JP2004002981A - Ferrous shape memory alloy tube and its production method - Google Patents

Ferrous shape memory alloy tube and its production method Download PDF

Info

Publication number
JP2004002981A
JP2004002981A JP2003083306A JP2003083306A JP2004002981A JP 2004002981 A JP2004002981 A JP 2004002981A JP 2003083306 A JP2003083306 A JP 2003083306A JP 2003083306 A JP2003083306 A JP 2003083306A JP 2004002981 A JP2004002981 A JP 2004002981A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
iron
range
alloy tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083306A
Other languages
Japanese (ja)
Inventor
Kimio Nakamura
中村 公生
Yoshisada Michiura
道浦 吉貞
Masayoshi Kitagawa
喜多川 眞好
Kosaku Umemoto
梅本 幸作
Hiroshi Kubo
久保 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2003083306A priority Critical patent/JP2004002981A/en
Publication of JP2004002981A publication Critical patent/JP2004002981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrous shape memory alloy tube which has improved shape memory property and improved strength by forming precipitations of carbide or nitride, etc., in the alloy, thereby is practically used for a joint tube, and its production method. <P>SOLUTION: In the tube composed of Fe-Mn-Si base shape memory alloy, the shape memory alloy contains at least carbide or nitride of either one of V or Ti and the alloy tube is formed with centrifugal casting. Recovery strain energy becomes large with structure-controlled interaction between local strain and lattice strain in the alloy matrix phase developed at the forming time of the precipitations of carbide or nitride of V or Ti, and thus the shape recovery ratio of the ferrous shape memory alloy tube is clearly improved, and the strength can drastically be improved with the precipitation strengthening action. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、鋼管などの接合に用いられる形状記憶特性を有する継手管の素材となる管およびその製造方法に関する。
【0002】
【従来の技術】
形状記憶合金は、各種産業分野から医療分野に亘る広い範囲で応用されており、その応用例の一つに、継手管がある。この継手管は、周知のように、接続しようとする2本の管をその内径に嵌め込み、形状記憶特性を利用して継手管の内径を収縮させ、締結するもので、従来からTi−Ni合金やCu系合金が用いられている。一方、従来からのTi−Ni合金やCu系合金に加えて、最近では、Fe−Mn−Si系などの鉄系形状記憶合金が開発されている。この鉄系形状記憶合金は、とくにTi−Ni合金と比べて安価であり、例えば、航空機用等の特殊用途のみならず、一般用として使用しやすいなどの利点がある。
【0003】
【発明が解決しようとする課題】
しかし、この鉄系形状記憶合金を、例えば、継手管に使用しようとすると、その強度や、形状回復率などの形状記憶特性が、実用的なレベルにまで到達していなく、実用化されていないのが現状である。
【0004】
そこで、この発明の課題は、合金中に炭化物や窒化物などの析出物を形成させることなどにより、形状記憶特性および強度を向上させて、継手管として実用できる鉄系形状記憶合金管およびその製造方法を提供することである。
【0005】
【課題を解決するための手段】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0006】
即ち、鉄系形状記憶合金管を、主要成分として、Mn(マンガン)を15〜40%、Si(ケイ素)を3.5〜8%含有する鉄系形記憶合金に、さらに、少なくとも、V(バナジウム)またはTi(チタン)のいずれか一方の炭化物あるいは窒化物を含有するようにして形成したのである。このようにすれば、VやTiの炭化物や窒化物などの析出物が形成されたときに生じる局所歪みと鉄系形状記憶合金の母相の格子歪みとの間に生じる組織制御された相互作用によって、回復歪みエネルギーが大きくなって、形状回復率が向上し、かつ、析出強化作用により強度も増加する。
【0007】
上記の各合金元素の作用について記すと、Mnは、室温付近での加工による応力誘起変態によって、降伏点を超える応力の作用時に双晶変形をもたらす稠密六方構造のマルテンサイト(ε)の生成を可能とするが、Mn量が15%以下と少なくなると、この応力誘起変態によって、体心正方晶のマルテンサイト(α’)も導入され、この体心正方晶のマルテンサイト(α’)は逆変態しないために、形状記憶作用がなく、従って、形状記憶効果が低下する。また、Mn量が40%を越えると、母相のオ−ステナイト(γ)相の安定度が増して、オ−ステナイト(γ)→マルテンサイト(ε)の応力誘起変態よりも、オ−ステナイト(γ)のすべりが優先的に生じるようになり、強度が低下し、かつ形状記憶効果が損なわれる。
【0008】
Siは、積層欠陥エネルギーを低下させ、磁気変態点(ネール点)を下げる作用を有し、これらは、上記マルテンサイト(ε)への変態を促進する効果がある。この効果は、Si量が3.5%以上で充分認められるが、Si量が8%を超えると、前記形状記憶合金の加工性や成形性が低下し、欠陥のない鉄系形状記憶合金の製造が難しくなる。
【0009】
前記形状記憶合金に、Cr(クロム)またはNi(ニッケル)を単独で10%以下、あるいはCrとNiを合わせて10%以下の範囲で含有させることが望ましい。
【0010】
Crも同様に、マルテンサイト(ε)への変態を容易にする効果があり、形状記憶効果を向上させ、かつ、耐食性および耐高温酸化性を向上させ、N(窒素)の溶解度を増加させる効果がある。しかし、10%を超えると、Siと低融点の金属間化合物を作るようになるため、合金の溶製ができなくなる。
【0011】
Niは、形状記憶特性を劣化させずに、形状回復応力を低減し、靱性や耐食性、耐高温酸化性を向上させる。しかし、Crの場合と同様に、10%を超えると、熱間加工性がわるくなり、欠陥のない鉄系形状記憶合金の製造が難しくなる。
【0012】
CrおよびNiは、含有量が多くなり過ぎると、上記のような弊害があり、また、互いに重複する作用もあるため、それらの含有量は、単独で、あるいは、合わせて10%以下とすることが望ましい。
【0013】
前記形状記憶合金に含有されるVが0.1〜5%の範囲にあるか、または、Tiが0.1〜2%の範囲にあり、かつ、C(炭素)を0.001〜2%、およびNを0.001〜0.5%含有することが望ましい。
【0014】
VおよびTiは、前記合金に含有されるCおよびNと結合して、微細でかつ分散した炭化物および窒化物を形成するため、上述のように、形状回復率を向上させ、強度を増加させる。また、溶製時に、CおよびNの溶解度を増加させる効果もある。さらに、Tiの場合には、単独で固溶強化により強度の向上に寄与する。
【0015】
このVおよびTiは、含有量が、0.1%未満では、いずれも上記の効果は得られず、Vの場合は、含有量が5%を超えると、Tiの場合は、含有量が2%を超えると、いずれも形状記憶特性および成形性が低下しはじめる。
【0016】
CおよびNが、それぞれ0.001%未満であると、上記の炭化物や窒化物の析出量が少なくなって、上記の効果が得られず、C量が2%、N量が0.5%を超えると、炭化物および窒化物の析出量が多くなって、前記合金の延性が低下し始める。
【0017】
前記形状記憶合金に、Nb(ニオブ)を0.1〜1%の範囲で含有させることもできる。
【0018】
Nbは、炭化物あるいは窒化物を形成し、VおよびTiの場合と同様に、形状回復率および強度(0.2%耐力)の向上に寄与し、単独でも固溶強化により、強度の向上に寄与する。とくに、Vが含有されている場合、Nb炭化物あるいはNb窒化物の周囲に硬化能の高いV炭化物が整合して析出するので、形状記憶特性が一層改善される。
【0019】
なお、上記のV、TiおよびNbはいずれも、CrよりもCとの親和力が強いため、粒界腐食および粒界破壊の原因となるCr炭化物(Cr236 )の析出を防止できる。
【0020】
前記の各鉄系形状記憶合金を溶製した後、遠心鋳造により管状体に成形し、形状記憶合金管を製造することができる。
【0021】
このように、上記の各鉄系形状記憶合金を、遠心鋳造によって管状体に成形すると、組織が緻密になり、鋳造欠陥を防止でき、また、従来の重力鋳造法などに比べて、管状体の長さ方向に偏肉が生じず、切削加工代を少なくでき、歩留が向上して資源ロスを低減できる。
【0022】
前記遠心鋳造が回転する横向きの金属モールドを用いた遠心鋳造であり、前記金属モールドの内面に、厚さ20〜1000μmの保護用コーティング層を形成し、前記形状記憶合金を金属モールドに注入後、凝固完了までの平均の冷却速度を1〜30℃/sの範囲に制御することが望ましい。
【0023】
形状記憶特性を良好にするためには、凝固組織を柱状晶組織にして、前記のVやTiなどの炭化物や窒化物を金属モールドに垂直な方向に分布させることが望ましく、このような柱状晶組織を実現するためには、金属モールドに注入後の冷却速度のコントロールが必要である。
【0024】
この冷却速度は、30℃/sを超えると、管状体の凝固組織にチル晶が増加し、形状記憶特性が低下する。また、1℃/s未満であると、等軸晶が増加して同様に、形状記憶特性が低下する。なお、金属モールドの回転速度が柱状晶の生成に及ぼす影響は小さい。また、柱状晶生成に関しては、注湯形式は、溶湯鋳込み用のトラフが、金属モ−ルドの長さに近く、トラフが金属モ−ルドに対して移動できる、または金属モ−ルドがトラフに対して移動できる長樋形式の方が、前記トラフが金属モ−ルドの長さに対して短く、トラフが固定された短樋形式よりも好ましい。
【0025】
前記コーティング層の厚さが20μm未満では、鉄系形状記憶合金の溶湯から金属モールドへの熱伝達量が多くなって、上記の好ましい冷却速度の範囲を超え、鋳造割れや湯境などの鋳造欠陥が発生しやすくなる。また、溶湯とモールド間で焼付きが生じやすくなり、金属モールドを保護する機能が失われる。一方、1000μmを超えると、管状体の表面にガス欠陥が発生し易くなり、また、コーティング層が厚くなるため、コーティング作業や鋳造後のモールドに残ったコーティング層の除去作業に時間を要する。
【0026】
前記遠心鋳造により成形した管状体に溶体化処理および時効処理を施すことが望ましい。
【0027】
この溶体化処理および時効処理の熱処理条件を適切に選択することにより、遠心鋳造により緻密に形成された組織中に、VやTiなどの炭化物や窒化物が微細に析出し、このような組織制御により、鉄系形状記憶合金管の形状回復率および強度が向上する。
【0028】
前記溶体化処理において、合金元素は形状記憶合金の母相中に充分固溶させ、しかも、組織の粗大化を防止するためには、管状体の加熱温度域を950℃から1200℃の範囲とし、加熱保持時間を0.5〜10時間の範囲とすることが望ましい。加熱温度が950℃を下回ると母相中への固溶が不十分となりやすく、1200℃を超えると結晶粒の粗大化をまねきやすいからである。また、保持時間が0.5時間を下回ると母相中への固溶および組織の均質化が不十分となりやすく、10時間を超えると結晶粒の粗大化をまねきやすいからである。
【0029】
前記時効処理において、VやTiなどの炭化物や窒化物が微細に析出し、しかも、それらの凝集を防止するためには、管状体の加熱温度域を600℃から900℃の範囲とし、加熱保持時間を0.08〜10時間の範囲とすることが望ましい。加熱温度が600℃を下回ると析出物の生成が遅く、900℃を超えると結晶粒の粗大化をまねきやすいからである。また、保持時間が0.08時間を下回ると材料の均熱が十分でなく、安定した組織が得られず、10時間を超えると結晶粒の粗大化をまねきやすく、経済的でないからである。また、熱処理において、組織の結晶粒成長を抑制することは、0.2%耐力など機械的性質の向上につながるので、二段時効を行ってもよい。
【0030】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1乃至図5に基づいて説明する。
【0031】
図1は、鉄系形状記憶合金の管状体cを製造する遠心鋳造機を示したものである。形状記憶合金としては、Fe−Mn−Si系で、C、Nに加えて少なくともVまたはTiを含有し、凝固時にVまたはTiのいずれか一方の炭化物または窒化物が析出する組成のものを用いる。
【0032】
この遠心鋳造機では、上記のような組成の鉄系形状記憶合金の溶湯aを、高周波溶解炉3から三角取鍋4に注入し、その取鍋4を円筒状の金属モールド1に対して所要位置までレール9上を移動させる。この後、取鍋4を矢印のごとく傾動し、鋳込み用トラフ5の供給口5aから溶湯aをトラフ5内に供給し、その先端の鋳込み口5bから、1400℃以上の鋳込み温度を確保して金属モールド1に注入する。
【0033】
前記トラフ5は、その長さが金属モールド1の長さに近い長樋形式のもので、移動台車7に固定され、金属モールド1に対して移動可能であり、鋳込み部、即ち溶湯aの鋳込まれる箇所が金属モールド1内を順次移動することから、鋳込み量は、金属モールド1の長手に順次移動する前記鋳込み部のみでよいため、トラフ5の先端部5aからの溶湯aの注入流量を少なくできる。このため、図2に示す、トラフ5’が金属モールド1の長さに対して短く、金属モールド1に対して固定されている短樋形式の場合よりも、成形される管状体内面のドロス欠陥の発生が少なくでき、欠陥除去のための機械加工代が少なくなるなどの利点がある。
【0034】
前記金属モールド1の内周面には、表1に組成を示したジルコニア系のコーティング剤bが、ポンプ6からホース6aを介して鋳込み用トラフ5の下面に取り付けられたノズル8に送り込まれ、台車7を前後動させるとともに、モールド1を回転させ、このノズル8からモールド1内面にコーティング剤bがスプレー塗布され、20〜1000μm、好ましくは、50〜800μmの範囲の厚さのコーティング層が形成されている。このとき、スプレー前に金属モールド1は150〜250℃の範囲に予熱されている。
【0035】
【表1】

Figure 2004002981
【0036】
前記金属モールド1は、その外周面から図示を省略した冷却手段によって抜熱して、注入された溶湯aの冷却速度の調節が可能となっており、通常、50〜150Gの回転速度で回転し、トラフ5の鋳込み口5bから、溶湯aを金属モールド1内に注入するにつれて、台車7を矢印のごとく、レール9に沿って後退させて、トラフ5と金属モールド1とを相対的に、好ましくは、速度50〜150mm/sの範囲で移動させ、金属モールド1の全長にわたる管状体cが成形される。ここで、前記Gは、遠心力の加速度を重力加速度で割った値で、遠心力が重力の何倍になるかを表した重力倍数であり、金属モールド1の内径をD(cm)、回転速度をN(rpm)とすれば、G=D×N2 /179000となり、金属モールド1の回転速度と対応付けることができる。そして、なお、注入された溶湯aの、凝固終了までの平均の冷却速度が1〜30℃/s、好ましくは、3〜20℃/sの冷却速度となるように、前記冷却手段によって、金属モールド1の抜熱速度が調節される。冷却速度をこの範囲に収めることにより、より優れた形状記憶特性が得られる。
【0037】
このようにして得られた管状体c、即ち鉄系形状記憶合金管に、マルテンサイトへの変態開始温度以下の−150〜100℃の温度範囲で、加工率が1〜20%の範囲で、1回目の拡径処理が施され、逆変態温度以上の200〜600℃の温度範囲に加熱した後、マルテンサイトへの変態開始温度以下の−150〜100℃の温度範囲に冷却する。そして、この温度域で上記と同様の2回目の拡径処理を施して応力誘起マルテンサイトを生成させることで、形状回復率を向上させることができる。
【0038】
【実施例】
次に、本発明の実施例について説明する。
【0039】
成分元素として、C、Nに加えて少なくともVまたはTiを含有する8種類のFe−Mn−Si系形状記憶合金を高周波溶解炉で溶解し、図1に示した長樋形式の遠心鋳造機を用いて、下記の条件で各合金を素材とする管状体cを鋳造した。表2に、各管状体cの素材合金の成分組成、合金中に生成する析出物および後述する試験により得られた特性を併せて示す。
(鋳造条件)
鋳込み温度:1400℃以上
呼び径:250mm(外径:252mm)
管肉厚:11mm
コーティング厚:380〜450μm
冷却速度:18〜20℃/sec
【0040】
【表2】
Figure 2004002981
【0041】
前記各管状体cを鋳造した後、溶体化処理および時効処理を施すことにより、表2に示した炭化物や窒化物が析出する。ここで、各管状体cの溶体化処理は、1150℃で1時間保持した後、空冷を行うものとした。また、時効処理の保持温度および保持時間は、生成析出物がVNのもの(実施例1,7)では700℃×10分間、TiNまたはTiCのもの(実施例3,4)では800℃×30分間、その他(実施例2,5,6,8)では700℃×30分間とした。
【0042】
上記の熱処理による組織の変化および析出物の生成過程について、実施例1の素材合金を代表例として調査を行った。図3(a)、(b)および(c)は、それぞれ、鋳造後(鋳造状態のまま)、溶体化処理後および時効処理後の顕微鏡組織を示す。溶体化処理により十分固溶され、また時効処理による結晶粒の粗大化は認められない。
【0043】
図4は、実施例1の合金中における析出物の生成状態、分布などを透過電子顕微鏡で観察した結果を示す。図4(a)および(b)は、それぞれ、溶体化処理後および時効処理後の状態を示し、図4(c)は時効処理を1時間に延長した場合の処理後の状態を示す。図4(a)より、溶体化処理後、析出物などは合金中に完全に固溶され、均質化していることが分かる。ただし、微量の析出物は粒界に生成しており、これにより結晶粒径の粗大化を抑制する効果がある。そして、図4(b)からは、時効処理後に、ナノメートルオーダーのVN析出物が母相中に均一に分散、生成し、その形状は球状に近いということが見て取れる。また、10分という短い時効処理時間で強度が増大するのは、析出物生成に伴う析出強化によるものであり、形状回復歪が増大するのは、内部整合歪によるものであることが分かる。さらに、図4(b)と図4(c)とを比べると、時効処理の保持時間を1時間に延長しても、析出物の分布などは10分間保持した場合と大きな変化がないことも分かる。
【0044】
前記熱処理を行った後、以下に示す試験を行って各実施例の形状回復率を測定し、形状記憶特性を評価した。試験は、溶体化処理および時効処理を行った各管状体cから、全長が55mm、平行部の直径が4mm、長さが23mm、標点距離(L0 )が20mm、つかみ部がM10のねじ加工をした引張試験片を切り出し、以下の、▲1▼引張歪みの付与、▲2▼加熱処理、▲3▼形状回復率の測定の処理工程を2回繰り返して、各実施例の形状回復率をそれぞれ算出した。
【0045】
▲1▼引張り歪みの付与
各試験片について定められた予歪み量(4〜10%)を引張試験機で付与した後、試験片に付した、前記予歪付与後の標点距離(L1 )をデジタルノギスにて測定した。引張速度は、試験機のクロスヘッド速度=1.0mm/min(歪み速度=8.3×10−4)とし、試験は恒温室(27℃)で行ない、強度(0.2%耐力)も併せて測定した。
【0046】
▲2▼加熱処理
各試験片に上記予歪みを付与した後、熱処理炉を用いて、Ar雰囲気中で600℃×30min(2回目は、350℃×30min)の加熱処理を行い、処理後は空冷とした。
【0047】
▲3▼形状回復率測定
各試験片を、上記加熱処理後空冷し、標点距離(L2 )を再度測定し、加熱前の標点間距離との差から、収縮量(ΔL=L1 −L2 )を算出した。この収縮量(ΔL)の算出値から一次(1回目)および二次(2回目)の形状回復率(ΔL/L)×100%をそれぞれ算出した。
【0048】
表2から、いずれの実施例についても、形状回復率は、予歪付与→加熱処理を繰り返すトレーニング処理により向上し、二次の形状回復率が従来レベルの3.0%を明らかに上回っていることが分かる。また、強度(0.2%耐力)についても、300MPaを超えて従来レベルの250MPaよりも顕著に上回っている。これらの結果から、各実施例の管状体cが継手用途として十分に実用できる形状記憶特性および強度特性を有するものであることが確認された。
【0049】
また、各実施例の管状体cは、いずれも良好な外観が得られ、断面組織の柱状晶率も80%以上であった。図5は、一例として、実施例1の管状体cの断面組織を示す。肉厚のほぼ全体に柱状晶組織が得られ、外面および内面には等軸晶およびノロ・ドロスを含む層がほとんど存在していないことが観察される。従って、切削加工代の削減や、加工時および拡径時の割れの防止が図れ、低コスト化と資源ロスの削減とを同時に実現できる。
【0050】
次に、表2の実施例1を基準として、成分組成が同じで、呼び径、肉厚等の鋳造条件を変化させた管状体cを4種類(実施例9〜12)製造した。表3に各実施例の鋳造条件および得られた管状体cの特性を示す。
【0051】
【表3】
Figure 2004002981
【0052】
表3から、呼び径が250mm(外径252mm)または150mm(外径152mm)の場合、肉厚6mmから19mmの範囲にわたって、肉厚の長さ方向の均一性に優れた管状体cが得られることがわかる。また、各実施例の管状体cのいずれも、外観は良好で、コーティング剤bの厚さおよび冷却速度を前述の好ましい範囲内で設定することにより、その断面組織の柱状晶率が80%以上となり、形状回復率も従来レベルの3%程度から大きく向上している。なお、この形状回復率は、前述の形状回復率の測定方法と同じ方法により算出した二次の値である。
【0053】
この結果から、遠心鋳造法により、5mm程度の薄肉管から20mm程度の厚肉管にいたるまで、長さ方向にほぼ均一な肉厚を有する鉄系形状記憶合金管を容易に製造できることが確認できた。
【0054】
【発明の効果】
以上のように、この発明による鉄系形状記憶合金管では、V、TiあるいはNbの炭化物、窒化物などの析出物が形成されたとき生じる局所歪みと合金母相の格子歪みとの間に生じる組織制御された相互作用により、回復歪エネルギーが大きくなり、形状回復率が従来レベルを明らかに上回り、また、析出強化作用による強度(0.2%耐力)の顕著な向上がもたらされた。
【0055】
また、この鉄系形状記憶合金管は、肉厚のほぼ全体に柱状晶組織が得られ、外面および内面に等軸晶およびノロ・ドロスを含む層がほとんど存在しないものとなるため、切削加工代の削減や、加工時および拡径時の割れの防止が図れ、低コスト化と資源ロスの削減とを同時に図ることができる。
【0056】
さらに、その遠心鋳造を用いた製造方法によれば、薄肉管から厚肉管にいたるまで、長さ方向にほぼ均一な肉厚を有する管を容易に製造することができる。
【図面の簡単な説明】
【図1】この発明の実施例に係る遠心鋳造機(長樋形式)の概略図
【図2】同上の遠心鋳造機(短樋形式)の概略図
【図3】図1の遠心鋳造機で鋳造した管状体の一例の熱処理による微細組織の変化を示す写真
【図4】同上の透過電子顕微鏡写真
【図5】同上の断面組織写真
【符号の説明】
1 金属モールド
2 回転ローラ
3 高周波溶解炉
4 三角取鍋
5、5’鋳込み用トラフ
5a 供給口
5b 鋳込み口
6 コーティング用ポンプ
7 移動台車
8 コーティングノズル
9 レール
a 溶湯
b コーティング剤
c 管状体[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe used as a material of a joint pipe having shape memory characteristics used for joining a steel pipe or the like, and a method of manufacturing the same.
[0002]
[Prior art]
Shape memory alloys are applied in a wide range from various industrial fields to medical fields, and one of the applications is a joint pipe. This joint pipe is, as is well known, in which two pipes to be connected are fitted into the inner diameter, and the inner diameter of the joint pipe is contracted by utilizing shape memory characteristics, and the pipe is connected with a conventional Ti-Ni alloy. And Cu-based alloys are used. On the other hand, in addition to conventional Ti-Ni alloys and Cu-based alloys, iron-based shape memory alloys such as Fe-Mn-Si-based alloys have recently been developed. This iron-based shape memory alloy is inexpensive as compared with a Ti-Ni alloy in particular, and has an advantage that it can be used not only for a special purpose such as an aircraft, but also for a general purpose.
[0003]
[Problems to be solved by the invention]
However, when this iron-based shape memory alloy is used for, for example, a joint pipe, its strength and shape memory characteristics such as a shape recovery rate have not reached a practical level and have not been put to practical use. is the current situation.
[0004]
Therefore, an object of the present invention is to improve the shape memory characteristics and strength by forming precipitates such as carbides and nitrides in an alloy, and to improve the shape-memory characteristics and strength of the iron-based shape memory alloy tube which can be practically used as a joint tube, and its production Is to provide a way.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
[0006]
That is, the iron-based shape memory alloy tube is used as a main component in an iron-based shape memory alloy containing 15 to 40% of Mn (manganese) and 3.5 to 8% of Si (silicon), and at least V ( It was formed so as to contain either carbide or nitride of either vanadium) or Ti (titanium). In this way, a structure-controlled interaction between local strain caused when precipitates such as carbides and nitrides of V and Ti are formed and lattice strain of the parent phase of the iron-based shape memory alloy. Thereby, the recovery strain energy is increased, the shape recovery rate is improved, and the strength is also increased by the precipitation strengthening action.
[0007]
To describe the action of each of the above alloy elements, Mn causes the formation of dense martensite (ε) having a dense hexagonal structure that causes twinning deformation when a stress exceeding the yield point is applied due to stress-induced transformation caused by working near room temperature. Although possible, when the Mn content is reduced to 15% or less, this stress-induced transformation also introduces body-centered tetragonal martensite (α ′), and this body-centered tetragonal martensite (α ′) is reversed. Since there is no transformation, there is no shape memory effect and therefore the shape memory effect is reduced. On the other hand, if the Mn content exceeds 40%, the stability of the austenite (γ) phase as the parent phase increases, and the austenite (γ) → martensite (ε) is more stress-induced than austenite (ε). The slip of (γ) occurs preferentially, the strength is reduced, and the shape memory effect is impaired.
[0008]
Si has the effect of lowering the stacking fault energy and lowering the magnetic transformation point (Neel point), and these have the effect of promoting the transformation to martensite (ε). This effect is sufficiently recognized when the amount of Si is 3.5% or more. However, when the amount of Si exceeds 8%, the workability and formability of the shape memory alloy are deteriorated, and the shape of the iron-based shape memory alloy having no defect is reduced. Manufacturing becomes difficult.
[0009]
It is desirable that the shape memory alloy contain Cr (chromium) or Ni (nickel) in a range of 10% or less alone, or Cr and Ni in a range of 10% or less in total.
[0010]
Similarly, Cr has the effect of facilitating transformation to martensite (ε), improving the shape memory effect, improving corrosion resistance and high-temperature oxidation resistance, and increasing the solubility of N (nitrogen). There is. However, if it exceeds 10%, an intermetallic compound having a low melting point with Si will be formed, so that it is impossible to melt the alloy.
[0011]
Ni reduces shape recovery stress without deteriorating shape memory characteristics, and improves toughness, corrosion resistance, and high-temperature oxidation resistance. However, as in the case of Cr, if it exceeds 10%, hot workability deteriorates, and it becomes difficult to produce a defect-free iron-based shape memory alloy.
[0012]
If the contents of Cr and Ni are too large, they have the above-mentioned adverse effects, and also have an effect of overlapping each other. Therefore, their contents should be 10% or less alone or in total. Is desirable.
[0013]
V contained in the shape memory alloy is in the range of 0.1 to 5%, or Ti is in the range of 0.1 to 2%, and C (carbon) is 0.001 to 2%. , And N in an amount of 0.001 to 0.5%.
[0014]
V and Ti combine with C and N contained in the alloy to form fine and dispersed carbides and nitrides, thus improving the shape recovery rate and increasing the strength as described above. In addition, there is also an effect of increasing the solubility of C and N during melting. Further, in the case of Ti, solid solution strengthening alone contributes to improvement in strength.
[0015]
When the content of V and Ti is less than 0.1%, none of the above effects can be obtained. In the case of V, if the content exceeds 5%, in the case of Ti, the content is 2%. %, The shape memory properties and the moldability begin to decrease.
[0016]
If each of C and N is less than 0.001%, the amount of precipitation of the above-mentioned carbides and nitrides becomes small, and the above-mentioned effects cannot be obtained. The C amount is 2% and the N amount is 0.5%. If it exceeds 300, the precipitation amount of carbides and nitrides will increase, and the ductility of the alloy will begin to decrease.
[0017]
The shape memory alloy may contain Nb (niobium) in a range of 0.1 to 1%.
[0018]
Nb forms carbide or nitride and contributes to the improvement of shape recovery rate and strength (0.2% proof stress) as in the case of V and Ti, and also contributes to improvement of strength by solid solution strengthening alone. I do. In particular, when V is contained, V carbide having high hardening ability is deposited around Nb carbide or Nb nitride in a consistent manner, so that the shape memory characteristics are further improved.
[0019]
Since V, Ti and Nb all have a stronger affinity for C than Cr, precipitation of Cr carbide (Cr 23 C 6 ) which causes grain boundary corrosion and grain boundary destruction can be prevented.
[0020]
After each of the above-mentioned iron-based shape memory alloys is melted, it is formed into a tubular body by centrifugal casting to produce a shape memory alloy tube.
[0021]
As described above, when each of the above-mentioned iron-based shape memory alloys is formed into a tubular body by centrifugal casting, the structure becomes denser, casting defects can be prevented, and the tubular body has a smaller shape than a conventional gravity casting method. There is no uneven thickness in the length direction, the cutting allowance can be reduced, the yield is improved, and the resource loss can be reduced.
[0022]
The centrifugal casting is a centrifugal casting using a rotating horizontal metal mold, a protective coating layer having a thickness of 20 to 1000 μm is formed on the inner surface of the metal mold, and after injecting the shape memory alloy into the metal mold, It is desirable to control the average cooling rate up to the completion of solidification in the range of 1 to 30 ° C / s.
[0023]
In order to improve the shape memory characteristics, it is desirable to change the solidification structure to a columnar crystal structure and to distribute the carbide or nitride such as V or Ti in a direction perpendicular to the metal mold. In order to realize the structure, it is necessary to control the cooling rate after injection into the metal mold.
[0024]
If the cooling rate exceeds 30 ° C./s, chill crystals increase in the solidified structure of the tubular body, and the shape memory characteristics deteriorate. If the rate is lower than 1 ° C./s, the number of equiaxed crystals increases, and the shape memory characteristics similarly decrease. The influence of the rotation speed of the metal mold on the formation of columnar crystals is small. Regarding columnar crystal formation, the pouring type is such that the trough for casting the molten metal is close to the length of the metal mold, and the trough can be moved with respect to the metal mold, or the metal mold can be added to the trough. The long gutter type that can be moved is preferable to the short gutter type in which the trough is shorter than the length of the metal mold and the trough is fixed.
[0025]
When the thickness of the coating layer is less than 20 μm, the amount of heat transfer from the molten metal of the iron-based shape memory alloy to the metal mold is increased, exceeding the above-mentioned preferable cooling rate, and casting defects such as casting cracks and hot boundaries. Is more likely to occur. In addition, seizure easily occurs between the molten metal and the mold, and the function of protecting the metal mold is lost. On the other hand, if it exceeds 1000 μm, gas defects are likely to be generated on the surface of the tubular body, and the coating layer becomes thick, so that it takes time to perform the coating operation and the operation of removing the coating layer remaining in the mold after casting.
[0026]
It is desirable to subject the tubular body formed by the centrifugal casting to a solution treatment and an aging treatment.
[0027]
By appropriately selecting the heat treatment conditions of the solution treatment and the aging treatment, carbides and nitrides such as V and Ti are finely precipitated in the structure formed densely by centrifugal casting. Thereby, the shape recovery rate and the strength of the iron-based shape memory alloy tube are improved.
[0028]
In the solution treatment, the alloying element is sufficiently dissolved in the matrix of the shape memory alloy, and in order to prevent the structure from becoming coarse, the heating temperature range of the tubular body is set to a range of 950 ° C to 1200 ° C. It is desirable that the heating and holding time be in the range of 0.5 to 10 hours. If the heating temperature is lower than 950 ° C., the solid solution in the matrix tends to be insufficient, and if it exceeds 1200 ° C., the crystal grains are likely to be coarsened. On the other hand, if the holding time is less than 0.5 hour, the solid solution in the matrix and the homogenization of the structure tend to be insufficient, and if the holding time exceeds 10 hours, the crystal grains are likely to become coarse.
[0029]
In the aging treatment, carbides and nitrides such as V and Ti are finely precipitated, and in order to prevent their aggregation, the heating temperature range of the tubular body is set in a range of 600 ° C. to 900 ° C. It is desirable that the time be in the range of 0.08 to 10 hours. If the heating temperature is lower than 600 ° C., the formation of precipitates is slow. If the heating temperature is higher than 900 ° C., the crystal grains are likely to be coarsened. On the other hand, if the holding time is less than 0.08 hours, the material is not sufficiently heated, and a stable structure cannot be obtained. If the holding time is more than 10 hours, the crystal grains are likely to become coarse, which is not economical. In the heat treatment, suppressing the crystal grain growth of the structure leads to an improvement in mechanical properties such as 0.2% proof stress, so that two-stage aging may be performed.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the attached FIGS.
[0031]
FIG. 1 shows a centrifugal casting machine for producing a tubular body c of an iron-based shape memory alloy. As the shape memory alloy, use is made of a Fe-Mn-Si alloy having a composition that contains at least V or Ti in addition to C and N and that precipitates either carbide or nitride of V or Ti during solidification. .
[0032]
In this centrifugal casting machine, a molten metal a of an iron-based shape memory alloy having the above composition is poured from a high-frequency melting furnace 3 into a triangular ladle 4, and the ladle 4 is required for the cylindrical metal mold 1. Move on the rail 9 to the position. Thereafter, the ladle 4 is tilted as indicated by the arrow, and the molten metal a is supplied into the trough 5 from the supply port 5a of the casting trough 5, and a casting temperature of 1400 ° C. or more is secured from the casting port 5b at the tip. Inject into metal mold 1.
[0033]
The trough 5 is of a long gutter type whose length is close to the length of the metal mold 1 and is fixed to the movable carriage 7 and is movable with respect to the metal mold 1. Since the portion to be poured sequentially moves in the metal mold 1, the casting amount may be only the casting portion that sequentially moves in the longitudinal direction of the metal mold 1. Therefore, the injection flow rate of the molten metal a from the tip 5 a of the trough 5 is reduced. Can be reduced. Therefore, the dross defect on the inner surface of the tubular body to be formed is smaller than that in the case of the short gutter type in which the trough 5 ′ is shorter than the length of the metal mold 1 and is fixed to the metal mold 1 as shown in FIG. This has the advantage that the generation of defects can be reduced and the machining allowance for removing defects is reduced.
[0034]
On the inner peripheral surface of the metal mold 1, a zirconia-based coating agent b whose composition is shown in Table 1 is fed from a pump 6 to a nozzle 8 attached to a lower surface of a casting trough 5 via a hose 6a. The trolley 7 is moved back and forth, and the mold 1 is rotated. The coating agent b is spray-applied from the nozzle 8 to the inner surface of the mold 1 to form a coating layer having a thickness of 20 to 1000 μm, preferably 50 to 800 μm. Have been. At this time, before spraying, the metal mold 1 is preheated to a range of 150 to 250 ° C.
[0035]
[Table 1]
Figure 2004002981
[0036]
The metal mold 1 is capable of adjusting the cooling rate of the injected molten metal a by removing heat from the outer peripheral surface thereof by a cooling means (not shown), and usually rotates at a rotation speed of 50 to 150 G, As the molten metal a is poured into the metal mold 1 from the casting port 5b of the trough 5, the carriage 7 is retracted along the rail 9 as shown by an arrow, and the trough 5 and the metal mold 1 are relatively, preferably, The speed is moved in the range of 50 to 150 mm / s, and the tubular body c over the entire length of the metal mold 1 is formed. Here, G is a value obtained by dividing the acceleration of the centrifugal force by the gravitational acceleration, and is a multiple of gravity that indicates how many times the centrifugal force is the gravity. The inner diameter of the metal mold 1 is D (cm), If the speed is N (rpm), G = D × N 2 / 179,000, which can be associated with the rotation speed of the metal mold 1. The cooling means is used to cool the injected molten metal a so that the average cooling rate until solidification is 1 to 30 ° C./s, preferably 3 to 20 ° C./s. The heat removal rate of the mold 1 is adjusted. By keeping the cooling rate within this range, better shape memory characteristics can be obtained.
[0037]
In the thus obtained tubular body c, that is, the iron-based shape memory alloy tube, at a temperature range of -150 to 100 ° C below the transformation start temperature to martensite, at a processing rate of 1 to 20%, The first diameter expansion treatment is performed, and after heating to a temperature range of 200 to 600 ° C. which is equal to or higher than the reverse transformation temperature, it is cooled to a temperature range of −150 to 100 ° C. which is equal to or lower than the transformation start temperature to martensite. Then, by performing the same second diameter expansion treatment as described above in this temperature range to generate stress-induced martensite, the shape recovery rate can be improved.
[0038]
【Example】
Next, examples of the present invention will be described.
[0039]
Eight types of Fe-Mn-Si based shape memory alloys containing at least V or Ti in addition to C and N as component elements are melted in a high-frequency melting furnace, and the long gutter type centrifugal casting machine shown in FIG. A tubular body c made of each alloy was cast under the following conditions. Table 2 also shows the component composition of the material alloy of each tubular body c, the precipitates generated in the alloy, and the characteristics obtained by the tests described later.
(Casting conditions)
Casting temperature: 1400 ° C or more Nominal diameter: 250 mm (outer diameter: 252 mm)
Pipe wall thickness: 11mm
Coating thickness: 380-450 μm
Cooling rate: 18-20 ° C / sec
[0040]
[Table 2]
Figure 2004002981
[0041]
After casting each of the tubular bodies c, a solution treatment and an aging treatment are performed to precipitate carbides and nitrides shown in Table 2. Here, in the solution treatment of each tubular body c, air-cooling is performed after holding at 1150 ° C. for 1 hour. Further, the holding temperature and the holding time of the aging treatment were 700 ° C. × 10 minutes when the product precipitate was VN (Examples 1 and 7) and 800 ° C. × 30 when the product precipitate was TiN or TiC (Examples 3 and 4). Minutes, and in others (Examples 2, 5, 6, and 8), the temperature was set at 700 ° C. for 30 minutes.
[0042]
The change in the structure and the process of forming the precipitates by the above heat treatment were investigated using the material alloy of Example 1 as a representative example. 3 (a), (b) and (c) show the microstructures after casting (as cast), after solution treatment and after aging, respectively. The solid solution is sufficiently formed by the solution treatment, and the crystal grains are not coarsened by the aging treatment.
[0043]
FIG. 4 shows the results of observing the formation state, distribution, and the like of precipitates in the alloy of Example 1 with a transmission electron microscope. 4A and 4B show the state after the solution treatment and the state after the aging treatment, respectively, and FIG. 4C shows the state after the treatment when the aging treatment is extended to one hour. FIG. 4 (a) shows that after the solution treatment, precipitates and the like are completely dissolved in the alloy and are homogenized. However, a very small amount of precipitates are formed at the grain boundaries, which has the effect of suppressing the coarsening of the crystal grain size. From FIG. 4 (b), it can be seen that, after the aging treatment, VN precipitates on the order of nanometers are uniformly dispersed and formed in the matrix, and the shape thereof is almost spherical. Further, it can be seen that the strength is increased by the aging treatment time as short as 10 minutes due to precipitation strengthening accompanying the formation of precipitates, and the shape recovery strain is increased due to internal matching strain. Furthermore, comparing FIG. 4 (b) with FIG. 4 (c), even if the holding time of the aging treatment is extended to one hour, the distribution of the precipitates and the like do not show much change from the case of holding for 10 minutes. I understand.
[0044]
After the heat treatment, the following tests were performed to measure the shape recovery rate of each example, and the shape memory characteristics were evaluated. In the test, a screw having a total length of 55 mm, a diameter of a parallel portion of 4 mm, a length of 23 mm, a gauge length (L 0 ) of 20 mm, and a grip portion of M10 was obtained from each of the solution-treated and aging-treated tubular bodies c. The processed tensile test piece was cut out, and the following processing steps of (1) imparting tensile strain, (2) heating treatment, and (3) measuring the shape recovery rate were repeated twice, and the shape recovery rate of each example was obtained. Was calculated respectively.
[0045]
(1) Application of tensile strain After applying a pre-strain amount (4 to 10%) determined for each test piece with a tensile tester, the gauge length (L 1 ) after applying the pre-strain was applied to the test piece. ) Was measured with a digital caliper. The tensile speed was set to 1.0 mm / min (strain speed = 8.3 × 10 −4 ), the test was performed in a constant temperature room (27 ° C.), and the strength (0.2% proof stress) was also set. It was also measured.
[0046]
(2) Heat treatment After applying the pre-strain to each test piece, a heat treatment furnace was used to perform a heat treatment at 600 ° C. × 30 min (the second time, 350 ° C. × 30 min) in an Ar atmosphere. Air cooled.
[0047]
{Circle around (3)} Shape recovery rate measurement Each test piece was air-cooled after the above heat treatment, and the gauge length (L 2 ) was measured again. From the difference from the gauge length before heating, the shrinkage (ΔL = L 1) −L 2 ) was calculated. From the calculated value of the amount of shrinkage (ΔL), the primary (first) and secondary (second) shape recovery rates (ΔL / L) × 100% were calculated.
[0048]
From Table 2, in all the examples, the shape recovery ratio was improved by the training process in which the pre-strain application → heating process was repeated, and the secondary shape recovery ratio was clearly higher than the conventional level of 3.0%. You can see that. Also, the strength (0.2% proof stress) exceeds 300 MPa and is significantly higher than the conventional level of 250 MPa. From these results, it was confirmed that the tubular body c of each example had shape memory characteristics and strength characteristics that could be sufficiently used for joint use.
[0049]
In addition, in each of the tubular bodies c of each example, a good appearance was obtained, and the columnar crystal ratio of the cross-sectional structure was 80% or more. FIG. 5 shows a cross-sectional structure of the tubular body c of the first embodiment as an example. It is observed that a columnar crystal structure is obtained over almost the entire thickness, and that the outer and inner surfaces have almost no layers containing equiaxed crystals and noro-dross. Therefore, it is possible to reduce the cutting allowance and to prevent cracking at the time of machining and at the time of expanding the diameter, thereby simultaneously realizing cost reduction and reduction of resource loss.
[0050]
Next, four types (Examples 9 to 12) of tubular bodies c having the same component composition and different casting conditions such as the nominal diameter and the wall thickness were produced based on Example 1 in Table 2. Table 3 shows the casting conditions of the examples and the characteristics of the obtained tubular body c.
[0051]
[Table 3]
Figure 2004002981
[0052]
From Table 3, when the nominal diameter is 250 mm (outer diameter 252 mm) or 150 mm (outer diameter 152 mm), a tubular body c having excellent uniformity in the thickness direction over a thickness range of 6 mm to 19 mm can be obtained. You can see that. In addition, the appearance of each of the tubular bodies c of each of the examples was good, and the columnar crystal ratio of the cross-sectional structure was 80% or more by setting the thickness and the cooling rate of the coating agent b within the above-described preferable ranges. And the shape recovery rate is greatly improved from the conventional level of about 3%. The shape recovery rate is a secondary value calculated by the same method as the above-described method of measuring the shape recovery rate.
[0053]
From this result, it can be confirmed that an iron-based shape memory alloy tube having a substantially uniform thickness in the length direction can be easily manufactured from a thin tube of about 5 mm to a thick pipe of about 20 mm by centrifugal casting. Was.
[0054]
【The invention's effect】
As described above, in the iron-based shape memory alloy tube according to the present invention, a local strain generated when precipitates such as carbides and nitrides of V, Ti or Nb are formed and a lattice strain of the alloy matrix. Due to the structure-controlled interaction, the recovery strain energy was increased, the shape recovery ratio was clearly higher than the conventional level, and the strength (0.2% proof stress) by the precipitation strengthening effect was significantly improved.
[0055]
In addition, this iron-based shape memory alloy tube has a columnar crystal structure almost all over its thickness, and has almost no layers including equiaxed crystals and noro-dross on its outer and inner surfaces. , And cracks during processing and diameter expansion can be prevented, so that cost reduction and resource loss reduction can be achieved at the same time.
[0056]
Furthermore, according to the manufacturing method using the centrifugal casting, it is possible to easily manufacture a pipe having a substantially uniform thickness in the length direction from a thin pipe to a thick pipe.
[Brief description of the drawings]
FIG. 1 is a schematic view of a centrifugal caster (long gutter type) according to an embodiment of the present invention. FIG. 2 is a schematic view of a centrifugal caster (short gutter type) of the above. FIG. Photo showing the change in microstructure of one example of the cast tubular body due to heat treatment. [FIG. 4] Transmission electron micrograph of the same. [FIG. 5] Cross-sectional micrograph of the same.
DESCRIPTION OF SYMBOLS 1 Metal mold 2 Rotary roller 3 High frequency melting furnace 4 Triangular ladle 5, 5 'Pouring trough 5a Supply port 5b Pouring port 6 Coating pump 7 Moving carriage 8 Coating nozzle 9 Rail a Melt b Coating agent c Tubular body

Claims (8)

主要成分として、重量パーセントで(以下すべて重量パーセントで表す)、Mnを15〜40%、Siを3.5〜8%を含有する鉄系形状記憶合金からなる管であって、前記形状記憶合金が、さらに、少なくとも、VまたはTiのいずれか一方の炭化物または窒化物を含有することを特徴とする鉄系形状記憶合金管。A pipe made of an iron-based shape memory alloy containing 15 to 40% by weight of Mn and 3.5 to 8% of Si by weight percent (hereinafter, all represented by weight percent) as a main component. , Further comprising at least one of V and Ti carbides or nitrides. 前記形状記憶合金が、CrまたはNiを単独で10%以下、あるいはCrとNiを合わせて10%以下の範囲で含むことを特徴とする請求項1に記載の鉄系形状記憶合金管。The iron-based shape memory alloy tube according to claim 1, wherein the shape memory alloy contains Cr or Ni alone in a range of 10% or less, or Cr and Ni in a range of 10% or less in total. 前記形状記憶合金に含有されるVが0.1〜5%の範囲にあるか、または、Tiが0.1〜2%の範囲にあり、かつ、Cを0.001〜2%、Nを0.001〜0.5%含有することを特徴とする請求項1または請求項2に記載の鉄系形状記憶合金管。V contained in the shape memory alloy is in the range of 0.1 to 5%, or Ti is in the range of 0.1 to 2%, C is 0.001 to 2%, and N is The iron-based shape memory alloy tube according to claim 1, wherein the content is 0.001 to 0.5%. 前記形状記憶合金が、Nbを0.1〜1%の範囲で含有することを特徴とする請求項1から3のいずれかに記載の鉄系形状記憶合金管。The iron-based shape memory alloy tube according to any one of claims 1 to 3, wherein the shape memory alloy contains Nb in a range of 0.1 to 1%. 請求項1から4のいずれかに記載した鉄系形状記憶合金を溶製し、遠心鋳造により管状体に成形する鉄系形状記憶合金管の製造方法。A method for manufacturing an iron-based shape memory alloy tube, which comprises melting the iron-based shape memory alloy according to any one of claims 1 to 4 and forming the same into a tubular body by centrifugal casting. 前記遠心鋳造が回転する横向きの金属モールドを用いた遠心鋳造であり、前記金属モールドの内面に、厚さ20〜1000μmの保護用コーティング層を形成し、前記形状記憶合金を金属モールドに注入後、凝固完了までの平均の冷却速度が1〜30℃/sの範囲にある請求項5に記載の鉄系形状記憶合金管の製造方法。The centrifugal casting is centrifugal casting using a rotating horizontal metal mold, a protective coating layer having a thickness of 20 to 1000 μm is formed on the inner surface of the metal mold, and the shape memory alloy is injected into the metal mold. The method for producing an iron-based shape memory alloy tube according to claim 5, wherein the average cooling rate until the solidification is completed is in the range of 1 to 30C / s. 前記遠心鋳造により成形した管状体に溶体化処理および時効処理を施す請求項5または6に記載の鉄系形状記憶合金管の製造方法。The method for producing an iron-based shape memory alloy tube according to claim 5, wherein a solution treatment and an aging treatment are performed on the tubular body formed by the centrifugal casting. 前記溶体化処理において、前記管状体を950℃から1200℃の温度域に0.5〜10時間保持した後、水冷または空冷し、その後の前記時効処理において、前記管状体を600℃から900℃の温度域で、0.08〜100時間保持する請求項7に記載の鉄系形状記憶合金管の製造方法。In the solution treatment, the tubular body is maintained in a temperature range of 950 ° C. to 1200 ° C. for 0.5 to 10 hours, and then water-cooled or air-cooled. The method for producing an iron-based shape memory alloy tube according to claim 7, wherein the temperature is maintained in the temperature range of 0.08 to 100 hours.
JP2003083306A 2002-03-27 2003-03-25 Ferrous shape memory alloy tube and its production method Pending JP2004002981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083306A JP2004002981A (en) 2002-03-27 2003-03-25 Ferrous shape memory alloy tube and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002089865 2002-03-27
JP2003083306A JP2004002981A (en) 2002-03-27 2003-03-25 Ferrous shape memory alloy tube and its production method

Publications (1)

Publication Number Publication Date
JP2004002981A true JP2004002981A (en) 2004-01-08

Family

ID=30446168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083306A Pending JP2004002981A (en) 2002-03-27 2003-03-25 Ferrous shape memory alloy tube and its production method

Country Status (1)

Country Link
JP (1) JP2004002981A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081241A2 (en) 2006-01-16 2007-07-19 Oleg Vladimirovich Anisimov Method for modifying the grain size of cast products obtained from commercial melts
JP2010201470A (en) * 2009-03-04 2010-09-16 Kurimoto Ltd Centrifugal casting method
WO2012060225A1 (en) * 2010-11-01 2012-05-10 テルモ株式会社 Composite
CN103409748A (en) * 2013-08-06 2013-11-27 大连海事大学 Method for preparing Fe-Mn-Si shape memory alloy coating via laser cladding
WO2018219514A1 (en) * 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Fe-mn-si shape memory alloy
CN111041387A (en) * 2019-12-25 2020-04-21 南京龙浩新材料科技有限公司 Multi-element iron-based shape memory alloy and preparation method thereof
JP2020524082A (en) * 2017-06-18 2020-08-13 ヴォス インダストリーズ, エルエルシーVoss Industries, Llc Hybrid assembly assembly for fluid flow
CN116219259A (en) * 2023-03-10 2023-06-06 佛山市高明欧一电子制造有限公司 Preparation method of memory metal for temperature control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081241A2 (en) 2006-01-16 2007-07-19 Oleg Vladimirovich Anisimov Method for modifying the grain size of cast products obtained from commercial melts
EP2060341A2 (en) * 2006-01-16 2009-05-20 Ansimov, Oleg Vladimirovich Method for modifying the grain size of cast products obtained from commercial melts
EP2060341A4 (en) * 2006-01-16 2010-03-03 Advanced Alloys Sa Method for modifying the grain size of cast products obtained from commercial melts
JP2010201470A (en) * 2009-03-04 2010-09-16 Kurimoto Ltd Centrifugal casting method
WO2012060225A1 (en) * 2010-11-01 2012-05-10 テルモ株式会社 Composite
CN103409748A (en) * 2013-08-06 2013-11-27 大连海事大学 Method for preparing Fe-Mn-Si shape memory alloy coating via laser cladding
WO2018219514A1 (en) * 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Fe-mn-si shape memory alloy
WO2018219463A1 (en) * 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Fe-mn-si shape-memory alloy
JP2020524082A (en) * 2017-06-18 2020-08-13 ヴォス インダストリーズ, エルエルシーVoss Industries, Llc Hybrid assembly assembly for fluid flow
CN111041387A (en) * 2019-12-25 2020-04-21 南京龙浩新材料科技有限公司 Multi-element iron-based shape memory alloy and preparation method thereof
CN116219259A (en) * 2023-03-10 2023-06-06 佛山市高明欧一电子制造有限公司 Preparation method of memory metal for temperature control device

Similar Documents

Publication Publication Date Title
US10857595B2 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
Kuo et al. The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing
US6799626B2 (en) Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in finegrained isotropic graphite molds under vacuum
JP4841838B2 (en) Hard metal material, hard metal coating, method for processing metal material, and method for forming metal coating
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
WO2018181098A1 (en) HEAT TREATMENT METHOD FOR ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT, METHOD FOR MANUFACTURING ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT, Ni-BASE ALLOY POWDER FOR ADDITIVE MANUFACTURED OBJECT, AND ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT
JP6713071B2 (en) Method for manufacturing cobalt-based alloy laminated body
KR101956652B1 (en) Centrifugal casted composite roller for hot rolling and method for producing same
WO2020121367A1 (en) Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these
CN110280764A (en) A kind of Maraging steel and preparation method thereof based on SLM molded part
JP6924874B2 (en) Cobalt-based alloy material
JP2006312779A (en) Nickel based superalloy, and method for producing the same
Sanchez-Mata et al. Characterization of the microstructure and mechanical properties of highly textured and single crystal Hastelloy X thin struts fabricated by laser powder bed fusion
JPWO2014027677A1 (en) Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof
JP2004002981A (en) Ferrous shape memory alloy tube and its production method
JP6540075B2 (en) TiAl heat resistant member
JP3737803B2 (en) Spherical vanadium carbide-containing high manganese cast iron material and method for producing the same
KR102147227B1 (en) Method for making nickel-based superalloys with excellent machinability and mechanical properity by using centrifugal casting
JP2009191327A (en) Method for strengthening aluminum alloy base material
TWI314165B (en) Copper-nickel-silicon two phase quench substrate
Li et al. Effects of Heat Treatment and Carbon Element Invasion on Microstructure and Mechanical Properties of Inconel 718 Alloys Fabricated by Selective Laser Melting
JP2002285277A (en) Composite roll for rolling made by centrifugal casting
JPS5890363A (en) Production of composite roll of high alloy cast iron
JP2021172851A (en) Manufacturing method of Ni-based alloy member
JP2023045935A (en) Fe-Al ALLOY, Fe-Al ALLOY MEMBER, Fe-Al ALLOY POWDER AND METHOD FOR PRODUCING Fe-Al ALLOY