JP2004002497A - High dielectric constant substrate material - Google Patents

High dielectric constant substrate material Download PDF

Info

Publication number
JP2004002497A
JP2004002497A JP2002125961A JP2002125961A JP2004002497A JP 2004002497 A JP2004002497 A JP 2004002497A JP 2002125961 A JP2002125961 A JP 2002125961A JP 2002125961 A JP2002125961 A JP 2002125961A JP 2004002497 A JP2004002497 A JP 2004002497A
Authority
JP
Japan
Prior art keywords
dielectric constant
high dielectric
substrate material
powder
polymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002125961A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
高橋 享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002125961A priority Critical patent/JP2004002497A/en
Publication of JP2004002497A publication Critical patent/JP2004002497A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a substrate material of high dielectric constant used as a printed circuit board, a capacitor material or the like by addition of a relatively small amount of high dielectric constant powder and to obtain a high dielectric constant substrate material having excellent mechanical characteristics and electric characteristics by a relatively simple manufacturing method. <P>SOLUTION: The above problem is solved by that a polymer composition in the fusion state added with the high dielectric constant powder is subjected to electric field-orientation treatment and is made to a solidified high dielectric constant substrate material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板やコンデンサ材料(等)として用いられる高誘電率の基板材料に関し、高誘電率粉末が添加された融体状態のポリマー組成物を、この状態で電界配向処理させることによって、高誘電率の基板材料が得られるようにしたものである。
【0002】
【従来の技術】
このような技術の一つとして例えばプリント配線板において、基板自身にもコンデンサー効果を持たせた複合回路化等の要求から、高誘電率の基板が必要とされている。しかしながらプリント配線板に用いる材料であるポリイミド、エポキシ樹脂等は、誘電率εが高々3〜4程度であるので、これを数十以上の誘電率εのものにしようとすると、前記樹脂材料に高誘電率のセラミック粉末等を多量に添加する必要がある。具体的な基板としては、フェノール樹脂、エポキシ樹脂、フッ素樹脂やポリフェニレンエーテル樹脂等に高誘電率のセラミックス粉末を添加し、ガラス布やガラス不織布に含浸・乾燥して得たプリプレグを積層成形して、高誘電率の基板とすることが知られている。しかしながら、このような方法によって高誘電率の基板を得るためには、前記樹脂中に例えば、前記樹脂の体積分率で50%のように多量に添加したものとする必要がある。これは、前記樹脂100重量部換算では、500〜1000重量部にもなる。このような大量の前記高誘電率粉末を添加すると、得られた基板の機械的特性や電気的特性に問題が生じる。すなわち、引張り強度、伸び特性、曲げ特性や脆化特性等の問題やさらには前記基板のドリル加工性、切削加工性の低下や寸法変化が大きい等の機械的特性の問題があった。
【0003】
【発明が解決しようとする課題】
よって本発明が解決しようとする課題は、プリント配線板やコンデンサ材料等として用いられる高誘電率の基板材料であって、前記高誘電率粉末を多量に添加しなくても例えば数十以上の高誘電率εの基板材料を得ることができ、また誘電正接等の電気的特性や前記の機械的特性にも優れた高誘電率基板材料を、比較的簡単な製造方法によって得られるようにすることにある。
【0004】
【課題を解決するための手段】
前記解決しようとする課題は、請求項1に記載されるように高誘電率粉体が添加された融体状態のポリマー組成物を、電界配向処理した後、固体化させる高誘電率基板材料とすることによって、解決される。
【0005】
【発明の実施の形態】
以下に本発明を詳細に説明する。請求項1に記載される発明は、高誘電率粉体が添加された融体状態のポリマー組成物を、電界配向処理した後、固体化させる高誘電率基板材料に関するもので、数十以上の高誘電率εのものであって誘電正接tanδや機械的特性に優れた基板材料を、従来のように前記高誘電率粉末を大量に添加せずに、しかも比較的簡単な方法によって実現できるものである。
【0006】
まずここで使用される前記ポリマーについて述べると、熱可塑性ポリマー、熱硬化性ポリマーのいずれも使用することができる。具体的には、ポリイミド(PI)、エポキシ樹脂、ポリフェニレンオキサイド(PPO)、ポリブチレンテレフタレート(PBT)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルフォン(PS)、ポリフェニレンエーテル(PPE)、ポリエチレンテレフタレート(PET)フェノール樹脂、フッ素樹脂等が使用される。(そして)これらのポリマーは、通常加熱・加温によって融体化させるが、溶剤等によってポリマー溶液として融体化されたものでも良い。その場合の溶剤としては、用いるポリマーによって好ましいものを選択すれば良い。いずれにしてもこのポリマーは、融体状態例えば、熱硬化性樹脂においては未硬化状態、熱可塑性樹脂では溶融ポリマーやポリマー溶液等の状態において、高誘電率粉末が添加される必要がある。
【0007】
そして前記高誘電率粉末としては、チタン酸バリウム(BaTiO)、酸化チタン(TiO)、シリコンカーバイド(SiC)、カーボンブラック、チタン−バリウム−ネオジウム系複合酸化物、鉛−カルシウム系複合酸化物、二酸化チタン系セラミックス、チタン酸鉛系セラミックス、チタン酸マグネシウム系セラミックス、チタン酸ストロンチウム系セラミックス、チタン酸ビスマス系セラミックス、ジルコン酸鉛系セラミックス等が使用可能であるが、チタン酸バリウムが好ましい。そしてこの高誘電率粉末はどのような形状のものでもかまわないが、繊維状、扁平状、ウイスカー状等のように長短の径差を有するものが好ましい。これは、前記高誘電率粉末の長径方向が基板材料の厚さ方向に配向できれば、前記高誘電率粉末の並列成分が多くなり、誘電率εを顕著に増大させることができるためである。
【0008】
つぎに、前記高誘電率粉末の充填率(体積分率v)と合成誘電率εの関係を、図1によって説明すると、前記ポリマーに添加する高誘電率粉末が例えば完全な球形であるとすると、そのポリマー組成物の合成誘電率εは、経験的に式1で表わすことができ、図1の直線Aで示されることになる。しかし現実には、前記高誘電率粉末は多少の長短の径差があるので、これを充填したポリマー組成物をシート状(基板状)に成形すると、長径方向が前記シートの面内に配向した状態になり、この場合の合成誘電率εは、前記高誘電率粉末の直列成分が多くなり図1のBで示される下側に凸状の曲線となって、高誘電率化には不利となる。これに対して、高誘電率粉末の長径方向を前記シート(基板)の厚さ方向に配向できれば、前記高誘電率粉末の並列成分が多くなることにより、図1のCで示す上側に凸状の曲線となり、合成誘電率εを増大させることができることになる。よって、このような上側に凸状の曲線(図1のC)に乗るように高誘電率粉末を配向させることができれば、同じ添加量であっても、より高誘電率εの基板材料を得ることができるようになる。このためにも前記高誘電率粉末を、適度なアスペクト比を有するものとすることは好ましいことである。なお、図1のε軸は、対数目盛りである。
【0009】
〔式1〕 logε=vlogε+vlogε
εは比誘電率
添字1はポリマー、添字2は充填剤を意味する。
【0010】
前述のように高誘電率粉末を添加した融体状態のポリマー組成物は、混合、攪拌等により均一なポリマー組成物とした後、金属容器等に流し込み必要な厚さ等を調整して成形する。当然にこの間前記融体状態を維持するように、加熱・加温等の手段が講じられる。ついで、前記融体状態のポリマー組成物の液面に上部電極が、前記容器低部には下部電極が配置され、この間で電界配向処理が施される。このような電界配向処理を行うことによって、前記高誘電率粉末は、前記ポリマー組成物からなる基板材料の厚さ方向にその長軸方向が配向されることになる。このように基板の厚さ方向にその長軸方向が電界配向された、高誘電率粉末が充填された高誘電率基板は、同量の高誘電率粉末を単に分散させたものと比較して、誘電率(ε)を数倍以上向上させることができる。なお前記の容器は、前記金属製の容器の他にプラスチック製やセラミックス製等の耐熱性、耐溶剤性を有するものを用いることができる。また前記電界配向の条件は、前記ポリマー組成物の粘度も大きく影響するので、好ましい粘度に調整するのが良い。さらにはポリマーの種類、添加される高誘電率粉末の種類や添加量等も適宜選択される。そしてまた印加電圧は、通常1〜10kV/mmで行われる。
【0011】
このような電界配向処理が終了した前記ポリマー組成物からなる基板材料は、ついで熱硬化性樹脂は加熱硬化され、熱可塑性樹脂は冷却・固化等の手段によって硬化(固化)処理され、目的とする形状の高誘電率基板材料に成形される。なお、溶液状態のポリマー組成物を使用する場合には、電界配向処理を行った後に溶剤を除去してから固化させれば良い。このようにして得られた高誘電率の基板材料は、プリント配線板やコンデンサ材料として使用できる。
【0012】
以下に本発明におけるより好ましい形態について、簡単に説明する。前述した融体状態のポリマーに高誘電率粉末を添加したポリマー組成物を、電界配向処理を行うに当り、前記融体状態のポリマー組成物の粘度を、用いるポリマー組成物等によって最適な粘度に調整することは好ましいことである。また前記高誘電率粉末の大きさを、例えばアスペクト比で1.1〜3.0程度となるような粒径の高誘電率粉末とすることによって、前述の電界配向処理によって好ましい配向状態とすることができる。このようにアスペクト比が1.1のように小さなものであっても、図1のεの変化は対数的なので、誘電率εを大きくできることになる。さらに前記高誘電率粉末の添加量についても、例えばチタン酸バリウムでは前記ポリマー100重量部に対して、50〜500重量部添加されたものは、この種の高誘電率基板材料とした時に最も有用な基板材料として利用できる。すなわち、前記高誘電率粉末が50〜500重量部とすることによって、10〜100の高誘電率基板材料とすることができる。このような基板材料は、誘電正接等の電気的特性のみならず引張り強度や伸び、曲げ、脆化特性のような機械的特性にも優れるので、プリント配線板やコンデンサ等として用いる場合に特に好ましいものとなる。
【0013】
さらに前記電界配向処理の印加電圧も重要なファクターであるが、これは前記ポリマーの種類並びに前記ポリマー組成物の粘度等に影響されるが、通常1〜10kV/mmであり、印加時間は数分以上行われる。またこの電流の種類は、交流でも直流でも使用可能である。さらに電界配向処理の方法については、通常前記融体状態のポリマー組成物上に金属や半導電性プラスチックからなる上部電極を配置し、同様の下部電極との間で電界配向処理が行われる。
【0014】
以上のように本発明は、融体状態のポリマーに高誘電率粉末を添加し、このポリマー組成物に電界配向処理を行い、前記高誘電率粉末の長経方向を基板材料の厚さ方向に配向させた後、固体化処理を行うことにより高誘電率基板材料とするので、前記ポリマー組成物中に添加する高誘電率粉末の添加量を、従来方法と同程度としても高誘電率εの基板材料を得ることが可能となり、また前記高誘電率粉末を大量に添加する必要がないので、誘電正接等の電気的特性が良好であり、また機械的特性も引張り強度、伸びや曲げ特性等の優れた高誘電率の基板材料を提供できることになる。しかもこの製法は比較的簡単なものであるので、製造によるコスト増の問題も余りない。
【0015】
【実施例】
以下に実験例を示して、本発明の効果を述べる。表1に記載される各種試料実験例1〜10について、1MHz、室温にて誘電率(ε)並びに誘電正接(tanδ)を測定した。また機械的特性の目安として引張り強度(MPa)についても測定した。また前記試料は、高温硬化型エポキシ樹脂の主剤(ビスフェノールA型エピコート823)100部と酸無水物系の硬化剤(ヘキサヒドロ無水フタル酸)を80部の割合で室温混合した、融体状態の樹脂混合物100重量部に、チタン酸バリウム粉末(εが約16500、平均粒径が1〜2μm)を、それぞれ200重量部(実験例1、2)、300重量部(実験例3、4)、400重量部(実験例5、6)、600重量部(実験例7、8)、800重量部(実験例9、10)添加して混合し、融体状態の樹脂組成物とした。これを金属容器に1mm厚さになるように流し込み、この樹脂組成物の表面に上部電極を取り付け、金属容器の下部電極との間で50Hz、10kVの電圧を10分間印加して、配向処理をおこなった。その後120℃で加熱硬化させて、1mm厚の高誘電率シート材料を得た。また比較のために、前記電界配向処理を行わずに同様の温度で加熱硬化のみ行って1mm厚さのシートを作製した。結果を表1に記載した。
【0016】
【表1】

Figure 2004002497
【0017】
結果は表1から明らかなとおり、実験例2、4、6、8および10で示される本発明の高誘電率基板材料は、目的とする高誘電率のものであった。すなわち、本発明のような電界配向処理を行うことによって、高誘電率粉末が同じ添加量であっても、その誘電率(ε)は数倍以上の差があることがわかる。しかも誘電正接(tanδ)については、殆ど差がなく電気的特性上の問題もないものである。本発明で目標とするεが数十以上の値のものは、高誘電率粉末が200重量部程度の配合量で得ることができることがわかる。またその配合量は、従来の混合するだけの方法と比較すると、500〜600重量部添加するものに匹敵する。また800重量部を配合した本発明の実験例10は、εが350と極めて大きな誘電率にもかかわらず、機械的特性の目安とした引張り強度が、250MPa程度を維持しており、十分に実用的なものである。
【0018】
【発明の効果】
以上述べたように本発明は、高誘電率粉体が添加された融体状態のポリマー組成物を、電界配向処理した後、固体化させた高誘電率基板材料に関するものであるから、少ない高誘電率粉末の添加で高い誘電率(ε)の基板材料を得ることができる。またこの基板材料は前記のように、高誘電率粉末の添加量が比較的少なくてすむので、特に基板材料の機械的特性である引張り強度、伸びや曲げ特性、脆化特性を低下させることがない。また、誘電率εが大きな割には誘電正接tanδを小さく抑えることができ、電気的特性も良好なものである。このような基板材料は、プリント配線板やコンデンサー材料等として、十分有用なものである。またその製造方法は、大掛かりな装置等を必要とせず、比較的簡単に製造できるのでコスト増に繋がることもない。
【0019】
さらに前記融体状態のポリマー組成物の粘度を好ましい範囲とし、さらに前記高誘電率粉末の大きさを、アスペクト比で1.1〜3.0程度になるように調整し、その添加量を前記ポリマー100重量部に対して、50〜500重量部とし、また前記電界配向処理を、電圧1〜10kV/mmで、数分以上行うことによって、より少ない高誘電率粉末の添加で高い誘電率(ε)と電気的特性並びに機械的特性に優れた高誘電率の基板材料を得ることができる。またこのように品質の良い高誘電率基板材料を、大掛かりな装置等を必要とせず比較的簡単に製造できるようにもなる。そしてこのような高誘電率基板材料は、プリント配線板やコンデンサー材料等として十分有用なものである。
【図面の簡単な説明】
【図1】図1は、高誘電率粉末の充填率(体積分率)と合成誘電率(ε)の関係を示すグラフである。
A  高誘電率粉末が、完全な球形の場合を示す直線。
B  高誘電率粉末の長経方向が、基板材料の面内方向に配向している場合を示す曲線。
C  高誘電率粉末の長経方向が、基板材料の厚さ方向に配向している場合を示す曲線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high dielectric constant substrate material used as a printed wiring board or a capacitor material (or the like), and by subjecting a polymer composition in a molten state to which a high dielectric constant powder is added to electric field orientation treatment in this state. , A substrate material having a high dielectric constant can be obtained.
[0002]
[Prior art]
As one of such techniques, for example, in a printed wiring board, a substrate having a high dielectric constant is required due to a demand for a composite circuit in which the substrate itself has a capacitor effect. However, since the dielectric constant ε of a material used for a printed wiring board, such as polyimide and epoxy resin, is at most about 3 to 4, if the dielectric constant ε of several tens or more is to be used, the resin material has a high dielectric constant. It is necessary to add a large amount of ceramic powder having a dielectric constant. As a specific substrate, a prepreg obtained by adding a ceramic powder having a high dielectric constant to a phenol resin, an epoxy resin, a fluororesin, a polyphenylene ether resin, or the like, impregnating and drying a glass cloth or a glass nonwoven fabric, and laminating and molding. It is known that the substrate has a high dielectric constant. However, in order to obtain a substrate having a high dielectric constant by such a method, it is necessary to add a large amount to the resin, for example, 50% in volume fraction of the resin. This amounts to 500 to 1000 parts by weight in terms of 100 parts by weight of the resin. When such a large amount of the high dielectric constant powder is added, problems occur in the mechanical and electrical characteristics of the obtained substrate. That is, there are problems such as tensile strength, elongation characteristics, bending characteristics, embrittlement characteristics, and the like, and further, problems of mechanical characteristics such as reduction in drillability and cutting workability of the substrate and large dimensional changes.
[0003]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is a high-dielectric substrate material used as a printed wiring board, a capacitor material, or the like, and a high dielectric constant of several tens or more without adding a large amount of the high-dielectric powder. A substrate material having a dielectric constant of ε can be obtained, and a high dielectric constant substrate material having excellent electrical characteristics such as a dielectric loss tangent and the above-mentioned mechanical characteristics can be obtained by a relatively simple manufacturing method. It is in.
[0004]
[Means for Solving the Problems]
The problem to be solved is to provide a high-permittivity substrate material to be solidified after subjecting a polymer composition in a molten state to which a high-permittivity powder is added as described in claim 1 to electric field orientation treatment. It is solved by doing.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The invention described in claim 1 relates to a high dielectric constant substrate material which solidifies after a polymer composition in a molten state to which a high dielectric constant powder is added is subjected to electric field alignment treatment and then solidified. A substrate material having a high dielectric constant ε and excellent in dielectric loss tangent tan δ and mechanical properties can be realized by a relatively simple method without adding a large amount of the high dielectric constant powder as in the conventional case. It is.
[0006]
First, regarding the polymer used here, any of a thermoplastic polymer and a thermosetting polymer can be used. Specifically, polyimide (PI), epoxy resin, polyphenylene oxide (PPO), polybutylene terephthalate (PBT), polyether sulfone (PES), polyphenylene sulfide (PPS), polysulfone (PS), polyphenylene ether (PPE) , Polyethylene terephthalate (PET) phenol resin, fluororesin and the like are used. These polymers are usually melted by heating and heating, but may be melted as a polymer solution by a solvent or the like. In this case, a preferable solvent may be selected depending on the polymer used. In any case, it is necessary to add the high dielectric constant powder to the polymer in a molten state, for example, in an uncured state in the case of a thermosetting resin, and in a state of a molten polymer or a polymer solution in the case of a thermoplastic resin.
[0007]
Examples of the high dielectric constant powder include barium titanate (BaTiO 3 ), titanium oxide (TiO 2 ), silicon carbide (SiC), carbon black, titanium-barium-neodymium-based composite oxide, and lead-calcium-based composite oxide. Although titanium dioxide-based ceramics, lead titanate-based ceramics, magnesium titanate-based ceramics, strontium titanate-based ceramics, bismuth titanate-based ceramics, and lead zirconate-based ceramics can be used, barium titanate is preferred. The high dielectric constant powder may have any shape, but is preferably a powder having a long and short diameter difference such as a fibrous shape, a flat shape, and a whisker shape. This is because if the major axis direction of the high dielectric constant powder can be oriented in the thickness direction of the substrate material, the parallel components of the high dielectric constant powder increase, and the dielectric constant ε can be significantly increased.
[0008]
Next, the relationship between the filling rate (volume fraction v) of the high dielectric constant powder and the composite dielectric constant ε will be described with reference to FIG. 1. Assuming that the high dielectric constant powder to be added to the polymer has, for example, a perfect spherical shape. The synthetic permittivity ε of the polymer composition can be empirically represented by Equation 1 and is represented by a straight line A in FIG. However, in reality, the high dielectric constant powder has a slight difference in length between short and long, so when a polymer composition filled with the powder is molded into a sheet (substrate), the major axis direction is oriented in the plane of the sheet. In this case, the composite dielectric constant ε in this case is such that the series component of the high dielectric constant powder increases and becomes a downwardly convex curve shown in FIG. 1B, which is disadvantageous for increasing the dielectric constant. Become. On the other hand, if the major axis direction of the high dielectric constant powder can be oriented in the thickness direction of the sheet (substrate), the parallel component of the high dielectric constant powder increases, so that the upwardly convex shape shown in FIG. And the composite dielectric constant ε can be increased. Therefore, if the high dielectric constant powder can be oriented so as to follow such an upwardly convex curve (C in FIG. 1), a substrate material having a higher dielectric constant ε can be obtained even with the same addition amount. Will be able to do it. For this reason, it is preferable that the high dielectric constant powder has an appropriate aspect ratio. The ε-axis in FIG. 1 is a logarithmic scale.
[0009]
[Equation 1] log ε = v 1 log ε 1 + v 2 log ε 2
s is the relative dielectric constant, suffix 1 means polymer, and suffix 2 means filler.
[0010]
As described above, the polymer composition in a molten state to which the high dielectric constant powder is added is made into a uniform polymer composition by mixing, stirring, and the like, and then poured into a metal container or the like, and formed by adjusting the necessary thickness and the like. . Naturally, measures such as heating and heating are taken so as to maintain the molten state during this time. Next, an upper electrode is disposed on the liquid surface of the polymer composition in the molten state, and a lower electrode is disposed on the lower part of the container. By performing such an electric field alignment treatment, the long axis direction of the high dielectric constant powder is oriented in the thickness direction of the substrate material made of the polymer composition. A high-permittivity substrate filled with high-permittivity powder in which the major axis direction is oriented in the electric field in the thickness direction of the substrate in this manner is compared with a substrate in which the same amount of high-permittivity powder is simply dispersed. , The dielectric constant (ε) can be improved several times or more. In addition, as the above-mentioned container, in addition to the above-mentioned metal container, a container made of plastic, ceramics or the like having heat resistance and solvent resistance can be used. The viscosity of the polymer composition greatly influences the condition of the electric field orientation, so that the viscosity is preferably adjusted to a preferable viscosity. Furthermore, the type of polymer, the type and amount of high dielectric constant powder to be added, and the like are also appropriately selected. The applied voltage is usually 1 to 10 kV / mm.
[0011]
The substrate material made of the polymer composition after the completion of the electric field alignment treatment is then cured by heating the thermosetting resin, and the thermoplastic resin is cured (solidified) by means such as cooling and solidification. It is shaped into a high dielectric constant substrate material. When a polymer composition in a solution state is used, the solvent may be removed and solidified after performing the electric field alignment treatment. The thus obtained high dielectric constant substrate material can be used as a printed wiring board or capacitor material.
[0012]
Hereinafter, more preferred embodiments of the present invention will be briefly described. In performing the electric field alignment treatment on the polymer composition obtained by adding the high dielectric constant powder to the polymer in the melt state described above, the viscosity of the polymer composition in the melt state is adjusted to an optimum viscosity depending on the polymer composition used. Adjusting is preferred. Further, by setting the size of the high dielectric constant powder to, for example, a high dielectric constant powder having a particle size such that the aspect ratio becomes about 1.1 to 3.0, a preferable alignment state is obtained by the above-described electric field alignment treatment. be able to. Thus, even if the aspect ratio is as small as 1.1, the change in ε in FIG. 1 is logarithmic, so that the dielectric constant ε can be increased. Regarding the amount of the high dielectric constant powder, for example, in the case of barium titanate, the addition of 50 to 500 parts by weight based on 100 parts by weight of the polymer is most useful when this kind of high dielectric substrate material is used. It can be used as a suitable substrate material. That is, by setting the high dielectric constant powder to 50 to 500 parts by weight, a high dielectric constant substrate material of 10 to 100 can be obtained. Such a substrate material is excellent in mechanical properties such as tensile strength, elongation, bending, and embrittlement as well as electrical properties such as a dielectric loss tangent, and is particularly preferable when used as a printed wiring board or a capacitor. It will be.
[0013]
Further, the applied voltage of the electric field alignment treatment is also an important factor, which is affected by the type of the polymer and the viscosity of the polymer composition, but is usually 1 to 10 kV / mm, and the application time is several minutes. The above is performed. This type of current can be used in either AC or DC. Further, with respect to the method of the electric field alignment treatment, an upper electrode made of a metal or a semiconductive plastic is usually disposed on the above-mentioned polymer composition in a molten state, and the electric field alignment treatment is performed with the same lower electrode.
[0014]
As described above, the present invention adds a high dielectric constant powder to a polymer in a molten state, performs an electric field alignment treatment on the polymer composition, and sets a long meridian direction of the high dielectric constant powder in a thickness direction of a substrate material. After the orientation, the solidification treatment is performed to obtain a high dielectric constant substrate material, so that the amount of the high dielectric constant powder to be added to the polymer composition is the same as that of the conventional method, so that the high dielectric constant ε can be obtained. It is possible to obtain a substrate material, and it is not necessary to add a large amount of the high dielectric constant powder, so that electrical properties such as dielectric loss tangent are good, and mechanical properties are also tensile strength, elongation and bending properties. And a high dielectric constant substrate material can be provided. Moreover, since this manufacturing method is relatively simple, there is not much problem of cost increase due to manufacturing.
[0015]
【Example】
The effects of the present invention will be described below with reference to experimental examples. The dielectric constant (ε) and the dielectric loss tangent (tan δ) were measured at 1 MHz and room temperature for various sample experiments 1 to 10 described in Table 1. The tensile strength (MPa) was also measured as a measure of the mechanical properties. The sample was prepared by mixing 100 parts of a main component of a high-temperature curing type epoxy resin (bisphenol A type epicoat 823) and 80 parts of an acid anhydride-based curing agent (hexahydrophthalic anhydride) at room temperature. To 100 parts by weight of the mixture, 200 parts by weight (Experimental Examples 1 and 2), 300 parts by weight (Experimental Examples 3 and 4), and 400 parts by weight of barium titanate powder (ε is about 16500 and the average particle size is 1 to 2 μm) were added. Parts by weight (Experimental Examples 5 and 6), 600 parts by weight (Experimental Examples 7 and 8), and 800 parts by weight (Experimental Examples 9 and 10) were added and mixed to obtain a resin composition in a molten state. This was poured into a metal container so as to have a thickness of 1 mm, an upper electrode was attached to the surface of this resin composition, and a voltage of 50 Hz and 10 kV was applied to the lower electrode of the metal container for 10 minutes to perform alignment treatment. I did it. Thereafter, the composition was cured by heating at 120 ° C. to obtain a high dielectric constant sheet material having a thickness of 1 mm. Further, for comparison, a sheet having a thickness of 1 mm was prepared by performing only heat curing at the same temperature without performing the electric field alignment treatment. The results are shown in Table 1.
[0016]
[Table 1]
Figure 2004002497
[0017]
As is clear from Table 1, the high dielectric constant substrate materials of the present invention shown in Experimental Examples 2, 4, 6, 8 and 10 had the desired high dielectric constant. In other words, it can be seen that by performing the electric field alignment treatment as in the present invention, even if the high dielectric constant powder is added in the same amount, the dielectric constant (ε) has a difference of several times or more. Moreover, there is almost no difference in the dielectric loss tangent (tan δ), and there is no problem in electrical characteristics. It can be seen that when the target ε of the present invention is a value of several tens or more, the high dielectric constant powder can be obtained in a blending amount of about 200 parts by weight. In addition, the compounding amount is comparable to that in which 500 to 600 parts by weight is added, as compared with the conventional mixing method. Further, in Experimental Example 10 of the present invention in which 800 parts by weight were blended, the tensile strength, which was a measure of mechanical properties, was maintained at about 250 MPa, despite the fact that ε was as large as 350 and the dielectric constant was very high, and thus it was sufficiently practical. It is typical.
[0018]
【The invention's effect】
As described above, the present invention relates to a high-permittivity substrate material obtained by subjecting a polymer composition in a molten state to which a high-permittivity powder is added to an electric field orientation treatment and then solidifying. By adding the dielectric constant powder, a substrate material having a high dielectric constant (ε) can be obtained. Further, as described above, since the amount of the high dielectric constant powder to be added is relatively small as described above, the mechanical properties of the substrate material, such as tensile strength, elongation, bending characteristics, and embrittlement characteristics, can be reduced. Absent. In addition, the dielectric loss tangent tan δ can be kept small for a large dielectric constant ε, and the electrical characteristics are also good. Such a substrate material is sufficiently useful as a printed wiring board, a capacitor material and the like. In addition, the manufacturing method does not require a large-scale device or the like and can be manufactured relatively easily, so that it does not lead to an increase in cost.
[0019]
Further, the viscosity of the polymer composition in the melt state is set to a preferable range, and the size of the high dielectric constant powder is adjusted so as to have an aspect ratio of about 1.1 to 3.0, and the addition amount thereof is set to the above range. 50 to 500 parts by weight with respect to 100 parts by weight of the polymer, and the electric field alignment treatment is performed at a voltage of 1 to 10 kV / mm for several minutes or more, so that a high dielectric constant ( ε), and a high dielectric constant substrate material excellent in electrical characteristics and mechanical characteristics can be obtained. Further, such a high-quality high-dielectric-constant substrate material can be relatively easily manufactured without requiring a large-scale apparatus or the like. Such a high dielectric constant substrate material is sufficiently useful as a printed wiring board, a capacitor material and the like.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a filling ratio (volume fraction) of a high dielectric constant powder and a composite dielectric constant (ε).
A Straight line indicating that the high dielectric constant powder is perfectly spherical.
B Curve indicating the case where the long-period direction of the high dielectric constant powder is oriented in the in-plane direction of the substrate material.
C Curve showing the case where the long-period direction of the high dielectric constant powder is oriented in the thickness direction of the substrate material.

Claims (1)

高誘電率粉体が添加された融体状態のポリマー組成物を、電界配向処理した後、固体化させることを特徴とする高誘電率基板材料。A high-permittivity substrate material characterized by solidifying a polymer composition in a molten state to which a high-permittivity powder has been added, after performing an electric field alignment treatment.
JP2002125961A 2002-04-03 2002-04-26 High dielectric constant substrate material Pending JP2004002497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125961A JP2004002497A (en) 2002-04-03 2002-04-26 High dielectric constant substrate material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002101198 2002-04-03
JP2002125961A JP2004002497A (en) 2002-04-03 2002-04-26 High dielectric constant substrate material

Publications (1)

Publication Number Publication Date
JP2004002497A true JP2004002497A (en) 2004-01-08

Family

ID=30446600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125961A Pending JP2004002497A (en) 2002-04-03 2002-04-26 High dielectric constant substrate material

Country Status (1)

Country Link
JP (1) JP2004002497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274178A (en) * 2007-05-07 2008-11-13 Tatsuhiro Takahashi Method for manufacturing connecting film containing oriented carbon fiber and connecting film containing oriented carbon fiber manufactured by the method
JP2009173915A (en) * 2007-12-28 2009-08-06 Nikon Corp Particle-containing resin and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274178A (en) * 2007-05-07 2008-11-13 Tatsuhiro Takahashi Method for manufacturing connecting film containing oriented carbon fiber and connecting film containing oriented carbon fiber manufactured by the method
JP2009173915A (en) * 2007-12-28 2009-08-06 Nikon Corp Particle-containing resin and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101901473B1 (en) Insulation formulations
KR102359568B1 (en) Thermal Conductive Silicone Rubber Composite Sheet
Zhou et al. Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites
JP2014518921A (en) Insulation compound
CN106313840B (en) Three axis are made to keep the preparation method of the microwave copper-clad plate of low thermal coefficient of expansion at the same time
JP2009013227A (en) Resin composition for electrical insulating material and its manufacturing method
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
KR20020090876A (en) Thermosetting composite dielectric film and method of manufacturing same
CN110669338B (en) Porous molded article and method for producing same
US7695806B2 (en) Moulding composition for producing bipolar plates
JP2010123389A (en) Insulated wire
Jiang et al. Low dielectric loss BST/PTFE composites for microwave applications
JP3652460B2 (en) Resin composition
Saidina et al. Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods
Liu et al. Study on properties of ultra-low dielectric loss mPPO/MTCLT composites prepared by injection molding
JP2004002497A (en) High dielectric constant substrate material
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
Bai Dielectric properties of BaTiO 3/epoxy composites by lamination process for embedded capacitor application
JP2016089169A (en) Composite resin composition, molding, thermally conductive material, and thermally conductive member
TWI328597B (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3954130B2 (en) Low dielectric constant glass powder, printed wiring board using the same, and resin mixed material
Liu et al. Low dielectric loss LNT/PEEK composites with high mechanical strength and dielectric thermal stability
Huang et al. A novel thermosetting composite with excellent high-frequency dielectric properties and ultra-high-temperature resistance
JPH1171503A (en) Epoxy resin composition and insulation treatment of electric instrument using the same
JP2020066723A (en) Dielectric composition