JP2004000163A - Cell used for treating cell - Google Patents

Cell used for treating cell Download PDF

Info

Publication number
JP2004000163A
JP2004000163A JP2003069034A JP2003069034A JP2004000163A JP 2004000163 A JP2004000163 A JP 2004000163A JP 2003069034 A JP2003069034 A JP 2003069034A JP 2003069034 A JP2003069034 A JP 2003069034A JP 2004000163 A JP2004000163 A JP 2004000163A
Authority
JP
Japan
Prior art keywords
substrate
cell
culture chamber
cell culture
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069034A
Other languages
Japanese (ja)
Inventor
Yoichi Fujiyama
藤山 陽一
Hiroaki Nakanishi
中西 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Bio Oriented Technology Research Advancement Institution
Sasaki Co Ltd
Original Assignee
Shimadzu Corp
Bio Oriented Technology Research Advancement Institution
Sasaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Bio Oriented Technology Research Advancement Institution, Sasaki Co Ltd filed Critical Shimadzu Corp
Priority to JP2003069034A priority Critical patent/JP2004000163A/en
Publication of JP2004000163A publication Critical patent/JP2004000163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To trap a cell at a specific place in a microchip by a simple means. <P>SOLUTION: A minute flow channel groove 6 used as a flow channel for a liquid sample having a width and a depth of several hundred mm at most and holes 3 and 4 for introducing and discharging the sample are formed on one surface of a glass substrate 1. A cell culture chamber 5 comprised of a circular concave part having a depth almost equal to that of the flow channel and a diameter of about 1 mm is formed on a glass substrate 2. The surface of the substrate 1 where the flow channel groove 6 is formed and the surface of the substrate 2 where the cell culture chamber 5 is formed are faced to each other and adhered to be joined in a liquidtight manner. Thus, when a solution containing a cell is poured from the introduction hole 3, the solution flows along the flow channel groove 6 and the cell is let to flow toward the discharge hole 4 to be trapped in the cell culture chamber 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、細胞を取り扱う際に有効な手段であり、特にマイクロチップを用いたバイオテクノロジーの研究に関わる発明である。
【0002】
【従来の技術】
創薬や食品、作物開発や遺伝子工学等の分野においては、幅広く、細胞を扱う研究が行われている。従来、細胞はシャーレなどに入れられた培養地等により培養され、様々な実験に用いられている。細胞の機能解明を行う場合には、多くの薬品や導入物質による反応を調べる必要がある。したがって、特定の反応を効率よく、一度に多種類、しかも少量の試料で結果が得られる方法が望まれている。
【0003】
近年、分析化学の分野ではμTAS(Micro Total Analysis Systems)の研究が盛んになりつつあり、マイクロチップを用いて分析の高速化、省サンプル化、省溶媒化を図ることが期待されている。マイクロチップ上の微小空間中の反応では、従来の化学操作を用いた反応よりも反応効率を向上できる可能性も示されている。
【0004】
【発明が解決しようとする課題】
ところが、通常のマイクロ流路中では、溶液の流れがあるために細胞は流路壁面に接着せず、培養することが困難であるという問題があった。流路内面の化学的性質を改質する手法によって細胞の接着を促進する方法もあるが、この場合には流路内壁がすべて改質されるため、目的とする場所のみで細胞を培養することは困難であったり、あるいは複雑な機能を持たせたマイクロチップを製作する場合に適用するのが困難であったりするといった問題がある。
本発明は、簡単な手段によって細胞をマイクロチップ中で特定の場所にトラップし、この場所で細胞培養などを行うことができるようにしたセルを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
マイクロチップ中の流路では、わずかな液面の差などによって常に溶液が流れている状態である。このため、流路中に導入された細胞は、流路内の様々な位置に分布し、また、うまく壁面に接着できないために細胞が活動しない。
本発明が対象にしているマイクロチップは、基体に流路その他の溶液の反応や処理に必要な部分が形成されているものを指しており、大きさに関しては特に制約はない。
【0006】
本発明は、流路中に段差を設けた細胞培養室を設け、その断面積を流路断面積に対して十分大きくする構造のセルとすることにより、細胞付近の実質的な溶液の流れを抑制して細胞培養室に細胞を捕捉しやすくして、マイクロチップ中で細胞培養などの処理をできるようにしたものである。
【0007】
すなわち、本発明のセルは、基体内部に形成され液体を流すことのできる流路と、その流路の両端部につながる液出入口と、基体内部で前記流路の途中に設けられ、流路に対し段差をもち、液体の流通方向に直交する断面積が流路の断面積よりも大きくなった細胞培養室とを基体に一体的に備えたものである。
【0008】
【作用】
細胞培養室は流路に対して大きな容量となるため、細胞培養室では溶液の流れが遅くなる。このため、細胞培養室に細胞をトラップすることが可能となる。
また、細胞培養室は流路に対し下方向又は上方向に窪んだ段差をもっているため、細胞培養室の底に沈んだ細胞や浮かんだ細胞の付近は静かな環境となり細胞が壁面に接着しやすい。
【0009】
【発明の実施の形態】
細胞培養室の容量を流路に対して大きくするためには、細胞培養室の段差の深さと下面又は上面の底面積を大きくすればよい。例えば、細胞培養室の段差の深さは流路の深さより大きくすることが好ましい。
【0010】
基体の材質としては、合成石英基板やパイレックス(Corning Glass Works社(米国)の登録商標)ガラス基板などのガラス基板を初め、シリコン基板、耐対薬品性のあるプラスチックなどを用いることができる。
そのような基板に流路、細胞培養室及び貫通穴を形成するには、半導体製造技術を基盤とするマイクロマシニング技術を用いることができる。
【0011】
細胞培養室に細胞を捕捉しやするするために、細胞培養室の内面には細胞の付着力を高める化学修飾が施されていることが好ましい。そのような化学修飾としては、従来から培養容器に施されていた方法を利用することができ、例えば、コラーゲンコート、ポリ−L−リジンコート、ゼラチンコートなどがある。
【0012】
本発明のセルを製造する方法の一例は、接合面に流路等を形成した基板を張り合わせることである。
接合する2枚の基板の両方に加工をすることは可能であるので、例えばカバーとなる基板に流路を形成し、ベースとなる基板に細胞培養室を形成した上でこれらの基板を接合することによって本発明のセルを作製することができる。そのようにして作製したセルは、基体が2枚の基板からなり、上側の基板にはその表面に流路が底をもつ溝として形成され、下側の基板にはその表面に細胞培養室が凹部として形成され、両基板が流路と細胞培養室が内側となるように接合されており、上側の基板に液出入口が設けられているものである。この形態では細胞培養室の底面は流路よりも低い位置にくる。
【0013】
この形態のセルでは、基板に流路溝と細胞培養室のための凹部を形成する加工工程において、一方の基板に流路溝、他方の基板に細胞培養室のための凹部を形成することになるので、それぞれの基板に深さの一定な溝や凹部を形成するだけですみ、加工が容易である。
【0014】
また、接合する2枚の基板の一方に流路と細胞培養室をともに形成することもできる。流路と細胞培養室をともに下側の基板に形成して作製したセルは、上側の基板には前記液出入口が設けられ、下側の基板には同一表面に、流路が底をもつ溝として形成され、かつ細胞培養室が流路よりも深い底をもつ凹部として形成され、両基板が流路と細胞培養室が内側となるように接合されているものである。この形態でも細胞培養室の底面は流路よりも低い位置にくる。
【0015】
流路と細胞培養室をともに上側の基板に形成して作製したセルは、上側基板には同一表面に、流路が底をもつ溝として形成され、かつ細胞培養室が流路よりも深い底をもつ凹部として形成され、下側基板は平坦な表面をもつ基板であり、流路、細胞培養室、及び下側基板の平坦面が内側となるように両基板が接合されおり、上側の基板に液出入口が設けられているものである。この形態では細胞培養室の底面は流路よりも高い位置にくる。
【0016】
これらの形態において、細胞培養室の底面又は上面は流路とは異なる高さに形成されるので、細胞培養室の底面又は上面にのみ細胞を捕捉しやするするためにの化学修飾を施こし、流路にはその化学修飾を施さないようにすることが好ましい。
【0017】
本発明のセルは3枚の基板を張り合わせて作製することもできる。そのような本発明のセルの一形態は、最上層基板にはその表面に流路が底をもつ溝として形成され、中間基板には細胞培養室が貫通穴として形成され、最下層基板が平坦な表面をもつ基板であり、これらの3枚の基板が中間基板を間に挟み、最上層基板の流路形成面と最下層基板の平坦面が内側となるように接合されており、最上層基板に液出入口が設けられているものである。この形態では細胞培養室は流路よりも低い位置にくる。
【0018】
3枚の基板を張り合わせて作製した他の形態のセルは、最上層基板には液出入口が設けられ、中間基板にはその表面に流路が底をもつ溝として形成され、細胞培養室が貫通穴として形成され、最下層基板が平坦な表面をもつ基板であり、これらの3枚の基板が中間基板を間に挟み、中間基板の流路形成面が最上層基板に対向し、最下層基板の平坦面が内側となるように接合されているものである。この形態でも細胞培養室は流路よりも低い位置にくる。
【0019】
3枚の基板を張り合わせて作製したさらに他の形態のセルは、最上層基板が平坦な表面をもつ基板であり、中間基板にはその表面に流路が底をもつ溝として形成され、細胞培養室が貫通穴として形成され、最下層基板も平坦な表面をもつ基板であり、これらの3枚の基板が中間基板を間に挟み、中間基板の流路形成面が最下層基板の平坦面に対向し、最上層基板の平坦面が内側となって細胞培養室の貫通穴を塞ぐように接合されており、中間基板に前記液出入口が設けられているものである。この形態では細胞培養室は流路よりも高い位置にくる。
【0020】
3枚の基板を張り合わせて作製したさらに他の形態のセルは、最上層基板が平坦な表面をもつ基板であり、中間基板には細胞培養室が貫通穴として形成され、最下層基板の表面には流路が底をもつ溝として形成され、これらの3枚の基板が中間基板を間に挟み、最下層基板の流路形成面が内側となり、最上層基板の平坦面が内側となって細胞培養室の貫通穴を塞ぐように接合されており、中間基板に液出入口が設けられているものである。この形態でも細胞培養室は流路よりも高い位置にくる。
【0021】
3枚の基板を張り合わせて作製したこれらのセルにおいては、流路が存在する面とは反対側の面において中間基板に接合される基板の面のうち細胞培養室の内面となる面には上記に例示したような細胞付着力を高める化学修飾が施されているか、又は流路が存在する面とは反対側の面において中間基板に接合されて細胞培養室を構成する基板として中間基板よりも細胞付着力の高い材質からなるものを使用するのが好ましい。細胞付着力の高い材質からなる基板としては、例えばポリスチレンのようなプラスチック材料、表面状態を制御したガラス板などを用いることもできる。
【0022】
また、3枚の基板を張り合わせて作製したこれらのセルにおいては、流路が存在する面とは反対側の面において前記中間基板に接合されて細胞培養室を構成する基板の厚さは、光学顕微鏡観察に適した厚さ、例えば、0.15mm程度に設定されているのが好ましい。
【0023】
基体が3枚の基板からなるこれらの形態のセルの場合には、細胞培養室の段差の深さは中間の基板の厚さにより規定されるため、その中間の基板の厚さを選択したり、細胞培養室部分の厚さを調整することにより細胞培養室の段差の深さを任意に設定することができる。
【0024】
以下に図面を参照して本発明をより具体的に説明する。
図1は本発明で実現するセルの第1の実施例であり、2枚の基板を接合したものである。(A1)は上側基板1の外側となる面の平面図、(A2)は同基板1の内側となる面の平面図、(B1)は下側基板2の内側となる面の平面図、(B2)は同基板2の外側となる面の平面図、(C1)は完成したセルの平面図、(C2)は同セルのX−X線位置での断面図、(C3)は同セルのY−Y線位置での断面図である。
【0025】
本図において1,2はガラス基板、例えば合成石英基板である。ガラス基板1の片面には、数100μm以下の幅、深さを持つ液体試料用流路として用いる微小な流路溝6と試料導入及び排出のための液出入口の穴3,4が形成されている。
【0026】
一方、ガラス基板2には流路と同程度の深さで直径が1mm程度の円形凹部からなる細胞培養室5が形成されている。
基板1の流路溝6が形成された面と基板2の細胞培養室5が形成された面が向かい合わせて密着させられ液密に接合されて、内部に液体試料用の流路溝6及び細胞培養室5をもつチップ型セルが形成されている。
ガラス基板の接合は、後の製造方法で説明するように、例えばフッ酸溶液による接合などの手段を用いることができる。
【0027】
貫通穴3,4の形状は実施例では上方になるほど広くなるようなテーパー形状に形成されているので、試料溶液の注入や排出の処理が容易になる。しかし、貫通穴3,4の形状はこのようなテーパー形状に限らず、垂直な壁面をもつ穴であってもよい。以下の実施例においても同様である。
【0028】
このような構成のセルにおいて、基板1が上側、基板2が下側になるように配置し、導入穴3から細胞を含んだ溶液を流し込むと、溶液は流路溝6に沿って流れ、細胞は排出穴4の方向に流される。この際、細胞培養室5で著しく流速が減少し、かつ細胞培養室5は流路溝6より下方に配置されているために、細胞は細胞培養室5にトラップされる。細胞培養室5は、流路溝6の底面より下方に存在し、また、細胞培養室5では液体の流速が減少しているために、細胞培養室5の底に沈んだ細胞には液体の流れる力が加わりにくく、底面への接着が促進される。
【0029】
この実施例のセルで、例えば流路6は幅が0.1mm、深さが0.05mm、細胞培養室5は直径1mmの円形、深さが0.05mmであったとすると、細胞培養室5は流路6に対してかなり大きな容量となるため、この部分では溶液の流れが非常に遅くなる。このため、この場所に細胞をトラップすることが可能となる。また、細胞培養室5の底に沈んだ細胞の付近は非常に静かな環境となり細胞が壁面に接着しやすい。この程度のサイズの細胞培養室5であれば、従来の系に比べて十分小さく、マイクロチップの特徴である微小空間を保つことができる。この実施例のように、流路6に対しては十分大きな容量であり、かつ微小空間の特徴を崩さない程度の細胞培養室5を形成することによって、微小空間に細胞をトラップし、かつ増殖させることが可能なマイクロチップを実現できる。
【0030】
この条件でも細胞培養室5における細胞の接着が不十分な場合には、化学薬品を用いて流路6内面及び細胞培養室5内面の改質を行なうことにより、接着を促進することが可能である。
【0031】
さらに、両基板1,2の接合前にこの細胞培養室5のみ内面の化学修飾を行い、細胞が接着しやすい条件を整えることも可能である。そのような化学修飾の例は、コラーゲンコート、ポリ−L−リジンコート、ゼラチンコートなどである。細胞培養室5の底面にそのような化学修飾を施せば、細胞培養室5に細胞が接着しやすくなって培養に好都合になる。
【0032】
この実施例の製造方法を以下に簡単に説明する。他の実施例のセルも同様の方法により製造することができる。
ガラス基板を用いる場合を例にして、本発明セルの製造方法の一例を簡単に説明する。
【0033】
ガラス基板1,2に流路6や細胞培養室5のための溝又は凹部を形成するには、洗浄したガラス基板1,2に薄膜形成装置(例えばスパッタ成膜装置)にてエッチング保護膜、例えばシリコン(Si)薄膜を形成し、その上にそのエッチング保護膜をパターニングするためのフォトレジスト層を形成する。
【0034】
次に、フォトマスクを用いてフォトレジストを露光し、続いて現像してフォトレジストをパターニングする。フォトレジストの露光は、一般に半導体装置の製造に用いられているアライナを用いて行なうことができる。
【0035】
次に、フォトレジストのパターンをマスクとしてエッチング保護膜をパターニングする。エッチング保護膜がシリコンであれば、SFガス中での高周波プラズマを用いたドライエッチングなどを用いることができる。
【0036】
次に、バターニングされたエッチング保護膜及びフォトレジストをマスクとして、ガラス基板1,2をエッチングして溝や凹部を形成する。ガラス基板1,2のエッチングには、例えば46%フッ酸水溶液をエッチング液として使用することができる。
その後、フォトレジストを除去し、エッチング保護膜をエッチング除去する。
【0037】
ガラス基板1に貫通穴3,4を開けるための加工は、例えばサンドブラスト等により行うことができる。
このようにして所定の加工が施されて準備されたガラス基板1,2を重ね合わせて接合する。接合方法の一例として、例えば1%のフッ酸水溶液をガラス基板の界面に介在させ、必要に応じて1MPa程度の荷重を印加しつつ、室温で24時間程度放置する方法を挙げることができる。
【0038】
図2は2枚の基板からなる第2の実施例を示す。(A1)は上側基板1aの外側となる面の平面図、(A2)は同基板1aの内側となる面の平面図、(B1)は下側基板2aの内側となる面の平面図、(B2)は同基板2aの外側となる面の平面図、(C1)は完成したセルの平面図、(C2)は同セルのX−X線位置での断面図、(C3)は同セルのY−Y線位置での断面図である。
【0039】
この実施例も図1の実施例と同様に2枚の基板1a,2aを接合したものである。この実施例では、ガラス基板1aには試料導入及び排出のための穴3,4のみが形成されている。一方、ガラス基板2aには数100μm以下の幅、深さを持つ流路溝6と、流路溝6と同程度又はそれよりもさらに深く、直径が1mm程度の円形凹部からなる細胞培養室5aが同一面に形成されている。
【0040】
そして、基板1aの内側となる面と基板2aの流路溝6及び細胞培養室5aが形成された面を向かい合わせて密着させ、第1の実施例と同様に接合させられて、内部に液体試料用の流路溝6及び細胞培養室5aをもつチップ型セルが形成されている。
【0041】
図3は2枚の基板からなる第3の実施例を示す。
2枚の基板1b,2bを接合したものである。この実施例では、ガラス基板1bには試料導入及び排出のための穴3,4が貫通穴として形成され、さらに数100μm以下の幅、深さを持つ流路溝6と、流路溝6と同程度又はそれよりも深く、直径が1mm程度の円形凹部からなる細胞培養室5bが同一面に形成されている。一方、ガラス基板2bは平坦な基板である。基板1aの流路溝6及び細胞培養室5aが形成された面と基板2bの平坦面を向かい合わせて密着させ、第1の実施例と同様に接合させられて、内部に液体試料用の流路溝6及び細胞培養室5bをもつチップ型セルが形成されている。
この実施例では、細胞培養室5bは流路溝6よりも上側に形成されている。
【0042】
細胞の種類によっては比較的深い細胞培養室を必要とする場合がある。このような場合には、図4の第4の実施例に示されるように、基板を3枚用いて細胞培養室の深さを任意に設定できるようにすることができる。図4において、(A1)は最上層基板1の外側となる面の平面図、(A2)は同基板1の内側となる面の平面図、(B)は間に挟み込まれる基板10の平面図、(C)は最下層基板12の平面図、(D1)は完成したセルの平面図、(D2)は同セルのX−X線位置での断面図、(D3)は同セルのY−Y線位置での断面図である。
【0043】
最上層になる1枚目のガラス基板1には図1の実施例と同様に流路溝6とその両端の貫通穴3,4が形成されている。間に挟み込まれる2枚目のガラス基板10には細胞培養室7となる貫通穴が形成されている。最下層となる3枚目のガラス基板12は内側となる接合面が平坦なガラス基板である。
【0044】
基板1の流路溝6が内側になるように3枚の基板1,10,12を密着させて接合され、2枚目の基板10の厚みで深さが規定される細胞培養室7をもつセルが形成されている。
【0045】
また、図4の実施例のセルでは、1,2枚目の基板1,10を用いてマイクロバルブ等の部品を作り込んだ複雑な構造を形成した後に、化学修飾を必要な場所にのみ行なった3枚目基板12を接合することが可能となり、複雑な構造を持ち、かつ必要な場所のみが化学修飾されているセルを容易に得ることができる。
【0046】
図5は3枚の基板からなる第5の実施例を示したものである。
(A1)は最上層基板1aの外側となる面の平面図、(A2)は同基板1の内側となる面の平面図、(B)は間に挟み込まれる基板10aの平面図、(C)は最下層基板12の平面図、(D1)は完成したセルの平面図、(D2)は同セルのX−X線位置での断面図、(D3)は同セルのY−Y線位置での断面図である。
【0047】
最上層になる1枚目の基板1aには液出入口となる貫通穴3,4が形成されている。挟み込まれる2枚目の基板10aには流路溝6とその両端の間に細胞培養室7となる貫通穴が形成されている。最下層となる3枚目の基板12は内側となる接合面が平坦な基板である。基板10aの流路溝6が基板1a側を向くように3枚の基板1a,10a,12を密着させて接合され、細胞培養室7をもつセルが形成されている。
【0048】
この実施例においては、流路溝6と細胞培養室7は2枚目の基板10aに形成されている。2枚目の基板10aとして、例えばリソグラフィーとエッチングにより微細加工が容易なシリコン基板を用いる。シリコン基板の加工は半導体製造技術で確立されており、現在ではサブミクロン(1μm以下)の領域の微細加工も容易に行なうことができる。そして、1枚目の基板1aには流路形成のような加工は不要になるので、流路や細胞培養室の設計と関係なく、バルブ等を設計することができる。1枚目の基板1aとしては、例えばPDMS(ポリジメチルシロキサン)を用いる。また、3枚目の基板12は単に平坦な基板であればよいので、材質の面でも厚さの面でも選択の幅が広く、例えばパイレックス(登録商標)ガラスで、厚さが0.15mm程度のものを使用する。
【0049】
このような材質の組み合わせのセルは、顕微鏡観察に適したものとなる。また、パイレックス(登録商標)ガラスはシリコンよりも細胞が接着しやすい性質をもっており、流路がシリコン、細胞培養室の底面がパイレックス(登録商標)ガラスとなって細胞培養に適したものとなる。
【0050】
さらに1枚目の基板1aはあとから接合することができるので、まず2枚目の基板10aと3枚目の基板12とを接合し、細胞培養室の底面に細胞がより接着しやすくなるようにコラーゲン溶液などを滴下して化学修飾を施した後、2枚目の基板10aに1枚目の基板1aを接合することにより、化学修飾が容易になるという利点もある。
【0051】
図6は3枚の基板からなる第6の実施例を示したものである。この実施例では2枚目の基板10bとして全体の厚さが厚いものを使用し、細胞培養室が形成される部分のみ厚さを薄くすることにより、全体の機械的強度を高めたものである。
【0052】
図7は3枚の基板からなる第7の実施例を示したものである。
2枚目の基板10cには流路溝6とその両端の間に細胞培養室7となる貫通穴が形成され、液出入口となる貫通穴3,4も形成されている。最上層になる1枚目の基板1cと最下層となる3枚目の基板12bは接合面が平坦な基板である。基板10cの流路溝6が基板12b側を向き、1枚目の基板1cで細胞培養室7の上面を形成するように3枚の基板1c,10c,12bを密着させて接合され、細胞培養室7をもつセルが形成されている。
【0053】
図8は3枚の基板からなる第8の実施例を示したものである。
2枚目の基板10dには細胞培養室7となる貫通穴と液出入口となる貫通穴3,4が形成され、最下層となる3枚目の基板12cに流路溝6が形成されている。最上層になる1枚目の基板1cは接合面が平坦な基板である。基板12cの流路溝6が基板10d側を向き、1枚目の基板1cで細胞培養室7の上面を形成するように3枚の基板1c,10d,12cを密着させて接合され、細胞培養室7をもつセルが形成されている。
【0054】
図7、図8の実施例では細胞培養室7は流路6よりも高い位置に形成されている。また、基板1cとして細胞が接着しやすい材質を選んだり、基板1cの細胞培養室7内面を化学修飾することにより細胞培養により適したセルとすることができる。
【0055】
【発明の効果】
本発明のセルによれば、簡単な構造で特定の場所に細胞をトラップすることが可能になる。また、この場所においてのみ細胞を培養又は活動させる機能を持たせることができる。この構成によって、目的とする細胞の反応を容易に試験するためのチップが提供できる。
本発明のセルは、ごく単純な構造であり、様々な作製工程に導入できるため、バルブ等を組み込んだ複雑なマイクロチップにも展開可能である。
本発明のセルを用いることにより、試料の少量化、測定の高速化、多試料の同時測定等多くのメリットがある。
【図面の簡単な説明】
【図1】第1の実施例のセルを示す図であり、(A1)は上側基板の外側となる面の平面図、(A2)は同基板の内側となる面の平面図、(B1)は下側基板の内側となる面の平面図、(B2)は同基板の外側となる面の平面図、(C1)は完成したセルの平面図、(C2)は同セルのX−X線位置での断面図、(C3)は同セルのY−Y線位置での断面図である。
【図2】第2の実施例のセルを示す図であり、(A1)は上側基板の外側となる面の平面図、(A2)は同基板の内側となる面の平面図、(B1)は下側基板の内側となる面の平面図、(B2)は同基板の外側となる面の平面図、(C1)は完成したセルの平面図、(C2)は同セルのX−X線位置での断面図、(C3)は同セルのY−Y線位置での断面図である。
【図3】第3の実施例のセルを示す断面図である。
【図4】第4の実施例のセルを示す図であり、(A1)は最上層基板の外側となる面の平面図、(A2)は同基板の内側となる面の平面図、(B)は間に挟み込まれる基板の平面図、(C)は最下層基板の平面図、(D1)は完成したセルの平面図、(D2)は同セルのX−X線位置での断面図、(D3)は同セルのY−Y線位置での断面図である。
【図5】第5の実施例のセルを示す図であり、(A1)は最上層基板の外側となる面の平面図、(A2)は同基板の内側となる面の平面図、(B)は間に挟み込まれる基板の平面図、(C)は最下層基板の平面図、(D1)は完成したセルの平面図、(D2)は同セルのX−X線位置での断面図、(D3)は同セルのY−Y線位置での断面図である。
【図6】第6の実施例のセルを示す断面図である。
【図7】第7の実施例のセルを示す断面図である。
【図8】第8の実施例のセルを示す断面図である。
【符号の説明】
1,1a,1c,2,2a,10,10a,10b,10c,10d,12,12b,12c   基板
3,4   液出入口用貫通穴
5,7   細胞培養室
6   流路溝
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is an effective means for handling cells, and particularly relates to a biotechnology research using a microchip.
[0002]
[Prior art]
BACKGROUND ART In the fields of drug discovery, food, crop development, genetic engineering, and the like, research dealing with cells is widely performed. Conventionally, cells have been cultured in a culture place or the like placed in a petri dish or the like and used for various experiments. In order to elucidate the function of cells, it is necessary to examine the reactions caused by many drugs and introduced substances. Therefore, there is a demand for a method in which a specific reaction can be efficiently performed, and a result can be obtained with a large number of samples at a time and with a small amount of samples.
[0003]
In recent years, in the field of analytical chemistry, μTAS (Micro Total Analysis Systems) has been actively studied, and it is expected that a microchip is used to speed up analysis, reduce samples, and save solvents. It has been shown that a reaction in a micro space on a microchip can improve the reaction efficiency as compared with a reaction using a conventional chemical operation.
[0004]
[Problems to be solved by the invention]
However, in a normal microchannel, there is a problem that the cells do not adhere to the wall of the channel due to the flow of the solution, and it is difficult to culture the cells. There is also a method that promotes cell adhesion by modifying the chemical properties of the inner surface of the flow channel.However, in this case, the entire inner wall of the flow channel is modified, so cells must be cultured only at the intended location. Is difficult or difficult to apply when manufacturing a microchip having a complicated function.
An object of the present invention is to provide a cell in which cells can be trapped at a specific place in a microchip by a simple means and cell culture or the like can be performed at this place.
[0005]
[Means for Solving the Problems]
In the channel in the microchip, the solution is always flowing due to a slight difference in the liquid level. For this reason, the cells introduced into the flow channel are distributed at various positions in the flow channel, and the cells are not activated because they cannot be properly attached to the wall surface.
The microchip to which the present invention is directed refers to a microchip in which a flow path and other parts necessary for the reaction and treatment of a solution are formed on a substrate, and the size is not particularly limited.
[0006]
The present invention provides a cell culture chamber having a step in the flow path, and a cell having a structure in which the cross-sectional area is sufficiently large with respect to the cross-sectional area of the flow path. In this method, the cells can be easily trapped in the cell culture room by suppressing them, and processing such as cell culture in a microchip can be performed.
[0007]
That is, the cell of the present invention is provided with a flow path formed inside the base and through which liquid can flow, a liquid inlet and outlet connected to both ends of the flow path, and provided in the flow path inside the base, On the other hand, the base is integrally provided with a cell culture chamber having a step and having a cross-sectional area perpendicular to the flow direction of the liquid larger than the cross-sectional area of the flow path.
[0008]
[Action]
Since the cell culture chamber has a large capacity with respect to the flow path, the flow of the solution in the cell culture chamber is slow. Therefore, cells can be trapped in the cell culture room.
In addition, since the cell culture chamber has a step that is depressed downward or upward with respect to the flow path, the cells settled at the bottom of the cell culture chamber and the vicinity of the floating cells become a quiet environment and the cells easily adhere to the wall surface .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to increase the capacity of the cell culture chamber with respect to the flow path, the depth of the step and the bottom area of the lower surface or the upper surface of the cell culture chamber may be increased. For example, the depth of the step in the cell culture chamber is preferably larger than the depth of the flow path.
[0010]
Examples of the material of the base include a glass substrate such as a synthetic quartz substrate and a Pyrex (registered trademark of Corning Glass Works (USA)) glass substrate, a silicon substrate, and a plastic having chemical resistance.
In order to form a flow channel, a cell culture chamber, and a through hole in such a substrate, a micro-machining technology based on a semiconductor manufacturing technology can be used.
[0011]
In order to capture the cells in the cell culture chamber, it is preferable that the inner surface of the cell culture chamber is subjected to a chemical modification for enhancing the adhesion of the cells. As such a chemical modification, a method conventionally applied to a culture vessel can be used, and examples thereof include a collagen coat, a poly-L-lysine coat, and a gelatin coat.
[0012]
One example of a method for manufacturing the cell of the present invention is to bond a substrate having a flow path or the like formed on a bonding surface.
Since it is possible to process both of the two substrates to be bonded, for example, a flow path is formed in a substrate serving as a cover, and a cell culture chamber is formed in a substrate serving as a base, and then these substrates are bonded. Thereby, the cell of the present invention can be manufactured. In the cell thus produced, the base consists of two substrates, the upper substrate has a channel formed on the surface as a groove having a bottom, and the lower substrate has a cell culture chamber on the surface. It is formed as a recess, and both substrates are joined so that the flow path and the cell culture chamber are on the inside, and a liquid port is provided on the upper substrate. In this embodiment, the bottom surface of the cell culture chamber is lower than the flow channel.
[0013]
In the cell of this mode, in the processing step of forming a flow channel and a concave portion for the cell culture chamber on the substrate, the flow channel is formed on one substrate, and the concave portion for the cell culture room is formed on the other substrate. Therefore, it is only necessary to form a groove or a recess having a constant depth in each substrate, and processing is easy.
[0014]
In addition, both the flow path and the cell culture chamber can be formed on one of the two substrates to be joined. The cell manufactured by forming both the flow path and the cell culture chamber on the lower substrate has the above-mentioned liquid inlet / outlet provided on the upper substrate, and the lower substrate has the same surface on the same surface as the groove having the bottom on the flow path. And the cell culture chamber is formed as a concave portion having a deeper bottom than the flow path, and both substrates are joined so that the flow path and the cell culture chamber are inside. Also in this embodiment, the bottom surface of the cell culture chamber is at a position lower than the flow channel.
[0015]
The cell manufactured by forming both the flow path and the cell culture chamber on the upper substrate has the same surface on the upper substrate, the flow path is formed as a groove having a bottom, and the cell culture chamber has a deeper bottom than the flow path. The lower substrate is a substrate with a flat surface, the flow path, the cell culture chamber, and the two substrates are joined such that the flat surface of the lower substrate is inside, and the upper substrate is Is provided with a liquid inlet / outlet. In this embodiment, the bottom surface of the cell culture chamber is located higher than the flow channel.
[0016]
In these embodiments, since the bottom or top surface of the cell culture chamber is formed at a height different from the flow path, chemical modification to capture cells only on the bottom or top surface of the cell culture room is performed. Preferably, the channel is not subjected to the chemical modification.
[0017]
The cell of the present invention can also be manufactured by bonding three substrates. In one embodiment of such a cell of the present invention, a channel is formed as a groove having a bottom on the surface of the uppermost substrate, a cell culture chamber is formed as a through hole in the intermediate substrate, and the lowermost substrate is flat. These three substrates are joined so that the intermediate substrate is interposed therebetween, and the flow path forming surface of the uppermost substrate and the flat surface of the lowermost substrate are on the inner side. The substrate is provided with a liquid inlet / outlet. In this configuration, the cell culture chamber is located lower than the flow channel.
[0018]
In another type of cell formed by laminating three substrates, a liquid inlet / outlet is provided on the uppermost substrate, a channel is formed as a groove having a bottom on the surface of the intermediate substrate, and a cell culture chamber penetrates. The lowermost substrate is formed as a hole, and the lowermost substrate is a substrate having a flat surface. These three substrates sandwich the intermediate substrate, the flow path forming surface of the intermediate substrate faces the uppermost substrate, and the lowermost substrate is Are joined so that the flat surface of the inside faces inside. Also in this mode, the cell culture chamber is located at a position lower than the flow channel.
[0019]
Still another form of a cell formed by bonding three substrates is a substrate in which the uppermost substrate has a flat surface, and the intermediate substrate has a channel formed as a groove having a bottom on the surface thereof. The chamber is formed as a through hole, and the lowermost substrate is also a substrate having a flat surface. These three substrates sandwich the intermediate substrate, and the flow path forming surface of the intermediate substrate is on the flat surface of the lowermost substrate. They are joined so that the flat surface of the uppermost substrate faces the inside so as to close the through hole of the cell culture chamber, and the intermediate substrate is provided with the liquid inlet / outlet. In this configuration, the cell culture chamber is located higher than the flow channel.
[0020]
Still another type of cell manufactured by bonding three substrates is a substrate in which the uppermost substrate has a flat surface, a cell culture chamber is formed as a through-hole in the intermediate substrate, and a cell culture chamber is formed on the surface of the lowermost substrate. Is formed as a groove having a channel with a bottom. These three substrates sandwich the intermediate substrate, the channel forming surface of the lowermost substrate is on the inside, and the flat surface of the uppermost substrate is on the inside. It is joined so as to close the through hole of the culture chamber, and a liquid port is provided in the intermediate substrate. Also in this mode, the cell culture chamber is located at a position higher than the flow channel.
[0021]
In these cells prepared by laminating three substrates, the surface opposite to the surface where the flow path is present is bonded to the intermediate substrate and the surface of the substrate which is to be the inner surface of the cell culture chamber is The chemical modification that enhances the cell adhesion as exemplified in the example has been performed, or the surface opposite to the surface where the flow path is present is bonded to the intermediate substrate on the surface opposite to the intermediate substrate as the substrate constituting the cell culture chamber. It is preferable to use a material having a high cell adhesion. As the substrate made of a material having a high cell adhesion, for example, a plastic material such as polystyrene, a glass plate having a controlled surface state, or the like can be used.
[0022]
Further, in these cells manufactured by bonding three substrates, the thickness of the substrate that is joined to the intermediate substrate on the surface opposite to the surface where the flow path exists and constitutes the cell culture chamber is optically The thickness is preferably set to a thickness suitable for microscopic observation, for example, about 0.15 mm.
[0023]
In the case of these types of cells in which the base is composed of three substrates, the depth of the step in the cell culture chamber is determined by the thickness of the intermediate substrate. The depth of the step in the cell culture chamber can be set arbitrarily by adjusting the thickness of the cell culture chamber.
[0024]
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 shows a first embodiment of a cell realized by the present invention, in which two substrates are joined. (A1) is a plan view of a surface outside the upper substrate 1, (A2) is a plan view of a surface inside the same substrate 1, (B1) is a plan view of a surface inside the lower substrate 2, B2) is a plan view of a surface outside the substrate 2, (C1) is a plan view of a completed cell, (C2) is a cross-sectional view of the cell at the XX line position, and (C3) is a view of the cell. It is sectional drawing in the YY line position.
[0025]
In this figure, reference numerals 1 and 2 denote glass substrates, for example, synthetic quartz substrates. On one surface of the glass substrate 1, there are formed minute flow channel grooves 6 having a width and depth of several hundreds μm or less and used as liquid sample flow channels, and liquid inlet / outlet holes 3 and 4 for sample introduction and discharge. I have.
[0026]
On the other hand, a cell culture chamber 5 is formed in the glass substrate 2 and has a depth approximately the same as that of the flow channel and a circular recess having a diameter of about 1 mm.
The surface of the substrate 1 on which the flow channel 6 is formed and the surface of the substrate 2 on which the cell culture chamber 5 is formed are brought into close contact with each other and joined in a liquid-tight manner. A chip type cell having a cell culture chamber 5 is formed.
As described in a later manufacturing method, a method such as bonding with a hydrofluoric acid solution can be used for bonding the glass substrates.
[0027]
In the embodiment, the shape of the through holes 3 and 4 is tapered so as to become wider as it goes upward, so that the injection and discharge of the sample solution is facilitated. However, the shape of the through holes 3 and 4 is not limited to such a tapered shape, and may be a hole having a vertical wall surface. The same applies to the following embodiments.
[0028]
In the cell having such a configuration, the substrate 1 is arranged on the upper side and the substrate 2 is arranged on the lower side, and when a solution containing cells is poured from the introduction hole 3, the solution flows along the channel groove 6, Flows in the direction of the discharge hole 4. At this time, since the flow rate in the cell culture chamber 5 is significantly reduced, and the cell culture chamber 5 is disposed below the flow channel 6, the cells are trapped in the cell culture chamber 5. The cell culture chamber 5 exists below the bottom surface of the flow channel 6, and since the flow rate of the liquid in the cell culture chamber 5 is reduced, the cells submerged at the bottom of the cell culture chamber 5 A flowing force is not easily applied, and adhesion to the bottom surface is promoted.
[0029]
In the cell of this embodiment, for example, assuming that the flow path 6 has a width of 0.1 mm and a depth of 0.05 mm, and the cell culture chamber 5 has a circular shape with a diameter of 1 mm and a depth of 0.05 mm, Has a considerably large capacity with respect to the flow path 6, so that the flow of the solution is very slow in this portion. For this reason, it is possible to trap cells at this location. In addition, the vicinity of the cell submerged at the bottom of the cell culture chamber 5 becomes a very quiet environment, and the cell easily adheres to the wall surface. If the cell culture chamber 5 has such a size, the cell culture chamber 5 is sufficiently small as compared with the conventional system, and a micro space characteristic of a microchip can be maintained. As in this embodiment, by forming the cell culture chamber 5 having a sufficiently large capacity for the flow channel 6 and not destroying the characteristics of the micro space, the cells are trapped in the micro space and proliferated. A microchip that can be operated can be realized.
[0030]
If the adhesion of the cells in the cell culture chamber 5 is insufficient even under these conditions, the adhesion can be promoted by modifying the inner surface of the flow path 6 and the inner surface of the cell culture chamber 5 using a chemical. is there.
[0031]
Further, before the substrates 1 and 2 are joined, chemical modification of the inner surface of only the cell culture chamber 5 can be performed to adjust conditions under which cells can easily adhere. Examples of such chemical modifications are collagen coat, poly-L-lysine coat, gelatin coat and the like. When such a chemical modification is performed on the bottom surface of the cell culture chamber 5, the cells can easily adhere to the cell culture chamber 5, which is convenient for culture.
[0032]
The manufacturing method of this embodiment will be briefly described below. The cells of the other embodiments can be manufactured by the same method.
An example of a method for manufacturing the cell of the present invention will be briefly described using a case where a glass substrate is used as an example.
[0033]
In order to form a groove or a concave portion for the flow path 6 and the cell culture chamber 5 in the glass substrates 1 and 2, an etching protection film is formed on the cleaned glass substrates 1 and 2 using a thin film forming apparatus (for example, a sputtering film forming apparatus). For example, a silicon (Si) thin film is formed, and a photoresist layer for patterning the etching protection film is formed thereon.
[0034]
Next, the photoresist is exposed using a photomask, and subsequently developed to pattern the photoresist. The exposure of the photoresist can be performed using an aligner generally used for manufacturing a semiconductor device.
[0035]
Next, the etching protection film is patterned using the photoresist pattern as a mask. If the etching protection film is silicon, SF 6 Dry etching using high-frequency plasma in a gas can be used.
[0036]
Next, using the buttered etching protection film and photoresist as a mask, the glass substrates 1 and 2 are etched to form grooves and recesses. For etching the glass substrates 1 and 2, for example, a 46% hydrofluoric acid aqueous solution can be used as an etching solution.
Thereafter, the photoresist is removed, and the etching protection film is removed by etching.
[0037]
The processing for forming the through holes 3 and 4 in the glass substrate 1 can be performed by, for example, sandblasting.
The glass substrates 1 and 2 which have been subjected to the predetermined processing and thus prepared are overlapped and joined. As an example of the joining method, for example, a method in which a 1% hydrofluoric acid aqueous solution is interposed at the interface of the glass substrate and left at room temperature for about 24 hours while applying a load of about 1 MPa as necessary can be cited.
[0038]
FIG. 2 shows a second embodiment composed of two substrates. (A1) is a plan view of a surface outside the upper substrate 1a, (A2) is a plan view of a surface inside the same substrate 1a, (B1) is a plan view of a surface inside the lower substrate 2a, (B2) is a plan view of a surface outside the substrate 2a, (C1) is a plan view of a completed cell, (C2) is a cross-sectional view of the same cell taken along line XX, and (C3) is a view of the same cell. It is sectional drawing in the YY line position.
[0039]
In this embodiment, two substrates 1a and 2a are joined similarly to the embodiment of FIG. In this embodiment, only holes 3 and 4 for sample introduction and discharge are formed in the glass substrate 1a. On the other hand, the glass substrate 2a has a cell culture chamber 5a having a channel groove 6 having a width and a depth of several hundreds μm or less, and a circular recess having a diameter of about 1 mm, which is about the same as or deeper than the channel groove 6. Are formed on the same surface.
[0040]
Then, the surface on the inside of the substrate 1a and the surface of the substrate 2a where the flow channel 6 and the cell culture chamber 5a are formed face each other and are brought into close contact with each other, and are joined in the same manner as in the first embodiment. A chip type cell having a channel groove 6 for a sample and a cell culture chamber 5a is formed.
[0041]
FIG. 3 shows a third embodiment composed of two substrates.
It is obtained by joining two substrates 1b and 2b. In this embodiment, holes 3 and 4 for sample introduction and discharge are formed as through holes in the glass substrate 1b, and a flow channel 6 having a width and a depth of several hundred μm or less, A cell culture chamber 5b is formed on the same surface as a circular recess having a diameter of about 1 mm, which is about the same or deeper. On the other hand, the glass substrate 2b is a flat substrate. The flat surface of the substrate 2b is brought into close contact with the surface of the substrate 1a where the flow channel 6 and the cell culture chamber 5a are formed, and is brought into close contact with the substrate 2b. A chip type cell having a channel 6 and a cell culture chamber 5b is formed.
In this embodiment, the cell culture chamber 5b is formed above the flow channel 6.
[0042]
Depending on the type of cells, a relatively deep cell culture chamber may be required. In such a case, as shown in the fourth embodiment in FIG. 4, the depth of the cell culture chamber can be arbitrarily set using three substrates. 4, (A1) is a plan view of a surface outside the uppermost substrate 1, (A2) is a plan view of a surface inside the same substrate 1, and (B) is a plan view of a substrate 10 interposed therebetween. , (C) is a plan view of the lowermost substrate 12, (D1) is a plan view of the completed cell, (D2) is a cross-sectional view of the same cell taken along the line XX, and (D3) is a Y-line of the same cell. It is sectional drawing in the Y-line position.
[0043]
In the first glass substrate 1, which is the uppermost layer, a flow channel 6 and through holes 3 and 4 at both ends thereof are formed as in the embodiment of FIG. A through-hole serving as the cell culture chamber 7 is formed in the second glass substrate 10 sandwiched therebetween. The third glass substrate 12 serving as the lowermost layer is a glass substrate having a flat inner bonding surface.
[0044]
There is a cell culture chamber 7 in which three substrates 1, 10, and 12 are brought into close contact with each other such that the flow channel 6 of the substrate 1 is on the inside, and the depth is defined by the thickness of the second substrate 10. A cell is formed.
[0045]
Further, in the cell of the embodiment of FIG. 4, after forming a complicated structure in which components such as microvalves are formed using the first and second substrates 1 and 10, chemical modification is performed only at a necessary place. The third substrate 12 can be joined, and a cell having a complicated structure and chemically modified only at necessary places can be easily obtained.
[0046]
FIG. 5 shows a fifth embodiment including three substrates.
(A1) is a plan view of a surface outside the uppermost substrate 1a, (A2) is a plan view of a surface inside the same substrate 1, (B) is a plan view of a substrate 10a interposed therebetween, (C) Is a plan view of the lowermost substrate 12, (D1) is a plan view of a completed cell, (D2) is a cross-sectional view of the same cell at the XX line position, and (D3) is a cross-sectional view of the same cell at the YY line position. FIG.
[0047]
Through holes 3 and 4 serving as liquid inlets and outlets are formed in the first substrate 1a serving as the uppermost layer. In the second substrate 10a to be sandwiched, a through hole serving as a cell culture chamber 7 is formed between the channel groove 6 and both ends thereof. The third substrate 12 serving as the lowermost layer is a substrate having a flat inner bonding surface. The three substrates 1a, 10a, and 12 are bonded together so that the flow channel 6 of the substrate 10a faces the substrate 1a, and a cell having a cell culture chamber 7 is formed.
[0048]
In this embodiment, the flow channel 6 and the cell culture chamber 7 are formed on the second substrate 10a. As the second substrate 10a, for example, a silicon substrate that is easily microprocessed by lithography and etching is used. Processing of a silicon substrate is established by semiconductor manufacturing technology, and at present, fine processing of a submicron (1 μm or less) region can be easily performed. Since processing such as formation of a flow path is not required for the first substrate 1a, valves and the like can be designed regardless of the design of the flow path and the cell culture chamber. For example, PDMS (polydimethylsiloxane) is used as the first substrate 1a. Further, since the third substrate 12 is only required to be a flat substrate, there is a wide range of choices in both material and thickness. For example, Pyrex (registered trademark) glass having a thickness of about 0.15 mm Use those.
[0049]
A cell having such a combination of materials is suitable for microscopic observation. Further, Pyrex (registered trademark) glass has a property that cells are more easily adhered than silicon, and the flow path is silicon, and the bottom of the cell culture chamber is Pyrex (registered trademark) glass, which is suitable for cell culture.
[0050]
Further, the first substrate 1a can be bonded later, so that the second substrate 10a and the third substrate 12 are first bonded to make it easier for the cells to adhere to the bottom surface of the cell culture chamber. After the chemical modification is performed by dropping a collagen solution or the like on the first substrate, by joining the first substrate 1a to the second substrate 10a, there is also an advantage that the chemical modification becomes easy.
[0051]
FIG. 6 shows a sixth embodiment including three substrates. In this embodiment, a second substrate 10b having a large overall thickness is used, and only the portion where the cell culture chamber is formed is reduced in thickness, thereby increasing the overall mechanical strength. .
[0052]
FIG. 7 shows a seventh embodiment including three substrates.
In the second substrate 10c, a through hole serving as a cell culture chamber 7 is formed between the flow channel 6 and both ends thereof, and through holes 3 and 4 serving as liquid ports are also formed. The first substrate 1c serving as the uppermost layer and the third substrate 12b serving as the lowermost layer are substrates having a flat bonding surface. The three substrates 1c, 10c, and 12b are adhered to each other so that the flow channel 6 of the substrate 10c faces the substrate 12b and the first substrate 1c forms the upper surface of the cell culture chamber 7, and the cell culture is performed. A cell having a chamber 7 is formed.
[0053]
FIG. 8 shows an eighth embodiment including three substrates.
In the second substrate 10d, a through hole serving as a cell culture chamber 7 and through holes 3 and 4 serving as liquid inlets and outlets are formed, and a flow channel 6 is formed in a third substrate 12c serving as a lowermost layer. . The first substrate 1c to be the uppermost layer is a substrate having a flat bonding surface. The three substrates 1c, 10d, and 12c are bonded together so that the flow channel 6 of the substrate 12c faces the substrate 10d and forms the upper surface of the cell culture chamber 7 with the first substrate 1c. A cell having a chamber 7 is formed.
[0054]
In the embodiment shown in FIGS. 7 and 8, the cell culture chamber 7 is formed at a position higher than the flow path 6. In addition, a material more suitable for cell culture can be obtained by selecting a material to which cells easily adhere as the substrate 1c or by chemically modifying the inner surface of the cell culture chamber 7 of the substrate 1c.
[0055]
【The invention's effect】
According to the cell of the present invention, it is possible to trap a cell at a specific place with a simple structure. In addition, a function of culturing or activating cells can be provided only in this place. With this configuration, it is possible to provide a chip for easily testing the reaction of a target cell.
Since the cell of the present invention has a very simple structure and can be introduced into various manufacturing steps, it can be applied to a complicated microchip incorporating a valve or the like.
By using the cell of the present invention, there are many advantages such as a small sample size, a high-speed measurement, and simultaneous measurement of multiple samples.
[Brief description of the drawings]
FIG. 1 is a view showing a cell of a first embodiment, (A1) is a plan view of a surface outside an upper substrate, (A2) is a plan view of a surface inside the same substrate, and (B1). Is a plan view of a surface inside the lower substrate, (B2) is a plan view of a surface outside the same substrate, (C1) is a plan view of a completed cell, and (C2) is an XX line of the cell. (C3) is a cross-sectional view of the same cell taken along line YY.
FIG. 2 is a diagram showing a cell of a second embodiment, (A1) is a plan view of a surface outside the upper substrate, (A2) is a plan view of a surface inside the same substrate, and (B1). Is a plan view of a surface inside the lower substrate, (B2) is a plan view of a surface outside the same substrate, (C1) is a plan view of a completed cell, and (C2) is an XX line of the cell. (C3) is a cross-sectional view of the same cell taken along line YY.
FIG. 3 is a sectional view showing a cell according to a third embodiment.
4A and 4B are diagrams showing a cell according to a fourth embodiment, in which (A1) is a plan view of a surface outside the uppermost substrate, (A2) is a plan view of a surface inside the same substrate, and (B). ) Is a plan view of the substrate interposed therebetween, (C) is a plan view of the lowermost substrate, (D1) is a plan view of the completed cell, (D2) is a cross-sectional view of the same cell taken along line XX, (D3) is a sectional view of the same cell taken along line YY.
5A and 5B are diagrams showing a cell according to a fifth embodiment, in which (A1) is a plan view of a surface outside the uppermost substrate, (A2) is a plan view of a surface inside the same substrate, and (B). ) Is a plan view of the substrate interposed therebetween, (C) is a plan view of the lowermost substrate, (D1) is a plan view of the completed cell, (D2) is a cross-sectional view of the same cell taken along line XX, (D3) is a sectional view of the same cell taken along line YY.
FIG. 6 is a sectional view showing a cell according to a sixth embodiment.
FIG. 7 is a sectional view showing a cell according to a seventh embodiment.
FIG. 8 is a sectional view showing a cell according to an eighth embodiment.
[Explanation of symbols]
1, 1a, 1c, 2, 2a, 10, 10a, 10b, 10c, 10d, 12, 12b, 12c Substrate
3, 4 Through hole for liquid inlet / outlet
5,7 Cell culture room
6 Channel groove

Claims (13)

基体内部に形成され液体を流すことのできる流路と、
前記流路の両端部につながる液出入口と、
前記基体内部で前記流路の途中に設けられ、前記流路に対し段差をもち、液体の流通方向に直交する断面積が前記流路の断面積よりも大きくなった細胞培養室とを前記基体に一体的に備えていることを特徴とするセル。
A channel formed inside the substrate and capable of flowing a liquid,
A liquid port connected to both ends of the flow path,
A cell culture chamber, which is provided in the middle of the flow path inside the base, has a step with respect to the flow path, and has a cross-sectional area orthogonal to a flow direction of liquid larger than a cross-sectional area of the flow path; A cell characterized by being provided integrally with the cell.
前記細胞培養室の段差の深さが前記流路の深さより大きい請求項1に記載のセル。The cell according to claim 1, wherein the depth of the step in the cell culture chamber is larger than the depth of the flow path. 前記基体は2枚の基板からなり、上側基板にはその表面に前記流路が底をもつ溝として形成され、下側基板にはその表面に前記細胞培養室が凹部として形成され、両基板が前記流路と前記細胞培養室が内側となるように接合されており、前記上側の基板に前記液出入口が設けられている請求項1又は2に記載のセル。The base is composed of two substrates, the flow path is formed as a groove having a bottom on the surface of the upper substrate, the cell culture chamber is formed as a recess on the surface of the lower substrate, and both substrates are formed. 3. The cell according to claim 1, wherein the flow channel and the cell culture chamber are joined to be inside, and the liquid outlet is provided in the upper substrate. 4. 前記基体は2枚の基板からなり、上側基板には前記液出入口が設けられ、下側基板には同一表面に、前記流路が底をもつ溝として形成され、かつ前記細胞培養室が前記流路よりも深い底をもつ凹部として形成され、両基板が前記流路と前記細胞培養室が内側となるように接合されている請求項1又は2に記載のセル。The base is composed of two substrates, the upper substrate is provided with the liquid inlet / outlet, the lower substrate is formed on the same surface as a groove having a bottom, and the cell culture chamber is provided with the flow channel. 3. The cell according to claim 1, wherein the cell is formed as a concave portion having a bottom deeper than a channel, and both substrates are joined so that the channel and the cell culture chamber are on the inside. 4. 前記基体は2枚の基板からなり、上側基板には同一表面に、前記流路が底をもつ溝として形成され、かつ前記細胞培養室が前記流路よりも深い底をもつ凹部として形成され、下側基板は平坦な表面をもつ基板であり、前記流路、細胞培養室、及び前記下側基板の平坦面が内側となるように両基板が接合されおり、前記上側の基板に前記液出入口が設けられている請求項1又は2に記載のセル。The base body is composed of two substrates, the upper substrate is formed on the same surface, the channel is formed as a groove having a bottom, and the cell culture chamber is formed as a recess having a bottom deeper than the flow channel, The lower substrate is a substrate having a flat surface, and the flow path, the cell culture chamber, and the two substrates are joined such that the flat surface of the lower substrate is inside, and the liquid inlet / outlet is connected to the upper substrate. The cell according to claim 1, wherein a cell is provided. 前記細胞培養室の内面には細胞の付着力を高める化学修飾が施されている請求項3,4又は5に記載のセル。The cell according to claim 3, 4 or 5, wherein the inner surface of the cell culture chamber is subjected to a chemical modification for enhancing cell adhesion. 前記基体は3枚の基板からなり、最上層基板にはその表面に前記流路が底をもつ溝として形成され、中間基板には細胞培養室が貫通穴として形成され、最下層基板は平坦な表面をもつ基板であり、これらの3枚の基板が前記中間基板を間に挟み、前記最上層基板の流路形成面と前記最下層基板の平坦面が内側となるように接合されており、前記最上層基板に前記液出入口が設けられている請求項1又は2に記載のセル。The base is composed of three substrates, the uppermost substrate has the channel formed as a groove having a bottom on its surface, the intermediate substrate has a cell culture chamber formed as a through hole, and the lowermost substrate has a flat surface. A substrate having a surface, and these three substrates are joined so that the intermediate substrate is interposed therebetween, and the flow path forming surface of the uppermost substrate and the flat surface of the lowermost substrate are inside, 3. The cell according to claim 1, wherein the liquid port is provided in the uppermost substrate. 前記基体は3枚の基板からなり、最上層基板には前記液出入口が設けられ、中間基板にはその表面に前記流路が底をもつ溝として形成され、細胞培養室が貫通穴として形成され、最下層基板は平坦な表面をもつ基板であり、これらの3枚の基板が前記中間基板を間に挟み、前記中間基板の流路形成面が最上層基板に対向し、前記最下層基板の平坦面が内側となるように接合されている請求項1又は2に記載のセル。The base is composed of three substrates, the uppermost substrate is provided with the liquid inlet / outlet, the intermediate substrate is formed with a groove having a bottom on its surface, and the cell culture chamber is formed as a through hole. The lowermost substrate is a substrate having a flat surface, these three substrates sandwich the intermediate substrate, the flow path forming surface of the intermediate substrate faces the uppermost substrate, and the lowermost substrate The cell according to claim 1, wherein the cell is joined such that the flat surface is on the inside. 前記基体は3枚の基板からなり、最上層基板は平坦な表面をもつ基板であり、中間基板にはその表面に前記流路が底をもつ溝として形成され、細胞培養室が貫通穴として形成され、最下層基板も平坦な表面をもつ基板であり、これらの3枚の基板が前記中間基板を間に挟み、前記中間基板の流路形成面が前記最下層基板の平坦面に対向し、前記最上層基板の平坦面が内側となって細胞培養室の貫通穴を塞ぐように接合されており、前記中間基板に前記液出入口が設けられている請求項1又は2に記載のセル。The substrate is composed of three substrates, the uppermost substrate is a substrate having a flat surface, the intermediate substrate is formed as a groove having a bottom on the surface thereof, and the cell culture chamber is formed as a through hole. The lowermost substrate is also a substrate having a flat surface, these three substrates sandwich the intermediate substrate, the flow path forming surface of the intermediate substrate faces the flat surface of the lowermost substrate, 3. The cell according to claim 1, wherein the uppermost substrate is joined so that a flat surface of the uppermost substrate faces the inside to close a through hole of the cell culture chamber, and the liquid inlet / outlet is provided in the intermediate substrate. 前記基体は3枚の基板からなり、最上層基板は平坦な表面をもつ基板であり、中間基板には前記細胞培養室が貫通穴として形成され、最下層基板の表面には前記流路が底をもつ溝として形成され、これらの3枚の基板が前記中間基板を間に挟み、前記最下層基板の流路形成面が内側となり、前記最上層基板の平坦面が内側となって細胞培養室の貫通穴を塞ぐように接合されており、前記中間基板に前記液出入口が設けられている請求項1又は2に記載のセル。The substrate is composed of three substrates, the uppermost substrate is a substrate having a flat surface, the cell culture chamber is formed as a through hole in the intermediate substrate, and the flow channel is formed on the surface of the lowermost substrate. These three substrates sandwich the intermediate substrate, the flow path forming surface of the lowermost substrate is on the inner side, and the flat surface of the uppermost substrate is on the inner side, and the cell culture chamber is formed. 3. The cell according to claim 1, wherein the cell is joined so as to close the through hole, and the liquid inlet / outlet is provided in the intermediate substrate. 4. 前記流路が存在する面とは反対側の面において前記中間基板に接合される基板の面のうち前記細胞培養室の内面となる面に細胞付着力を高める化学修飾が施されている請求項7から10のいずれかに記載のセル。The surface opposite to the surface where the flow path is present is chemically modified to enhance cell adhesion on a surface to be an inner surface of the cell culture chamber among surfaces of the substrate bonded to the intermediate substrate. 11. The cell according to any one of 7 to 10. 前記流路が存在する面とは反対側の面において前記中間基板に接合されて前記細胞培養室を構成する基板が前記中間基板よりも細胞付着力の高い材質からなる請求項7から10のいずれかに記載のセル。The substrate which is joined to the intermediate substrate on a surface opposite to a surface where the flow path exists and which constitutes the cell culture chamber is made of a material having a higher cell adhesive force than the intermediate substrate. The cell described in Crab. 前記流路が存在する面とは反対側の面において前記中間基板に接合されて前記細胞培養室を構成する基板の厚さは、光学顕微鏡観察に適した厚さに設定されている請求項7から12のいずれかに記載のセル。The thickness of a substrate which is joined to the intermediate substrate on a surface opposite to a surface where the flow path exists and which constitutes the cell culture chamber is set to a thickness suitable for optical microscope observation. 13. The cell according to any one of items 1 to 12.
JP2003069034A 2002-03-29 2003-03-14 Cell used for treating cell Pending JP2004000163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069034A JP2004000163A (en) 2002-03-29 2003-03-14 Cell used for treating cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002094312 2002-03-29
JP2003069034A JP2004000163A (en) 2002-03-29 2003-03-14 Cell used for treating cell

Publications (1)

Publication Number Publication Date
JP2004000163A true JP2004000163A (en) 2004-01-08

Family

ID=30446333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069034A Pending JP2004000163A (en) 2002-03-29 2003-03-14 Cell used for treating cell

Country Status (1)

Country Link
JP (1) JP2004000163A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029824A (en) * 2004-07-12 2006-02-02 Olympus Corp Analysis system of biological material and separation method of biological material
WO2006022092A1 (en) * 2004-08-25 2006-03-02 Matsushita Electric Industrial Co., Ltd. Probe for measuring cell potential
JP2006069547A (en) * 2004-08-31 2006-03-16 Pentax Corp Container for biological sample
EP1762608A1 (en) 2005-09-09 2007-03-14 Fujitsu Limited Petri dish for trapping cell
JP2007315763A (en) * 2006-05-23 2007-12-06 Aichi Tokei Denki Co Ltd Electromagnetic flow measuring apparatus
WO2007145342A1 (en) * 2006-06-16 2007-12-21 Absize Inc. Microchip for cell sampling and method of cell sampling
WO2007145341A1 (en) * 2006-06-16 2007-12-21 Absize Inc. Microchip for cell alignment and method of cell alignment
JP2009106169A (en) * 2007-10-26 2009-05-21 Univ Soka Cell culturing method using microchamber array and cell culturing apparatus therefor
JP2010011814A (en) * 2008-07-04 2010-01-21 Japan Science & Technology Agency Cultured cell observation chamber and use thereof
WO2010061201A2 (en) * 2008-11-26 2010-06-03 Ucl Business Plc Microfluidic device
JP2010217145A (en) * 2009-03-19 2010-09-30 Sekisui Chem Co Ltd Microchip and microchip set
US8062882B2 (en) 2005-03-31 2011-11-22 Fujitsu Limited Apparatus for capturing cell
JP2012095550A (en) * 2010-10-29 2012-05-24 Sony Corp Cell sorting apparatus, cell sorting chip, and cell sorting method
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
JP2014171389A (en) * 2013-03-05 2014-09-22 Shimadzu Corp Cell culture device
WO2020095849A1 (en) * 2018-11-07 2020-05-14 ウシオ電機株式会社 Cell culturing chip and production method therefor
CN112567015A (en) * 2018-08-21 2021-03-26 优志旺电机株式会社 Cell culture substrate and cell culture method using same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
JP2006029824A (en) * 2004-07-12 2006-02-02 Olympus Corp Analysis system of biological material and separation method of biological material
JP4679847B2 (en) * 2004-07-12 2011-05-11 オリンパス株式会社 Cell analysis method
US7736477B2 (en) 2004-08-25 2010-06-15 Panasonic Corporation Probe for measuring electric potential of cell
WO2006022092A1 (en) * 2004-08-25 2006-03-02 Matsushita Electric Industrial Co., Ltd. Probe for measuring cell potential
JP2006069547A (en) * 2004-08-31 2006-03-16 Pentax Corp Container for biological sample
JP4490768B2 (en) * 2004-08-31 2010-06-30 Hoya株式会社 Biosample container
US8062882B2 (en) 2005-03-31 2011-11-22 Fujitsu Limited Apparatus for capturing cell
EP1762608A1 (en) 2005-09-09 2007-03-14 Fujitsu Limited Petri dish for trapping cell
JP2007315763A (en) * 2006-05-23 2007-12-06 Aichi Tokei Denki Co Ltd Electromagnetic flow measuring apparatus
WO2007145341A1 (en) * 2006-06-16 2007-12-21 Absize Inc. Microchip for cell alignment and method of cell alignment
WO2007145342A1 (en) * 2006-06-16 2007-12-21 Absize Inc. Microchip for cell sampling and method of cell sampling
JP2007330202A (en) * 2006-06-16 2007-12-27 Ab Size:Kk Microchip for cell arrangement and method for arranging cell
JP2007330201A (en) * 2006-06-16 2007-12-27 Ab Size:Kk Microchip for collecting cell and method for collecting cell
JP2009106169A (en) * 2007-10-26 2009-05-21 Univ Soka Cell culturing method using microchamber array and cell culturing apparatus therefor
JP2010011814A (en) * 2008-07-04 2010-01-21 Japan Science & Technology Agency Cultured cell observation chamber and use thereof
WO2010061201A3 (en) * 2008-11-26 2010-09-10 Ucl Business Plc Microfluidic device
WO2010061201A2 (en) * 2008-11-26 2010-06-03 Ucl Business Plc Microfluidic device
US11033897B2 (en) 2008-11-26 2021-06-15 Ucl Business Plc Microfluidic device
JP2010217145A (en) * 2009-03-19 2010-09-30 Sekisui Chem Co Ltd Microchip and microchip set
JP2012095550A (en) * 2010-10-29 2012-05-24 Sony Corp Cell sorting apparatus, cell sorting chip, and cell sorting method
JP2014171389A (en) * 2013-03-05 2014-09-22 Shimadzu Corp Cell culture device
CN112567015A (en) * 2018-08-21 2021-03-26 优志旺电机株式会社 Cell culture substrate and cell culture method using same
WO2020095849A1 (en) * 2018-11-07 2020-05-14 ウシオ電機株式会社 Cell culturing chip and production method therefor
JP2020074709A (en) * 2018-11-07 2020-05-21 ウシオ電機株式会社 Cell culture chip and manufacturing method thereof
CN112955537A (en) * 2018-11-07 2021-06-11 优志旺电机株式会社 Cell culture substrate and method for producing same
JP7246041B2 (en) 2018-11-07 2023-03-27 ウシオ電機株式会社 CELL CULTURE CHIP AND MANUFACTURING METHOD THEREOF

Similar Documents

Publication Publication Date Title
JP2004000163A (en) Cell used for treating cell
US10900886B2 (en) Microfluidic particle analysis method, device and system
Araci et al. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves
US6951632B2 (en) Microfluidic devices for introducing and dispensing fluids from microfluidic systems
JP4931330B2 (en) Microfluidic structure, in particular a method for producing a biochip and the structure obtained by said method
US8343756B2 (en) Devices and methods for cell manipulation
US20100303687A1 (en) Fluidic devices with diaphragm valves
US20100003666A1 (en) Microfluidic Methods for Diagnostics and Cellular Analysis
Shikida et al. Development of an enzymatic reaction device using magnetic bead-cluster handling
US10471430B2 (en) Substrate for supporting liquid sample, an assembly comprising such a substrate and use thereof
US20110240127A1 (en) Fluidic Article Fabricated In One Piece
EP1400600A1 (en) Integrated device for biological analyses
US20120181460A1 (en) Valves with Hydraulic Actuation System
Lu et al. New valve and bonding designs for microfluidic biochips containing proteins
JP2009168824A (en) Parallel processing of microfluidic element
US20150299729A1 (en) Ultrahigh throughput microinjection device
JP2004180594A (en) Cell-culturing device
WO2004005507A1 (en) Polymerase chain reaction container and process for producing the same
Li et al. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection
Lipp et al. Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing
CN107262173A (en) PDMS micro-fluidic chips and the method that PDMS micro-fluidic chips are prepared based on wet etching
US20090075361A1 (en) Microfluidic Device and Method of Manufacturing the Microfluidic Device
Lee et al. Conformal hydrogel-skin coating on a microfluidic channel through microstamping transfer of the masking layer
Chartier et al. Fabrication of hybrid plastic-silicon microfluidic devices for individual cell manipulation by dielectrophoresis
CN112691709B (en) Fluid driving device, preparation method of fluid driving device and surface treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040225

RD02 Notification of acceptance of power of attorney

Effective date: 20040407

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20040407

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106