置である。
【0013】
【発明の実施の形態】
以下、本発明について図面に従って説明する。
図1は、散水冷却水量/注滓速度比(水/滓比)と回転式捕集フード出側スラグ平均温度との関係を示す図である。この図1に示すように、衝突板無しの条件で2.5{(散水冷却水量(ton/分)/注滓速度(ton/分)}以下、衝突板設置条件下でも0.5〜1.1の散水冷却水量/注滓速度比(以下、水/滓比という)が必要であることが分かる。一方、衝突板設置位置が0.5Lを超えると衝突板に衝突した粒化スラグが回転ドラム側に跳ね返り回転式捕集フード入り側から系外に漏出するため歩留り低下を招く。また、0.1L未満であれば衝突板に当たり落下した粒化スラグは直ちに回転式捕集フード排出孔から排出されてしまうため蒸発残りの熱水との接触時間が短くなり冷却効果が享受できない。
【0014】
上述したことから、滓鍋の重量変化をロードセルで検出しその時間変化分(ton/分)に規定する水/滓比を乗じた信号で、回転式捕集フード内にスプレーする冷却水供給ポンプ出力を制御する。あるいは、貯滓槽全重量変化をロードセルで検出し冷却水供給量に1以下の係数(冷却水の蒸発分を考慮)を乗じた水量を差し引いたものをスラグ重量としその時間変化分(ton/分)に規定する水/滓比を乗じた所要流量信号で冷却水供給ポンプ出力を制御することで実現できる。
【0015】
また、衝突板の遮蔽面積が90%を超えると回転式捕集フード壁と衝突板板間の隙間が狭隘なため回転式捕集フード内でのスラグ移動に支障を生じ、逆に10%未満であれば飛散するスラグを衝突させ排出孔の前方に落下させる割合が少なくなるため十分な冷却効果が期待できない。従って、10〜90%とした。すなわち、回転式捕集フード後部鏡板から、回転式捕集フード長さLの0.1L〜0.5Lなる位置に、回転式捕集フード断面積の10〜90%を遮蔽する衝突板を設置することで、回転ドラムから直接回転式捕集フード排出孔に飛び込むスラグが皆無化出来るため、全体のスラグが急冷化され粉化が防止され品質変動を抑制することができる。
【0016】
また、かかる粒化設備操業時は回転式捕集フードから大量の水蒸気が発生するため、後部鏡板を貫通する形で蒸気排出口が設置された排気ブロアーで系外に排出されるものの、回転式捕集フード前面からも蒸気が漏出し、注滓流を見ながら滓鍋の傾動を行う作業者の視界を妨げるため、注滓速度が大きく変動したり注滓作業自体を中断せざるを得ない場合が頻発した。そのために注滓流監視装置として高感度赤外線カメラを注滓流を望む位置に設置することで水蒸気中でも注滓流を鮮明に観察することが可能となり作業者による容器傾動速度制御が可能となるため、注滓速度の安定化と排気ブロアー等の蒸気の強制系外排気設備を必要としないメリットがある。
【0017】
また、注滓流監視装置として赤外線画像センサーを用いてスラグの注湯時の熱分布を見て回転ドラムへの溶融スラグの注湯量を調整し、粒化の最適化を図ると共に注湯量に応じた冷却水の調整が可能になり、粒化の安定化、冷却の適性化による生産性の向上、さらには、冷却水量の節減による処理コストの低減を図ることが出来、粒化装置の自動化を図り高熱作業を解消し、しかも装置の安定性も向上する。
【0018】
【実施例】
以下、本発明について実施例によって具体的に説明する。
前述したように、図1は、水/滓比と回転式捕集フード出側スラグ平均温度(以下、Tという)との関係を示す。この図に示すように水/滓比の増加に伴いTは低下するが、衝突板を設置することにより粒化スラグの冷却効果が飛躍的に向上し、Tが著しく低下する効果がある。さらに、衝突板設置位置が0.1L位置からその効果が顕著になり、0.5L位置ではその効果はさらに増大するが0.5L位置を超えると回転式捕集フード入側への粒化スラグ飛び出しが顕著となることから、その範囲を0.1〜0.5Lとした。
【0019】
図2は、従来の衝突板を設けない溶融スラグの冷却装置の概略図である。この図に示すように、製鋼炉から排出された溶融スラグ2を排滓鍋1で受滓し、機械剪断粒化湿式急冷装置への注滓シュート4上で排滓鍋1を傾動させ注滓を開始する。注滓流3は注滓シュート4を経由し回転ドラム6上に溶融スラグ2を導き高速回転する回転ドラム6上に流下させる。流下した溶融スラグ2は回転ドラム6表面に取り付けられた羽根5により剪断粒化され回転している回転式捕集フード13内に飛散し放射冷却と散水11冷却により急冷される。
【0020】
ただし、回転式捕集フード13に衝突することなく粒化スラグ直接排出飛跡8のスラグは、回転式捕集フード13に衝突した粒化スラグ衝突後飛跡9が熱水混合流14で冷却されるスラグに比して高い温度で排出される。このことが冷却効率の低下と排出スラグ15の温度バラツキの原因となっていた。また、このような粒化設備操業においては、回転式捕集フード13から大量の水蒸気が発生するため、回転式捕集フード13の後部鏡板29を貫通する形で蒸気排出口17が設置され排気ブロアー30で系外に排出される。また、排出スラグはコンベアー18上に粒化スラグ層19を形成した状態で搬送される。なお、符号10は冷却水散水管であり、16は蒸気排出口へのスラグ飛び込み防止板を示す。
【0021】
図3は、本発明に係る衝突板を設置した溶融スラグの冷却装置の概略図である。図3に示すように、飛散スラグが衝突板20に衝突し落下流21となり熱水混合流14内で急冷されるため冷却効果が向上し、かつ排出スラグ15の温度バラツキも減少する。図4は図3の矢視A−A´断面図であって、衝突板20は固定金具22で回転式捕集フード13に取付けられており、衝突板20には焼付き防止用の散水11が冷却水散水管10から供給されている。
【0022】
図5は、本発明に係る注滓流監視装置12を設けた他の実施例を示す溶融スラグの冷却装置の概略図である。この図に示すように滓鍋秤量台24の出力変化から注滓速度W1が判明し、貯滓槽25中の粒化スラグ27と熱水26を載置した貯滓槽秤量台28出力変化から粒化スラグ生成速度と蒸発残り水分供給速度W2の和W3が分かるため、散水速度=(W3−W1)/(K×W1)、ただし、K<1の係数、なる式で散水量を制御することができる。なお、符号23はトラニオンを示す。
【0023】
【発明の効果】
以上述べたように、本発明による衝突板を設置することにより回転ドラムから直接回転式捕集フード排出孔に飛び込むスラグが皆無となり、全体スラグの粉化が防止され、品質変動が抑制され、かつ高感度の赤外線監視装置を適用することで水蒸気中でも注滓流を鮮明に観察することが出来るので作業者による容器傾動速度制御が可能となる。また、赤外線監視装置でスラグの注湯時の熱分布を見て回転ドラムへの溶融スラグの注湯量を調整し、粒化の最適化を図ると共に注湯量に応じた冷却水の調整も可能となり、粒化の安定化、冷却の適性化による生産性の向上、さらには、冷却水量の節減による処理コストの低減、粒化装置の自動化による高熱作業の解消、装置の安定性の向上等極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】水/滓比と回転式捕集フード出側スラグ平均温度との関係を示す図である。
【図2】従来の衝突板を設けない溶融スラグの冷却装置の概略図である。
【図3】本発明に係る衝突板を設置した溶融スラグの冷却装置の概略図である。
【図4】図3の矢視A−A´断面図である。
【図5】本発明に係る注滓流監視装置を設けた他の実施例を示す溶融スラグの冷却装置の概略図である。
【符号の説明】
1 排滓鍋
2 溶融スラグ
3 注滓流
4 注滓シュート
5 羽根
6 回転ドラム
7 飛散防止板
8 粒化スラグ直接排出飛跡
9 粒化スラグ衝突後飛跡
10 冷却水散水管
11 散水
12 注滓流監視装置
13 回転式捕集フード
14 熱水混合流
15 排出スラグ
16 スラグ飛び込み防止板
17 蒸気排出口
18 コンベアー
19 粒化スラグ層
20 衝突板
21 落下流
22 固定金具
23 トラニオン
24 滓鍋秤量台
25 貯滓槽
26 熱水
27 粒化スラグ
28 貯滓槽秤量台
29 後部鏡板
30 排気ブロアー
[0001]
BACKGROUND OF THE INVENTION
The present invention minimizes fluctuations in the quenching effect due to fluctuations in the pouring speed in a facility for mechanically shearing and dispersing molten slag and cooling it in the rotary collection hood while maximizing the slag quenching effect. The present invention relates to a method and an apparatus for cooling molten slag that prevents slag from being pulverized.
[0002]
[Prior art]
Conventionally, CaO or CaCO 3 used in large quantities in the in-furnace refining process does not slag sufficiently in the slag discharged from steel smelting furnaces such as converters and electric furnaces, and so-called undecomposed lime is 0. About 1 to 4% remains. In order to protect the refractory from the steel smelting furnace refractory, the MgO component of the lining refractory that is eluted in the slag by the thermal spalling phenomenon and mixed in the slag, and further to protect the refractory in the furnace, The MgO content derived from the charged brick scraps is also included, and about 0.1 to 2% of undehydrated MgO remains in these MgO content.
[0003]
When these undehydrated CaO and undehydrated MgO remain in the slag and are used for roadbed materials, fine aggregates, temporary materials, etc., moisture and CaO + H 2 O in the environment of use over a long period of time → A hydration reaction of Ca (OH) 2 , MgO + H 2 O → Mg (OH) 2 occurs, and a volume expansion of about 2 times occurs. This volume expansion causes local swell on the road where the slag is constructed, or when cracking is lost when used in a molded product such as a tetrapot, before shipping to the civil engineering materials, etc. A so-called steam aging treatment is carried out in which the hydration reaction is accelerated in an atmosphere of 80 to 100 ° C., in which steam is normally blown into the steelmaking slag for 3 to 4 days under atmospheric pressure, and the residual expansion allowance is almost eliminated. Has been implemented.
[0004]
Although this treatment method can achieve a low residual expansion rate of 0.5% or less, it requires a large amount of steam because it uses a large amount of steam. There were difficulties such as requiring a steam aging treatment plant. In addition to transporting and transporting steelmaking slag to the steam aging treatment plant, transportation costs and vehicle costs for heavy equipment for loading are also required, and there are also problems that deteriorate the working environment such as dust generation during slag handling.
[0005]
On the other hand, slag discharged from steel smelting furnaces such as converters, electric furnaces, etc., once received in a molten slag container, then transported to a slag treatment plant, tilted through the slag container and allowed to solidify by natural cooling. After that, it was crushed and subjected to the steam aging treatment before being shipped. This solidification method requires a small amount of capital investment and is cooled and solidified by natural cooling, so that it has advantages such as low utility costs and is widely adopted. On the other hand, because it requires a large area between soils and generates heat and generates dust, there is a problem not only in the work environment but also in the surrounding environment, especially in factories close to residential or commercial areas. Is a serious problem.
[0006]
However, a method of tilting the molten slag container and applying the slag flow flowing down to the impeller rotating at high speed, shearing and granulating with the impeller, and spraying water into the slag collecting container to rapidly cool and solidify has become widespread. Yes. In addition, a method of spraying high-pressure water from the back of the flowing slag flow and granulating with high-pressure water energy and rapidly solidifying has been studied. Each method is based on wet processing using cooling water, and has the advantage of having a compact footprint and greatly improving the surrounding environment in addition to the work environment with high heat and dust generation. .
[0007]
Among them, for example, a method of granulating and dispersing molten slag disclosed in Japanese Patent Publication No. 7-96458 and Japanese Patent Publication No. 7-96459 and cooling it with water mist and ventilation in a rotary collection hood is disclosed. However, the granulated slag scattered from the rotating drum collides with the rotating collection hood, and then falls to the lower part of the rotating collection hood and is cooled by the remaining cooling water that flows down. It is divided roughly into what jumps into the discharge hole. Since the former is cooled without interruption, it is rapidly cooled to about 300 to 400 ° C., whereas the latter is discharged at a high temperature of about 800 to 1000 ° C. because the cooling time is short. The latter slag, which does not participate in the quenching effect, subsequently exhibits a remarkable pulverization phenomenon, resulting in variations in the quality of the treated slag.
[0008]
[Problems to be solved by the invention]
However, the pouring speed from the molten slag container is greatly affected by the viscosity of the deformed slag in the state of the surface skinning, the tilting speed fluctuation of the container, and the like. When over-injection occurs, problems such as welded coalescence of granulated slags and adhesion to the inner wall of the rotary collection hood, as well as a significant decrease in the cooling rate of the granulated slag, result from the transformation of 2CaO · SiO 2 There was a problem of inducing the slag powdering phenomenon. In addition, since the pouring operation needs to be tilted while carefully monitoring the flow of pouring flow from the molten slag container in order to suppress fluctuations in pouring speed as much as possible, it is ejected from the rotary collection hood. It is necessary to quickly discharge the steam from the rear of the rotary collection hood out of the system with an exhaust blower so that water vapor does not flow out to the container side and interfere with the pouring flow monitoring. Incurred an increase in costs.
[0009]
[Means for Solving the Problems]
When molten slag containing dicalcium silicate (2CaO · SiO 2 ) discharged from converters, electric furnaces, etc. is gradually cooled in the atmosphere, it transforms into γ phase and expands by about 10 to 15%. There was a difficulty of powdering. In order to solve the above-mentioned conventional problems, the inventors need a cooling rate of 30 ° C./second or more for molten slag, and as a result of a test using an infrared image furnace, about 600 ° C. In the following, a method and apparatus capable of suppressing powdering by transforming into a β phase having a very small volume expansion by preferably rapidly cooling to 400 ° C. has been found and led to the invention.
[0010]
The gist of the invention is that
(1) In a method of pouring molten slag onto a rotating drum that rotates at high speed by arranging a plurality of blades and mechanically granulating the slag, the amount of sprinkling cooling water (ton / min) is poured into the rotary collection hood. A method for cooling molten slag, wherein the molten slag is controlled within a range of 0.5 to 2.5 times the dredging speed (ton / min).
(2) In the method for cooling molten slag as described in (1) above, 10 to 90% of the sectional area of the rotary collection hood is shielded in the rotary collection hood at a position of 0.1 to 0.5 L from the rear end plate. A method for cooling molten slag, comprising installing a collision plate. However, L is the length of the rotary collection hood.
(3) The method for cooling molten slag according to (1) or (2), wherein the molten slag container is tilt-controlled by observing the pouring flow with an infrared monitoring device.
(4) A molten slag granulating apparatus comprising a rotating drum having a plurality of blades for shearing molten slag and a hood that covers the granulated slag blown from the rotating drum and sprays water while cooling. An apparatus for granulating molten slag, characterized in that an impingement plate for granulated slag that shields 10 to 90% of the cross-sectional area of the hood is provided inside the hood.
[0012]
(5) The melting slag granulating apparatus according to (4), wherein the melting slag is installed at a position of 0.1 to 0.5 L from the rear end of the hood with respect to the hood full length L. Slag granulating equipment.
(6) The molten slag granulation apparatus according to (4) or (5), wherein an infrared monitoring device is provided to detect the amount of molten slag poured into the rotating drum. Device.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing the relationship between the amount of sprinkling cooling water / pouring speed ratio (water / slag ratio) and the average temperature of the slag on the outlet side of the rotary collection hood. As shown in FIG. 1, 2.5 {(water spray cooling water amount (ton / min) / injection speed (ton / min)} or less under conditions without a collision plate, 0.5 to 1 even under collision plate installation conditions It is understood that the ratio of sprinkling cooling water / injection speed (hereinafter referred to as water / slag ratio) of 1. is required, and if the impact plate installation position exceeds 0.5 L, the granulated slag that collides with the impact plate Bounces back to the rotating drum and leaks out of the system from the side with the rotary collection hood, leading to a decrease in yield, and if it is less than 0.1 L, the granulated slag that falls on the collision plate immediately becomes the rotary collection hood discharge hole. Since it is discharged from the water, the contact time with the remaining hot water is shortened and the cooling effect cannot be enjoyed.
[0014]
From the above, the cooling water supply pump that detects the change in the weight of the casserole with the load cell and sprays it into the rotary collection hood with a signal multiplied by the water / poison ratio defined by the time change (ton / min) Control the output. Alternatively, the change in the total weight of the storage tank is detected by the load cell, and the amount of cooling water supplied is subtracted by a factor of 1 or less (considering the amount of evaporation of cooling water) and the amount of change over time (ton / This can be achieved by controlling the output of the cooling water supply pump with a required flow rate signal multiplied by the water / soot ratio defined in (min).
[0015]
In addition, if the collision area of the collision plate exceeds 90%, the gap between the rotary collection hood wall and the collision plate plate is narrow, resulting in hindrance to slag movement in the rotary collection hood, and conversely less than 10%. If so, a sufficient cooling effect cannot be expected because the ratio of the scattered slag colliding and dropping to the front of the discharge hole is reduced. Therefore, it was set to 10 to 90%. That is, a collision plate that shields 10 to 90% of the sectional area of the rotary collection hood is installed from the rear end plate of the rotary collection hood at a position of 0.1 L to 0.5 L of the length L of the rotary collection hood. By doing so, it is possible to eliminate any slag that jumps directly from the rotary drum into the rotary collection hood discharge hole, so that the entire slag is rapidly cooled to prevent pulverization and to suppress quality fluctuations.
[0016]
In addition, since a large amount of water vapor is generated from the rotary collection hood during operation of the granulation facility, it is discharged out of the system with an exhaust blower that has a steam discharge port that penetrates the rear end panel. Steam also leaks from the front of the collection hood, obstructing the view of the worker who tilts the ladle while watching the pouring flow, so the pouring speed fluctuates greatly or the pouring operation itself must be interrupted Cases occurred frequently. For this reason, a high-sensitivity infrared camera is installed as a pouring flow monitoring device at the position where pouring flow is desired, so that the pouring flow can be clearly observed even in water vapor, and the container tilting speed can be controlled by the operator. This has the advantage of stabilizing the injection speed and not requiring a forced exhaust system for steam such as an exhaust blower.
[0017]
In addition, an infrared image sensor is used as a pouring flow monitoring device to adjust the pouring amount of the molten slag into the rotating drum by observing the heat distribution during pouring of the slag to optimize granulation and to respond to the pouring amount. It is possible to adjust the cooling water, stabilize the granulation, improve the productivity by optimizing the cooling, and reduce the processing cost by reducing the amount of cooling water, and automate the granulating device. Eliminates high heat work and improves the stability of the device.
[0018]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
As described above, FIG. 1 shows the relationship between the water / soot ratio and the rotational hood outlet side slag average temperature (hereinafter referred to as T). As shown in this figure, T decreases as the water / soot ratio increases, but the effect of drastically improving the cooling effect of the granulated slag is greatly improved by installing a collision plate. Furthermore, the effect becomes remarkable from the collision plate installation position from the 0.1L position, and the effect is further increased at the 0.5L position, but when it exceeds the 0.5L position, the granulated slag into the rotary collection hood entry side Since popping out becomes remarkable, the range was made into 0.1-0.5L.
[0019]
FIG. 2 is a schematic view of a conventional cooling device for molten slag without a collision plate. As shown in this figure, the molten slag 2 discharged from the steelmaking furnace is received by the discharge pan 1, and the discharge pan 1 is tilted on the injection chute 4 to the mechanical shear granulation wet quenching apparatus. To start. The pouring flow 3 passes the pouring chute 4 and guides the molten slag 2 onto the rotating drum 6 and flows down onto the rotating drum 6 rotating at high speed. The molten slag 2 flowing down is sheared and granulated by blades 5 attached to the surface of the rotary drum 6 and scattered in a rotating rotary collection hood 13 and rapidly cooled by radiation cooling and sprinkling 11 cooling.
[0020]
However, the slag of the granulated slag direct discharge track 8 without colliding with the rotary collection hood 13 is cooled by the hot water mixed flow 14 after the granulated slag collision track 9 colliding with the rotary collection hood 13. It is discharged at a higher temperature than slag. This caused a decrease in cooling efficiency and temperature variation of the discharge slag 15. Further, in the operation of such a granulating facility, a large amount of water vapor is generated from the rotary collection hood 13, so the steam discharge port 17 is installed in a form penetrating the rear end plate 29 of the rotary collection hood 13 and exhausted. It is discharged out of the system by the blower 30. Further, the discharged slag is conveyed in a state where a granulated slag layer 19 is formed on the conveyor 18. In addition, the code | symbol 10 is a cooling water sprinkling pipe, 16 shows the slag jump-in prevention board to a steam discharge port.
[0021]
FIG. 3 is a schematic view of a molten slag cooling device provided with a collision plate according to the present invention. As shown in FIG. 3, the scattered slag collides with the collision plate 20 to become a falling flow 21 and is rapidly cooled in the hot water mixed flow 14, so that the cooling effect is improved and the temperature variation of the discharge slag 15 is also reduced. 4 is a cross-sectional view taken along the line AA ′ in FIG. 3, and the collision plate 20 is attached to the rotary collection hood 13 by a fixing bracket 22, and the collision plate 20 has a sprinkle 11 for preventing seizure. Is supplied from the cooling water sprinkling pipe 10.
[0022]
FIG. 5 is a schematic view of a molten slag cooling device showing another embodiment provided with a pouring flow monitoring device 12 according to the present invention. As shown in this figure, the pouring speed W1 is determined from the output change of the pot pan weighing table 24, and from the output change of the storage tank weighing table 28 on which the granulated slag 27 and hot water 26 in the tank 25 are placed. Since the sum W3 of the granulated slag generation rate and the residual evaporation water supply rate W2 is known, the water spray rate = (W3−W1) / (K × W1), where K <1 is a coefficient, and the water spray amount is controlled. be able to. Reference numeral 23 denotes a trunnion.
[0023]
【The invention's effect】
As described above, by installing the collision plate according to the present invention, there is no slag jumping directly from the rotary drum into the rotary collection hood discharge hole, powdering of the entire slag is prevented, quality fluctuation is suppressed, and By applying a high-sensitivity infrared monitoring device, it is possible to clearly observe the pouring flow even in water vapor, so that the container tilting speed can be controlled by the operator. In addition, the amount of molten slag poured into the rotating drum can be adjusted by looking at the heat distribution during slag pouring with an infrared monitoring device to optimize granulation and adjust the cooling water according to the amount of pouring. , Stabilization of granulation, improvement of productivity by optimizing cooling, further reduction of processing costs by reducing the amount of cooling water, elimination of high temperature work by automation of granulation equipment, improvement of stability of equipment, etc. It is effective.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a water / soot ratio and a slag average temperature on a rotary collection hood outlet side.
FIG. 2 is a schematic view of a conventional cooling device for molten slag without a collision plate.
FIG. 3 is a schematic view of a molten slag cooling device provided with a collision plate according to the present invention.
4 is a cross-sectional view taken along the line AA ′ in FIG. 3;
FIG. 5 is a schematic view of a molten slag cooling device showing another embodiment provided with an injection flow monitoring device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waste pan 2 Molten slag 3 Injection flow 4 Injection chute 5 Blade 6 Rotating drum 7 Splash prevention plate 8 Granulated slag direct discharge track 9 Track after granulated slag collision 10 Cooling water sprinkling pipe 11 Sprinkling 12 Pouring flow monitoring Device 13 Rotary collection hood 14 Hot water mixed flow 15 Discharge slag 16 Slag jump-in prevention plate 17 Steam discharge port 18 Conveyor 19 Granulated slag layer 20 Collision plate 21 Falling flow 22 Fixing bracket 23 Trunnion 24 Pot pan weighing table 25 Storage Tank 26 Hot water 27 Granulated slag 28 Storage tank weighing table 29 Rear end plate 30 Exhaust blower

Claims (6)

溶融スラグを複数の羽根を配設し高速回転する回転ドラム上に注滓し機械的に剪断粒化する方法において、回転式捕集フード内に散水冷却水量(ton/分)を注滓速度(ton/分)の0.5〜2.5倍の範囲に制御することを特徴とする溶融スラグの冷却方法。In a method in which molten slag is poured onto a rotating drum that rotates at high speed by arranging a plurality of blades and mechanically sheared and granulated, the amount of sprinkling cooling water (ton / min) is poured into the rotary collection hood at the injection speed ( (ton / min) is controlled within a range of 0.5 to 2.5 times the molten slag cooling method. 請求項1に記載の溶融スラグの冷却方法において、回転式捕集フード内に後部鏡板から0.1〜0.5L位置に回転式捕集フード断面積の10〜90%を遮蔽してなる衝突板を設置することを特徴とする溶融スラグの冷却方法。ただし、Lは回転式捕集フード長さ2. The method for cooling molten slag according to claim 1, wherein 10 to 90% of the cross section of the rotary collection hood is shielded at a position of 0.1 to 0.5 L from the rear end plate in the rotary collection hood. A method for cooling molten slag, comprising installing a plate. Where L is the length of the rotary collection hood 請求項1または2記載の溶融スラグの冷却方法において、注滓流を赤外線監視装置で観測し溶融スラグ容器を傾動制御することを特徴とする溶融スラグの冷却方法。3. A method for cooling molten slag according to claim 1, wherein the molten slag is controlled by tilting the molten slag container by observing the pouring flow with an infrared monitoring device. 溶融スラグを剪断する複数の羽根を取り付けた回転ドラムと該回転ドラムから飛ばされた粒化スラグを覆って散水して冷却しながら排出するフードを備えた溶融スラグの粒化装置であって、該フードの内部に、該フードの断面積の10〜90%を遮蔽してなる粒化スラグの衝突板を設けたことを特徴とする溶融スラグの粒化装置。A molten slag granulating apparatus comprising: a rotating drum having a plurality of blades for shearing molten slag; and a hood that covers the granulated slag blown from the rotating drum and sprays water while cooling. An apparatus for granulating molten slag, characterized in that an impingement plate for granulated slag that shields 10 to 90% of the cross-sectional area of the hood is provided inside the hood. 請求項4に記載の溶融スラグの粒化装置において、フード全長Lに対し、該フードの後端から0.1〜0.5Lの位置に設置していることを特徴とする溶融スラグの粒化装置。The molten slag granulation apparatus according to claim 4, wherein the molten slag granulation is installed at a position of 0.1 to 0.5 L from the rear end of the hood with respect to the full length L of the hood. apparatus. 請求項4または5に記載の溶融スラグの粒化装置において、回転ドラムに注湯する溶融スラグの量を検出する赤外線監視装置を設けたことを特徴とする溶融スラグの粒化装置。6. The apparatus for granulating molten slag according to claim 4 or 5, further comprising an infrared monitoring device for detecting the amount of molten slag poured into the rotating drum.
JP2002158743A 2002-05-31 2002-05-31 Method and apparatus for cooling molten slag Expired - Fee Related JP4045128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158743A JP4045128B2 (en) 2002-05-31 2002-05-31 Method and apparatus for cooling molten slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158743A JP4045128B2 (en) 2002-05-31 2002-05-31 Method and apparatus for cooling molten slag

Publications (2)

Publication Number Publication Date
JP2004003713A true JP2004003713A (en) 2004-01-08
JP4045128B2 JP4045128B2 (en) 2008-02-13

Family

ID=30428823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158743A Expired - Fee Related JP4045128B2 (en) 2002-05-31 2002-05-31 Method and apparatus for cooling molten slag

Country Status (1)

Country Link
JP (1) JP4045128B2 (en)

Also Published As

Publication number Publication date
JP4045128B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4819187B2 (en) Refining agent and refining method
US5616296A (en) Waste management facility
EP2759606B1 (en) Steel slag reduction equipment and steel slag reduction system
JP2019520481A (en) Processing process and processing equipment with rotating barrel suitable for whole steelmaking slag processing
RU96101066A (en) METHOD FOR PROCESSING WASTE LAYING FROM ELECTROLYTIC ALUMINUM FUSION AND DEVICE FOR ITS IMPLEMENTATION
JPH05507764A (en) Compositions and methods for synthesizing Tribe slag, compositions and methods for treating Tribe slag, and compositions and methods for refractory lining coatings.
MX2007012034A (en) Method and apparatus for the recovery of the secondary metallurgy (lf) slag and its recycling in the steel production process by means of electric arc furnace.
HU187896B (en) Apparatus for determining and indicating the necessary quantity of gas in order to leave a dngerous place in safety, applicable to a basic apparatus with a tank containing gas /oxigen or air/ for people working in dangerous places and with gas feeding organs, applicable preferably to fleeing apparatuses of mining industry
JP4045128B2 (en) Method and apparatus for cooling molten slag
KR20150084789A (en) Apparatus and method for processing metallurgic slag
JP4022098B2 (en) Process for refining slag
US5114474A (en) Arrangement and method for introducing waste material into a molten slag
JP5407186B2 (en) Dust generation prevention method in remaining hot water return work
US5201941A (en) Process for introducing additive substances which are capable of flow into a metallurgical vessel and a vessel for that process
KR100332159B1 (en) Repair method of oxide-based refractory body and powder mixture for same
JPH11278890A (en) Rapidly cooling device for waste gas, production of cement and cement based solidifying material and producing device therefor
JP4637880B2 (en) Prevention of dust generation in steelmaking reduction slag
JP6065792B2 (en) How to prevent smoke in hot metal tapping
US20230235417A1 (en) Method and apparatus for treating the material exiting from a ladle furnace
JPH08231253A (en) Device for producing water-granulated slag
JPS6328816A (en) Coating method of converter slag
WO2018146754A1 (en) Method for controlling slag foaming
WO2023286101A1 (en) Apparatus and corresponding method for cooling and recovering energy from a flow of hot material, in particular slag
KR20010063556A (en) Water spray apparatus of blast furnace slag granulation treatment equipment
JP4123045B2 (en) Method and apparatus for recovering melt discharged from rotary kiln

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R151 Written notification of patent or utility model registration

Ref document number: 4045128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees