JP2004003443A - Fluid machineries, such as pump and accumulator - Google Patents

Fluid machineries, such as pump and accumulator Download PDF

Info

Publication number
JP2004003443A
JP2004003443A JP2003038118A JP2003038118A JP2004003443A JP 2004003443 A JP2004003443 A JP 2004003443A JP 2003038118 A JP2003038118 A JP 2003038118A JP 2003038118 A JP2003038118 A JP 2003038118A JP 2004003443 A JP2004003443 A JP 2004003443A
Authority
JP
Japan
Prior art keywords
liquid
liquid chamber
diaphragm
wall
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038118A
Other languages
Japanese (ja)
Other versions
JP4478394B2 (en
Inventor
Kiyoshi Nishio
西尾 清志
Hitoshi Kawamura
川村 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2003038118A priority Critical patent/JP4478394B2/en
Publication of JP2004003443A publication Critical patent/JP2004003443A/en
Application granted granted Critical
Publication of JP4478394B2 publication Critical patent/JP4478394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm pump in which a sediment is not accumulated in a liquid chamber of a pump. <P>SOLUTION: A suction opening 18 and a discharge opening 19 are provided on an inner wall 4a. A stroke for sucking liquid from the suction opening 18 into the liquid chamber 9 by reciprocating motion of a diaphragm 7, and a stroke for discharging the liquid in the liquid chamber 9 into the discharge opening 19, are conducted alternately. The suction opening 18 is designed to eject the suction liquid for a circumferential wall 9a in the liquid chamber 9 by being provided at a side wall of a projection end of a check valve 20 for suction secured as projecting from the inner wall 4a of the pump body 1 into the liquid chamber 9a. Therefore, the suction liquid ejected from the suction opening 18 generates a circular flow along the inner wall 9a in the liquid chamber 9 to agitate the inside of the liquid chamber 9 with the circular flow, enabling feed of new liquid always by lessening the liquid accumulation in the liquid chamber 9, and preventing the sediment from settling and agglomerating in the liquid chamber 9 even using the liquid containing sediments such as slurry, etc. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ベローズ式ポンプ及びアキュムレータなどの流体機器に関する。
【0002】
【従来の技術】
例えば、半導体製造装置におけるICや液晶の表面洗浄等の各種処理に際して薬液の循環や移送などに使用されるポンプは、ポンプの動作によってパーティクルの発生がないベローズ式ポンプやダイヤフラム式ポンプが使用されている(例えば、特開平3−179184号公報)。また、この種のポンプはベローズの往復運動により脈動が発生するため、この脈動を低減するためにアキュムレータが併用される(例えば、特開平6−17752号公報や特開平10−196521号公報)。
【0003】
【発明が解決しようとする課題】
しかるに、上記ベローズ式ポンプやダイヤフラム式ポンプ、アキュムレータなどでは、洗浄等の処理性能の低下を防ぐためにポンプ内やアキュムレータ内において、移送液の滞留が少なく、常に新しい液が供給されることが要求されるが、特にベローズ式のポンプやアキュムレータなどでは、ポンプの吸込口やアキュムレータの流入口がそれぞれのベローズの軸線方向(往復運動方向)と平行な方向に吸込み液や流入液を液室内に噴出するように開口されているため、それぞれのベローズの伸縮部分に液が滞留しやすく、汚染されやすかった。また、半導体のウエハーやコンピュータ内蔵のハードディスク等の化学的機械研磨[ケミカルメカニカルポリッシング(CMP)]の研磨液としてシリカ等のスラリーなどの沈殿する物質を含む液を使用する場合、沈殿物質がポンプ内やアキュムレータ内に沈降したり、凝集しやすく、ポンプ、アキュムレータの寿命に影響することがあった。
【0004】
本発明の目的は、このような問題を解消するためになされたもので、ポンプやアキュムレータの内部での液の滞留を少なくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質がポンプやアキュムレータの内部に沈降したり凝集するのを防止できる流体機器を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1に係る発明は、ポンプ本体の内部に、軸線方向に伸縮変形可能な有底筒状のベローズよりなる隔膜がこれの下端開口周縁部を前記ポンプ本体の底壁体に固定して駆動伸縮運動するようにかつ該隔膜の内側に液室を形成するよう備えられるとともに、前記底壁体の液室に臨む内壁に吸込口及び吐出口が設けられており、前記隔膜の駆動伸縮運動により前記吸込口から前記液室内に液体を吸込む行程と、前記液室内の液体を吐出口から吐出す行程と交互に行うようにしてある往復動ポンプよりなる、流体機器であって、前記吸込口が、前記液室内の、前記軸線方向とは異なる方向にある前記隔膜の内周壁に向けて吸込み液を噴出するよう設けられていることに特徴を有するものである。
【0006】
請求項2に係る発明は、請求項1記載の流体機器において、前記吸込口が、ポンプ本体の前記液室に臨む内壁より液室内に突出するよう固定された吸込用逆止弁の突出先端部の側面に設けられたものである。
【0007】
請求項1、請求項2に記載の発明によれば、吸込口が隔膜の内周壁に向けて吸込み液を噴出するよう設けられているので、吸込口から噴出する吸込み液は隔膜の内周に沿って旋回流を生起し、この旋回流により液室内が撹拌される。したがって、液室内での液の滞留を少なくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質が液室内に沈殿したり、凝集するのを防止できることになる。
【0008】
請求項3に係る発明は、アキュムレータ本体の内部に、軸線方向に伸縮変形可能な有底筒状のベローズよりなる隔膜がこれの下端開口周縁部を前記アキュムレータ本体の底壁体に固定して該隔膜の内側に液室を、外側に空気室をそれぞれ形成するよう備えられるとともに、アキュムレータ本体の前記液室に臨む内壁に流入口及び流出口が設けられており、前記液室内の液圧に対して空気室内の空気圧によってバランスするようにしてあるアキュムレータよりなる、流体機器であって、前記流入口が、前記液室内の、前記軸線方向とは異なる方向にある前記隔膜の内周壁に向けて流入液を噴出するよう設けられていることに特徴を有するものである。
【0009】
請求項4に係る発明は、請求項3に記載の流体機器において、流入口が、アキュムレータ本体の前記液室に臨む内壁より液室内に突出するよう固定された吐出用逆止弁の突出先端部の側面に設けられたものである。
【0010】
請求項3、請求項4に記載の発明によれば、流入口が隔膜の内周壁に向けて流入液を噴出するよう設けられているので、流入口から噴出する流入液は隔膜の内周に沿って旋回流を生起し、この旋回流により液室内が撹拌される。したがって、液室内での液の滞留を少なくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質が液室内に沈殿したり、凝集するのを防止できることになる。
【0011】
【発明の実施の形態】
本発明に係る流体機器の一実施例を図1ないし図9に基づき説明する。この実施例の流体機器は往復動ポンプPとこれの脈動を減少するアキュムレータAとを組み合わせてなる。
【0012】
図1において、往復動ポンプPのポンプ本体1は、上端が上壁2で塞がれた円筒状のケーシング3と、このケーシング3の開放下端を気密状に塞ぐ底壁体4とを有してなる。その底壁体4に液体の流入路5及び流出路6が形成されている。
【0013】
ケーシング3内にはその軸線B方向に沿って伸縮変形可能な有底円筒状のベローズよりなる隔膜7が軸線Bを縦にして配設されている。この隔膜7は耐熱性、耐薬品性に優れるPTFE(ポリ四フッ化エチレン)、PFA(パーフロロアルコキシ)等のフッ素樹脂で成形され、その下端開口周縁部7aを環状固定板8により底壁体4の上側面に気密状に押付け固定することにより、ポンプ本体1の内部空間が隔膜7の内側の液室9と隔膜7の外側の空気室10とに隔離される。
【0014】
図2において、上記隔膜7は、これの山折り部71と谷折り部72を上下に交互に連続形成してなる伸縮部分が伸長状態のときはもとより、同図(a)、(b)、(c)に示すごとく収縮状態のときも、各山折り部71の上下の襞状部71a,71bのうち下側の襞状部71bが軸線Bに向かって下り傾斜する形に形成されている。各山折り部71の収縮状態下での下側の襞状部71bの傾斜角α、すなわち軸線Bに直交する水平線Lと成す角度αは1〜45゜、より好ましくは5〜15゜とする。ただし、各山折り部71の上側の襞状部71aは、これの収縮状態下において、同図(a)に示すごとく下側の襞状部71bと同一傾斜角で下り傾斜状に形成すること、同図(b)に示すごとく軸線Bに直交する水平線Lと平行に水平に形成すること、あるいは同図(c)に示すごとく軸線Bに向かって上り傾斜する形に形成することは任意である。なお、各山折り部71及び谷折り部72のそれぞれの折目部分のコーナには図示例では角をつけているが、その角にアール(二点鎖線R)を付けてもよい。
【0015】
図1において、ポンプ本体1には隔膜7を駆動伸縮運動させる往復駆動装置22が備えられる。この往復駆動装置22は、ポンプ本体1の上壁2の上面側にシリンダ11をこれの軸線が隔膜7の軸線Bと一致するように形成し、シリンダ11内を往復動するピストン12を上壁2を貫通するピストンロッド13で隔膜7の閉鎖上端部7bの中央部と連結している。そして、コンプレッサーなどの加圧空気供給装置(図示省略)から送給される加圧空気がシリンダ11及び上壁2にそれぞれ形成した空気孔14,15を介してシリンダ11の内部と空気室10に交互に供給されるようにしている。すなわち、シリンダ11には近接センサー16a,16bが取り付けられる一方、ピストン12にセンサー感知部材17が取り付けられ、ピストン12の往復動に伴いセンサー感知部材17が近接センサー16a,16bに交互に近接することにより加圧空気供給装置から送給される加圧空気のシリンダー11内への供給と空気室10への供給とが自動的に交互に切り替えられるように構成している。このピストン12の往復動に伴ってベローズよりなる隔膜7が駆動伸縮運動する。
【0016】
上記ポンプ本体1の底壁体4の液室9に臨む内壁4aには吸込口18及び吐出口19がそれぞれ、流入路5及び流出路6と連通するように設けられる。内壁4aは、吐出口19に向かって1〜45゜、より好ましくは5〜15゜の下り傾斜をつけた形に形成し、好ましく円錐状に形成される内壁4aの最も低い位置に吐出口19を形成するのがよい。ただし、吐出口19は隔膜7の軸線B上にあること、あるいは該軸線Bより偏した位置にあることは問うものではない。
【0017】
吸込口18は、内壁4aより液室9内に突出するよう底壁体4に固定された吸込用逆止弁20の突出先端部の側面に、液室9内の、軸線B方向とは異なる方向にある円周壁9aすなわち図示例ではベローズよりなる隔膜7の内周壁に向けて吸込み液を噴出するよう設けられている。
【0018】
図3に示すように、吸込用逆止弁20は筒状の弁ケーシング201とボール弁体202よりなり、弁ケーシング201はこれの軸線Dを縦にして底壁体4に固定されている。図示例の吸込用逆止弁20はボール弁体202を上下二段に備える構造としている。弁ケーシング201は上下に二分割されて第1弁ケーシング201aと第2弁ケーシング201bよりなり、第1弁ケーシング201aと第2弁ケーシング201bにそれぞれ第1ボール弁体202a、第2ボール弁体202bを内装している。
【0019】
第1弁ケーシング201aは筒状に形成されて下端に入口203を開口し、その外周に設けた雄ねじ204を底壁体4に設けた雌ねじ205にねじ込むことによりその軸線Dを縦にして底壁体4に固定される。
第2弁ケーシング201bは第1弁ケーシング201aよりも径大な筒状に形成されて上端の側面に上記吸込口18を開口し、その下端外周に雄ねじ207を設けている。この第2弁ケーシング201bはこれの雄ねじ207を底壁体4の前記雌ねじ205より上段側に該雌ねじ205の内径よりも径大に設けた雌ねじ208にねじ込むとともに、その下端内周に設けた雌ねじ209を第1弁ケーシング201aの外周上端の雄ねじ210にねじ込むことにより第1弁ケーシング201aと同心状にかつ液室9内に突出するよう底壁体4に固定される。その際、第1弁ケーシング201aの上端と第2弁ケーシング201bの内周下端との間に、弁座211を有する弁座体212が組み込まれる。また第1弁ケーシング201a下端の入口203に臨む流入路5の開口端に弁座213が設けられている。なお、第1,2弁ケーシング201a,201b及び第1,2ボール弁体202a,202bは、隔膜7の材質と同様に耐熱性、耐薬品性に優れるPTFE、PFA等のフッ素樹脂で成形されている。
【0020】
しかるときは、第1弁ケーシング201a内の弁座213に第1ボール弁体202aが自重により密着し、第2弁ケーシング201b内の弁座211には第2ボール弁体202bが自重により密着して液体の逆流を防ぐ。液体の吸込み時には、第1,2ボール弁体202a,202bが弁座213,211からそれぞれ上方へ離されて開弁し、流入路5からの液体が第1弁ケーシング201aの内周に設けた縦溝214と第1ボール弁体202aとの間、及び第2弁ケーシング201bの内周に設けた縦溝215と第2ボール弁体202bとの間を通って第2弁ケーシング201bの吸込口18から液室9内の円周壁9aに向けて噴出される。
【0021】
この時、吸込口18は、吸込み液を液室9内の、軸線B方向とは異なる方向にある円周壁9aに向けて噴出するよう設けられているので、吸込口18より噴出される液は図4にその流れ方向を矢印Sで示すごとく液室9内の円周壁9aに沿って旋回し、この旋回流により液室9内の、特に隔膜7の伸縮部分での停滞や凝集を無くすることができ、常に新しい液と入れ替えることができる。図4は隔膜7を伸長させて液を吸込む行程の状態を、図5は隔膜7を収縮させて液を吐出する行程の状態を示しており、図6は図5におけるH−H線断面図である。なお、図4及び図5では吸込用逆止弁20として単一の弁ケーシング201内にボール弁体202を1個だけ備えるものが示されている。
【0022】
一方、アキュムレータAにおいて、図1に示すように、このアキュムレータ本体25は、上端が上壁26で塞がれた円筒状のケーシング27と、このケーシング27の開放下端を気密状に塞ぐ底壁体28とを有してなる。
【0023】
ケーシング27内にその軸線C方向に沿って伸縮変形可能な有底円筒状のベローズよりなる隔膜29が軸線Cを縦にして配設されている。この隔膜29は耐熱性、耐薬品性に優れるPTFE、PFA等のフッ素樹脂で成形され、その下端開口周縁部29aは環状固定板30により底壁体28の上側面に気密状に押付け固定することにより、アキュムレータ本体25の内部空間が隔膜29の内側の液室31と隔膜29の外側の空気室32とに隔離される。
【0024】
アキュムレータ本体25の底壁体28には液体の流入路33及び流出路34が形成される。底壁体28の液室31に臨む内壁28aには流入口23及び流出口24がそれぞれ流入路33及び流出路34と連通するよう設けられている。流入路33は上記往復動ポンプPの流出路6の下流端側に継手65を介して連通状に接続される。
【0025】
アキュムレータAの液室31の内壁28aは、往復動ポンプPの液室の内壁4aの場合と同様に、流出口24に向かって1〜45゜、より好ましくは5〜15゜の下り傾斜をつけた形に形成し、好ましくは円錐状に形成される内壁28aの最も低い位置に流出口24を形成するのがよい。ただし、流出口24は隔膜29の軸線C上にあること、あるいは該軸線Cより偏した位置にあることは問うものではない。
【0026】
上記隔膜29は、往復動ポンプPの隔膜7の場合と同様に、図7に示すように、隔膜29の山折り部291と谷折り部292を上下に交互に連続形成してなる伸縮部分が伸長状態のときはもとより、同図(a)、(b)、(c)に示すごとく収縮状態のときも、各山折り部291の上下の襞状部291a,291bのうち下側の襞状部291bが、軸線Cに向かって下り傾斜する形に形成されている。上記の各山折り部291の収縮状態下での下側の襞状部291bの傾斜角α、すなわち軸線Cに直交する水平線Lと成す角度αは、1〜45゜、好ましくは5〜15゜とする。ただし、各山折り部291の上側の襞状部291aは、これの収縮状態下において、同図(a)に示すごとく下側の襞状部291bと同一傾斜角で下り傾斜状に形成すること、同図(b)に示すごとく軸線Cに直交する水平線Lと平行に水平に形成すること、あるいは同図(c)に示すごとく軸線Cに向かって上り傾斜する形に形成することは任意である。なお、各山折り部291及び谷折り部292のそれぞれの折目部分のコーナには図示例では角をつけているが、その角にアール(二点鎖線R)を付けてもよい。
【0027】
図1及び図8において、上記液室31の内壁28aの流入口23は、内壁28aより液室31内に突出するよう底壁体28に固定された吐出用逆止弁21の突出先端部の側面に、液室31内の、軸線C方向とは異なる方向にある円周壁31aすなわち図示例ではベローズよりなる隔膜29の内周壁に向けて流入液を噴出するよう設けられている。
【0028】
吐出用逆止弁21は、上記吸込用逆止弁20の構造と同じ構造を有するものである。図8に示すように、吐出用逆止弁21は筒状の弁ケーシング220とボール弁体221よりなり、弁ケーシング220はこれの軸線Gを縦にして底壁体28に固定されている。弁ケーシング220は上下に二分割されて第1弁ケーシング220aと第2弁ケーシング220bよりなり、第1弁ケーシング220aと第2弁ケーシング220bにそれぞれ第1ボール弁体221a、第2ボール弁体221bを内装している。
【0029】
第1弁ケーシング220aは筒状に形成されて下端に入口223を開口し、その外周に設けた雄ねじ224を底壁体28に設けた雌ねじ225にねじ込むことによりその軸線Gを縦にして底壁体28に固定される。
第2弁ケーシング220bは第1弁ケーシング220aよりも径大な筒状に形成されて上端の側面に上記流入口23を開口し、その下端外周に雄ねじ227を設けている。この第2弁ケーシング220bはこれの雄ねじ227を底壁体28の前記雌ねじ225の上段側に該雌ねじ225の内径よりも径大に設けた雌ねじ228にねじ込むとともに、その下端内周に設けた雌ねじ229を第1弁ケーシング220aの外周上端の雄ねじ230にねじ込むことにより第1弁ケーシング220aと同心状にかつ液室31内に突出するよう底壁体28に固定される。その際、第1弁ケーシング220aの上端と第2弁ケーシング220bの内周下端との間に、弁座230を有する弁座体231が組み込まれる。また第1弁ケーシング220a下端の入口223に臨む流入路33の開口端に弁座232が設けられている。
【0030】
しかるときは、第1弁ケーシング221a内の弁座232に第1ボール弁体221aが自重により密着し、第2弁ケーシング220b内の弁座230には第2ボール弁体221bが自重により密着して液体の逆流を防ぐ。液体の液室31への吐出時には第1,2ボール弁体221a,221bが弁座232,230からそれぞれ上方へ離されて開弁し、往復動ポンプPからの液体が第1弁ケーシング220aの内周に設けた縦溝233と第1ボール弁体221aとの間、及び第2弁ケーシング220bの内周に設けた縦溝234と第2ボール弁体221bとの間を通って第2弁ケーシング220bの流入口23から液室31内の円周壁31aに向かって噴出される。
【0031】
この時、流入口23は、流入液を液室31内の、軸線C心方向とは異なる方向にある円周壁31aに向けて噴出するよう設けられているので、流入口23より噴出される液は液室31内の円周壁31aに沿って旋回し、この旋回流により液室31内の、特に隔膜29の伸縮部分での停滞や凝集を無くすることができ、常に新しい液と入れ替えることができる。
なお、上記第1,2弁ケーシング220a,220b及び第1,2ボール弁体221a,221bは、吸込用逆止弁20のそれらと同様に耐熱性、耐薬品性に優れるPTFE、PFA等のフッ素樹脂で成形されている。
【0032】
図9に示すように、アキュムレータAの上記ケーシング27の上壁26の外面中央付近には空気出入口35を形成し、この空気出入口35内にフランジ36付きのバルブケース37を嵌合するとともに、フランジ36を上壁26の外側にボルト38等で着脱可能に締結固定している。
【0033】
バルブケース37には給気口39と排気口40とを平行に並べて形成している。給気口39には、上記液室31の容量が所定範囲を越えて増大したとき、上記空気室32内へ移送液の最大圧力値以上の圧力の空気を供給して空気室32内の封入圧を上昇させる自動給気バルブ機構41が設けられる。排気口40には、液室31の容量が所定範囲を越えて減少したとき、空気室32内から排気して該空気室32内の封入圧を下降させる自動排気バルブ機構42が設けられる。
【0034】
自動給気バルブ機構41は、バルブケース37に給気口39と連通状に形成した給気弁室43と、この弁室43内でその軸線方向に沿って摺動自在で給気口39を開閉作動する給気弁体44と、この弁体44を常に閉成位置に付勢するスプリング45と、内端部に給気弁体44の弁座46を備えるとともに給気弁室43と空気室32とを連通させる貫通孔47を有してバルブケース37にねじ込み固定されたガイド部材48と、このガイド部材48の貫通孔47内にスライド自在に挿通された弁押し棒49と、を有してなる。液室31内の液圧が平均圧の状態で隔膜29が基準位置Sにある状態では、給気弁体44がガイド部材48の弁座46に密接して給気口39を閉成するとともに、弁押し棒49の空気室32内に臨む端部49aが隔膜29の閉鎖上端部29bとストロークEだけ離間している。
【0035】
一方、自動排気バルブ機構42は、バルブケース37に排気口40と連通状に形成した排気弁室50と、この弁室50内でその軸線方向に沿って摺動自在で排気口40を開閉作動する排気弁体51と、この弁体51を先端に、鍔部52を後端にそれぞれ備えた排気弁棒53と、排気弁室50内にねじ込み固定され、排気弁棒53が挿通される貫通孔54を有するスプリング受体55と、排気弁棒53の後端側にスライド自在に挿通され、鍔部52で抜止めされている筒形のスライダー56と、排気弁体51とスプリング受体55との間に配設された閉成用スプリング57と、スプリング受体55とスライダー56との間に配された開成用スプリング58と、を有してなる。スプリング受体55の貫通孔54の内径は排気弁棒53の軸径よりも大きくて両者間に隙間59が形成され、この隙間59を介して排気弁室50と空気室32とが連通している。隔膜29が基準位置Sにある状態において、排気弁体51は排気口40を閉成するとともに排気弁棒53の後端の鍔部52はスライダー56の閉鎖端部56aの内面からストロークFだけ離間している。
【0036】
バルブケース37の空気室側端は図9に仮想線60で示すごとく空気室32内の方向に延長させ、この延長端に、隔膜29が液室31を拡大させる方向に所定のストロークEを越えて上記弁押し棒49を動作させるまで移動したときに隔膜29のそれ以上の移動を規制するためのストッパー61を設けている。
【0037】
次に、上記構成の往復動ポンプP及びアキュムレータAの動作について説明する。
いま、コンプレッサーなどの加圧空気供給装置(図示省略)から加圧空気をシリンダ11の内部に空気孔14を介して供給すると、ピストン12は図1のx方向へ上昇し、隔膜7が同一方向に伸長動作して流入路5内の移送液を吸込用逆止弁20を経て吸込口18から液室9内の円周壁9aに向けて噴出する。このとき、吸込口18から噴出する吸込み液は液室9内の円周壁9aに沿って旋回流を生起し、この旋回流により液室内が撹拌されるので、液室9内での液の滞留をなくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質が液室9内に沈殿したり、凝集するのをよく防止できる。上記加圧空気を空気室10内に空気孔15を介して供給し、空気孔14から排気すると、ピストン12は図1のy方向へ下降し、隔膜7が同一方向に収縮動作して液室9内の移送液を吐出口19より吐出する。このように、シリンダ11内のピストン12の往復運動によって隔膜7が伸縮往復運動することにより、吸込口18からの吸込み行程と吐出口19への吐出し行程とを交互に繰り返して所定の往復動ポンプ作用が行われる。このような往復動ポンプPの作動により移送液が所定の部位に向けて送給されると、往復動ポンプ吐出圧は山部と谷部との繰り返しによる脈動を発生する。
【0038】
ここで、往復動ポンプPにおける液室9内から吐出口19を経て吐出される移送液は、アキュムレータAの流入路33及び流入口23を経て吐出用逆止弁21の流入口23から液室31内の円周壁31aに向けて噴出され、この液室31に一時的に貯溜されたのち流出口24から流出路34へと流出される。このとき、移送液の吐出圧が吐出圧曲線の山部にある場合、移送液は液室31の容量を増大するように隔膜29を伸長変形させるので、その圧力が吸収される。この時、液室31から流出される移送液の流量は往復動ポンプPから送給されてくる流量よりも少なくなる。
前記のように流入口23からの移送液は液室31内の円周壁31aに向けて噴出されるので、この流入液は液室31内の円周壁31aに沿って旋回流を生起し、この旋回流により液室31内が撹拌される。したがって、液室31内での液の滞留を少なくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質が液室31内に沈殿したり、凝集するのをよく防止できる。
【0039】
また、上記移送液の吐出圧が吐出圧曲線の谷部にさしかかると、アキュムレータAの隔膜29の伸長変形に伴い圧縮された空気室32内の封入圧よりも移送液の圧力が低くなるので、隔膜29は収縮変形する。この時、往復動ポンプPから液室31内に流入する移送液の流量よりも液室31から流出する流量が多くなる。この繰り返し動作、つまり液室31の容量変化によって上記脈動が吸収され低減されることになる。
【0040】
ところで、上記のような動作中において、往復動ポンプPからの吐出圧が上昇変動すると、移送液によって液室31の容量が増大し、隔膜29が大きく伸長変形することになる。この隔膜29の伸長変形量が所定範囲Eを越えると、隔膜29の閉鎖上端部29bが弁押し棒49を弁室内方向へ押す。これによって、自動給気バルブ機構41における給気弁体44がスプリング45に抗して開成されて給気口39を通じて高い空気圧が空気室32内へ供給され、該空気室32内の封入圧が上昇する。したがって、隔膜29のストロークEを越えての伸長変形量が規制されて、液室31の容量が過度に増大することが抑えられる。その際、バルブケース37の空気室側端に上記ストッパー61を設けておくと、隔膜29の閉鎖上端部29bが該ストッパー61に当接し、隔膜29が過剰に伸長変形するのを確実に防止できるため、その破損予防に有利である。そして、空気室32内の封入圧の上昇に伴い隔膜29が基準位置Sに向けて収縮するので、弁押し棒49が隔膜29の閉鎖上端部29bから離れ、給気弁体44が再び閉成位置に戻って空気室32内の封入圧が調整状態に固定される。
【0041】
一方、往復動ポンプPからの吐出圧が下降変動すると、移送液によって液室31の容量が減少し、隔膜29が大きく収縮変形することになる。この隔膜29の収縮変形量が所定範囲Fを越えると、隔膜29の閉鎖上端部29bの収縮方向bへの移動に伴って自動排気バルブ機構42のスライダー56が開成用スプリング58の付勢作用により隔膜29の収縮方向bへ移動し、スライダー56の閉鎖端部56aの内面が排気弁棒53の鍔部52に係合する。これによって、排気弁棒53がb方向に移動して排気弁体51が排気口40を開成するので、空気室32内の封入空気が排気口40から大気中に排出されて空気室32内の封入圧が低下する。したがって、隔膜29のストロークFを越えての収縮変形量が規制されて、液室31の容量が過度に減少することが抑えられる。そして、空気室32内の封入圧の減少に伴い隔膜29が基準位置Sに向けて伸長するので、スライダー56が隔膜29の閉鎖上端部29bで押されてa方向に移動しながら開成用スプリング58を圧縮させ、排気弁体51が閉成用スプリング57の付勢作用で再び排気口40を閉成する。これによって空気室32内の封入圧が調整状態に固定される。その結果、往復動ポンプPの液室9からの吐出圧の変動にかかわらず、脈動を効率的に吸収して脈動幅が小さく抑えられることになる。
【0042】
上記実施例のアキュムレータでは空気室32に自動給気バルブ機構33及び自動排気バルブ機構34よりなる圧力自動調整機構を付けているが、空気室32は空気出入口35さえあればよく、圧力自動調整機構は必ずしも必要とするものではない。その圧力調整は手動で行うものであってもよい。
【0043】
上記実施例のように、往復動ポンプPにおいて吸込口18は吸込用逆止弁20の突出先端部の側面に形成することにより吸込み液が液室9内の軸線B方向とは異なる方向にある円周壁9aに向けて噴出するように設けているので、液室9内に噴出される液、特にスラリー等の沈殿物質を含む液も円周壁9aに沿って旋回しながら流動し、液室9内の円周壁9a、特に上記実施例ではベローズよりなる隔膜7の伸縮部分にも滞留を起こすことなく、常に新しい液と入れ替わる作用を発揮する。また、アキュムレータAにおいても、流入口23は吐出用逆止弁21の突出先端部の側面に形成することにより液を液室31内の軸線C方向とは異なる方向にある円周壁31aに向けて噴出するように設けているので、液室31内に噴出される液は円周壁31aに沿って旋回しながら流動し、滞留を起こすことなく、常に新しい液と入れ替えられる。
【0044】
上記実施例では、往復動ポンプPにおいて吸込口18が吸込用逆止弁20の突出先端部の側面に形成されているが、図10に示すごとく吸込口18はポンプ本体1の内壁4a自体に液室9内の円周壁9aに向けて液を噴出するよう斜め上向きに開口するものであってもよい。また、アキュムレータAにおいても流出口23は吐出用逆止弁21の突出先端部の側面に形成するに代えて、アキュムレータ本体25の内壁28a自体に液室31内の円周壁31aに向けて液を噴出するよう斜め上向きに開口するものであってもよい。
【0045】
上記実施例では、往復動ポンプPの隔膜7及びアキュムレータAの隔膜29はそれぞれの軸線B,Cを縦(垂直)にして設けてあるので、スラリー等の沈殿物質を含む液を使用する場合も沈殿物質が隔膜7,29の伸縮部分に滞留するのを可及的に減少することができるが、これに限定されるものではなく、往復動ポンプPの隔膜7及びアキュムレータAの隔膜29はそれぞれの軸線B,Cを横(水平)にするタイプの往復動ポンプP及びアキュムレータAであってもよい。
また、往復動ポンプPの吸込用逆止弁20及び吐出用逆止弁21はそれぞれ、弁ケーシング201,220を縦にしてこの弁ケーシング201,220内の弁座211(213),230(232)にボール弁体202,221が自重により密着して液体の逆流を防ぐという、ボール付勢用ばねを用いない自重閉止機構を採用してあるので、スラリー等の沈殿物質を含む液を使用する場合も沈殿物質がそれぞれの逆止弁20,21の内部に滞留したり、凝集するのを防止できて有利であるが、これに限定されず、ボール付勢用ばねを用いる機構の吸込用逆止弁20及び吐出用逆止弁21であってもよい。
【0046】
吸込用逆止弁20及び吐出用逆止弁21はそれぞれ、上記実施例のようにボール弁体202,221を上下2段に備えて二重閉止構造にしてあると、確実な移送液の定量送りを保証できて有利であり、また弁ケーシング201,220はそれぞれ、ボール弁体202,221を上下2段に組込み易いように上下に二分割する第1弁ケーシング201a,220aと第2弁ケーシング201b,220bとで構成されているが、これに限定されるものではなく、単一のボール弁体202を備えるものであってもよく、また弁ケーシング201,220もそれぞれ単一体に構成することもできる(図4参照)。
【0047】
往復動ポンプPにおいて、液室9の内壁4aを吐出口19に向かって下り傾斜をつけた形に形成していると、スラリー等の沈殿物質を含む液も内壁4aの下り傾斜面に沿ってスムーズに吐出口19に向かって吐き出すことができ、沈殿物質が内壁4aに溜まって固まることも防止できて有利であるが、その内壁4aはフラットであってもよい。同様に、アキュムレータAにおいても、液室31の内壁28aを流出口24に向かって下り傾斜をつけた形に形成しているので、スラリー等の沈殿物質を含む液も内壁28aの下り傾斜面に沿ってスムーズに流出口24に向かって吐き出すことができ、沈殿物質が内壁28aに溜まって固まることも防止することができるが、その内壁28aはフラットであってもよい。
【0048】
往復動ポンプPにおいて、隔膜7の山折り部71と谷折り部72を上下に交互に連続形成してなる伸縮部分が伸長状態のときはもとより、収縮状態のときも、各山折り部71の上下の襞状部71a,71bのうち下側の襞状部71bが、軸線Bに向かって下り傾斜する形に形成されているので、移送液としてスラリー等の沈殿物質を含む移送液を使用する場合も、隔膜7内において沈殿物質は山折り部71の下側の襞状部71bの内面の下り傾斜面に沿って滑り落ち易く、その襞状部71bの内面上に停滞して溜まるようなことがなく、前記円錐状の内壁4a上における沈殿物の滞留防止と相俟って往復動ポンプP内での沈殿物の沈殿や凝集をより一層効果的に防止することができる。同様に、アキュムレータAにおいても、移送液としてスラリー等の沈殿物質を含む液を使用する場合も、隔膜29内において沈殿物質は山折り部291の下側の襞状部291bの内面の下り傾斜面に沿って滑り落ち易く、その襞状部291bの内面上に停滞して溜まるようなことを防止でき、前記円錐状の内壁28a上における沈殿物の滞留防止と相俟ってアキュムレータA内での沈殿物の沈殿や凝集をより一層効果的に防止することができる。しかし、必ずしもそうした形状の隔膜7,29に限定されるものではない。
【0049】
なお、本発明の流体機器は、上記実施例のように往復動ポンプPにこれの脈動を防止するアキュムレータAを併設したものに限られず、図11に示すごとく往復動ポンプP単独で構成されるものにも同様に適用できることは言うまでもない。この場合、復動ポンプP単独で構成すること、及び吐出用逆止弁21を吐出路6の下流端側に外付けしていること以外は、上記往復動ポンプPの構成と同様であるので、同一部材に同一符号を付するをもってその説明を省略する。さらに言うならば、スラリー等の沈殿物質を含む液に限らず、滞留をきらう純度がシビアーな超純水あるいは薬液等に対しても、本発明は適用できるものである。
【0050】
【発明の効果】
本発明によれば、往復動ポンプやアキュムレータにおいて吸込口や流入口から噴出する液は隔膜の内周壁に沿って旋回流を生起し、この旋回流により液室内が撹拌されるので、液室内での液の滞留をなくして常に新しい液の供給を可能にし、またスラリー等の沈殿物質を含む液を使用する場合も沈殿物質が液室内に沈殿したり、凝集するのをよく防止できるという効果を奏する。
【図面の簡単な説明】
【図1】流体機器の往復動ポンプ及びアキュムレータの縦断正面図である。
【図2】往復動ポンプの隔膜の伸縮部分の拡大断面図である。
【図3】往復動ポンプの吸込用逆止弁の拡大断面図である。
【図4】往復動ポンプの吸込み行程での液の流れ状態を示す断面図である。
【図5】往復動ポンプの吐出行程での液の流れ状態を示す断面図である。
【図6】図5におけるH−H線断面図である。
【図7】アキュムレータの隔膜の伸縮部分の拡大断面図である。
【図8】アキュムレータ内に配設された往復動ポンプの吐出用逆止弁の拡大断面図である。
【図9】アキュムレータの圧力自動調整機構の拡大縦断正面図である。
【図10】他の実施例を示す往復動ポンプの要部の断面図である。
【図11】更に他の実施例を示す往復動ポンプの全体縦断正面図である。
【符号の説明】
P 往復動ポンプ
B ポンプ本体の軸線
1 ポンプ本体
4 往復動ポンプの底壁体
4a 内壁
5 往復動ポンプの流入路
6 往復動ポンプの流出路
7 往復動ポンプの隔膜
9 往復動ポンプの液室
18 吸込口
19 吐出口
20 吸込用逆止弁
21 吐出用逆止弁
A アキュムレータ
C アキュムレータ本体の軸線
23 アキュムレータの流入口
24 アキュムレータの流出口
25 アキュムレータ本体
29 アキュムレータの隔膜
31 アキュムレータの液室
32 アキュムレータの空気室
33 アキュムレータの流入路
34 アキュムレータの流出路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid device such as a bellows pump and an accumulator.
[0002]
[Prior art]
For example, a bellows pump or a diaphragm pump that does not generate particles due to the operation of a pump is used as a pump used for circulating or transferring a chemical solution in various processes such as cleaning of the surface of an IC or a liquid crystal in a semiconductor manufacturing apparatus. (For example, JP-A-3-179184). In addition, since this type of pump generates pulsation due to the reciprocating motion of the bellows, an accumulator is used in combination to reduce the pulsation (for example, JP-A-6-17752 and JP-A-10-196521).
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned bellows type pump, diaphragm type pump, accumulator, etc., in order to prevent a decrease in processing performance such as washing, it is required that the transfer liquid stays in the pump and the accumulator in a small amount, and that a new liquid is constantly supplied. However, particularly in bellows type pumps and accumulators, the suction port of the pump and the inflow port of the accumulator eject suction liquid and inflow liquid into the liquid chamber in a direction parallel to the axial direction (reciprocating direction) of each bellows. As a result, the liquid easily stayed in the stretchable portions of the bellows, and was easily contaminated. In addition, when a liquid containing a substance that precipitates, such as a slurry such as silica, is used as a polishing liquid for chemical mechanical polishing [Chemical Mechanical Polishing (CMP)] of a semiconductor wafer or a hard disk built into a computer, the precipitated substance is used in the pump. Or settled in the accumulator or aggregated, which could affect the life of the pump and the accumulator.
[0004]
An object of the present invention is to solve such a problem, to reduce the stagnation of a liquid inside a pump or an accumulator, to always supply a new liquid, and to reduce a sediment such as a slurry. It is an object of the present invention to provide a fluid device that can prevent a precipitated substance from settling or aggregating inside a pump or an accumulator even when a liquid containing the same is used.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is characterized in that a diaphragm made of a bottomed tubular bellows that can expand and contract in the axial direction is fixed to the bottom wall of the pump body inside the pump body. And a liquid chamber is formed inside the diaphragm, and a suction port and a discharge port are provided on an inner wall of the bottom wall facing the liquid chamber, so that the diaphragm is driven. A fluid device comprising a reciprocating pump configured to alternately perform a process of sucking the liquid from the suction port into the liquid chamber through the expansion port and a process of discharging the liquid in the liquid chamber from the discharge port, The suction port is provided so as to jet the suction liquid toward an inner peripheral wall of the diaphragm in a direction different from the axial direction in the liquid chamber.
[0006]
The invention according to claim 2 is the fluid device according to claim 1, wherein the suction port is fixed to protrude into the liquid chamber from an inner wall of the pump body facing the liquid chamber, and a protruding tip end of the check valve for suction. It is provided on the side surface.
[0007]
According to the first and second aspects of the present invention, since the suction port is provided so as to jet the suction liquid toward the inner peripheral wall of the diaphragm, the suction liquid spouting from the suction port is formed on the inner periphery of the diaphragm. A swirling flow is generated along the swirling flow, and the liquid chamber is stirred by the swirling flow. Therefore, the retention of the liquid in the liquid chamber is reduced so that a new liquid can always be supplied.Also, when a liquid containing a precipitated substance such as a slurry is used, the precipitated substance is prevented from settling or coagulating in the liquid chamber. Can be prevented.
[0008]
The invention according to claim 3 is characterized in that, in the accumulator main body, a diaphragm formed of a bottomed cylindrical bellows which can be expanded and contracted in the axial direction is fixed to a bottom wall of the accumulator main body at a lower end opening peripheral portion thereof. A liquid chamber is provided inside the diaphragm and an air chamber is formed outside, and an inlet and an outlet are provided on an inner wall of the accumulator body facing the liquid chamber. A fluid device comprising an accumulator adapted to be balanced by air pressure in the air chamber, wherein the inflow port flows into an inner peripheral wall of the diaphragm in a direction different from the axial direction in the liquid chamber. It is characterized by being provided to eject liquid.
[0009]
According to a fourth aspect of the present invention, in the fluid device according to the third aspect, a protruding tip end of a discharge check valve fixed so that the inflow port protrudes into the liquid chamber from an inner wall facing the liquid chamber of the accumulator body. It is provided on the side surface.
[0010]
According to the third and fourth aspects of the present invention, since the inflow port is provided so as to eject the inflow liquid toward the inner peripheral wall of the diaphragm, the inflow liquid ejected from the inflow port is formed on the inner periphery of the diaphragm. A swirling flow is generated along the swirling flow, and the liquid chamber is stirred by the swirling flow. Therefore, the retention of the liquid in the liquid chamber is reduced so that a new liquid can always be supplied.Also, when a liquid containing a precipitated substance such as a slurry is used, the precipitated substance is prevented from settling or coagulating in the liquid chamber. Can be prevented.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of a fluid device according to the present invention will be described with reference to FIGS. The fluid device of this embodiment is formed by combining a reciprocating pump P and an accumulator A for reducing the pulsation thereof.
[0012]
In FIG. 1, a pump body 1 of a reciprocating pump P has a cylindrical casing 3 whose upper end is closed by an upper wall 2, and a bottom wall body 4 that closes the open lower end of the casing 3 in an airtight manner. It becomes. A liquid inflow path 5 and a liquid outflow path 6 are formed in the bottom wall 4.
[0013]
In the casing 3, a diaphragm 7 made of a cylindrical bellows having a bottom and capable of expanding and contracting along the direction of the axis B is disposed with the axis B being vertical. The diaphragm 7 is formed of a fluororesin such as PTFE (polytetrafluoroethylene) or PFA (perfluoroalkoxy) having excellent heat resistance and chemical resistance. The inner space of the pump body 1 is separated into a liquid chamber 9 inside the diaphragm 7 and an air chamber 10 outside the diaphragm 7 by being pressed and fixed in an airtight manner on the upper surface of the diaphragm 4.
[0014]
In FIG. 2, the diaphragm 7 is not only in a stretched state, but also in a stretched state in which the mountain-folded portions 71 and the valley-folded portions 72 are alternately formed vertically, and also in FIGS. As shown in (c), even in the contracted state, the lower fold 71b of the upper and lower folds 71a, 71b of each mountain fold 71 is formed to be inclined downward toward the axis B. . The inclination angle α of the lower fold-shaped portion 71b under the contracted state of each mountain folded portion 71, that is, the angle α formed with the horizontal line L orthogonal to the axis B is 1 to 45 °, more preferably 5 to 15 °. . However, the upper fold 71a of each mountain fold 71, when contracted, is formed so as to be inclined downward at the same inclination angle as the lower fold 71b as shown in FIG. It is optional to form it horizontally in parallel with a horizontal line L orthogonal to the axis B as shown in FIG. 6B, or to form it ascending upward toward the axis B as shown in FIG. is there. In addition, although the corner of each fold part of each mountain fold part 71 and the valley fold part 72 is provided with a corner in the illustrated example, a radius (two-dot chain line R) may be provided at the corner.
[0015]
In FIG. 1, the pump body 1 is provided with a reciprocating drive device 22 for driving the diaphragm 7 to expand and contract. The reciprocating drive device 22 is configured such that a cylinder 11 is formed on the upper surface side of the upper wall 2 of the pump body 1 so that the axis thereof coincides with the axis B of the diaphragm 7, and the piston 12 that reciprocates in the cylinder 11 is formed on the upper wall. The diaphragm 7 is connected to the center of the closed upper end 7b of the diaphragm 7 by a piston rod 13 penetrating therethrough. Pressurized air supplied from a pressurized air supply device (not shown) such as a compressor is supplied to the inside of the cylinder 11 and the air chamber 10 through air holes 14 and 15 formed in the cylinder 11 and the upper wall 2 respectively. They are supplied alternately. That is, the proximity sensors 16a and 16b are attached to the cylinder 11, while the sensor sensing members 17 are attached to the piston 12, and the sensor sensing members 17 alternately approach the proximity sensors 16a and 16b as the piston 12 reciprocates. Thus, the supply of the pressurized air supplied from the pressurized air supply device into the cylinder 11 and the supply to the air chamber 10 are automatically and alternately switched. As the piston 12 reciprocates, the diaphragm 7 made of bellows moves and expands and contracts.
[0016]
A suction port 18 and a discharge port 19 are provided on an inner wall 4a of the bottom wall 4 of the pump body 1 facing the liquid chamber 9 so as to communicate with the inflow path 5 and the outflow path 6, respectively. The inner wall 4a is formed so as to have a downward inclination of 1 to 45 °, more preferably 5 to 15 ° toward the discharge port 19, and the discharge port 19 is formed at the lowest position of the inner wall 4a which is preferably formed in a conical shape. Should be formed. However, it does not matter that the discharge port 19 is located on the axis B of the diaphragm 7 or at a position deviated from the axis B.
[0017]
The suction port 18 is different from the direction of the axis B in the liquid chamber 9 on the side surface of the protruding tip of the check valve 20 for suction fixed to the bottom wall body 4 so as to protrude into the liquid chamber 9 from the inner wall 4a. The suction liquid is ejected toward the circumferential wall 9a in the direction, that is, the inner peripheral wall of the diaphragm 7 made of a bellows in the illustrated example.
[0018]
As shown in FIG. 3, the check valve 20 for suction includes a cylindrical valve casing 201 and a ball valve body 202, and the valve casing 201 is fixed to the bottom wall body 4 with its axis D vertical. The illustrated suction check valve 20 has a structure in which ball valves 202 are provided in two stages, upper and lower. The valve casing 201 is divided into upper and lower parts, and is composed of a first valve casing 201a and a second valve casing 201b. A first ball valve body 202a and a second ball valve body 202b are respectively provided in the first valve casing 201a and the second valve casing 201b. The interior is decorated.
[0019]
The first valve casing 201a is formed in a cylindrical shape and has an inlet 203 opened at the lower end, and the male screw 204 provided on the outer periphery thereof is screwed into the female screw 205 provided on the bottom wall body 4 so that its axis D is vertical and the bottom wall is formed. It is fixed to the body 4.
The second valve casing 201b is formed in a cylindrical shape having a diameter larger than that of the first valve casing 201a, has the above-described suction port 18 opened at the upper side surface, and is provided with a male screw 207 at the outer periphery of the lower end. In the second valve casing 201b, the male screw 207 is screwed into a female screw 208 provided on the bottom wall 4 above the female screw 205 on the upper side of the female screw 205 and having a diameter larger than the inner diameter of the female screw 205. 209 is fixed to the bottom wall 4 so as to project concentrically with the first valve casing 201a and into the liquid chamber 9 by screwing into the male screw 210 at the upper end of the outer periphery of the first valve casing 201a. At this time, a valve seat body 212 having a valve seat 211 is incorporated between an upper end of the first valve casing 201a and an inner peripheral lower end of the second valve casing 201b. A valve seat 213 is provided at an open end of the inflow passage 5 facing the inlet 203 at the lower end of the first valve casing 201a. The first and second valve casings 201a and 201b and the first and second ball valve bodies 202a and 202b are formed of a fluororesin, such as PTFE and PFA, having excellent heat resistance and chemical resistance similar to the material of the diaphragm 7. I have.
[0020]
At this time, the first ball valve body 202a closely adheres to the valve seat 213 in the first valve casing 201a by its own weight, and the second ball valve body 202b closely adheres to the valve seat 211 in the second valve casing 201b by its own weight. To prevent liquid backflow. At the time of sucking the liquid, the first and second ball valve bodies 202a and 202b are separated upward from the valve seats 213 and 211 to open the valve, and the liquid from the inflow passage 5 is provided on the inner periphery of the first valve casing 201a. The suction port of the second valve casing 201b passes between the vertical groove 214 and the first ball valve body 202a and between the vertical groove 215 provided on the inner periphery of the second valve casing 201b and the second ball valve body 202b. Ejected from 18 toward the circumferential wall 9 a in the liquid chamber 9.
[0021]
At this time, the suction port 18 is provided so as to jet the suction liquid toward the circumferential wall 9a in the liquid chamber 9 in a direction different from the direction of the axis B, so that the liquid jetted from the suction port 18 In FIG. 4, the flow direction is swirled along the circumferential wall 9a in the liquid chamber 9 as indicated by an arrow S, and this swirling flow eliminates stagnation and aggregation in the liquid chamber 9, especially at the stretchable portion of the diaphragm 7. Can always be replaced with a new solution. 4 shows a state of a process of extending the diaphragm 7 and sucking the liquid, FIG. 5 shows a state of a process of contracting the diaphragm 7 and discharging the liquid, and FIG. 6 is a sectional view taken along line HH in FIG. It is. 4 and 5 show a suction check valve 20 having only one ball valve body 202 in a single valve casing 201.
[0022]
On the other hand, in the accumulator A, as shown in FIG. 1, the accumulator main body 25 includes a cylindrical casing 27 whose upper end is closed by an upper wall 26, and a bottom wall body that hermetically closes the open lower end of the casing 27. 28.
[0023]
In the casing 27, a diaphragm 29 made of a bottomed cylindrical bellows which can be expanded and contracted along the direction of the axis C is disposed with the axis C being vertical. The diaphragm 29 is formed of a fluororesin such as PTFE and PFA which are excellent in heat resistance and chemical resistance, and its lower end opening peripheral edge 29a is pressed and fixed to the upper surface of the bottom wall 28 by an annular fixing plate 30 in an airtight manner. Thereby, the internal space of the accumulator main body 25 is separated into the liquid chamber 31 inside the diaphragm 29 and the air chamber 32 outside the diaphragm 29.
[0024]
A liquid inflow path 33 and an outflow path 34 are formed in the bottom wall 28 of the accumulator body 25. An inflow port 23 and an outflow port 24 are provided on an inner wall 28a of the bottom wall 28 facing the liquid chamber 31 so as to communicate with an inflow path 33 and an outflow path 34, respectively. The inflow passage 33 is connected to the downstream end side of the outflow passage 6 of the reciprocating pump P through a joint 65 in a communicating manner.
[0025]
As in the case of the inner wall 4a of the liquid chamber of the reciprocating pump P, the inner wall 28a of the liquid chamber 31 of the accumulator A has a downward inclination of 1 to 45 °, more preferably 5 to 15 ° toward the outlet 24, as in the case of the inner wall 4a of the reciprocating pump P. The outlet 24 may be formed at the lowest position of the inner wall 28a which is formed in a bent shape, preferably a conical shape. However, it does not matter whether the outlet 24 is located on the axis C of the diaphragm 29 or is located at a position deviated from the axis C.
[0026]
As in the case of the diaphragm 7 of the reciprocating pump P, as shown in FIG. 7, the diaphragm 29 has a stretchable portion formed by continuously forming the mountain fold portions 291 and the valley fold portions 292 of the diaphragm 29 alternately up and down. In the expanded state as well as in the contracted state as shown in FIGS. 7A, 7B and 7C, the lower folds of the upper and lower folds 291a and 291b of each mountain fold 291. The portion 291b is formed so as to be inclined downward toward the axis C. The inclination angle α of the lower fold portion 291b under the contracted state of each of the mountain fold portions 291 described above, that is, the angle α formed with the horizontal line L orthogonal to the axis C is 1 to 45 °, preferably 5 to 15 °. And However, the upper fold portion 291a of each mountain fold portion 291 is formed to have a downward inclination at the same inclination angle as the lower fold portion 291b as shown in FIG. It is optional to form it horizontally in parallel with a horizontal line L orthogonal to the axis C as shown in FIG. 6B, or to form it to be inclined upward toward the axis C as shown in FIG. is there. In the illustrated example, corners of the respective fold portions of the mountain fold portions 291 and the valley fold portions 292 are provided with corners, but the corners may be provided with a radius (two-dot chain line R).
[0027]
1 and 8, the inlet 23 of the inner wall 28a of the liquid chamber 31 is provided at the projecting tip of the discharge check valve 21 fixed to the bottom wall 28 so as to protrude into the liquid chamber 31 from the inner wall 28a. On the side surface, the inflow liquid is ejected toward the circumferential wall 31a in the liquid chamber 31 in a direction different from the direction of the axis C, that is, the inner peripheral wall of the diaphragm 29 made of bellows in the illustrated example.
[0028]
The discharge check valve 21 has the same structure as that of the suction check valve 20. As shown in FIG. 8, the discharge check valve 21 includes a cylindrical valve casing 220 and a ball valve body 221, and the valve casing 220 is fixed to the bottom wall body 28 with its axis G being vertical. The valve casing 220 is divided into upper and lower parts and includes a first valve casing 220a and a second valve casing 220b. The first valve casing 220a and the second valve casing 220b respectively have a first ball valve body 221a and a second ball valve body 221b. The interior is decorated.
[0029]
The first valve casing 220a is formed in a cylindrical shape and has an inlet 223 opened at a lower end, and a male screw 224 provided on the outer periphery thereof is screwed into a female screw 225 provided on the bottom wall body 28 so that its axis G is lengthened so that the bottom wall is formed. It is fixed to the body 28.
The second valve casing 220b is formed in a cylindrical shape having a diameter larger than that of the first valve casing 220a. The second valve casing 220b has the inflow port 23 opened at a side surface at an upper end, and a male screw 227 is provided at an outer periphery at a lower end thereof. In the second valve casing 220b, the male screw 227 is screwed into a female screw 228 provided on the upper stage side of the female screw 225 of the bottom wall body 28 with a diameter larger than the inner diameter of the female screw 225, and a female screw provided on a lower end inner periphery thereof. 229 is fixed to the bottom wall body 28 so as to project concentrically with the first valve casing 220a and into the liquid chamber 31 by screwing into the male screw 230 at the upper end of the outer periphery of the first valve casing 220a. At that time, a valve seat body 231 having a valve seat 230 is incorporated between an upper end of the first valve casing 220a and an inner peripheral lower end of the second valve casing 220b. A valve seat 232 is provided at the open end of the inflow passage 33 facing the inlet 223 at the lower end of the first valve casing 220a.
[0030]
At this time, the first ball valve body 221a is in close contact with the valve seat 232 in the first valve casing 221a by its own weight, and the second ball valve body 221b is in close contact with the valve seat 230 in the second valve casing 220b by its own weight. To prevent liquid backflow. At the time of discharging the liquid into the liquid chamber 31, the first and second ball valve bodies 221a and 221b are respectively opened upward by being separated from the valve seats 232 and 230, and the liquid from the reciprocating pump P is supplied to the first valve casing 220a. The second valve passes between the vertical groove 233 provided on the inner circumference and the first ball valve body 221a and between the vertical groove 234 provided on the inner circumference of the second valve casing 220b and the second ball valve body 221b. The liquid is ejected from the inlet 23 of the casing 220b toward the circumferential wall 31a in the liquid chamber 31.
[0031]
At this time, since the inflow port 23 is provided so as to jet the inflow liquid toward the circumferential wall 31 a in the liquid chamber 31 in a direction different from the direction of the axis C, the liquid jetted from the inflow port 23 is provided. Swirls along the circumferential wall 31a in the liquid chamber 31. This swirling flow can eliminate stagnation and aggregation in the liquid chamber 31, especially at the expansion and contraction portions of the diaphragm 29, and can be constantly replaced with new liquid. it can.
The first and second valve casings 220a and 220b and the first and second ball valve bodies 221a and 221b are made of fluorine such as PTFE and PFA which are excellent in heat resistance and chemical resistance similarly to those of the suction check valve 20. Molded with resin.
[0032]
As shown in FIG. 9, an air port 35 is formed near the center of the outer surface of the upper wall 26 of the casing 27 of the accumulator A, and a valve case 37 with a flange 36 is fitted into the air port 35, 36 is removably fastened and fixed to the outside of the upper wall 26 with bolts 38 and the like.
[0033]
An intake port 39 and an exhaust port 40 are formed in the valve case 37 in parallel. When the capacity of the liquid chamber 31 increases beyond a predetermined range, air having a pressure equal to or higher than the maximum pressure value of the transfer liquid is supplied to the air supply port 39 to fill the air chamber 32 with the air supply port 39. An automatic air supply valve mechanism 41 for increasing the pressure is provided. The exhaust port 40 is provided with an automatic exhaust valve mechanism 42 that exhausts air from the air chamber 32 and lowers the sealing pressure in the air chamber 32 when the capacity of the liquid chamber 31 decreases beyond a predetermined range.
[0034]
The automatic air supply valve mechanism 41 includes an air supply valve chamber 43 formed in the valve case 37 in communication with the air supply port 39, and the air supply port 39 slidable along the axial direction in the valve chamber 43. An air supply valve body 44 that opens and closes, a spring 45 that constantly urges the valve body 44 to a closed position, and a valve seat 46 of the air supply valve body 44 at the inner end are provided. It has a guide member 48 having a through hole 47 communicating with the chamber 32 and screwed into the valve case 37, and a valve push rod 49 slidably inserted into the through hole 47 of the guide member 48. Do it. In a state where the liquid pressure in the liquid chamber 31 is the average pressure and the diaphragm 29 is at the reference position S, the air supply valve body 44 is in close contact with the valve seat 46 of the guide member 48 to close the air supply port 39 and The end 49a of the valve push rod 49 facing the air chamber 32 is separated from the closed upper end 29b of the diaphragm 29 by the stroke E.
[0035]
On the other hand, the automatic exhaust valve mechanism 42 has an exhaust valve chamber 50 formed in the valve case 37 so as to communicate with the exhaust port 40, and opens and closes the exhaust port 40 slidably along the axial direction in the valve chamber 50. Exhaust valve body 51, an exhaust valve rod 53 provided with the valve element 51 at the front end, and a flange 52 at the rear end, and a through hole through which the exhaust valve rod 53 is screwed and fixed in the exhaust valve chamber 50. A spring receiver 55 having a hole 54, a cylindrical slider 56 slidably inserted into the rear end side of the exhaust valve rod 53 and being prevented from being removed by a flange 52, an exhaust valve body 51 and a spring receiver 55 , And an opening spring 58 disposed between the spring receiver 55 and the slider 56. The inner diameter of the through hole 54 of the spring receiver 55 is larger than the shaft diameter of the exhaust valve rod 53, and a gap 59 is formed therebetween. The exhaust valve chamber 50 and the air chamber 32 communicate with each other through the gap 59. I have. When the diaphragm 29 is at the reference position S, the exhaust valve body 51 closes the exhaust port 40 and the rear flange 52 at the rear end of the exhaust valve rod 53 is separated from the inner surface of the closed end 56a of the slider 56 by a stroke F. are doing.
[0036]
The air chamber side end of the valve case 37 is extended in the direction inside the air chamber 32 as shown by a virtual line 60 in FIG. 9, and at this extended end, the diaphragm 29 exceeds a predetermined stroke E in the direction in which the liquid chamber 31 expands. A stopper 61 is provided for restricting further movement of the diaphragm 29 when the valve push rod 49 is moved until the valve push rod 49 is operated.
[0037]
Next, the operation of the reciprocating pump P and the accumulator A having the above configuration will be described.
Now, when pressurized air is supplied from a pressurized air supply device (not shown) such as a compressor into the cylinder 11 through the air hole 14, the piston 12 moves up in the x direction in FIG. The transfer liquid in the inflow path 5 is ejected from the suction port 18 to the circumferential wall 9a in the liquid chamber 9 through the check valve 20 for suction. At this time, the suction liquid ejected from the suction port 18 generates a swirling flow along the circumferential wall 9a in the liquid chamber 9, and the liquid chamber is stirred by the swirling flow, so that the liquid stays in the liquid chamber 9. Therefore, it is possible to always supply a new liquid, and when a liquid containing a precipitate such as a slurry is used, precipitation of the precipitate in the liquid chamber 9 and aggregation thereof can be prevented well. When the pressurized air is supplied into the air chamber 10 through the air hole 15 and exhausted from the air hole 14, the piston 12 descends in the y direction in FIG. The transfer liquid in 9 is discharged from the discharge port 19. As described above, the diaphragm 7 expands and contracts by the reciprocating motion of the piston 12 in the cylinder 11, so that the suction stroke from the suction port 18 and the discharge stroke to the discharge port 19 are alternately repeated to perform a predetermined reciprocating motion. A pump action is performed. When the transfer liquid is fed toward a predetermined portion by the operation of the reciprocating pump P, the reciprocating pump discharge pressure generates pulsation due to repetition of peaks and valleys.
[0038]
Here, the transfer liquid discharged from the inside of the liquid chamber 9 of the reciprocating pump P through the discharge port 19 passes through the inflow path 33 and the inflow port 23 of the accumulator A and flows from the inflow port 23 of the discharge check valve 21 to the liquid chamber. The liquid is sprayed toward a circumferential wall 31 a in the liquid chamber 31, temporarily stored in the liquid chamber 31, and then flows out of the outlet 24 to the outflow path 34. At this time, when the discharge pressure of the transfer liquid is at the peak of the discharge pressure curve, the transfer liquid expands and deforms the diaphragm 29 so as to increase the capacity of the liquid chamber 31, so that the pressure is absorbed. At this time, the flow rate of the transfer liquid flowing out of the liquid chamber 31 is smaller than the flow rate supplied from the reciprocating pump P.
As described above, the transfer liquid from the inflow port 23 is jetted toward the circumferential wall 31a in the liquid chamber 31. Therefore, the inflow liquid generates a swirling flow along the circumferential wall 31a in the liquid chamber 31. The inside of the liquid chamber 31 is stirred by the swirling flow. Therefore, the retention of the liquid in the liquid chamber 31 is reduced so that a new liquid can always be supplied. In addition, when a liquid containing a precipitated substance such as a slurry is used, the precipitated substance precipitates in the liquid chamber 31, Aggregation can be prevented well.
[0039]
Further, when the discharge pressure of the transfer liquid reaches the valley of the discharge pressure curve, the pressure of the transfer liquid becomes lower than the sealing pressure in the air chamber 32 compressed due to the elongation deformation of the diaphragm 29 of the accumulator A, The diaphragm 29 contracts and deforms. At this time, the flow rate flowing out of the liquid chamber 31 is larger than the flow rate of the transfer liquid flowing into the liquid chamber 31 from the reciprocating pump P. The pulsation is absorbed and reduced by the repetitive operation, that is, the change in the capacity of the liquid chamber 31.
[0040]
By the way, if the discharge pressure from the reciprocating pump P rises and fluctuates during the above operation, the capacity of the liquid chamber 31 is increased by the transfer liquid, and the diaphragm 29 is greatly extended and deformed. When the amount of extension deformation of the diaphragm 29 exceeds the predetermined range E, the closed upper end portion 29b of the diaphragm 29 pushes the valve push rod 49 toward the valve chamber. As a result, the air supply valve body 44 in the automatic air supply valve mechanism 41 is opened against the spring 45, and a high air pressure is supplied into the air chamber 32 through the air supply port 39, and the sealing pressure in the air chamber 32 is reduced. To rise. Therefore, the amount of extension deformation of the diaphragm 29 beyond the stroke E is restricted, and the capacity of the liquid chamber 31 is prevented from being excessively increased. At this time, if the stopper 61 is provided at the air chamber side end of the valve case 37, the closed upper end portion 29b of the diaphragm 29 abuts on the stopper 61, and it is possible to reliably prevent the diaphragm 29 from being excessively expanded and deformed. Therefore, it is advantageous in preventing damage. Then, since the diaphragm 29 contracts toward the reference position S with an increase in the sealing pressure in the air chamber 32, the valve push rod 49 separates from the closed upper end portion 29b of the diaphragm 29, and the air supply valve body 44 is closed again. Returning to the position, the sealing pressure in the air chamber 32 is fixed in the adjusted state.
[0041]
On the other hand, when the discharge pressure from the reciprocating pump P fluctuates, the capacity of the liquid chamber 31 is reduced by the transfer liquid, and the diaphragm 29 is largely contracted and deformed. When the amount of contraction deformation of the diaphragm 29 exceeds a predetermined range F, the slider 56 of the automatic exhaust valve mechanism 42 is biased by the opening spring 58 as the closed upper end 29b of the diaphragm 29 moves in the contraction direction b. The diaphragm 29 moves in the contraction direction b, and the inner surface of the closed end 56 a of the slider 56 engages with the flange 52 of the exhaust valve rod 53. As a result, the exhaust valve rod 53 moves in the direction b and the exhaust valve body 51 opens the exhaust port 40, so that the sealed air in the air chamber 32 is discharged from the exhaust port 40 into the atmosphere, and The filling pressure decreases. Therefore, the amount of contraction deformation of the diaphragm 29 beyond the stroke F is regulated, and the capacity of the liquid chamber 31 is prevented from being excessively reduced. Since the diaphragm 29 extends toward the reference position S with the decrease in the sealing pressure in the air chamber 32, the slider 56 is pushed by the closed upper end 29b of the diaphragm 29 and moves in the direction a while opening the spring 58. And the exhaust valve body 51 closes the exhaust port 40 again by the urging action of the closing spring 57. Thereby, the sealing pressure in the air chamber 32 is fixed in the adjusted state. As a result, the pulsation can be efficiently absorbed and the pulsation width can be suppressed to be small irrespective of the fluctuation of the discharge pressure from the liquid chamber 9 of the reciprocating pump P.
[0042]
In the accumulator of the above embodiment, the air chamber 32 is provided with an automatic pressure adjusting mechanism including an automatic air supply valve mechanism 33 and an automatic exhaust valve mechanism 34. Is not always necessary. The pressure adjustment may be performed manually.
[0043]
As in the above embodiment, in the reciprocating pump P, the suction port 18 is formed on the side surface of the protruding tip of the suction check valve 20 so that the suction liquid is in a direction different from the direction of the axis B in the liquid chamber 9. Since it is provided so as to be ejected toward the circumferential wall 9a, the liquid ejected into the liquid chamber 9, particularly the liquid containing the precipitated substance such as slurry, also flows while rotating along the circumferential wall 9a, and the liquid chamber 9 The inner circumferential wall 9a, especially in the above-described embodiment, does not stagnate at the stretched portion of the diaphragm 7 made of bellows, and always exhibits the action of being replaced with a new liquid. Also in the accumulator A, the inflow port 23 is formed on the side surface of the protruding tip of the discharge check valve 21 so that the liquid is directed toward the circumferential wall 31 a in a direction different from the direction of the axis C in the liquid chamber 31. Since the liquid is ejected, the liquid ejected into the liquid chamber 31 flows while rotating along the circumferential wall 31a, and is constantly replaced with a new liquid without causing stagnation.
[0044]
In the above embodiment, in the reciprocating pump P, the suction port 18 is formed on the side surface of the protruding tip of the suction check valve 20, but the suction port 18 is formed in the inner wall 4a of the pump body 1 as shown in FIG. It may open obliquely upward so as to eject the liquid toward the circumferential wall 9a in the liquid chamber 9. Also in the accumulator A, the outlet 23 is formed on the inner wall 28a of the accumulator body 25 itself toward the circumferential wall 31a in the liquid chamber 31 instead of forming the outlet 23 on the side of the protruding tip of the discharge check valve 21. It may open obliquely upward so as to squirt.
[0045]
In the above embodiment, since the diaphragm 7 of the reciprocating pump P and the diaphragm 29 of the accumulator A are provided with their axes B and C being vertical (vertical), a liquid containing a sedimented substance such as a slurry may be used. It is possible to reduce as much as possible that the sedimentary substance stays in the stretchable portions of the diaphragms 7 and 29, but the present invention is not limited to this, and the diaphragm 7 of the reciprocating pump P and the diaphragm 29 of the accumulator A are respectively provided. The reciprocating pump P and the accumulator A may be of a type in which the axes B and C are set horizontally (horizontally).
In addition, the check valve 20 for suction and the check valve 21 for discharge of the reciprocating pump P have the valve casings 201 and 220 set vertically, respectively, and the valve seats 211 (213) and 230 (232) in the valve casings 201 and 220 respectively. ), A self-weight closing mechanism that does not use a ball urging spring is adopted, in which the ball valve bodies 202 and 221 adhere to each other by their own weight to prevent backflow of the liquid, so that a liquid containing a sedimented substance such as slurry is used. In this case, it is also advantageous that the sedimentary substance can be prevented from staying or agglomerating in the respective check valves 20 and 21, but the present invention is not limited to this. The stop valve 20 and the discharge check valve 21 may be used.
[0046]
If the suction check valve 20 and the discharge check valve 21 are each provided with the ball valve bodies 202 and 221 in two upper and lower stages as in the above-described embodiment and have a double closed structure, reliable quantitative determination of the transfer liquid can be achieved. The valve casings 201 and 220 are advantageously divided into upper and lower parts so that the ball valve bodies 202 and 221 can be easily assembled in two upper and lower stages, respectively. 201b and 220b, but the invention is not limited to this. A single ball valve body 202 may be provided, and the valve casings 201 and 220 may be formed as a single body. (See FIG. 4).
[0047]
In the reciprocating pump P, when the inner wall 4a of the liquid chamber 9 is formed so as to be inclined downward toward the discharge port 19, the liquid containing the precipitated substance such as slurry also flows along the downward inclined surface of the inner wall 4a. Advantageously, it is possible to smoothly discharge toward the discharge port 19 and prevent the sedimentary substance from accumulating and solidifying on the inner wall 4a, but the inner wall 4a may be flat. Similarly, also in the accumulator A, since the inner wall 28a of the liquid chamber 31 is formed so as to be inclined downward toward the outflow port 24, the liquid containing the sedimented substance such as the slurry also falls on the downward inclined surface of the inner wall 28a. It is possible to smoothly discharge along the outflow port 24 to prevent the sedimentary substance from accumulating and solidifying on the inner wall 28a, but the inner wall 28a may be flat.
[0048]
In the reciprocating pump P, not only when the expanded and contracted portions formed by continuously forming the mountain-folded portions 71 and the valley-folded portions 72 of the diaphragm 7 alternately up and down are in the expanded state but also in the contracted state, Since the lower fold 71b of the upper and lower folds 71a and 71b is formed so as to be inclined downward toward the axis B, a transfer liquid containing a sedimentary substance such as a slurry is used as the transfer liquid. Also in this case, the sedimentary substance easily slides down along the downwardly inclined surface of the inner surface of the fold 71b under the mountain fold 71 in the diaphragm 7, so that the sedimentary substance stagnates and accumulates on the inner surface of the fold 71b. Therefore, the sedimentation and aggregation of the sediment in the reciprocating pump P can be more effectively prevented together with the prevention of the sedimentation of the sediment on the conical inner wall 4a. Similarly, in the accumulator A, even when a liquid containing a precipitation substance such as a slurry is used as the transfer liquid, the precipitation substance in the diaphragm 29 is a downward slope of the inner surface of the fold 291b below the mountain fold 291. Along the inner surface of the fold-shaped portion 291b to prevent the stagnation and accumulation of the sediment on the inner surface of the conical inner wall 28a. Precipitation and aggregation of the precipitate can be more effectively prevented. However, it is not necessarily limited to the diaphragms 7 and 29 having such a shape.
[0049]
Note that the fluid device of the present invention is not limited to the reciprocating pump P provided with the accumulator A for preventing pulsation of the reciprocating pump P as in the above-described embodiment, and is constituted by the reciprocating pump P alone as shown in FIG. It goes without saying that the same can be applied to the object. In this case, the configuration is the same as that of the reciprocating pump P, except that the reciprocating pump P is configured alone and the check valve for discharge 21 is externally attached to the downstream end of the discharge path 6. The same members are denoted by the same reference numerals and description thereof will be omitted. More specifically, the present invention is not limited to liquids containing precipitated substances such as slurries, but can also be applied to ultrapure water or chemicals having a severe purity that prevents stagnation.
[0050]
【The invention's effect】
According to the present invention, in the reciprocating pump or the accumulator, the liquid ejected from the suction port or the inlet generates a swirling flow along the inner peripheral wall of the diaphragm, and the swirling flow agitates the liquid chamber. The new product can always supply new liquid by eliminating stagnation of the liquid, and can effectively prevent the precipitated substance from settling in the liquid chamber and coagulating when using a liquid containing a precipitated substance such as a slurry. Play.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view of a reciprocating pump and an accumulator of a fluid device.
FIG. 2 is an enlarged sectional view of a telescopic portion of a diaphragm of the reciprocating pump.
FIG. 3 is an enlarged sectional view of a suction check valve of the reciprocating pump.
FIG. 4 is a cross-sectional view showing a flow state of a liquid in a suction stroke of a reciprocating pump.
FIG. 5 is a cross-sectional view showing a flow state of a liquid in a discharge stroke of a reciprocating pump.
FIG. 6 is a sectional view taken along line HH in FIG. 5;
FIG. 7 is an enlarged sectional view of a telescopic portion of a diaphragm of the accumulator.
FIG. 8 is an enlarged sectional view of a discharge check valve of a reciprocating pump provided in the accumulator.
FIG. 9 is an enlarged vertical sectional front view of the automatic pressure adjusting mechanism of the accumulator.
FIG. 10 is a cross-sectional view of a main part of a reciprocating pump showing another embodiment.
FIG. 11 is an overall vertical sectional front view of a reciprocating pump showing still another embodiment.
[Explanation of symbols]
P reciprocating pump
B Pump body axis
1 Pump body
4 Bottom wall of reciprocating pump
4a Inner wall
5 Inflow path of reciprocating pump
6 Outflow path of reciprocating pump
7 Reciprocating pump diaphragm
9 Reciprocating pump liquid chamber
18 Suction port
19 Discharge port
20 Check valve for suction
21 Check valve for discharge
A accumulator
C Accumulator body axis
23 Inlet of accumulator
24 Accumulator outlet
25 Accumulator body
29 Accumulator diaphragm
31 Liquid chamber of accumulator
32 Accumulator air chamber
33 Accumulator inflow path
34 Accumulator Outflow

Claims (4)

ポンプ本体の内部に、軸線方向に伸縮変形可能な有底筒状のベローズよりなる隔膜がこれの下端開口周縁部を前記ポンプ本体の底壁体に固定して駆動伸縮運動するようにかつ該隔膜の内側に液室を形成するよう備えられるとともに、前記底壁体の液室に臨む内壁に吸込口及び吐出口が設けられており、前記隔膜の駆動伸縮運動により前記吸込口から前記液室内に液体を吸込む行程と、前記液室内の液体を吐出口から吐出す行程と交互に行うようにしてある往復動ポンプよりなる、流体機器であって、
前記吸込口が、前記液室内の、前記軸線方向とは異なる方向にある前記隔膜の内周壁に向けて吸込み液を噴出するよう設けられていることを特徴とする流体機器。
Inside the pump body, a diaphragm made of a cylindrical bellows with a bottom that can be expanded and contracted in the axial direction is fixed at the lower end opening peripheral edge to the bottom wall of the pump body so that the diaphragm moves and expands and contracts. A liquid chamber is provided inside the liquid crystal chamber, and a suction port and a discharge port are provided on an inner wall of the bottom wall facing the liquid chamber, and the liquid chamber enters the liquid chamber from the suction port by the drive expansion and contraction of the diaphragm. A fluid device comprising a reciprocating pump configured to alternately perform a step of sucking a liquid and a step of discharging the liquid in the liquid chamber from a discharge port,
A fluid device, wherein the suction port is provided so as to eject a suction liquid toward an inner peripheral wall of the diaphragm in a direction different from the axial direction in the liquid chamber.
前記吸込口が、ポンプ本体の前記液室に臨む内壁より液室内に突出するよう固定された吸込用逆止弁の突出先端部の側面に設けられている請求項1記載の流体機器。2. The fluid device according to claim 1, wherein the suction port is provided on a side surface of a protruding distal end portion of the suction check valve fixed so as to protrude into the liquid chamber from an inner wall of the pump body facing the liquid chamber. 3. アキュムレータ本体の内部に、軸線方向に伸縮変形可能な有底筒状のベローズよりなる隔膜がこれの下端開口周縁部を前記アキュムレータ本体の底壁体に固定して該隔膜の内側に液室を、外側に空気室をそれぞれ形成するよう備えられるとともに、アキュムレータ本体の前記液室に臨む内壁に流入口及び流出口が設けられており、前記液室内の液圧に対して空気室内の空気圧によってバランスするようにしてあるアキュムレータよりなる、流体機器であって、
前記流入口が、前記液室内の、前記軸線方向とは異なる方向にある前記隔膜の内周壁に向けて流入液を噴出するよう設けられていることを特徴とする流体機器。
Inside the accumulator main body, a diaphragm made of a bottomed cylindrical bellows that can be expanded and contracted in the axial direction is fixed to the bottom wall of the accumulator main body with a lower end opening peripheral edge thereof, and a liquid chamber is provided inside the diaphragm. An air chamber is provided on the outside, and an inlet and an outlet are provided on an inner wall of the accumulator body facing the liquid chamber, and the liquid pressure in the liquid chamber is balanced by the air pressure in the air chamber. Fluid device comprising an accumulator as described above,
The fluid device, wherein the inflow port is provided so as to eject the inflow liquid toward an inner peripheral wall of the diaphragm in a direction different from the axial direction in the liquid chamber.
前記流入口が、アキュムレータ本体の前記液室に臨む内壁より液室内に突出するよう固定された吐出用逆止弁の突出先端部の側面に設けられている請求項3記載の流体機器。4. The fluid device according to claim 3, wherein the inflow port is provided on a side surface of a protruding distal end of a discharge check valve fixed to protrude into the liquid chamber from an inner wall of the accumulator body facing the liquid chamber. 5.
JP2003038118A 2003-02-17 2003-02-17 Fluid equipment such as pumps Expired - Lifetime JP4478394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038118A JP4478394B2 (en) 2003-02-17 2003-02-17 Fluid equipment such as pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038118A JP4478394B2 (en) 2003-02-17 2003-02-17 Fluid equipment such as pumps

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33756499A Division JP3761754B2 (en) 1999-11-29 1999-11-29 Fluid equipment such as pumps and accumulators

Publications (2)

Publication Number Publication Date
JP2004003443A true JP2004003443A (en) 2004-01-08
JP4478394B2 JP4478394B2 (en) 2010-06-09

Family

ID=30437879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038118A Expired - Lifetime JP4478394B2 (en) 2003-02-17 2003-02-17 Fluid equipment such as pumps

Country Status (1)

Country Link
JP (1) JP4478394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241843A (en) * 2012-05-17 2013-12-05 Nippon Pillar Packing Co Ltd Horizontal bellows pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998000U (en) * 1982-12-21 1984-07-03 山本 明 Self-propelled goods table
JPS61262531A (en) * 1985-05-14 1986-11-20 Daikin Ind Ltd Drainage device for air conditioners
JPH0476876B2 (en) * 1984-09-30 1992-12-04 Tokyo Shibaura Electric Co
JPH11107925A (en) * 1997-10-08 1999-04-20 Nissan Motor Co Ltd Bellows pump
JPH11270459A (en) * 1998-03-20 1999-10-05 Nippon Pillar Packing Co Ltd Pump pulsation suppressing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998000U (en) * 1982-12-21 1984-07-03 山本 明 Self-propelled goods table
JPH0476876B2 (en) * 1984-09-30 1992-12-04 Tokyo Shibaura Electric Co
JPS61262531A (en) * 1985-05-14 1986-11-20 Daikin Ind Ltd Drainage device for air conditioners
JPH11107925A (en) * 1997-10-08 1999-04-20 Nissan Motor Co Ltd Bellows pump
JPH11270459A (en) * 1998-03-20 1999-10-05 Nippon Pillar Packing Co Ltd Pump pulsation suppressing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241843A (en) * 2012-05-17 2013-12-05 Nippon Pillar Packing Co Ltd Horizontal bellows pump

Also Published As

Publication number Publication date
JP4478394B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP3375930B2 (en) Check valve
TW508408B (en) Pump with a pulsation suppression device
JP3610272B2 (en) Fluid device having bellows
JP3761754B2 (en) Fluid equipment such as pumps and accumulators
KR100388443B1 (en) Fluid apparatus such as pump, accumulator, etc
JP2004003443A (en) Fluid machineries, such as pump and accumulator
JP2001153053A (en) Fluid equipment having bellows
JP3962716B2 (en) Fluid device having bellows and method for discharging residual air in fluid device
JP3577435B2 (en) Fluid device having bellows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term