JP2004001147A - Method for manufacturing microcrystal thin film structural body - Google Patents

Method for manufacturing microcrystal thin film structural body Download PDF

Info

Publication number
JP2004001147A
JP2004001147A JP2002160756A JP2002160756A JP2004001147A JP 2004001147 A JP2004001147 A JP 2004001147A JP 2002160756 A JP2002160756 A JP 2002160756A JP 2002160756 A JP2002160756 A JP 2002160756A JP 2004001147 A JP2004001147 A JP 2004001147A
Authority
JP
Japan
Prior art keywords
thin film
amorphous
film structure
substrate
microcrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002160756A
Other languages
Japanese (ja)
Inventor
Akira Shimokawabe
下河邉 明
Seiichi Hata
秦 誠一
Junpei Sakurai
桜井 淳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2002160756A priority Critical patent/JP2004001147A/en
Publication of JP2004001147A publication Critical patent/JP2004001147A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a planar or three-dimensional thin film structural body having a microcrystal material or a material having amorphous and microcrystal parts gradiently existing. <P>SOLUTION: An amorphous thin film is formed by a composition having a supercooled liquid region and a film forming condition to form an amorphous thin film structural body. The amorphous thin film structural body is maintained in a prescribed structure and heat treatment to generate microcrystal is performed to manufacture the microcrystal thin film structural body. By using a heating and holding method to generate thermal gradient, the microcrystal thin film structural body having specific solute part and the microcrystal part gradiently existing is manufactured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜構造体の製造方法に関し、さらに詳しくはマイクロアクチュエータなどのマイクロマシン、探針、触針、マイクロセンサなどの各種センサ、および走査型フローブ顕微鏡用フローブなどの各種プローブの構造部品などとして使用することのできる、一部もしくは全体が微結晶構造である薄膜構造体の製造方法に関する。
【0002】
【従来の技術】
マイクロマシン、各種センサ、各種プローブなどにおいては、基板面外へ作用する力を発生させ、また基板外の各種近接効果や流体の流動、他の電子回路の電圧などを検出する。このため、半導体製造に用いられる薄膜成膜技術および微細加工技術を応用したマイクロマシーニングによって、さまざまな薄膜からなる、はりなどの微小な平面構造体や、平面構造体を立体的に湾曲・変形させた微小な立体構造の薄膜構造体が用いられるようになった。
【0003】
このような薄膜構造体の製造方法として、本発明者らは、過冷却液体域を有する非晶質材料の性質に着目し、過冷却液体域を有する非晶質材料からなる薄膜を所定の基板上に形成し、この薄膜加工体を過冷却液体域から室温まで冷却し、基板の少なくとも一部を除去する平面構造の薄膜構造体の造方法(特許第3125048号)、および過冷却液体域を有する非晶質材料からなる薄膜構造体を過冷却液体域に加熱して軟化させ、この薄膜構造体に外力を加えて所定の形状に変形させてから室温に冷却する立体構造の薄膜構造体の製造方法(特許第3099066号)を開発した。
【0004】
ところで従来の数十から数百ミクロンオーダの結晶粒を有する多結晶材料に比べ、高い靭性などの優れた機械的性質を有することや、非晶質材料よりも電気伝導性が高くできるなど、非晶質材料よりもさらに優れた多くの性質が得られる材料として、数十ミクロンからナノメートルオーダーの大きさの微結晶を持つ微結晶材料が知られるようになった。
【0005】
しかしながら、微結晶材料を用いたカンチレバーなどの平面的な薄膜構造体を製造する場合には、成膜時に微結晶構造となる基板温度や成膜速度などの成膜条件と、薄膜構造体としたときに薄膜内部の応力が変形や破壊を生じない成膜条件とを必要とするが、これらを同時に満たすことができないことから、微結晶構造を持ち平面度の高い薄膜構造体を製造することは困難であり、曲りはりなどの立体的な微結晶構造体を精度よく製造することは、さらに困難であった。また成膜時に微結晶を形成する方法では、薄膜全体が微結晶となるため、薄膜構造体に非結晶部と微結晶部が傾斜的に存在するような構造体を製造することは極めて困難であるという問題があった。
【0006】
【発明の解決しようとする課題】
本発明の目的は、従来技術におけるこうした問題点を解決し、微結晶材料または非晶質と微結晶部が傾斜的に存在する材料を有する、平面的または立体的薄膜構造体を製造する製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、微結晶を持つ薄膜構造体の製造方法について研究を重ねた結果、まず非晶質薄膜により薄膜構造体を形成し、次にこの非晶質薄膜の構造体をガラス転移点以上、結晶化開始温度以下の温度で所定時間熱処理を行い、非晶質相に微結晶を生成させることにより、微結晶薄膜構造体を得ることができることを見出し、さらに研究を進めた結果、本発明に到達した。
【0008】
本発明における第1の微結晶薄膜構造体の製造方法は、基板上に非晶質薄膜を成膜する工程と、前記非晶質薄膜を所定の形状にパターニングする工程と、前記パターンニングされた非晶質薄膜をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理し前記非晶質薄膜に微結晶を生成させる工程と、前記基板の少なくとも一部を除去し薄膜構造体を形成する工程とを備え、平板状の微結晶薄膜構造体を製造することを特徴とする。
【0009】
また本発明における第2の微結晶薄膜構造体の製造方法は、基板上に非晶質薄膜を成膜する工程と、前記非晶質薄膜を所定の形状にパターニングする工程と、前記非晶質薄膜の少なくとも一部を冷却し残りの部分をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理して微結晶を生成させる工程と、前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程とを備え、平板状で微結晶部分と非晶質部分とが傾斜的に存在する微結晶薄膜構造体を製造することを特徴とする。
【0010】
また本発明における第3の微結晶薄膜構造体の製造方法は、基板上に非晶質薄膜を成膜する工程と、前記非晶質薄膜を所定の形状にパターニングする工程と、前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と、前記薄膜構造体の少なくとも一部に外力を印加し前記非晶質薄膜の一部に変形を生じさせる工程と、前記薄膜構造体の少なくとも一部をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理し微結晶を生成させる工程とを備え、立体構造の微結晶薄膜構造体を製造することを特徴とする。
【0011】
さらに本発明における第4の微結晶薄膜構造体の製造方法は、基板上に非晶質薄膜を成膜する工程と、前記非晶質薄膜を所定の形状にパターニングする工程と、前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と、前記薄膜構造体の少なくとも一部に外力を印加し前記非晶質薄膜の一部に変形を生じさせる工程と、前記非晶質薄膜の少なくとも一部を冷却し残りの部分をガラス転移点以上結晶化開始温度以下の温度で所定時間加熱処理し微結晶を生成させる工程とを備え、立体構造で微結晶部分と非晶質部分とが傾斜的に存在する微結晶薄膜構造体を製造することを特徴とする。
【0012】
本発明において、ガラス転移点Tgは、非晶質薄膜を温度上昇させたときに、固相から高粘度の過冷却液体に転移する温度である。また結晶化開始温度Txはこの過冷却液体を温度上昇させたときに、結晶化が観測され始める温度である。ところで過冷却液体からの結晶化が観測される温度は、観測時の温度上昇速度に依存し、また測定手段にも依存する。本発明においては、結晶化開始温度を、示差走査熱量計(DSC)を用い、温度上昇速度を0.16℃/秒とし、この温度上昇速度で昇温した場合に、結晶化による発熱の開始がDSCによって検出される温度を結晶化開始温度Txと定義する。
【0013】
本発明において、製造する微結晶薄膜構造体における微結晶の大きさ、例えば粒子径は、着目する微結晶薄膜構造体の特性や微結晶薄膜構造体の用途に応じ、さまざまの大きさの選定が可能である。しかし結晶の大きさが大きすぎると通常の多結晶薄膜と同様になり、微結晶薄膜の性質を得ることができないし、結晶の大きさが小さすぎても結晶としての性質が失われるので微結晶薄膜の性質を得ることができない。したがって微結晶の粒子径としては、およそ2,000nm以下で1nm以上であることが好ましく、1,000nm以下で1nm以であることがより好ましく、100nm以下で1nm以上であることがさらに好ましい。
【0014】
本発明によれば、非晶質の状態で成膜することにより、微結晶薄膜を直接成膜する場合に比べて、基板温度など成膜条件を大幅に緩和することができる。特に過冷却液体域を有する非晶質合金は、低い臨界冷却速度を有し、特に基板冷却などを行わずに非晶質薄膜を成膜することができる。
【0015】
また本発明によれば、成膜後、過冷却液体域で熱処理し、微結晶化することで、薄膜の内部応力または弾性応力を緩和することができるので、安定性の優れた平面または立体的な薄膜構造体を製造することができる。
【発明の実施の形態】
本発明の微結晶薄膜構造体の製造方法において使用する基板は、微結晶薄膜構造体の用途によって適宜選択でき、例えば単結晶シリコンや、酸化膜または窒化膜を設けた単結晶シリコン、パイレックス(登録商標)ガラス、およびステンレス板などを用いることができる。
【0016】
また本発明の微結晶薄膜構造体の製造方法においては、基板上に非晶質薄膜を形成する形成方法として、高周波マグネトロンスパッタなどのスパッタリング、蒸着などの物理蒸着法や、CVD法などの化学蒸着法など、公知の方法を用いることができる。このような薄膜形成方法を用いて、過冷却液体域を有する非晶質材料の薄膜を基板上に形成する。ここで用いる非晶質材料は、過冷却液体域を有し、本発明の目的を達成できるものであれば、非晶質材料の種類は限定されず、各種非晶質金属合金、例えばZr−Cu−AlやPd−Cu−Siなどのほか、各種の非晶質体を用いることができる。
【0017】
本発明のナノ結晶薄膜構造体の製造方法においては、上記のようにして基板上に形成した薄膜を所定形状にパターンニングして製造する。前記パターンニング形成には、フッ酸や水酸化カリウム溶液を用いたウエットエッチングやRIE(反応性イオンエッチング)などのドライエッチングに代表される公知の微細加工技術を用いることができる。
【0018】
本発明のナノ結晶薄膜構造体の製造方法において、パターンニングされた非晶質薄膜は、加熱して過冷却液体域にて熱処理する。非品質薄膜はガラス転移温度を超えると1011〜1013Pa・sの過冷却液体状態となり、薄膜内部の応力が除去できる。また非晶質薄膜をこの過冷却液体状態の温度範囲に保つことにより、この過冷却液体状態の相から微結晶を生成することができる。
【0019】
図1は2種の非晶質薄膜について、DSCにより各温度の結晶化の開始時間を求めた時間温度変態線図である。微結晶を生成するためには、図1において線よりも右上の結晶化の領域に達するように熱処理を行えばよい。Txの近くでは結晶化が早く進むので熱処理時間は短くでき、他方Tgの近くでは結晶化が遅いので比較的に長時間の熱処理が必要となる。なお、こうした熱処理による結晶化は、電子顕微鏡観察によって微結晶粒子の生成を観察したり、電子線回折によって回折線を見出すなどの方法により確認することができる。
【0020】
良好な微結晶相を生成するためには、過冷却液体域の温度幅 Tx−Tgが10℃以上であることが望ましく、20℃以上であることがさらに望ましい。また比較的広い過冷却液体域を有することによって、薄膜の加熱工程が安定し、このため工程が簡易化できる。
【0021】
本発明の微結晶薄膜構造体の製造方法において、過熱処理に用いる加熱手段としては、赤外線加熱、レーザ加熱、高周波加熱などの公知の各加熱手段を用いることができる。この加熱処理では、薄膜構造体を全体的に加熱処理して構造体全体を微結晶化することができるほか、熱処理において薄膜構造体に温度差を与えることにより、微結晶の生成量が傾斜を持つ微結晶傾斜薄膜構造体とすることもできる。
【0022】
薄膜構造体の熱処理において薄膜構造体に温度差を与えるには、冷却材を薄膜構造体に接触させて、局部的に冷却を行う方法を用いることができる。例えば熱処理の際に、非晶質薄膜パターン上の所定の位置に冷却部材を接触させ、非晶質薄膜パターンまたは薄膜構造体に熱勾配を生じさせる。このような状態で熱処理を行うことにより、温度の高い部分がより結晶化し、冷却部剤を接触させた部分は、非晶質のままとなるなどして、熱勾配にしたがって非晶質部分と微結晶部分が傾斜的に存在する非晶質−微結晶材料による構造体が実現できる。薄膜構造を立体形状に変形させるために治具を使用する場合には、この冶具を冷却部材として用いることができる。
【0023】
本発明の微結晶薄膜構造体の製造方法においては、薄膜構造体を加熱して過冷却液体域にて熱処理する際に、薄膜構造体に応力を加えて変形させ、変形によって生じた内部応力をこの熱処理によって除いた後、これを冷却することにより、変形を保った立体構造を得ることができる。薄膜構造体を変形させて立体構造を得るための応力の印加方法としては、治具を用いるなどして機械的に応力を印加する方法、電極層などを用い薄膜構造体との間に静電的な応力を印加する方法、磁性体を用いて薄膜構造体との間に磁気的な応力を印加する方法や、また目的によって薄膜構造体を熱膨張率の異なる層状にし、層間の熱膨張の差によるバイメタル効果により変形させる方法など、特許第3099066号に記載の各方法を用いることができる。
【0024】
過冷却液体域においてこの薄膜を加熱保持する時間は、図1に示したように、加熱温度によって大きく異なるほか、薄膜を構成する材料の種類や薄膜の厚さ、薄膜の形成条件などによっても異なるものとなる。一般にはこのような温度領域において10〜10秒程度保持する。これによって、薄膜加工体内の応力を十分に除去するとともに微結晶化することができ、本発明の目的を達成することができる。加熱処理の後は、薄膜を過冷却液体域から室温にまで冷却する。冷却手段としては、熱放射などによる自然冷却、冷却用ガス導入による冷却、冷却盤との接触による冷却などの手段を用いることができる。
【0025】
本発明の微結晶薄膜構造体の製造方法においては、基板の少なくとも一部の除去を行う。基板の少なくとも一部を除去する方法としては、前述したようなウエットエッチングあるいはドライエッチングなどに代表される公知の微細加工技術によって行うことができる。この基板の少なくとも一部の除去は、熱処理時の変形を防いで平面構造のナノ結晶構造体を得るために、熱処理の後に行うことができる。また、上記熱処理の前に基板の少なくとも一部の除去を行ない、熱処理時には構造体に応力を加えて変形させ所定の立体構造を得るようにすることもできる。
【0026】
本発明の微結晶薄膜構造体の製造においては、基板に過冷却液体域を有する非晶質材料からなる薄膜を形成する前に、特許第3125048号に記載されているように、所定の形状にパターニングされた犠牲層を形成しておくことができる。この場合には、犠牲層を覆うように非晶質薄膜を基板上に形成し、前記基板の少なくとも一部を除去する代わりに、この犠牲層を除去することによって、薄膜平面構造体を得ることができる。
【0027】
パターニングされた犠牲層の形成は、スピンコートなどによってレジストを基板の主面上に均一に塗布した後、Crからなるマスクを通して露光・現像することによって行うことができる。さらには、ポリシリコンなどをCVDなどの手段によって基板の主面上に均一に形成した後、レジストからなる保護膜を前記ポリシリコン膜上に形成し、ウエットエッチングすることによって形成することもできる。
【0028】
本発明の微結晶薄膜構造体を構成する前記薄膜加工体の厚さは特に限定されず、用途に応じ、過冷却液体域を有する範囲内においてあらゆる厚さに形成することができる。特に、薄膜平面加工体の厚さが1〜20μmの範囲内においては、上記のような過冷却液体域を有するとともに、各種センサや各種プローブなどに使用するのに好ましい強度を有する。したがって、薄膜平面加工体、さらには薄膜平面加工体に加工する以前の薄膜を1〜20μmに形成することにより、各種センサや各種プローブに対して好適な微結晶薄膜構造体を提供することができる。
【0029】
(実施例1)
図2に示したように、シリコン基板1上に、厚さ5μのPd基薄膜金属ガラス(Pd76CuSi17、添字は原子%)の非晶質薄膜2を次のような半導体プロセスによりパターンニングした。
【0030】
まず基板の主面上にポリイミド膜をスピンコート法により厚さ5μmに形成した。次にポリイミド膜をRIE(反応性イオンエッチング)によってパターニングすることにより、パターニング層を形成した。次に基板の裏面上に熱酸化法によって酸化シリコン層を厚さ1μmに形成した。次いでスハパッタリング法によって上記組成の金属ガラスからなる薄膜をパターニング層で覆うようにして基板の主面上に厚さ2μmに形成した。次に水酸化カリウムに基板を浸漬させることによってパターニング層を除去するとともに、薄膜をパターニングすることによって薄膜加工体を形成した。
【0031】
図3には、この非晶質薄膜2の示差熱曲線を示差走査熱量計により、温度上昇速度0.16℃/秒にて測定した結果を示す。図において、ガラス転移温度Tgが637K、結晶化開始温度Txが669Kであり、TxとTgの間に過冷却液体域が存在している。
【0032】
この非晶質薄膜2を、赤外線を加熱手段として用い、酸化防止のためにこの非晶質薄膜2を10−3Pa以下に減圧した熱処理環境にて、結晶化温度Txにて120秒間加熱して熱処理し、冷却速度10℃/分で室温まで冷却した。加熱途中の過冷却液体域での軟化により薄膜の内部応力緩和と、結晶化による薄膜構造の硬化とを得た。
【0033】
冷却後、80℃に加熱した水酸化カリウム水溶液に2時間浸漬させることによって、シリコン基板の一部を除去し、図4に示した平面的な片持ち梁形状の微結晶薄膜構造体3を得た。こうして得た薄膜構造体3が微結晶化していることは、電子顕微鏡観察を行なって微結晶粒子が存在することにより確認した。また電子線回折により微結晶による回折線の存在を確認した。
【0034】
(実施例2)
実施例1と同様にして、シリコン基板1上に半導体プロセスなど公知の方法によりパターンニングされた非晶質薄膜を形成し、続いて図5に示したように、基板1上にパターンニングされた非晶質薄膜2の一部に、冷却部材4を接触させた。本実施例では、冷却部材4として、板1より十分大きいステンレス製のものを用いた。なお、必要に応じて冷却部材4に図示しない冷却パイプを接続し、そのパイプ内に冷媒を循環させる冷却装置を設けてもよい。
【0035】
図5に示した冷却部材4を接触させた状態で、実施例1と同様に、酸化防止のため10−3Pa以下の減圧下にて、赤外線加熱により結晶化開始温度Tx(669K)にて250秒間加熱し、冷却部材5により冷却された部分は結晶化せず、冷却部材から遠ざかるにしたがって結晶化度が上昇する非晶質−微結晶傾斜材料で構成された図6の薄膜構造体5が製作できた。加熱途中に通過する過冷却液体域での軟化により、薄膜構造体5の内部応力が緩和され、また結晶化による構造の強化が得られた。得られた薄膜構造体5の結晶化度大の部分について電子顕微鏡観察の結果、よく微結晶化していることを確認した。また電子線回折により微結晶による回折線を確認した。
【0036】
(実施例3)
図7は、本実施例に用いた厚さ5μmのZr基薄膜金属ガラス(Zr75Cu15Al、添字は原子%)の非晶質の片持ち梁形状の薄膜構造体6を示す。この片持ち梁形状の薄膜構造体6は、次のようにして作製した。まず、シリコン基板上に実施例1と同様に、基板1の主面上にポリイミド膜をスピンコート法により厚さ5μmに形成し、このポリイミド膜をRIE(反応性イオンエッチング)によってパターニング層を形成した。次に基板の裏面上に熱酸化法によって酸化シリコン層を厚さ1μmに形成した。次にスパッタリング法によって上記組成の金属ガラスからなる薄膜をパターニング層を覆うようにして基板の主面上に厚さ2μmに形成し、これを水酸化カリウムに基板を浸漬させることによってパターニング層を除去するとともに、薄膜をパターニングすることによって、薄膜加工体を形成し、続いて80℃に加熱した水酸化カリウム水溶液に2時間浸漬させることによって、シリコン基板の一部を除去し、図7に示した片持ち梁形状の薄膜構造体6を得た。
【0037】
この非晶質薄膜平面構造体6を、図8に示したように、ステンレス部材7により変形させ、結晶化開始温度Tx(713K)にて、赤外光加熱など公知の加熱手段により、10−3Pa以下の減圧下にて110秒間加熱し、加熱途中に通過する過冷却液体域での軟化により内部応力の緩和と、結晶化による構造の硬化が得られ、冷却後、図9に示した立体構造の微結晶薄膜構造体8を製作できた。得られた薄膜構造体8について電子顕微鏡観察の結果、微結晶化していることを確認した。また電子線回折により微結晶による回折線を確認した。
【0038】
(実施例4)
図8に示した部材7を大きな熱容量を持つ冷却部材とし、他は実施例3と同様にすることにより、熱勾配にしたがって非晶質−微結晶傾斜材料で構成された図10の薄膜立体構造体9が製作できた。得られた薄膜構造体4の結晶化度大の部分について電子顕微鏡観察の結果、よく微結晶化していることを確認した。また電子線回折により微結晶による回折線を確認した。
【0039】
【発明の効果】
本発明によれば、微結晶または微結晶の量が傾斜的に変化して存在する材料を備えた薄膜平面構造体または薄膜立体構造体が製造できる。例えば応力の集中する根元の部分は微結晶化により破壊靭性を大きくし、耐磨耗性や高硬度の要求される先端部分は非晶質に保つなど、その部位ごとにその部位に適した性質を持たせることができるので、各種マイクロプローブや、マイクロマニュピレータのエンドフェクタなどのナノ・マイクロマシンその他多くの用途に適用可能な薄膜構造体を実現できる。
【図面の簡単な説明】
【図1】2種の非晶質薄膜について各温度における結晶化の開始時間を示した時間温度変態線図である。
【図2】基板上にパターンニングした非晶質薄膜を示す図である。
【図3】示差走査熱量計により測定した非晶質薄膜の示差熱曲線を示す図である。
【図4】平面的な片持ち梁形状の微結晶薄膜構造体を示す図である。
【図5】基板上にパターンニングした非晶質薄膜に冷却部材を接触させることにより、温度勾配を与えて熱処理を行うことを示した図である。
【図6】非晶質−微結晶傾斜材料で構成された薄膜構造体を示した図である。
【図7】片持ち梁形状の薄膜構造体を示す図である。
【図8】非晶質の薄膜平面構造体をステンレス部材により変形させながら熱処理を行う状況を示した図である。
【図9】立体構造の微結晶薄膜の構造体を示す図である。
【図10】非晶質−微結晶傾斜材料で構成された薄膜立体構造体を示した図である。
【符号の説明】
1……シリコン基板、2……薄膜、3……片持ち梁形状の微結晶薄膜構造体、4……冷却部材、5……薄膜構造体、6……非晶質の片持ち梁形状の薄膜構造体、7……ステンレス部材、8……立体構造の微結晶薄膜構造体、9……非晶質−微結晶傾斜材料で構成された薄膜立体構造体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a thin film structure, and more particularly, as a micromachine such as a microactuator, a probe, a stylus, various sensors such as a microsensor, and a structural part of various probes such as a flow for a scanning type flow microscope. The present invention relates to a method for producing a thin film structure having a microcrystalline structure, which can be used partially or entirely.
[0002]
[Prior art]
In a micromachine, various sensors, various probes, etc., a force acting outside the substrate surface is generated, and various proximity effects, fluid flow, voltage of other electronic circuits, and the like outside the substrate are detected. For this reason, micromachining that applies thin-film deposition technology and microfabrication technology used in semiconductor manufacturing makes it possible to three-dimensionally curve and deform minute planar structures, such as beams, composed of various thin films, such as beams. A thin film structure having a minute three-dimensional structure is now used.
[0003]
As a method of manufacturing such a thin film structure, the present inventors focused on the properties of an amorphous material having a supercooled liquid region, and formed a thin film made of an amorphous material having a supercooled liquid region on a predetermined substrate. Forming a thin film structure having a planar structure in which the thin film processing body is cooled from a supercooled liquid region to room temperature and at least a part of the substrate is removed (Japanese Patent No. 3125048); A thin film structure having a three-dimensional structure in which a thin film structure made of an amorphous material is heated to a supercooled liquid region to be softened, deformed to a predetermined shape by applying an external force to the thin film structure, and then cooled to room temperature. A manufacturing method (Japanese Patent No. 3099066) was developed.
[0004]
By the way, compared to the conventional polycrystalline material having crystal grains of the order of tens to hundreds of microns, it has excellent mechanical properties such as high toughness, and can have higher electrical conductivity than an amorphous material. A microcrystalline material having microcrystals having a size on the order of several tens of microns to nanometers has become known as a material that can obtain many more properties than a crystalline material.
[0005]
However, when manufacturing a planar thin film structure such as a cantilever using a microcrystalline material, film forming conditions such as a substrate temperature and a film forming speed at which a microcrystalline structure is formed during film formation, and a thin film structure are used. Sometimes it is necessary to form a film under such conditions that the stress inside the thin film does not cause deformation or destruction. However, since these conditions cannot be satisfied at the same time, it is not possible to manufacture a thin film structure having a microcrystalline structure and high flatness. It is difficult, and it is even more difficult to accurately produce a three-dimensional microcrystalline structure such as a bent beam. In the method of forming microcrystals at the time of film formation, since the entire thin film becomes microcrystals, it is extremely difficult to manufacture a structure in which an amorphous portion and a microcrystal portion are inclined in a thin film structure. There was a problem.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve such problems in the prior art, and to provide a manufacturing method for manufacturing a planar or three-dimensional thin film structure having a microcrystalline material or a material in which amorphous and microcrystalline portions are inclined. Is to provide.
[0007]
[Means for Solving the Problems]
The present inventors have conducted research on a method of manufacturing a thin film structure having microcrystals. As a result, first, a thin film structure was formed from an amorphous thin film, and then the structure of the amorphous thin film was changed to a glass transition point. As described above, it has been found that a microcrystalline thin film structure can be obtained by performing a heat treatment at a temperature equal to or lower than the crystallization start temperature for a predetermined time and generating microcrystals in the amorphous phase. The invention has been reached.
[0008]
The first method for manufacturing a microcrystalline thin film structure according to the present invention includes the steps of: forming an amorphous thin film on a substrate; patterning the amorphous thin film into a predetermined shape; Heating the amorphous thin film at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals in the amorphous thin film; and removing at least a part of the substrate to form a thin film structure. Forming a flat microcrystalline thin film structure.
[0009]
Further, in the second method for manufacturing a microcrystalline thin film structure according to the present invention, a step of forming an amorphous thin film on a substrate; a step of patterning the amorphous thin film into a predetermined shape; A step of cooling at least a part of the thin film and heating the remaining part at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals, and removing at least a part of the substrate, Forming a thin-film structure, wherein a microcrystalline thin-film structure having a flat plate-like shape in which microcrystalline portions and amorphous portions are inclined exists.
[0010]
Further, a third method of manufacturing a microcrystalline thin film structure according to the present invention includes a step of forming an amorphous thin film on a substrate; a step of patterning the amorphous thin film into a predetermined shape; Removing a portion, forming a thin film structure, applying an external force to at least a portion of the thin film structure to cause a deformation of a portion of the amorphous thin film, at least a portion of the thin film structure A step of subjecting a part to heat treatment at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to produce microcrystals, thereby producing a microcrystalline thin film structure having a three-dimensional structure.
[0011]
Further, a fourth method for manufacturing a microcrystalline thin film structure according to the present invention includes the steps of: forming an amorphous thin film on a substrate; patterning the amorphous thin film into a predetermined shape; Removing a portion to form a thin film structure; applying an external force to at least a portion of the thin film structure to cause deformation of a portion of the amorphous thin film; Heating at least a part of the remaining portion and heating the remaining portion at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals, and the microcrystal portion and the amorphous portion have a three-dimensional structure. The present invention is characterized in that a microcrystalline thin film structure that exists in an inclined manner is manufactured.
[0012]
In the present invention, the glass transition point Tg is a temperature at which a transition from a solid phase to a highly viscous supercooled liquid occurs when the temperature of an amorphous thin film is increased. The crystallization start temperature Tx is a temperature at which crystallization starts to be observed when the temperature of the supercooled liquid is increased. Incidentally, the temperature at which crystallization from the supercooled liquid is observed depends on the temperature rise rate at the time of observation, and also depends on the measuring means. In the present invention, the crystallization onset temperature is set to 0.16 ° C./sec by using a differential scanning calorimeter (DSC). Is defined as the crystallization start temperature Tx.
[0013]
In the present invention, the size of the microcrystals in the microcrystalline thin film structure to be manufactured, for example, the particle size, can be selected from various sizes depending on the characteristics of the microcrystalline thin film structure of interest and the application of the microcrystalline thin film structure. It is possible. However, if the size of the crystal is too large, it will be the same as a normal polycrystalline thin film, and the properties of a microcrystalline thin film cannot be obtained.If the size of the crystal is too small, the properties as a crystal will be lost. The properties of the thin film cannot be obtained. Accordingly, the particle size of the microcrystal is preferably about 2,000 nm or less and 1 nm or more, more preferably 1,000 nm or less, more preferably 1 nm or more, and even more preferably 100 nm or less and 1 nm or more.
[0014]
According to the present invention, by forming a film in an amorphous state, film forming conditions such as a substrate temperature can be remarkably relaxed as compared with a case where a microcrystalline thin film is directly formed. In particular, an amorphous alloy having a supercooled liquid region has a low critical cooling rate, and can form an amorphous thin film without particularly cooling the substrate.
[0015]
Further, according to the present invention, after film formation, heat treatment is performed in a supercooled liquid region and microcrystallization is performed, so that the internal stress or elastic stress of the thin film can be relaxed. A thin film structure can be manufactured.
BEST MODE FOR CARRYING OUT THE INVENTION
The substrate used in the method for manufacturing a microcrystalline thin film structure of the present invention can be appropriately selected depending on the use of the microcrystalline thin film structure. For example, single crystal silicon, single crystal silicon provided with an oxide film or a nitride film, Pyrex (registered trademark) (Trademark) glass, a stainless steel plate, or the like.
[0016]
In the method for manufacturing a microcrystalline thin film structure according to the present invention, as a method for forming an amorphous thin film on a substrate, a physical vapor deposition method such as sputtering or vapor deposition such as high-frequency magnetron sputtering, or a chemical vapor deposition method such as CVD method. A known method such as a method can be used. Using such a thin film forming method, a thin film of an amorphous material having a supercooled liquid region is formed on a substrate. The type of the amorphous material used here is not limited as long as it has a supercooled liquid region and can achieve the object of the present invention, and various amorphous metal alloys such as Zr- In addition to Cu-Al and Pd-Cu-Si, various amorphous materials can be used.
[0017]
In the method of manufacturing a nanocrystalline thin film structure according to the present invention, the thin film formed on the substrate as described above is patterned into a predetermined shape and manufactured. For the patterning, a known fine processing technique such as wet etching using hydrofluoric acid or potassium hydroxide solution or dry etching such as RIE (reactive ion etching) can be used.
[0018]
In the method for manufacturing a nanocrystalline thin film structure according to the present invention, the patterned amorphous thin film is heated and heat-treated in a supercooled liquid region. When the non-quality thin film exceeds the glass transition temperature, it becomes a supercooled liquid state of 10 11 to 10 13 Pa · s, and the stress inside the thin film can be removed. By maintaining the amorphous thin film in the temperature range of the supercooled liquid state, microcrystals can be generated from the phase in the supercooled liquid state.
[0019]
FIG. 1 is a time-temperature transformation diagram in which the crystallization start time at each temperature is determined by DSC for two types of amorphous thin films. In order to generate microcrystals, heat treatment may be performed so as to reach a crystallization region at the upper right of the line in FIG. The heat treatment time can be shortened near Tx because the crystallization proceeds quickly, while the heat treatment for a relatively long time is required near Tg because the crystallization is slow. Note that crystallization by such heat treatment can be confirmed by a method such as observing generation of microcrystalline particles by electron microscope observation, or finding diffraction lines by electron beam diffraction.
[0020]
In order to generate a good microcrystalline phase, the temperature range Tx-Tg of the supercooled liquid region is desirably 10 ° C or more, more desirably 20 ° C or more. Further, by having a relatively wide supercooled liquid region, the heating step of the thin film is stabilized, so that the step can be simplified.
[0021]
In the method for producing a microcrystalline thin film structure of the present invention, known heating means such as infrared heating, laser heating, and high-frequency heating can be used as the heating means used for the overheat treatment. In this heat treatment, the entire thin film structure can be heat-treated to microcrystallize the entire structure. In addition, by giving a temperature difference to the thin film structure during the heat treatment, the amount of generated microcrystals is inclined. It can also be a microcrystalline inclined thin film structure.
[0022]
In order to give a temperature difference to the thin film structure in the heat treatment of the thin film structure, a method of bringing a cooling material into contact with the thin film structure and performing local cooling can be used. For example, during the heat treatment, a cooling member is brought into contact with a predetermined position on the amorphous thin film pattern to generate a thermal gradient in the amorphous thin film pattern or the thin film structure. By performing the heat treatment in such a state, the portion having a higher temperature is more crystallized, and the portion in contact with the cooling agent remains amorphous, and the amorphous portion follows the thermal gradient. It is possible to realize a structure made of an amorphous-microcrystalline material in which microcrystalline portions are inclined. When a jig is used to deform the thin film structure into a three-dimensional shape, the jig can be used as a cooling member.
[0023]
In the method for manufacturing a microcrystalline thin film structure according to the present invention, when the thin film structure is heated and heat-treated in a supercooled liquid region, the thin film structure is deformed by applying stress, and the internal stress caused by the deformation is reduced. After being removed by this heat treatment, this is cooled to obtain a three-dimensional structure with deformation maintained. As a method of applying a stress to obtain a three-dimensional structure by deforming the thin film structure, a method of mechanically applying a stress using a jig or the like, or a method of applying an electrostatic force between the thin film structure using an electrode layer or the like. A method of applying a magnetic stress, a method of applying a magnetic stress between the thin film structure using a magnetic material, and a method of forming the thin film structure into layers having different coefficients of thermal expansion depending on purposes, and a method of applying a thermal expansion between layers. Each method described in Japanese Patent No. 3099066, such as a method of deforming by a bimetal effect due to a difference, can be used.
[0024]
As shown in FIG. 1, the time for heating and holding the thin film in the supercooled liquid region varies greatly depending on the heating temperature, and also differs depending on the type of material constituting the thin film, the thickness of the thin film, the conditions for forming the thin film, and the like. It will be. Generally, the temperature is maintained for about 10 2 to 10 4 seconds in such a temperature range. Thereby, the stress in the thin film processing body can be sufficiently removed and the crystal can be microcrystallized, thereby achieving the object of the present invention. After the heat treatment, the thin film is cooled from the supercooled liquid region to room temperature. As the cooling means, means such as natural cooling by heat radiation, cooling by introducing a cooling gas, cooling by contact with a cooling board, and the like can be used.
[0025]
In the method for manufacturing a microcrystalline thin film structure according to the present invention, at least a part of the substrate is removed. As a method for removing at least a part of the substrate, a known fine processing technique represented by wet etching or dry etching as described above can be used. The removal of at least a part of the substrate can be performed after the heat treatment in order to prevent deformation during the heat treatment and obtain a planar nanocrystalline structure. Further, at least a part of the substrate may be removed before the heat treatment, and the structure may be deformed by applying a stress during the heat treatment to obtain a predetermined three-dimensional structure.
[0026]
In the production of the microcrystalline thin film structure of the present invention, before forming a thin film made of an amorphous material having a supercooled liquid region on a substrate, the substrate is formed into a predetermined shape as described in Japanese Patent No. 3125048. A patterned sacrificial layer can be formed. In this case, a thin film planar structure is obtained by forming an amorphous thin film on a substrate so as to cover the sacrifice layer and removing the sacrifice layer instead of removing at least a part of the substrate. Can be.
[0027]
The patterned sacrificial layer can be formed by uniformly applying a resist on the main surface of the substrate by spin coating or the like, and then performing exposure and development through a mask made of Cr. Furthermore, after forming polysilicon or the like uniformly on the main surface of the substrate by means such as CVD, a protective film made of a resist may be formed on the polysilicon film and wet-etched.
[0028]
The thickness of the thin film processing body constituting the microcrystalline thin film structure of the present invention is not particularly limited, and can be formed to any thickness within a range having a supercooled liquid region depending on the application. In particular, when the thickness of the thin-film planar processing body is in the range of 1 to 20 μm, it has a supercooled liquid region as described above and has a strength suitable for use in various sensors and various probes. Therefore, a microcrystalline thin film structure suitable for various sensors and various probes can be provided by forming a thin film planar processed body, and a thin film before being processed into a thin film planar processed body to 1 to 20 μm. .
[0029]
(Example 1)
As shown in FIG. 2, an amorphous thin film 2 of 5 μm thick Pd-based thin film metallic glass (Pd 76 Cu 7 Si 17 , subscript is atomic%) is formed on a silicon substrate 1 by the following semiconductor process. Patterned.
[0030]
First, a polyimide film was formed on the main surface of the substrate to a thickness of 5 μm by spin coating. Next, a patterning layer was formed by patterning the polyimide film by RIE (reactive ion etching). Next, a silicon oxide layer was formed to a thickness of 1 μm on the back surface of the substrate by a thermal oxidation method. Next, a thin film made of metallic glass having the above composition was formed to a thickness of 2 μm on the main surface of the substrate by a sputtering method so as to cover the thin film made of the metallic glass with the patterning layer. Next, the substrate was immersed in potassium hydroxide to remove the patterning layer, and the thin film was patterned to form a processed thin film.
[0031]
FIG. 3 shows the results of measuring the differential thermal curve of the amorphous thin film 2 with a differential scanning calorimeter at a temperature rising rate of 0.16 ° C./sec. In the figure, the glass transition temperature Tg is 637 K, the crystallization start temperature Tx is 669 K, and a supercooled liquid region exists between Tx and Tg.
[0032]
The amorphous thin film 2 is heated at a crystallization temperature Tx for 120 seconds in a heat treatment environment in which the amorphous thin film 2 is reduced in pressure to 10 −3 Pa or less to prevent oxidation using infrared rays as a heating means. And cooled to room temperature at a cooling rate of 10 ° C./min. The softening in the supercooled liquid region during the heating reduced the internal stress of the thin film and hardened the thin film structure by crystallization.
[0033]
After cooling, the silicon substrate was partially immersed in an aqueous solution of potassium hydroxide heated to 80 ° C. for 2 hours to remove a part of the silicon substrate, thereby obtaining a planar cantilever microcrystalline thin film structure 3 shown in FIG. Was. The microcrystallinity of the thin film structure 3 thus obtained was confirmed by observation with an electron microscope by the presence of microcrystalline particles. In addition, the presence of diffraction lines due to microcrystals was confirmed by electron beam diffraction.
[0034]
(Example 2)
In the same manner as in Example 1, an amorphous thin film patterned by a known method such as a semiconductor process was formed on a silicon substrate 1 and subsequently patterned on the substrate 1 as shown in FIG. The cooling member 4 was brought into contact with a part of the amorphous thin film 2. In the present embodiment, a stainless steel member that is sufficiently larger than the plate 1 is used as the cooling member 4. In addition, if necessary, a cooling pipe (not shown) may be connected to the cooling member 4, and a cooling device for circulating a refrigerant in the pipe may be provided.
[0035]
In the state where the cooling member 4 shown in FIG. 5 is in contact with the crystallization start temperature Tx (669K) by infrared heating under the reduced pressure of 10 −3 Pa or less in order to prevent oxidation, as in Example 1. Heating for 250 seconds, the portion cooled by the cooling member 5 does not crystallize, and the thin-film structure 5 of FIG. 6 made of an amorphous-microcrystalline gradient material whose degree of crystallinity increases with distance from the cooling member. Was made. The softening in the supercooled liquid region passing during the heating reduced the internal stress of the thin film structure 5 and strengthened the structure by crystallization. Electron microscopic observation of the portion of the obtained thin film structure 5 having a large degree of crystallinity confirmed that the film was well microcrystallized. In addition, diffraction lines due to microcrystals were confirmed by electron beam diffraction.
[0036]
(Example 3)
FIG. 7 shows an amorphous cantilever-shaped thin film structure 6 made of a Zr-based thin film metallic glass (Zr 75 Cu 15 Al 6 , subscript is atomic%) having a thickness of 5 μm used in the present example. This cantilever-shaped thin film structure 6 was produced as follows. First, as in Example 1, a polyimide film is formed on the main surface of the substrate 1 to a thickness of 5 μm by a spin coating method, and a patterning layer is formed on the silicon substrate by RIE (reactive ion etching). did. Next, a silicon oxide layer was formed to a thickness of 1 μm on the back surface of the substrate by a thermal oxidation method. Next, a thin film made of metallic glass having the above composition is formed to a thickness of 2 μm on the main surface of the substrate by sputtering so as to cover the patterning layer, and the patterning layer is removed by immersing the substrate in potassium hydroxide. At the same time, a thin film processed body was formed by patterning the thin film, and then a portion of the silicon substrate was removed by immersing the thin film in a potassium hydroxide aqueous solution heated to 80 ° C. for 2 hours, as shown in FIG. A cantilever-shaped thin film structure 6 was obtained.
[0037]
The amorphous thin planar structure 6, as shown in FIG. 8, is deformed by a stainless member 7, at the crystallization starting temperature Tx (713K), by a known heating means such as infrared heating, 10 - Heating was performed for 110 seconds under a reduced pressure of 3 Pa or less, softening in a supercooled liquid region passing during heating reduced the internal stress and hardened the structure by crystallization, and after cooling, shown in FIG. The microcrystalline thin film structure 8 having a three-dimensional structure was manufactured. Observation with an electron microscope of the obtained thin film structure 8 confirmed that it was microcrystallized. In addition, diffraction lines due to microcrystals were confirmed by electron beam diffraction.
[0038]
(Example 4)
The member 7 shown in FIG. 8 is a cooling member having a large heat capacity, and the other components are the same as those of the third embodiment, whereby the thin film three-dimensional structure of FIG. The body 9 was made. Electron microscopic observation of the portion of the obtained thin film structure 4 having a large degree of crystallinity confirmed that the film was well microcrystallized. In addition, diffraction lines due to microcrystals were confirmed by electron beam diffraction.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the thin film planar structure or the thin film three-dimensional structure provided with the material in which the quantity of a microcrystal or a microcrystal changes with inclination can be manufactured. Properties suitable for each part, such as increasing the fracture toughness by microcrystallization at the base where stress is concentrated, and maintaining the amorphous part at the tip where abrasion resistance and high hardness are required Therefore, a thin film structure applicable to various uses such as various microprobes, nano / micromachines such as end effectors of micromanipulators, and the like can be realized.
[Brief description of the drawings]
FIG. 1 is a time-temperature transformation diagram showing the crystallization start time at each temperature for two types of amorphous thin films.
FIG. 2 is a view showing an amorphous thin film patterned on a substrate.
FIG. 3 is a diagram showing a differential heat curve of an amorphous thin film measured by a differential scanning calorimeter.
FIG. 4 is a view showing a planar cantilever-shaped microcrystalline thin film structure.
FIG. 5 is a diagram showing that heat treatment is performed by applying a temperature gradient by bringing a cooling member into contact with an amorphous thin film patterned on a substrate.
FIG. 6 is a view showing a thin film structure composed of an amorphous-microcrystalline gradient material.
FIG. 7 is a diagram showing a cantilever-shaped thin film structure.
FIG. 8 is a view showing a state in which a heat treatment is performed while deforming an amorphous thin film planar structure with a stainless member.
FIG. 9 is a diagram showing a structure of a microcrystalline thin film having a three-dimensional structure.
FIG. 10 is a view showing a thin film three-dimensional structure made of an amorphous-microcrystalline gradient material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Thin film, 3 ... Cantilever-shaped microcrystalline thin film structure, 4 ... Cooling member, 5 ... Thin film structure, 6 ... Amorphous cantilever shape Thin film structure, 7: Stainless steel member, 8: Microcrystalline thin film structure having a three-dimensional structure, 9: Thin film three-dimensional structure made of an amorphous-microcrystalline gradient material.

Claims (4)

基板上に非晶質薄膜を成膜する工程と、
前記非晶質薄膜を所定の形状にパターニングする工程と、
前記パターンニングされた非晶質薄膜をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理し前記非晶質薄膜に微結晶を生成させる工程と、
前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と
を備えたことを特徴とする微結晶薄膜構造体の製造方法。
Forming an amorphous thin film on the substrate;
Patterning the amorphous thin film into a predetermined shape,
A step of heating the patterned amorphous thin film at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals in the amorphous thin film;
Removing at least a part of the substrate to form a thin film structure.
基板上に非晶質薄膜を成膜する工程と、
前記非晶質薄膜を所定の形状にパターニングする工程と、
前記非晶質薄膜の少なくとも一部を冷却し残りの部分をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理して微結晶を生成させる工程と、
前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と、
を備えたことを特徴とする微結晶薄膜構造体の製造方法。
Forming an amorphous thin film on the substrate;
Patterning the amorphous thin film into a predetermined shape,
A step of cooling at least a part of the amorphous thin film and heating the remaining part at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals,
Removing at least a portion of the substrate to form a thin film structure;
A method for producing a microcrystalline thin film structure, comprising:
基板上に非晶質薄膜を成膜する工程と、
前記非晶質薄膜を所定の形状にパターニングする工程と、
前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と、
前記薄膜構造体の少なくとも一部に外力を印加し前記非晶質薄膜の一部に変形を生じさせる工程と、
前記薄膜構造体の少なくとも一部をガラス転移点以上で結晶化開始温度以下の温度にて所定時間加熱処理し微結晶を生成させる工程と、
を備えたことを特徴とする微結晶薄膜構造体の製造方法。
Forming an amorphous thin film on the substrate;
Patterning the amorphous thin film into a predetermined shape,
Removing at least a portion of the substrate to form a thin film structure;
Applying an external force to at least a part of the thin film structure to cause deformation of a part of the amorphous thin film,
A step of heating at least a part of the thin film structure at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals,
A method for producing a microcrystalline thin film structure, comprising:
基板上に非晶質薄膜を成膜する工程と、
前記非晶質薄膜を所定の形状にパターニングする工程と、
前記基板の少なくとも一部を除去し、薄膜構造体を形成する工程と、
前記薄膜構造体の少なくとも一部に外力を印加し前記非晶質薄膜の一部に変形を生じさせる工程と、
前記非晶質薄膜の少なくとも一部を冷却し残りの部分をガラス転移点以上結晶化開始温度以下の温度で所定時間加熱処理し微結晶を生成させる工程と
を備えたことを特徴とする微結晶薄膜構造体の製造方法。
Forming an amorphous thin film on the substrate;
Patterning the amorphous thin film into a predetermined shape,
Removing at least a portion of the substrate to form a thin film structure;
Applying an external force to at least a part of the thin film structure to cause deformation of a part of the amorphous thin film,
Cooling at least a part of the amorphous thin film and heating the remaining part at a temperature equal to or higher than the glass transition point and equal to or lower than the crystallization start temperature for a predetermined time to generate microcrystals. A method for manufacturing a thin film structure.
JP2002160756A 2002-05-31 2002-05-31 Method for manufacturing microcrystal thin film structural body Pending JP2004001147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160756A JP2004001147A (en) 2002-05-31 2002-05-31 Method for manufacturing microcrystal thin film structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160756A JP2004001147A (en) 2002-05-31 2002-05-31 Method for manufacturing microcrystal thin film structural body

Publications (1)

Publication Number Publication Date
JP2004001147A true JP2004001147A (en) 2004-01-08

Family

ID=30430019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160756A Pending JP2004001147A (en) 2002-05-31 2002-05-31 Method for manufacturing microcrystal thin film structural body

Country Status (1)

Country Link
JP (1) JP2004001147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184513A (en) * 2013-03-22 2014-10-02 Toshiba Corp Electric component and method for producing the same
JP2015029068A (en) * 2013-07-01 2015-02-12 富士ゼロックス株式会社 Method for manufacturing semiconductor strip and method for determining manufacturing condition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184513A (en) * 2013-03-22 2014-10-02 Toshiba Corp Electric component and method for producing the same
JP2015029068A (en) * 2013-07-01 2015-02-12 富士ゼロックス株式会社 Method for manufacturing semiconductor strip and method for determining manufacturing condition
US9508595B2 (en) 2013-07-01 2016-11-29 Fuji Xerox Co., Ltd. Method of tip shape of cutting member, semiconductor chip manufacturing method, circuit board, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP3099066B1 (en) Manufacturing method of thin film structure
Krulevitch et al. Thin film shape memory alloy microactuators
Jeong et al. Microforming of three-dimensional microstructures from thin-film metallic glass
CN106744657B (en) A kind of preparation method of three-dimensional GeSn micro/nano-scale cantilever design
Sun et al. Effects of deposition and annealing conditions on the crystallisation of NiTi thin films by e‐beam evaporation
Ni et al. Demonstration of tantalum as a structural material for MEMS thermal actuators
JP2004001147A (en) Method for manufacturing microcrystal thin film structural body
Ma et al. Frequency response of TiNi shape memory alloy thin film micro-actuators
JP2000317896A (en) Manufacture of thin film plane structure
Hou et al. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires
Seleznev et al. Generation and registration of disturbances in a gas flow. 1. Formation of arrays of tubular microheaters and microsensors
Valentino et al. Fabrication of freestanding metallic Ni-Mo-W microcantilever beams with high dimensional stability
Huff et al. Microsystems manufacturing methods: MEMS processes
Fujii et al. Effects of Vacuum Annealing on Mechanical Properties of Gallium-implanted Silicon Nanowires.
KR101118007B1 (en) Micro cantilever and method of manufacturing the same and silicon thin film and method of manufacturing the same
KR101049702B1 (en) Microcantilever and its manufacturing method and silicon thin film and its manufacturing method
Cullinan et al. Transfer-free, wafer-scale fabrication of graphene-based nanoelectromechanical resonators
Knick et al. Material and process development of thin film shape memory alloy for MEMS actuator
Hata et al. Thin film metallic glasses as new MEMS materials
Schmitt et al. Development of ferromagnetic shape memory nanoactuators
CN102241390A (en) Method for preparing suspended nano-structure
Xie et al. Focused ion beam micromachining of TiNi film on Si (111)
Okamura et al. Ti-Ni SMA Film-Actuated 2-D Multi-Probe Array for Scanning Probe Nano-Lithography on a Wide Area
Kim et al. Fabrication of a piezoelectric microcantilever array with a large initial deflection and an application to electrical energy harvesting
Ni Self-Actuated MEMS Nanomechanical Platform for High Temperature Testing Using Tantalum as a New Structural Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428