JP2003516216A - High concentration electrolyzed water production equipment - Google Patents

High concentration electrolyzed water production equipment

Info

Publication number
JP2003516216A
JP2003516216A JP2001530062A JP2001530062A JP2003516216A JP 2003516216 A JP2003516216 A JP 2003516216A JP 2001530062 A JP2001530062 A JP 2001530062A JP 2001530062 A JP2001530062 A JP 2001530062A JP 2003516216 A JP2003516216 A JP 2003516216A
Authority
JP
Japan
Prior art keywords
water
electrolyzed water
electrodes
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001530062A
Other languages
Japanese (ja)
Inventor
ジェ ドゥッ ムーン
Original Assignee
ジェ ドゥッ ムーン
エコエイド コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェ ドゥッ ムーン, エコエイド コーポレイション filed Critical ジェ ドゥッ ムーン
Publication of JP2003516216A publication Critical patent/JP2003516216A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】 高濃度電解水製造装置が提供される。パラジウム(Pd)が含有された白金(Pt)合金を用いて一対の対向電極を形成することによって電極の寿命を延す。装置を高効率化し、高濃度電解水を発生するように、対向電極にスリットを形成することによって、水流速度と空間電荷効果を減少させる。矩形波パルス電圧を印加することによって、電気物理化学反応及び電解作用を促進する。印加されるパルス電圧の極性を交番させることによって、電極に不純物が付着することを防止する。水道水に塩を添加することによって、強アルカリ性水と強酸性水が得られる。更に、分離膜を除去することによって中性水が得られ、水素イオン濃度(pH)を調節することができる。 (57) [Summary] An apparatus for producing highly concentrated electrolyzed water is provided. By forming a pair of counter electrodes using a platinum (Pt) alloy containing palladium (Pd), the life of the electrodes can be extended. By forming a slit in the counter electrode to increase the efficiency of the device and generate highly concentrated electrolyzed water, the water flow velocity and the space charge effect are reduced. The application of the square-wave pulse voltage promotes the electrophysicochemical reaction and the electrolytic action. By alternating the polarity of the applied pulse voltage, it is possible to prevent impurities from being attached to the electrodes. By adding salt to tap water, strongly alkaline water and strongly acidic water can be obtained. Further, neutral water is obtained by removing the separation membrane, and the hydrogen ion concentration (pH) can be adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】【Technical field】

本発明は水中に設けられた分離膜の左右に対向電極を対向設置し、該対向電極
の材質をパラジウムを含有させた白金合金で形成して水中に電極の析出による消
耗が殆んど発生しないようにすることによって、電極の寿命を大幅に延長させた
高濃度電解水の製造装置に関する。また、本発明は、対向電極にスリットを設け
ることにより、あるいはこの対向電極の内部または外部に追加の対向電極を設け
ることによって、水流の速度と空間電荷効果を減少させ、電極の隔間を狭めた低
消費電力で高効率高濃度電解水の製造装置に関する。またこの対向電極に所定の
パルス電圧を印加して水中で効果的な高電圧放電と電解作用を引き起こし、水中
に高濃度のイオンと強酸化性物質を含有した高濃度電解水及び中性水を製造する
装置に関する。
According to the present invention, opposite electrodes are installed opposite to each other on the left and right sides of a separation membrane provided in water, and the material of the opposite electrodes is made of a platinum alloy containing palladium, so that the consumption of the electrodes hardly occurs in the water. By doing so, the present invention relates to an apparatus for producing high-concentration electrolyzed water in which the life of the electrode is greatly extended. The present invention also reduces the velocity of the water flow and the space charge effect by providing a slit in the counter electrode, or by providing an additional counter electrode inside or outside the counter electrode, thereby reducing the gap between the electrodes. The present invention relates to a low power consumption, high efficiency and high concentration electrolyzed water producing apparatus. In addition, a predetermined pulse voltage is applied to this counter electrode to cause an effective high-voltage discharge and electrolytic action in water, and high-concentration electrolyzed water and high-concentration water containing high-concentration ions and a strong oxidizer in water are generated. It relates to a device to be manufactured.

【0002】[0002]

【背景技術】[Background technology]

通常の電解水を発生させる方法は、水中に分離膜を設け、該分離膜の左右に白
金(Pt)がメッキされたチタン(Ti)板またはフェライト材質の平板形の対向
電極を設け、該対向電極間に直流(DC)電圧を印加して出口で酸性水とアルカ
リ性水を発生させる方法である。しかし、この場合電極の寿命が短く、十分に高
い電圧を印加できず効率も高くないために、高濃度の酸性水やアルカリ性水が得
られなかった。
A general method of generating electrolyzed water is to provide a separation membrane in water, and provide a titanium (Ti) plate plated with platinum (Pt) or a flat plate-shaped counter electrode made of a ferrite material on the left and right sides of the separation membrane. In this method, a direct current (DC) voltage is applied between the electrodes to generate acidic water and alkaline water at the outlet. However, in this case, the service life of the electrode was short, a sufficiently high voltage could not be applied, and the efficiency was not high, so that a high concentration of acidic water or alkaline water could not be obtained.

【0003】 上記した電解水の発生方法は、水中で、Ca++、Fe++、Mg++、Cu++を含
む金属ミネラルイオンのような陽イオン、又はCl、SiO2 、SO3 など
のような陰イオンを発生させるだけではなく、O、O3、H22、HClOなどの
ような強酸化性物質を発生させることから、極めて効果的且つ経済的な技術であ
り、殺菌消毒、脱臭、脱色など強力な酸化作用を用いて、上下水処理、食品保管
及び殺菌処理、農産物や魚物の殺菌処理、産業廃水処理、悪臭及び揮発性有機物
質(VOCs)処理、農薬代用、そして薬品や食品製造工程中の殺菌処理、ひい
ては医者の手の殺菌洗浄や、ナイフ、挟みなどの医療器具、及び胃膣内視鏡など
の医療装置の殺菌消毒用としても使用できるなど種々の分野に多様に応用できる
技術である。
The above-mentioned method of generating electrolyzed water is carried out in water by using cations such as metal mineral ions containing Ca ++ , Fe ++ , Mg ++ , Cu ++ , or Cl , SiO 2 , SO. 3 - not only generate the anion, such as, O, O 3, from H 2 O 2, to generate a strong oxidizing substance such as HClO, be a highly effective and economical techniques , Sterilization and disinfection, deodorization, decolorization, strong oxidization, water and sewage treatment, food storage and sterilization treatment, agricultural products and fish sterilization treatment, industrial wastewater treatment, odor and volatile organic substances (VOCs) treatment, pesticide It can be used as a substitute, and as a sterilizing treatment during the manufacturing process of medicines and foods, and as a result, for sterilizing and washing doctor's hands, medical instruments such as knives and scissors, and sterilizing and disinfecting medical devices such as gastrointestinal endoscopes. Can be applied in various fields It is surgery.

【0004】 このような多様な分野に適用するための通常の技術のうち、電気放電を用いて
発生させた空気オゾンを水中に混入させる方法は、散布器と送風機を使用しなけ
ればならないため、散布効率が悪い、オゾンの漏洩、システムの閉塞、騒音など
の技術的及び高価であるという経済的な問題がある。
Among the usual techniques for applying to various fields, the method of mixing air ozone generated by electric discharge into water requires the use of a spreader and a blower. There are technical and expensive economic problems such as poor spray efficiency, ozone leakage, system blockage, and noise.

【0005】 図1は、出力電解濃度が比較的低い従来の電解水製造装置(I)を示している
図である。給水管4と、電解水排水管6、8とが絶縁ケース9に接続され、絶縁
ケース9の内部には中心の分離膜2から適正な距離だけ離隔させて平行に対向し
て配置された平板電極1、3が設置されている。給水管4を通して供給される供
給水が、平板電極1、3間を通過する際に、印加される直流電圧(Vdc)により
電気分解され、酸性水とアルカリ性水が発生し、それぞれ排水管6、8を通して
電解水が排出される構成である。
FIG. 1 is a diagram showing a conventional electrolyzed water producing apparatus (I) having a relatively low output electrolysis concentration. A water supply pipe 4 and electrolyzed water drainage pipes 6 and 8 are connected to an insulating case 9, and flat plates are arranged inside the insulating case 9 so as to face each other in parallel with each other with a proper distance from the separation film 2 at the center. Electrodes 1 and 3 are installed. When the supply water supplied through the water supply pipe 4 passes between the flat plate electrodes 1 and 3, it is electrolyzed by the applied DC voltage (Vdc) to generate acidic water and alkaline water, respectively, and the drain pipe 6 and The electrolyzed water is discharged through 8.

【0006】 上記した従来の電解水製造装置(I)は、平板電極1、3において、図2に示
すような直流電圧(Vdc)が印加されるため、供給水が電気分解されて極めて弱
い酸性水とアルカリ性水が2つの平板電極1、3のそれぞれから発生するように
なっており、平板電極1、3間の間隔は、できる限り小さい印加直流電圧(Vdc
)で作動させるために極めて狭く、即ち0.01〜2mmに設定されている。
In the above-described conventional electrolyzed water producing apparatus (I), since the direct current voltage (Vdc) as shown in FIG. 2 is applied to the flat plate electrodes 1 and 3, the supplied water is electrolyzed to generate an extremely weak acidity. Water and alkaline water are generated from each of the two plate electrodes 1 and 3, and the distance between the plate electrodes 1 and 3 is as small as possible.
) Is very narrow, ie 0.01 to 2 mm.

【0007】 従来の電解水製造装置(I)は、高い直流電圧を印加できないため、電解水発
生能力が割合に低く、また給水量を相対的に減少させて印加直流電圧を増加させ
ても、多くのイオン及び強酸化性物質を発生させることができず、且つ平板電極
1、3間の狭い空間に多くの電流が流れることによって電流の2乗に比例した多
くの熱(電流によるジュール熱)を発生し、下記の反応式1のように強酸化性物
質の熱分解を促進する。従って、排出される電解水のオキシダント濃度を大幅に
増やすことはできなかった。 [反応式1] 2O3 → 3O2 ----(1) 4HClO → 2H22+2Cl2 ----(2) 2H22 → 2H2O+O2 ----(3)
Since the conventional electrolyzed water producing apparatus (I) cannot apply a high DC voltage, the electrolyzed water generating capacity is relatively low, and even if the applied DC voltage is increased by relatively reducing the water supply amount, Many ions and strong oxidative substances cannot be generated, and a large amount of current flows in a narrow space between the flat plate electrodes 1 and 3, so that a large amount of heat proportional to the square of the current (Joule heat due to the current) Is generated, and the thermal decomposition of the strongly oxidizing substance is promoted as shown in the following reaction formula 1. Therefore, the oxidant concentration of the discharged electrolyzed water could not be significantly increased. [Reaction Formula 1] 2O 3 → 3O 2 ---- (1) 4HClO → 2H 2 O 2 + 2Cl 2 ---- (2) 2H 2 O 2 → 2H 2 O + O 2 ---- (3)

【0008】 また、電解水製造装置の電極材料としてはフェライト、高純度白金(Pt)又
は白金(Pt)を蒸着させたチタン(Ti)を使用していることから、高い直流電
圧を印加する中型または大型の電解水製造装置においては電極の寿命が短かった
。その結果、上記した高濃度の電解水製造装置(I)は、高濃度電解水を製造す
ることができない。
[0008] Furthermore, since ferrite, high-purity platinum (Pt), or titanium (Ti) vapor-deposited with platinum (Pt) is used as the electrode material of the electrolyzed water manufacturing apparatus, a medium-sized product to which a high DC voltage is applied Alternatively, the life of the electrode was short in a large-sized electrolyzed water producing apparatus. As a result, the high-concentration electrolyzed water production apparatus (I) described above cannot produce high-concentration electrolyzed water.

【0009】[0009]

【発明の開示】DISCLOSURE OF THE INVENTION

上記した問題を解決するために、本発明は、通常の電解水製造装置の電極の構
造及び構成と、印加電源の形態、デューティ及び振幅と、電極材料とを改善する
ことにより、イオン及び強酸化性物質を多く含有した電解水及び中性水の製造装
置を提供することを目的としている。
In order to solve the above-mentioned problems, the present invention improves the structure and configuration of electrodes of a conventional electrolyzed water producing apparatus, the form of an applied power supply, the duty and the amplitude, and the electrode material to improve the ionic and strong oxidation. It is an object of the present invention to provide an apparatus for producing electrolyzed water and neutral water containing a large amount of a volatile substance.

【0010】 上記した目的を達成するため、強酸化性物質を発生させる電極即ち陽電極は、
水中への析出物をほとんど生じない白金(Pt)及びパラジウム(Pd)の合金から
製造される。若しくは、強酸化性物質発生電極の寿命を大幅に延長するために、
熱膨脹係数が類似した金属、例えば、デュメット(dumet)やアルミニウムの上
に強誘電体薄層が形成される。外部電極を平板状に形成し、内部電極を、水流が
流通する多数のスリットを有する平板形や、細帯片(small strip)型、細線(f
ine wire)型、又はメッシュ(mesh)型の電極で構成することにより、内部電極
間の水流速度と電極の間隔とを減少させた低消費電力の装置を実現できる。矩形
波パルス高電圧、またはこれに似ている波形を有するシーケンス制御されたパル
ス高電圧が、適正なデューティで電極間に印加されることによって、水道水中に
おける電極表面での酸素気体放電及び電解作用が促進される。さらに、印加パル
ス電圧を交番させることにより電極表面への固形不純物付着速度を大幅に低下さ
せ、供給水中に高濃度の電解水を生成させることは勿論、強酸化性物質の1つで
あるHClOを形成するために必要なCl含有添加物、例えばNaCl、KClのよ
うな試薬を添加して高濃度の強酸化性物質を溶存させた強酸性水、強アルカリ性
水及び中性水を得ることができる。
In order to achieve the above-mentioned object, an electrode for generating a strongly oxidizing substance, that is, a positive electrode is
It is manufactured from an alloy of platinum (Pt) and palladium (Pd), which produces almost no precipitates in water. Or, in order to significantly extend the life of the strongly oxidizing substance generating electrode,
A thin ferroelectric layer is formed on a metal having a similar coefficient of thermal expansion, for example, dumet or aluminum. The external electrode is formed into a flat plate shape, and the internal electrode is formed into a flat plate shape having a large number of slits through which water flows, a small strip type, or a thin wire (f
By using the ine wire type or the mesh type electrode, it is possible to realize a low power consumption device in which the water flow velocity between the internal electrodes and the distance between the electrodes are reduced. A square wave pulse high voltage, or a sequence-controlled pulse high voltage having a waveform similar to this, is applied between the electrodes with a proper duty, so that oxygen gas discharge and electrolytic action at the electrode surface in tap water are performed. Is promoted. Further, by alternating the applied pulse voltage, the deposition rate of solid impurities on the electrode surface is significantly reduced, and high concentration of electrolyzed water is generated in the feed water. Of course, HClO, which is one of the strong oxidizing substances, is added. A Cl-containing additive necessary for formation, for example, a reagent such as NaCl or KCl, can be added to obtain strong acidic water, strong alkaline water and neutral water in which a high concentration of a strong oxidizing substance is dissolved. .

【0011】 上記した本発明に係る電解水製造装置は、発生電解水の容量を増やすために本
発明の電解水製造装置を多数並列に設置したり、あるいは発生電解濃度を増加さ
せるために本発明の電解水製造装置を多数直列に設置して使用することができる
が、具体的な実施例は省略する。
The above-described electrolyzed water producing apparatus according to the present invention may be configured such that a large number of electrolyzed water producing apparatuses of the present invention are installed in parallel to increase the capacity of generated electrolyzed water, or that the electrolyzed water concentration of the present invention is increased. Although a number of the electrolyzed water producing devices can be installed and used in series, a concrete example will be omitted.

【0012】[0012]

【発明を実施するための最良の形態】BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の好ましい実施の形態を添付した図面に基づいて詳述する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

【0013】 従来の電解水製造装置(I)の出力電解水の濃度が低い問題を解決するために
、電解水が製造される対向電極にさらに高い電圧を印加して大電流が流れるよう
にする必要がある。
In order to solve the problem that the concentration of the output electrolyzed water of the conventional electrolyzed water producing apparatus (I) is low, a higher voltage is applied to the counter electrode where electrolyzed water is produced so that a large current flows. There is a need.

【0014】 図3に示されている本発明に係る電解水製造装置(II)において、矩形波パル
ス電圧Vp(図4)又は半波パルス電圧Vpac(図5)が採用され得る。
In the electrolyzed water manufacturing apparatus (II) according to the present invention shown in FIG. 3, a rectangular wave pulse voltage Vp (FIG. 4) or a half wave pulse voltage Vpac (FIG. 5) can be adopted.

【0015】 しかし、この場合、対向電極11、13の表面に給水中の不純物が大幅に付着
し、数十時間以内に電流が急激に減衰して電解水発生の中断を招く。この問題を
解決するためには電極11、13の極性を反転させることが必要である。
However, in this case, impurities in the feed water are largely adhered to the surfaces of the counter electrodes 11 and 13, and the current is rapidly attenuated within several tens of hours, resulting in interruption of generation of electrolyzed water. In order to solve this problem, it is necessary to reverse the polarities of the electrodes 11 and 13.

【0016】 即ち、陽電極13に負極性の電圧を印加し、陰電極11に正極性の電圧を印加
し、その後交互に入れ換える。よって、2つの対向電極11、13間の印加電源
極性を適正な時間間隔、即ち数十秒〜数十分の間隔で交番する手段が必要である
。その結果、電解水排水口も交互に入れ替わる。従って、入れ替わる電解水排水
口に対する手段、例えば電子弁を使用した自動変換装置などが必要となる。
That is, a negative voltage is applied to the positive electrode 13, a positive voltage is applied to the negative electrode 11, and then the electrodes are alternately switched. Therefore, a means for alternating the polarity of the applied power supply between the two opposing electrodes 11 and 13 at proper time intervals, that is, tens of seconds to tens of minutes is required. As a result, the electrolyzed water drainage ports are also replaced. Therefore, a means for replacing the electrolyzed water drainage port, such as an automatic conversion device using an electronic valve, is required.

【0017】 本発明に係る電解水製造装置(II)においては、図3に示されているように、
メッシュ型よりなる陽メッシュ電極13と陰メッシュ電極11が、分離膜12の
両側に狭い間隔でそれぞれ対向して設置されており、2つの電極11、13の表
面積をできるだけ広くし、間隔dを狭くして、2つの電極11、13間の電気抵
抗を減少させることにより、できる限り低電圧で効果的に電解できるようなって
いる。
In the electrolyzed water producing apparatus (II) according to the present invention, as shown in FIG.
The mesh type positive mesh electrode 13 and the negative mesh electrode 11 are installed on both sides of the separation membrane 12 so as to face each other with a narrow interval, and the surface areas of the two electrodes 11 and 13 are made as wide as possible and the interval d is made narrow. By reducing the electric resistance between the two electrodes 11 and 13, it is possible to effectively electrolyze at a voltage as low as possible.

【0018】 しかし、この場合2つの対向電極11、13は、間隔dが狭く配置されている
ため、この2つの電極11、13の間の水流が渦流となり、これによって2つの
電極11、13の周りに垂直に移動すべき電流が乱されて、生成された強酸化性
物質が分解され、電解効率が大幅に低下する。さらに、2つの電極11、13の
各々の反対側に移動する、空間電荷として働く逆の極性を持つイオンが、空間電
荷制限作用(space charge limitting action)を生じ、これによって電解作用
がさらに大きく減少する。
However, in this case, since the two opposing electrodes 11, 13 are arranged with a narrow distance d, the water flow between the two electrodes 11, 13 becomes a vortex, which causes the two electrodes 11, 13 to have a vortex flow. The current that should move vertically around is disturbed, the generated strong oxidant is decomposed, and the electrolysis efficiency is significantly reduced. Further, ions having opposite polarities acting as space charges, which move to the opposite sides of the two electrodes 11 and 13, respectively, cause a space charge limiting action, which further reduces the electrolytic action. To do.

【0019】 これらの問題は、図3に示すように、メッシュ型又はスリットを有する構造の
電極11、13によって、電極間隔dを小さくし、水流幅Dを大きくして、2つ
のメッシュ電極11、13間で生成された電解水がスリットを通過してより幅の
広い外側に流出されるようにして、電極間の水流速度と乱流とを低減することに
よって解決することができる。この場合、2つのメッシュ電極11、13間の間
隔dをさらに狭くすることができるので、低い印加電圧でも相対的にさらに高電
圧及び大電流状態で作動され、これによって、低消費電力で極めて効果的な水中
での酸素気体放電及び電解作用を引き起こさせることができる。その結果、電解
効率が大きく向上する。
As shown in FIG. 3, these problems are caused by the electrodes 11 and 13 having a mesh type or a structure having a slit to reduce the electrode spacing d and increase the water flow width D, thereby increasing the two mesh electrodes 11 and This can be solved by allowing the electrolyzed water generated between the electrodes 13 to pass through the slits and flow out to a wider outer side, thereby reducing the water flow velocity and turbulence between the electrodes. In this case, since the distance d between the two mesh electrodes 11 and 13 can be further narrowed, the device is operated in a relatively high voltage and large current state even at a low applied voltage, which is extremely effective in low power consumption. It is possible to cause an oxygen gas discharge and electrolytic action in specific water. As a result, electrolysis efficiency is greatly improved.

【0020】 電極間隔dは、様々な用途で要求される電解水の濃度及び容量に応じて、分離
膜12との電極間隔dを狭くしたり広くしたりすることによって、任意に決定さ
れ得る。
The electrode spacing d can be arbitrarily determined by narrowing or widening the electrode spacing d with the separation membrane 12 according to the concentration and capacity of electrolyzed water required for various applications.

【0021】 本発明に係る電解水製造装置(II)は、図3に示すように、スリットを有する
平板型電極11、13を含んで構成されていると説明した。しかし、陽電極13
を線、線型または細片帯型の円筒形電極に形成し、陰電極11をメッシュ型、小
片型または線型の同心の円筒形電極に形成するように変更して、電解水製造装置
を構成することもできる。この場合の具体的な実施の形態は省略する。
It has been described that the electrolyzed water producing apparatus (II) according to the present invention is configured to include the flat plate type electrodes 11 and 13 having slits as shown in FIG. However, the positive electrode 13
Is formed into a linear electrode, a linear electrode or a strip-shaped cylindrical electrode, and the negative electrode 11 is formed into a mesh-shaped, a small-piece-shaped or a linear concentric cylindrical electrode to configure an electrolyzed water producing apparatus. You can also Specific embodiments in this case are omitted.

【0022】 本発明に係る電解水製造装置(II)は、図3に示すように、従来の電解水製造装
置(I)と比較して、高濃度の電解水を発生する。
As shown in FIG. 3, the electrolyzed water producing apparatus (II) according to the present invention generates electrolyzed water of high concentration as compared with the conventional electrolyzed water producing apparatus (I).

【0023】 しかし、電極間隔dが狭くなリ過ぎれば、電界(Vp/d)が増加し、水流速
度が速くなり、即ちイオン濃度が高まって、電解水領域で空間電荷制限作用が大
きくなる。従って、印加される電圧が相対的に小さくなり、効果的に電解水を製
造できなくなる。
However, if the electrode spacing d is too narrow, the electric field (Vp / d) increases, the water flow velocity increases, that is, the ion concentration increases, and the space charge limiting action increases in the electrolyzed water region. Therefore, the applied voltage becomes relatively small, and electrolytic water cannot be effectively produced.

【0024】 即ち、本発明に係る電解水製造装置(II)においては、矩形波パルス電圧Vp
が印加されれば、静電力即ちクローン力により、逆極性の電荷が集束され、放電
や電気分解によって生成されたイオンを含む電荷及び水中に存在するイオンが、
2つの電極11、13付近の空間に密集する。密集した空間電荷は、次に移動し
てくる同じ極性の電荷を排斥し、それ以上のイオンの移動を妨害する空間電荷制
限作用と呼ばれる作用を生じ、これによって電流が減少する。従って、イオンの
析出効率及び強酸化性物質の発生効率が大幅に低下する。
That is, in the electrolyzed water manufacturing apparatus (II) according to the present invention, the rectangular wave pulse voltage Vp
When an electric field is applied, electrostatic charges, that is, Cloning force, concentrates electric charges of opposite polarities, and the electric charges including ions generated by discharge and electrolysis and ions present in water are
It is densely packed in the space near the two electrodes 11 and 13. The dense space charge rejects the next moving charge of the same polarity and causes an action called space charge limiting action that hinders the movement of further ions, thereby reducing the current. Therefore, the deposition efficiency of ions and the generation efficiency of strongly oxidizing substances are significantly reduced.

【0025】 上記した問題を解決するために本発明に係る電解水製造装置(II)を改良した
実施の形態を図6に示す。詳細には、陰電極11の外側に外部陰電極21を、そ
して陽電極13の外側に外部陽電極23をさらに付設する。これによって、陽電
極13と分離膜12との間、及び陰電極11と分離膜12との間に密集した電荷
を、陽電極水領域Bρ及び陰電極水領域Aρ側の外部、即ち領域B及びAに、静
電力(クローン引力)によって急速に移動させることが可能となる。B側のパルス
電圧VPBとA側のパルス電圧VPAによって、電極11、13間の電荷を大きく減
少させる静電気力が生じ、これによって空間電荷制限作用が大幅に減少する。従
って、同じ矩形波パルス電圧VPで、相対的に大きい電界(E=VP/d)が得ら
れ、イオン及び強酸化性物質の発生能力及び効率を大幅に改善できる。従って、
狭い電極11、13間の密集電荷と、イオン及び強酸化性物質が溶存された電解
水とが、容易にそれぞれ外部陰電極21と外部陽電極23、すなわち陰電極水領
域A及び陽電極水領域Bに向かって流れる。その結果、乱流と空間電荷制限作用
は勿論、反応式1のような熱分解作用も大きく減少し、イオン及び強酸化性物質
が溶存された電解水を一層効果的に製造できる。このように電極11、13の形
状をメッシュ型や細線型または細帯片型にし、電極間隔dを狭くする理由は、2
つの電極11、13間に高電圧放電を効果的に発生させるためである。即ち、放
電は、例えば鋭く尖った箇所や細線やスリットで、比較的低電界において容易に
発生する。特に、水中の陽メッシュ電極13上に高電圧パルスが印加されれば、
電解作用により下記の反応式2のように酸素分子(O2)が発生する。 [反応式2] 2H2O → 2H2(陰電極)+O2(陽電極)
FIG. 6 shows an embodiment in which the electrolyzed water producing apparatus (II) according to the present invention is improved in order to solve the above-mentioned problems. In detail, an external negative electrode 21 is provided outside the negative electrode 11, and an external positive electrode 23 is provided outside the positive electrode 13. As a result, the charges concentrated between the positive electrode 13 and the separation membrane 12 and between the negative electrode 11 and the separation membrane 12 are stored outside the positive electrode water region Bρ and the negative electrode water region Aρ, that is, the regions B and It becomes possible to rapidly move to A by electrostatic force (Clone attraction). The B-side pulse voltage V PB and the A-side pulse voltage V PA generate an electrostatic force that greatly reduces the charge between the electrodes 11 and 13, thereby significantly reducing the space charge limiting action. Therefore, with the same rectangular wave pulse voltage V P , a relatively large electric field (E = V P / d) can be obtained, and the generation capacity and efficiency of ions and strongly oxidative substances can be greatly improved. Therefore,
The dense charge between the narrow electrodes 11 and 13 and the electrolyzed water in which the ions and the strongly oxidative substance are dissolved easily form the external negative electrode 21 and the external positive electrode 23, that is, the negative electrode water region A and the positive electrode water region, respectively. It flows toward B. As a result, not only the turbulent flow and the space charge limiting action, but also the thermal decomposition action as in the reaction formula 1 is greatly reduced, and the electrolyzed water in which the ions and the strongly oxidizing substance are dissolved can be more effectively produced. The reason why the electrodes 11, 13 are formed in a mesh type, a thin line type, or a strip type and the electrode distance d is narrowed is as follows.
This is to effectively generate a high voltage discharge between the two electrodes 11 and 13. That is, the discharge is easily generated in a relatively low electric field, for example, at a sharp point, a thin wire, or a slit. In particular, if a high voltage pulse is applied on the positive mesh electrode 13 in water,
Oxygen molecules (O 2 ) are generated by the electrolytic action as shown in the following reaction formula 2. [Reaction formula 2] 2H 2 O → 2H 2 (negative electrode) + O 2 (positive electrode)

【0026】 この酸素分子は気体状態なので、水分子に比べて誘電率が極めて低いため(水
と酸素の誘電率比は80対1)に、殆んどの電圧が酸素分子に印加されて酸素分
子が放電により破壊され、下記の反応式3のように酸素原子(2O)やOHラジ
カルのような活性種が生成される。 [反応式3] O2 → O+O ----(1) H2O → OH+H ----(2)
Since this oxygen molecule is in a gaseous state, its permittivity is extremely lower than that of water molecule (the permittivity ratio of water and oxygen is 80: 1). Is destroyed by discharge, and active species such as oxygen atoms (2O) and OH radicals are generated as shown in Reaction Formula 3 below. [Reaction Formula 3] O 2 → O + O ---- (1) H 2 O → OH + H ---- (2)

【0027】 酸素原子(2O)及びOHラジカルが、下記の反応式4のように、相互に、且つ
/又は他の隣接分子と結合して、O3、HClO、H22、Oなどの強酸化性物質
が生成される。 [反応式4] O+O2 → O3 ----(1) OH+Cl → HClO ----(2) OH+OH → H22 ----(3)
The oxygen atom (2O) and the OH radical are bonded to each other and / or to other adjacent molecules to form O 3 , HClO, H 2 O 2 , O, etc., as shown in Reaction Formula 4 below. A strong oxidizer is produced. [Reaction Formula 4] O + O 2 → O 3 ---- (1) OH + Cl → HClCl ---- (2) OH + OH → H 2 O 2 ---- (3)

【0028】 ここで、直流(DC)電力や交流(AC)電力、そしてその他の電力(脈流や高周
波電力など)に比較して、パルス電力の場合、電圧の立ち上がり時間を極めて短
く制御でき、低電力で瞬間的な高電圧放電を引き起こせることから、O3、HCl
O、H22、Oなどの強酸化性物質を高効率に生成することができるため、極め
て効果的であり経済的である。この詳細は後述する。
Here, compared to direct current (DC) power, alternating current (AC) power, and other powers (pulsating current, high frequency power, etc.), in the case of pulsed power, the rise time of the voltage can be controlled to be extremely short, O 3 and HCl are generated because they can cause instantaneous high voltage discharge with low power.
Strongly oxidizing substances such as O, H 2 O 2 and O can be produced with high efficiency, so that they are extremely effective and economical. The details will be described later.

【0029】 ここで、電極11、13をメッシュ型にしたり細線または細帯片型にする場合
、線や細帯片の太さや間隔そしてストライプの幅は、印加電圧の形態や大きさ又
は発生する電解水の濃度や量、電極の寿命と装置の用途、大きさ及び値段により
決定される。なぜならば、電極材質として高価な白金族の合金、例えばPt+Pd
を使用するからである。長寿命が要求されない小規模装置の場合、あるいは寿命
が過ぎたものを頻繁に交替できる場合には、他の安価な材質の金属、例えばステ
ンレススチール(SUS)、またはその合金あるいは白金族の合金(Pt+Pd)で
メッキされた他の金属を使用し得る。
Here, when the electrodes 11 and 13 are formed into a mesh type or a thin line or strip type, the thickness and spacing of the lines and strips and the width of the stripes are such that the form and magnitude of the applied voltage or the generation thereof are generated. It is determined by the concentration and amount of electrolyzed water, the life of the electrode and the use, size and price of the device. This is because an expensive platinum group alloy such as Pt + Pd is used as the electrode material.
Because it uses. In the case of a small-scale device that does not require a long service life, or when the service life of the service is frequently replaced, another inexpensive metal such as stainless steel (SUS) or its alloy or platinum group alloy ( Other metals plated with Pt + Pd) may be used.

【0030】 また、分離膜12としては、2つの領域Aρ、Bρ間のイオンの通過性が良く
、且つ水が互いに混合されない特性を有するものが望ましく、通常のイオン交換
樹脂を使用し得るが、場合によっては布、樹脂又はセラミックなども使用できる
Further, the separation membrane 12 is preferably one having a good ion permeability between the two regions Aρ and Bρ and having a characteristic that water is not mixed with each other, and a normal ion exchange resin can be used. Depending on the case, cloth, resin, ceramic or the like can also be used.

【0031】 次に、パルス電力の形態と周期及びその印加手段に関して説明する。従来の電
解水製造装置(I)に関しても、図4及び図5に示す矩形波パルス電力を使用す
れば、水中での放電発生及び電解作用を引き起こせることが実験の結果確認され
たが、対向電極が平板状なので非効率的である。
Next, the form and period of pulse power and its application means will be described. As for the conventional electrolyzed water producing apparatus (I), it was confirmed as a result of the experiment that discharge generation and electrolysis in water can be caused by using the rectangular wave pulse power shown in FIGS. 4 and 5. It is inefficient because the electrodes are flat.

【0032】 図6は、本発明に係る電解水製造装置(II)の構成を、改良した電解水製造装
置(III)を示しており、陰電極11の外側に外部陰電極21を備え、陽電極1
3の外側に外部陽電極23をさらに備えている。また、陽電極13と分離膜12
との間隔及び陰電極11と分離膜12との間隔の和である間隔dを狭く調節する
ことができる。あるいは、対向電極11、13を鋭く、又は直径の小さいメッシ
ュ型、細線型若しくは細帯片型に形成し、図4及び図5に示すように矩形波パル
ス電力を印加すれば、電極11、13の表面において極めて高い電界が発生し、
水中の放電発生及び電解作用をさらに効率よく起こすことができ、大電流をも得
ることができるようになり、イオン及び強酸化性物質の発生能力と発生効率をさ
らに大きく改善することができる。
FIG. 6 shows an electrolyzed water production apparatus (III) in which the configuration of the electrolyzed water production apparatus (II) according to the present invention is improved, in which an external cathode 21 is provided outside the cathode 11. Electrode 1
An external positive electrode 23 is further provided on the outer side of 3. In addition, the positive electrode 13 and the separation film 12
The distance d, which is the sum of the distance between the negative electrode 11 and the separation film 12, can be adjusted narrow. Alternatively, the counter electrodes 11 and 13 may be formed into a mesh type, a thin line type, or a strip type with a sharp or small diameter, and if rectangular wave pulse power is applied as shown in FIGS. 4 and 5, the electrodes 11 and 13 may be formed. An extremely high electric field is generated on the surface of
Discharge generation and electrolysis in water can be more efficiently generated, and a large current can be obtained, and the generation capacity and generation efficiency of ions and strongly oxidizing substances can be further improved.

【0033】 言い換えれば、電極11、13間の間隔dを狭め、図4又は図5に示すように
、通常の直流の数倍の大きい電圧を瞬間的に供給することができる矩形波パルス
電力を印加すれば、極めて強力で効果的な電解作用を引き起こすことができ、効
率をアップし、且つ全体の平均消費電力を直流電力の場合よりも低くすることが
できる長所がある。また、電極11、13を鋭く、又は直径の小さいメッシュ型
、細線型若しくは細帯片型に形成し、図4又は図5に示す矩形波パルス電力を印
加すれば、極めて効果的に水中での放電発生及び電解作用、すなわち前記反応式
3及び4に示す作用を発生させ、電解効率をさらに向上させることができる長所
がある。
In other words, the interval d between the electrodes 11 and 13 is narrowed, and as shown in FIG. 4 or 5, a rectangular wave pulse power capable of instantaneously supplying a voltage that is several times as large as a normal direct current is supplied. When applied, an extremely strong and effective electrolytic action can be induced, the efficiency can be increased, and the overall average power consumption can be lower than that of DC power. Further, if the electrodes 11 and 13 are formed into a mesh type, a thin line type, or a strip type having a sharp or small diameter and the rectangular wave pulse power shown in FIG. 4 or FIG. There is an advantage that the discharge generation and the electrolysis action, that is, the actions shown in the reaction formulas 3 and 4 can be generated to further improve the electrolysis efficiency.

【0034】 一方、脈流電圧の場合、電力PcはPc=V・I・tのように表されるが、図4
に示すパルス電力Ppの場合にはPp=Vp・Ip・tpと表される。ここで、tp
on+toffであって、tpはパルス電圧1周期の時間、tonはパルス電圧作動(o
n)時間、そしてtoffはパルス電圧非作動(off)時間をそれぞれ表わしている。
On the other hand, in the case of the pulsating current voltage, the power Pc is expressed as P c = V · I · t.
In the case of the pulse power P p shown in (3), P p = V p · I p · t p . Where t p =
t on + t off , t p is the time of one cycle of the pulse voltage, and t on is the pulse voltage operation (o
n) time and t off denote pulse voltage deactivating (off) time, respectively.

【0035】 脈流電力Pcの場合には、電圧作動時間tを固定し、印加電圧Vだけを可変と
し、印加電流Iはこれらに依存する。しかし、パルス電力Ppの場合には、Vp
びIpを通常の直流のVとIの約2倍と最大に設定し、tpを適切に可変とするこ
とにより、大きい瞬間電力が得られるのみならず、容易に印加電力をパルス電圧
作動時間、即ちtonに従って可変とすることができ、これによって製造される水
の電解濃度を任意に調節することができる。
In the case of the pulsating power P c , the voltage operating time t is fixed, only the applied voltage V is variable, and the applied current I depends on them. However, in the case of the pulse power P p , a large instantaneous power can be obtained by setting V p and I p to a maximum of about twice the normal DC V and I and appropriately varying t p. In addition, the applied power can be easily varied according to the pulse voltage operation time, that is, t on, and the electrolytic concentration of water produced can be arbitrarily adjusted.

【0036】 このような効果的な電圧波形Vpを発生させるために、図7に示す電子回路を
用いることができる。即ち、交流電力(ac)を、変圧器(LT)を用いて適正
な電圧に変換し、整流器Rを介して整流した後、平滑コンデンサCfで平滑する
。DC電圧は、適正な周期tp、ton又はtoffでトリガー回路(図示せず)によ
ってトリガーされる絶縁ゲート型バイポーラトランジスタ(IGBT)や一般の
トランジスタのような半導体スイッチング電力制御素子によって、パルス電圧に
変換され、図4に示す矩形波パルス電圧Vpが発生する。この際、比較的に体積
が大きく高価な平滑コンデンサCfを除去すれば、図5に示す出力電圧波形Vpac
が発生し、このパルス波形を本発明に係る電解水製造装置(II)の電力として使
用することができる。
In order to generate such an effective voltage waveform V p , the electronic circuit shown in FIG. 7 can be used. That is, the AC power (ac) is converted into an appropriate voltage by using the transformer (LT), rectified by the rectifier R, and then smoothed by the smoothing capacitor Cf. The DC voltage is pulsed by a semiconductor switching power control device such as an insulated gate bipolar transistor (IGBT) or a general transistor that is triggered by a trigger circuit (not shown) at a proper cycle t p , t on or t off. Converted into a voltage, the rectangular wave pulse voltage Vp shown in FIG. 4 is generated. At this time, if the smoothing capacitor Cf, which has a relatively large volume and is expensive, is removed, the output voltage waveform Vpac shown in FIG.
Occurs, and this pulse waveform can be used as electric power for the electrolyzed water manufacturing apparatus (II) according to the present invention.

【0037】 図6をもう一度参照すれば、本発明に係る高濃度電解水製造装置(III)の場
合、3つの電源VG、VPA、VPBを必要とし、電源VG、VPA、VPBにはそれぞれ
図8に示す波形の電圧を使用する。しかし、さらに効果的な高電圧放電及び電解
作用のためには、図9に示すようにVGとVPA及びVPBとを交互に印加する、ま
たは図10に示すようにVGを印加し続け、VPBとVPAとを交互に印加するなど
のシーケンス制御が可能な電源がさらに有効である。
Referring again to FIG. 6, in the case of the high-concentration electrolyzed water manufacturing apparatus (III) according to the present invention, three power supplies V G , V PA , V PB are required, and the power supplies V G , V PA , V. The voltage of the waveform shown in FIG. 8 is used for each PB . However, for more effective high voltage discharge and electrolytic action, V G and V PA and V PB are alternately applied as shown in FIG. 9, or V G is applied as shown in FIG. Subsequently, a power supply capable of sequence control such as alternately applying V PB and V PA is more effective.

【0038】 図11は、VPA、VPB、VGを発生させるための電源回路図の一例を示してお
り、1つの低電圧変圧器(LT)を使用し、3つのパルス発生回路を直列に接続
し、図8、9及び10に示すパルス電圧を発生さるようにトリガー回路(T)の
シーケンスを制御することを除き、その基本動作原理は図7に示したものと同様
である。
FIG. 11 shows an example of a power supply circuit diagram for generating V PA , V PB and V G. One low voltage transformer (LT) is used and three pulse generation circuits are connected in series. The basic operating principle is the same as that shown in FIG. 7, except that the trigger circuit (T) is controlled so as to generate the pulse voltage shown in FIGS.

【0039】 また、本発明において効果的なパルス電力の波形幅、即ち波形のデューティ比
(tp=ton+toff中のtpに対するtonの比率)は、トリガー回路Tの信号を
適切に制御調節することにより極めて容易に変更され、これによって効率よく出
力電解濃度を調節することができる。
Further, effective pulsed power waveform width in the present invention, i.e., the duty ratio of the waveform (t p = t on + t ratio of t on for t p in off) is suitably a signal of the trigger circuit T It can be changed very easily by controlling and adjusting, and thereby the output electrolytic concentration can be adjusted efficiently.

【0040】 ここで、必要な電解水容量及び電解濃度に応じて、内部電極11、13に印加
する電圧VG、外部電極21、23間に印加する電圧VPAまたはVPB、電極11
、13、21、23の大きさ、間隔D、dは、適切な電圧値に設定することがで
き、VG、VPA、VPBの値は約20〜1000Vが実用的であるが、特殊な目的
のためには増減することができる。即ち、高純度の純水の場合にはこれよりも高
い電圧が要求されことがあり、超小型の装置にはこれよりも低い電圧が使用され
得る。
Here, the voltage V G applied to the inner electrodes 11 and 13, the voltage V PA or V PB applied between the outer electrodes 21 and 23, and the electrode 11 depending on the required electrolytic water capacity and electrolytic concentration.
, 13, 21 and 23 and the intervals D and d can be set to appropriate voltage values, and it is practical that the values of V G , V PA and V PB are about 20 to 1000 V, but It can be increased or decreased for any purpose. That is, a higher voltage may be required in the case of high-purity pure water, and a lower voltage may be used in a microminiature device.

【0041】 図8及び図10では一例として矩形波を示したが、実際の半導体電源回路から
発生するパルスは、減衰振動、指数的立上り/立下り、オーバーシュート且つ/
又はアンダーシュートなどの若干の過渡的現象を有している。パルスのデューテ
ィ比は、電極の形態や大きさ及び出力電解水容量により最適条件に可変でき、実
験の結果ではton=10-2〜104(秒)、toff=10-4〜102(秒)の範囲
が比較的有効であるが、必要性と目的に応じて増減することもできる。
Although a rectangular wave is shown as an example in FIGS. 8 and 10, a pulse generated from an actual semiconductor power supply circuit has damping oscillation, exponential rise / fall, overshoot and / or
Or, it has some transient phenomenon such as undershoot. The duty ratio of the pulse can be changed to optimum conditions depending on the form and size of the electrode and the output electrolyzed water capacity, and as a result of the experiment, t on = 10 −2 to 10 4 (seconds), t off = 10 −4 to 10 2 The range of (seconds) is relatively effective, but can be increased or decreased depending on the need and purpose.

【0042】 次に、電極材料の決定に関して説明する。[0042]   Next, the determination of the electrode material will be described.

【0043】 従来の電解水製造装置(I)では、陽電極3の形成材料としてフェライトや白
金メッキチタン(Ti)を使用するため、大電流を供給すれば、ファラデーの法
則に従って電極材質が水中に分離析出して消耗され、電極3の使用寿命が短くな
る問題がある。
In the conventional electrolyzed water production apparatus (I), since ferrite or platinum-plated titanium (Ti) is used as a material for forming the positive electrode 3, if a large current is supplied, the electrode material is submerged in water according to Faraday's law. There is a problem that the electrode 3 is separated and deposited and consumed, and the service life of the electrode 3 is shortened.

【0044】 この問題は電極材料として白金(Pt)にパラジウム(Pd)を適量(0.05
〜30wt%の範囲が望ましいが、0.5〜8wt%の範囲がより望ましい)混
合させた白金合金(Pt+Pd)を使用すれば、通常の電解水製造装置(I)の場
合には20V以下であるが、電極3に100V以上の高い電圧を印加しても、電
極の分離析出が大幅に減少し、寿命が4000時間以上に延び、極めて有用であ
ることが実際の実験の結果確認された。
The problem is that platinum (Pt) is mixed with palladium (Pd) in an appropriate amount (0.05
If the mixed platinum alloy (Pt + Pd) is used, in the case of an ordinary electrolyzed water producing apparatus (I), it is 20 V or less. However, even when a high voltage of 100 V or more was applied to the electrode 3, the separation and deposition of the electrode was significantly reduced, the life was extended to 4,000 hours or more, and it was confirmed as an actual experiment result that it was extremely useful.

【0045】 従って、直接イオン及び強電解性物質を生成する陽電極13や外部陽電極23
の場合、上記した白金及びパラジウムの合金、または白金や白金の合金(Pt+
Pd)でメッキされた素材を使用することが極めて有用である。しかし、低価格
で長寿命を必要としない、即ち必要な電解量が極めて少ない小規模装置の場合に
は、陽電極13、23を安価なステンレス(SUS)や他の種類の金属または合
金を使用して形成することもできる。この場合、頻繁に陽電極13、23を交換
することが望ましい。しかし、陰電極11、21の場合にはステンレスのような
材料を使用しても有効である。
Therefore, the positive electrode 13 and the external positive electrode 23, which directly generate the ions and the strong electrolytic substance,
In the case of, the above-mentioned alloy of platinum and palladium, or platinum or an alloy of platinum (Pt +
It is extremely useful to use a material plated with Pd). However, in the case of a small-scale device that does not require a long service life at a low price, that is, the required amount of electrolysis is extremely small, the positive electrodes 13 and 23 are made of inexpensive stainless steel (SUS) or another kind of metal or alloy. Can also be formed. In this case, it is desirable to replace the positive electrodes 13 and 23 frequently. However, in the case of the negative electrodes 11 and 21, it is effective to use a material such as stainless steel.

【0046】 また、このようにパルス電圧を印加する場合、金属電極上に、比誘電率(εr
)が極めて高い強誘電体物質を被覆することによっても電極物質の析出による消
耗を少なくできる。なぜならば、電極の析出による消耗はFaradayの析出法則に
よって直流電流(I)に比例することから、パルス電圧の場合、直流電流分(I
)を極めて少なくすることにより電極の析出による消耗量を低減できることとな
る。この場合、パルス電圧のデューティ比率が少ない比較的高い周波数が有効で
あり、強誘電体の比誘電率は水の比誘電率、即ちεr=80に比較して大きいほ
ど、若しくは強誘電体層が薄いほど有効であり、または電極上に適正サイズの凹
凸がある方が放電の発生と電解作用に有効である。また、強誘電体のペレット又
はビーズを、内外部の電極間(D、d)の一部または全体に充填することによって
も電解作用を増大させることができ、同様の効果が得られる。
Further, when the pulse voltage is applied in this way, the relative dielectric constant (εr
By coating a ferroelectric substance having a very high), consumption due to the deposition of the electrode substance can be reduced. This is because the consumption due to electrode deposition is proportional to the direct current (I) according to Faraday's law of precipitation, so in the case of pulse voltage, the direct current component (I
It is possible to reduce the amount of consumption due to the deposition of the electrode by reducing the amount of). In this case, a relatively high frequency with a low duty ratio of the pulse voltage is effective, and the relative permittivity of the ferroelectric substance is larger as compared with the relative permittivity of water, that is, εr = 80, or the ferroelectric layer is The thinner the film is, the more effective it is, or the more appropriate the unevenness on the electrode is, the more effective the discharge is generated and the electrolytic action is. Further, by filling a part or the whole of the space (D, d) between the inner and outer electrodes with the ferroelectric pellets or beads, the electrolytic action can be increased, and the same effect can be obtained.

【0047】 次に、本発明に係る電解水製造装置の特性及び添加物の制御に関して説明する
Next, characteristics of the electrolyzed water producing apparatus according to the present invention and control of additives will be described.

【0048】 本発明の高濃度電解水製造装置(III)に、図8、9又は10に示す適正な振
幅のパルス電力を印加し、適正な電圧(または電流)の大きさを設定して作動さ
せれば、領域Bの陽電極排水管18から電解水が排出され、領域Aの陰電極排水
管16から供給水の一部が排出される。ところが、陰電極11と陽電極13とが
、構造上メッシュ型の電極であり、また流水幅Dが狭い電極間隔dよりも広いこ
とから、内部陰電極水領域Aρ及び内部陽電極水領域Bρには強い電界(E=V G /d)が発生し、陰電極11及び陽電極13上には強い部分的な放電現象と電
解作用とが発生する。従って、強力な電気物理化学反応が生じて、次の反応式5
及び6のように電解作用が起こり、オゾン(O3)、酸素(O2)、酸素原子(O
)、及び副次的な過酸化水素(H22)のような強酸化性物質が極めて効率よく
生成される。 [反応式5] 6H2O → 6H2+O2+O3+O [反応式6] H2O+O → H22
[0048]   The high-concentration electrolyzed water producing apparatus (III) of the present invention is provided with an appropriate shaking as shown in FIG.
Apply pulse width power and set appropriate voltage (or current) magnitude for operation.
If so, the electrolytic water is discharged from the positive electrode drain pipe 18 in the area B, and the negative electrode drain in the area A is discharged.
A part of the supply water is discharged from the pipe 16. However, the negative electrode 11 and the positive electrode 13
, The structure is a mesh type electrode, and the flowing water width D is wider than the narrow electrode interval d.
Therefore, a strong electric field (E = V) is applied to the internal cathode water area Aρ and the internal cathode water area Bρ. G / D) is generated, and a strong partial discharge phenomenon and electric charge are generated on the negative electrode 11 and the positive electrode 13.
The solution action occurs. Therefore, a strong electrophysicochemical reaction occurs and the following reaction formula 5
And the electrolytic action occurs as in (6), and ozone (O3), Oxygen (O2), Oxygen atom (O
), And secondary hydrogen peroxide (H2O2) Such as strong oxidants are extremely efficient
Is generated. [Reaction formula 5]   6H2O → 6H2+ O2+ O3+ O [Reaction formula 6]   H2O + O → H2O2

【0049】 ここで、内部陰電極水領域Aρの水中に存在していた、例えばCl-、SiO2 - 、SO3 -などの陰イオンは、静電力(クローム引力)によって内部陽電極水領域
Bρに移動し、同じ原理によって内部陽電極水領域Bρの水中に存在していた、
Ca++、Fe++、Mg++、Cu++などの金属ミネラルイオンなどの陽イオンは内
部陰電極水領域Aρに移動し、相互イオン分離作用も共に発生する。
Here, anions such as Cl , SiO 2 , and SO 3 existing in the water in the internal cathode water region Aρ are an internal cathode water region Bρ due to electrostatic force (chrome attraction). And was present in the water of the internal positive electrode water region Bρ by the same principle,
Cations such as metal mineral ions such as Ca ++ , Fe ++ , Mg ++ , and Cu ++ move to the internal negative electrode water region Aρ, and mutual ion separation action also occurs.

【0050】 また、この際外部陰電極21及び外部陽電極23にも適正な電圧を印加すれば
、それぞれ内部陰電極水領域Aρ及び内部陽電極水領域Bρに存在していたそれ
ぞれのイオンが、陰電極水領域Aρ及び陽電極水領域Bρに再び移動し、それぞ
れ陰電極排水管16及び陽電極排水管18を通して排出される。
Further, at this time, if appropriate voltages are applied to the outer cathode 21 and the outer cathode 23, the respective ions existing in the inner cathode water area Aρ and the inner cathode water area Bρ are It moves again to the negative electrode water region Aρ and the positive electrode water region Bρ, and is discharged through the negative electrode drain pipe 16 and the positive electrode drain pipe 18, respectively.

【0051】 従って、陽電極排水管18側で生成される陽極水は、多量のO3及び陰イオン
、微量のO2、O、H22などを含有した電解酸性水であり、陰電極排水管16
側で生成される陰極水は、陽イオンが豊富に含有されたアルカリ性水である。
Therefore, the anode water generated on the side of the positive electrode drainage pipe 18 is electrolytic acidic water containing a large amount of O 3 and anions, and trace amounts of O 2 , O, H 2 O 2 and the like. Drainage pipe 16
The cathode water produced on the side is alkaline water rich in cations.

【0052】 排出水中の強酸化性物質の量とイオン濃度は、印加電源の電圧の大きさVG
PA、VPBやディユーティ(特にton)などを手動又は自動制御回路利用などに
より自動制御することによって容易に調節することができる。また、電極11、
13、21、23のサイズ、電極間隔d、水流幅D又は水流量を変更することに
よって調節することもできる。
The amount and the ion concentration of the strongly oxidizing substance in the discharged water are determined by the magnitude of the voltage of the applied power source V G ,
It can be easily adjusted by manually controlling V PA , V PB , duty (particularly t on ) or the like by using a manual or automatic control circuit. Also, the electrode 11,
It can also be adjusted by changing the size of 13, 21, 23, the electrode spacing d, the water flow width D, or the water flow rate.

【0053】 一方、下記の反応式7のように、Cl-が含有されている、又はCl-を生成可能
な物質、例えば水道水、塩(NaCl)、塩化カリウム(KCl)などが供給水中に存
在すれば、強酸化性物質とイオン濃度がさらに高まる。 [反応式7] NaCl → Na++Cl- ----(1) KCl → K++Cl- ----(2)
Meanwhile, as in Scheme 7 below, Cl - is contained, or Cl - can produce substances such tap water, salt (NaCl), such as potassium chloride (KCl) is to supply water If present, the concentration of strong oxidants and ions is further increased. [Scheme 7] NaCl → Na + + Cl - ---- (1) KCl → K + + Cl - ---- (2)

【0054】 即ち、NaCl及び/又はKClが水中に混入されていれば、相互結合力が弱く
なり(水中では1/80になる)、低い印加電圧においても前記反応式7のように
Na+やK+、そしてCl-に容易に分解され、Na+及びK+は陰電極11、21に、
Cl-は陽電極13、23に移動して集束し、電流及びイオン濃度を大幅に増加さ
せる。この際、特に陽電極水領域Bと内部陽極水領域Bρには多量のCl-を含有
するようになり、また下記の反応式8のようにH2Oが電気分解され、生成され
たOHがClと結合して下記の反応式9のようにHClO(強酸化性物質)を生成
し、陽電極水領域BにはHClOが多く含有された、多量のHClO、そして微量
のO2、O3、H22、Oなどの強酸化性物質を生成するようになる。 [反応式8] H2O → OH+H ----(1) [反応式9] OH+Cl → HClO ----(2)
That is, if NaCl and / or KCl is mixed in water, the mutual coupling force becomes weak (it becomes 1/80 in water), and Na + or It is easily decomposed into K + and Cl , and Na + and K + are deposited on the negative electrodes 11 and 21,
Cl moves to and is focused on the positive electrodes 13 and 23, and greatly increases the current and the ion concentration. At this time, in particular, the positive electrode water region B and the internal anode water region Bρ contain a large amount of Cl , and H 2 O is electrolyzed as shown in the following reaction formula 8 to generate OH. By combining with Cl to form HCl (strongly oxidizable substance) as shown in the following reaction formula 9, a large amount of HCl is contained in the positive electrode water region B, and a large amount of HCl and a small amount of O 2 , O 3 , H 2 O 2 , O and other strong oxidative substances are generated. [Reaction Formula 8] H 2 O → OH + H ---- (1) [Reaction Formula 9] OH + Cl → HClO ---- (2)

【0055】 酸性水またはアルカリ性水に強酸化性物質であるHClOが多く含有されてい
る場合には、その殺菌力は6時間程度持続され、酸性水またはアルカリ性水に強
酸化性物質であるO3が多く含有されている場合には、その殺菌力が15分程度
の極めて短時間しか持続されないため、その用途がさらに多様である。即ち、O 3 が多く含有されている場合には、主に食品などの殺菌消毒用洗浄水として、H
ClOが多く含有されている場合には、主に農薬の代用として使用でき、極めて
有用である。
[0055]   Acidic or alkaline water contains a large amount of HClO, which is a strong oxidizing substance.
In this case, its bactericidal power is maintained for about 6 hours, and it is resistant to acidic or alkaline water.
O which is an oxidizing substance3If a large amount of is contained, its sterilizing power is about 15 minutes
Its use is even more diverse, as it lasts for only a very short time. That is, O 3 When it contains a large amount of H, H
When it contains a large amount of ClO, it can be used mainly as a pesticide substitute,
It is useful.

【0056】 給水管4に供給される水には、主に水道水や地下水が使用され得るが、必要性
と目的に応じて、蒸留水や試薬溶存水溶液などの多様な水溶液が使用され得る。
また、この水溶液又はNaCl、KClなどの水中に投入される添加物は、種類及
び必要なイオン濃度、そして適用条件により多少異なるが、約0.01〜1wt
%程度の重量比で投入されることが効果的かつ経済的であることを実験結果によ
って確認できた。
The water supplied to the water supply pipe 4 may be mainly tap water or ground water, but various aqueous solutions such as distilled water and reagent-dissolved aqueous solution may be used depending on the need and purpose.
The amount of the additive added to this aqueous solution or water such as NaCl or KCl varies depending on the type and the required ion concentration and the application conditions, but is about 0.01-1 wt.
It has been confirmed by the experimental results that it is effective and economical to add at a weight ratio of about%.

【0057】 通常の電解水製造装置の場合には、陽電極排水管と陰電極排水管において通常
pH4〜6程度の酸性水と、pH8〜10程度のアルカリ性水が排出され、弱ア
ルカリ性水は主に飲料用として使用されている。
In the case of an ordinary electrolyzed water production apparatus, acidic water having a pH of about 4 to 6 and alkaline water having a pH of about 8 to 10 are usually discharged in the positive electrode drain pipe and the negative electrode drain pipe, and weak alkaline water is mainly used. Used for beverages.

【0058】 最近、日本で開発された高濃度の酸性電解水製造装置も、陽電極をチタン(T
i)上に白金(Pt)をメッキした平板形電極を分離膜、即ちイオン交換樹脂の両
側に設け、印加電圧が10〜20V(電圧が20V以上になれば電極の寿命が急
激に短くなる)程度の直流を使用して約3V以上で起る電解作用の原理だけを用
いる通常のイオン水製造装置と同様の構造である。従って、陽及び陰電極出水管
からpH2〜4及びpH10〜12程度の高濃度のイオン水が排出される。この
場合、pH2〜4の強酸性水装置が殺菌消毒の目的として現在開発中であるが、
電解濃度と強酸化性物質量の調節が不可能であり、かつ強酸化性物質としては主
にHClOだけが含有されているため、実際の適用には多くの制限があり、問題
である。
In the recently developed high-concentration acidic electrolyzed water production device in Japan, the positive electrode is made of titanium (T
i) Platinum (Pt) -plated flat plate electrodes are provided on both sides of the separation membrane, that is, the ion exchange resin, and the applied voltage is 10 to 20 V (if the voltage becomes 20 V or more, the life of the electrode shortens sharply). The structure is the same as that of an ordinary ionized water production apparatus using only the principle of electrolysis that occurs at about 3 V or more using a direct current of about 3 V. Therefore, high-concentration ionized water of about pH 2 to 4 and pH 10 to 12 is discharged from the positive and negative electrode water outlet pipes. In this case, a strongly acidic water device of pH 2 to 4 is currently under development for the purpose of sterilization.
Since it is impossible to control the electrolytic concentration and the amount of the strongly oxidizing substance, and since mainly HCl is contained as the strongly oxidizing substance, there are many limitations in practical application, which is a problem.

【0059】 本発明に係る別の実施の形態として、弱アルカリ性水及び弱酸性水と同様に多
量のオキシダントを含有する中性水の製造装置を提供することができ、以下にそ
の詳細を説明する。
As another embodiment according to the present invention, it is possible to provide an apparatus for producing neutral water containing a large amount of oxidant as well as weakly alkaline water and weakly acidic water, the details of which will be described below. .

【0060】 一般に、電解製造装置は電解水を製造して排出するため、pH6〜8程度の中
性水を得ることができない。即ち、従来の電解水製造装置(I)の排出水はpH
4〜6であり、一方本発明に係る高濃度電解水の製造装置(III)の排出水はp
H2〜4の強電解水であり、その調節が不可能なので実際の用途と適用範囲に限
界がある。
In general, the electrolysis production apparatus produces and discharges electrolyzed water, so that neutral water of about pH 6 to 8 cannot be obtained. That is, the pH of the discharged water of the conventional electrolyzed water manufacturing device (I) is
4 to 6, while the discharge water of the high-concentration electrolyzed water producing apparatus (III) according to the present invention is p
Since it is H2-4 strong electrolyzed water, and its adjustment is impossible, there are limits to its practical use and application range.

【0061】 これを解決するために、本発明に係る高濃度電解水の製造装置(IV)の場合、
図12に示すように、出水管16、18から排水される、領域Aの陰電極水(強
アルカリ性水)WAと領域Bの陽電極水(強酸性水)WBとを、混合して中和する
手段(M)を提供する。その結果、最初の給水管4からの供給水と同じレベルの
pH7の中性水WCは勿論、弱アルカリ性水と弱酸性水をも製造することができ
るようになる。
In order to solve this, in the case of the high-concentration electrolyzed water production apparatus (IV) according to the present invention,
As shown in FIG. 12, the negative electrode water (strong alkaline water) W A in the region A and the positive electrode water (strong acidic water) W B in the region A, which are drained from the water discharge pipes 16 and 18, are mixed. A means (M) for neutralizing is provided. As a result, it becomes possible to produce not only neutral water W C having a pH of the same level as that of the water supplied from the first water supply pipe 4 but also weak alkaline water and weak acidic water.

【0062】 このように中性水(WC)はpH7の中性水になるが、放電及び電気分解によ
り生成される、主にO3及びO2のような強酸化性物質と、微量のHClO、H2 2 及びOとが依然として含まれている。図15に示すように、多少減少するが、
相当量がそのまま中性水中に残っており、これによって、0.3ppm以上の濃
度で大腸菌を10秒間に99.9%死滅させる十分な殺菌消毒作用を有する。従
って、この中性水は、家庭用、食堂、ホテル、理美容院、病院若しくは学校など
の営業用、産業用、又は家畜用の浄水装置や殺菌消毒水装置など多様な分野で有
用に使用できる。
[0062]   Thus neutral water (WC) Becomes neutral water with a pH of 7, but due to discharge and electrolysis
Generated mainly by O3And O2Oxidizing substances such as and trace amounts of HCl, H2O 2 And O are still included. As shown in FIG. 15, although it decreases a little,
A considerable amount remains in the neutral water as it is.
It has a sufficient bactericidal action to kill 99.9% of E. coli in 10 seconds. Servant
So, this neutral water is for home use, dining room, hotel, barber shop, hospital or school.
It is used in a variety of fields such as water purification equipment for business, industrial use, or livestock, and sterilizing / disinfecting water equipment.
Can be used for

【0063】 この場合、中性水生成手段Mとしては、電解水製造装置(III)又は(IV)に
おいて混合槽を設置するだけで十分であるが、目的と必要性に応じて適切な方法
及び装置をさらに使用できる。またWA及びWBの混合量又はpH値を調節するこ
とによって、中性水WCは、弱酸性水又は弱アルカリ性水として生成され得る。
In this case, as the neutral water producing means M, it is sufficient to install a mixing tank in the electrolyzed water producing apparatus (III) or (IV), but an appropriate method and a method suitable for the purpose and need can be used. The device can be used further. The neutral water W C can be generated as weakly acidic water or weakly alkaline water by adjusting the mixing amount of W A and W B or the pH value.

【0064】 一方、このように中性水WCが最終的に作られることは、本発明の電解水製造
装置(II)や(III)においてイオン分離膜12を除去し、排水管16、18を
一体とすることにより可能であり、この場合にはさらに簡単に電解効率を高めら
れるのみならず、分離膜12の存在による問題、即ち膜による装置の短寿命化、
膜の閉塞、膜の抵抗による電力消費の増大、及び膜の費用も掛からなくなり、さ
らに効果的且つ経済的になる。
On the other hand, the fact that the neutral water W C is finally produced in this manner means that the ion separation membrane 12 is removed and the drain pipes 16 and 18 are used in the electrolyzed water producing apparatuses (II) and (III) of the present invention. It is possible to increase the electrolysis efficiency more easily in this case, and in this case, there is a problem due to the presence of the separation membrane 12, that is, the life of the device is shortened by the membrane.
Membrane blockage, increased power consumption due to membrane resistance, and membrane cost are eliminated, making it more effective and economical.

【0065】 従って、本発明の高濃度電解水製造装置(II)、(III)及び(IV)は、多様
な目的や応用分野に極めて有効に適用できることは元より、排出水の特性として
、さらに多量のミネラルを含む高濃度の電解水及び高濃度の強酸化性物質を含有
する水が得られる。ここで、その水は、大量のHClOと少量のH22、O及び
2とを溶存、又は大量のO3と少量のHClO、H22、O及びO2とを溶存する
。さらに、pH値を、高濃度の強酸性水と強アルカリ性水の間で、即ちpH7を
も含むpH2〜12の間の任意の値に調節して使用できる。
Therefore, the high-concentration electrolyzed water producing apparatuses (II), (III) and (IV) of the present invention can be very effectively applied to various purposes and application fields, and further, as characteristics of discharged water, High-concentration electrolyzed water containing a large amount of minerals and water containing a high-concentration strong oxidizing substance are obtained. Here, the water dissolves a large amount of HCl and a small amount of H 2 O 2 , O and O 2 , or a large amount of O 3 and a small amount of HCl, H 2 O 2 , O and O 2 . Furthermore, the pH value can be adjusted to any value between high-concentration strongly acidic water and strongly alkaline water, that is, between pH 2 and 12, including pH 7.

【0066】 ここで、電解水のうち強酸化性物質であるHClOが大量に含有されている場
合、その殺菌力が6時間程度の長時間持続され、電解水のうち強酸化性物質であ
るO3が大量に含有された場合、その殺菌力は15分程度の短時間持続すること
から、さらに多様な用途に使用することができる。
Here, when a large amount of HClO, which is a strong oxidizing substance, is contained in the electrolyzed water, its sterilizing power is maintained for a long time of about 6 hours, and O, which is a strong oxidizing substance of the electrolyzed water, is maintained. When a large amount of 3 is contained, its sterilizing power lasts for a short time of about 15 minutes, so that it can be used for various purposes.

【0067】[0067]

【産業上の利用の可能性】[Potential for industrial use]

上記したように、改善された本発明の高濃度電解水製造装置(III)を水道水
に適用した場合、図13に示すような電解水特性となり、水道水に微量の塩Na
Clを混合させた場合、図14に示すように極めて高濃度の酸化性物質を含有す
る水が製造され、これらは従来の電解水製造装置(I)により生成されるものよ
りも、それぞれ3倍及び15倍の超高濃度電解水である。さらに、図16に示す
ように、超高濃度電解水、即ちpH2〜4の強酸性水WB、pH10〜12の強
アルカリ性水WA、及び中性水WCをそれぞれ分離して排出することができる。
As described above, when the improved high-concentration electrolyzed water manufacturing apparatus (III) of the present invention is applied to tap water, the electrolyzed water characteristics shown in FIG. 13 are obtained, and a slight amount of salt Na is added to tap water.
When Cl is mixed, water containing an extremely high concentration of oxidizing substances is produced as shown in FIG. 14, and these are three times as much as those produced by the conventional electrolyzed water producing apparatus (I). And 15 times more highly concentrated electrolyzed water. Furthermore, as shown in FIG. 16, ultra-high-concentration electrolytic water, i.e. strongly acidic water W B of pH 2 to 4, strongly alkaline water W A of pH 10-12, and be discharged by separating each neutral water W C You can

【0068】 このようにして得られた電解水は、全て強酸化性物質を含有しているため、様
々の分野において、即ち、殺菌消毒、脱臭、脱色、強力な酸化作用を用いて、上
下水処理、飲用水や浄水装置及び高度浄水製造時の処理、肉類や食品保管及び殺
菌処理、農産物や魚類の殺菌処理、産業廃水や産業排水処理、悪臭性及び有害揮
発性有機化学物質(VOCs)の処理、農薬の代用、薬品や食品製造工程中の処
理、及び医療分野における洗浄殺菌処理(例えば、医者の手や衣類の殺菌消毒処
理、メス、ハサミ、内視鏡のような医療器具、歯科口腔殺菌消毒用及び洗浄用な
ど)などの分野において幅広く使用及び適用され得る。
Since the electrolyzed water thus obtained contains all strongly oxidizing substances, it is used in various fields, that is, by sterilizing, sterilizing, deodorizing, decolorizing, and strongly oxidizing action. Treatment, drinking water, water purification equipment and advanced water purification manufacturing, meat and food storage and sterilization, agricultural products and fish sterilization, industrial wastewater and industrial wastewater treatment, odorous and harmful volatile organic chemicals (VOCs) Treatments, substitution of agricultural chemicals, treatments during the manufacturing process of medicines and foods, and cleaning and sterilizing treatments in the medical field (for example, sterilizing and disinfecting hands and clothes of doctors, scalpels, scissors, medical instruments such as endoscopes, dental oral cavity) It can be widely used and applied in fields such as sterilization and cleaning).

【0069】 また、この電解水中には給水管4から初期投入されたKCl及び/又はNaCl
のような微量の添加剤は、高電圧放電によって分解され、電気分解されイオン化
されて、全て無くなることから、これら添加剤から発生する塩害のような問題も
回避でき、さらに多様に使用できる。
In this electrolyzed water, KCl and / or NaCl initially charged from the water supply pipe 4 is used.
Since a small amount of such additives are decomposed by high-voltage discharge, electrolyzed and ionized and all disappear, problems such as salt damage generated from these additives can be avoided, and the additives can be used in various ways.

【0070】 さらに、強酸性水WBは、細菌の殺菌消毒は勿論、カビ、苔、藻類及び害虫の
駆除にまで使用でき、従って二次公害を誘発しない農薬に代用でき、また畜産廃
水の殺菌処理、脱臭処理、医療応用(歯科の口腔殺菌及び洗浄器、胃や腸または
膣洗浄器、病院の細菌感染壁の殺菌消毒など)などのさらに多様な分野に多目的
に適用できる。
Further, the strongly acidic water W B can be used not only for sterilizing and disinfecting bacteria but also for exterminating mold, moss, algae and pests, and thus can be used as a pesticide that does not induce secondary pollution, and sterilization of livestock wastewater. It can be applied to various purposes such as treatment, deodorization treatment, medical application (oral sterilization and washing machine for dentistry, stomach and intestine or vaginal washing machine, sterilization and disinfection of bacterial infection wall of hospital, etc.) for various purposes.

【0071】 一方、強アルカリ性水WAは、特殊目的、即ち人や家畜の飲用水、水耕や潅漑
用のような特殊植物の栽培用水などに適用でき、望ましくない強酸性水、酸性土
壌、又は酸性化された栽培水を中和するためのpH調節用として使用でき、植物
の発芽及び生長促進水にも使用でき、種々の目的に幅広く使用できる。
On the other hand, the strong alkaline water W A can be applied to a special purpose, that is, drinking water for humans or livestock, water for cultivating special plants such as for hydroponic or irrigation, and undesired strong acidic water, acidic soil, Alternatively, it can be used for pH adjustment to neutralize acidified cultivation water, can also be used for water for promoting germination and growth of plants, and can be widely used for various purposes.

【0072】 そして、本発明に係る電解水製造装置(II)及び高濃度電解水製造装置(III
)の場合、強アルカリイオン水WA中にも、図13及び図14に示したように、
3、HClO、H22のような強酸化性物質が少量含有されることから、さらに
多目的に使用できる。
Then, the electrolyzed water producing apparatus (II) and the high-concentration electrolyzed water producing apparatus (III according to the present invention
), Even in strong alkaline ionized water W A , as shown in FIGS. 13 and 14,
Since it contains a small amount of a strongly oxidative substance such as O 3 , HCI, and H 2 O 2 , it can be used for more versatile purposes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の電解水製造装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a conventional electrolyzed water producing apparatus.

【図2】 図1に示す従来の電解水製造装置に印加される電力の波形を示す
図である。
FIG. 2 is a diagram showing a waveform of electric power applied to the conventional electrolyzed water producing apparatus shown in FIG.

【図3】 本発明の実施の形態に係る電解水製造装置の構成を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a configuration of an electrolyzed water producing apparatus according to an embodiment of the present invention.

【図4】 図3に示す本発明の実施の形態に係る電解水製造装置に印加され
る矩形波パルス電力の波形を示す図である。
FIG. 4 is a diagram showing a waveform of rectangular wave pulse power applied to the electrolyzed water producing apparatus according to the embodiment of the present invention shown in FIG. 3.

【図5】 図3に示す本発明の実施の形態に係る電解水製造装置に印加され
る半波パルス電力の波形を示す図である。
FIG. 5 is a diagram showing a waveform of half-wave pulse power applied to the electrolyzed water producing apparatus according to the embodiment of the present invention shown in FIG.

【図6】 本発明の別の実施の形態に係る高濃度電解水製造装置の構成を示
す断面図である。
FIG. 6 is a cross-sectional view showing the configuration of a high-concentration electrolyzed water production apparatus according to another embodiment of the present invention.

【図7】 図3に示す高濃度電解水製造装置のパルス電力生成回路の回路図
である。
FIG. 7 is a circuit diagram of a pulse power generation circuit of the high concentration electrolyzed water manufacturing apparatus shown in FIG.

【図8】 図6に示す高濃度電解水製造装置に印加される3パルス電力の波
形を示す図である。
FIG. 8 is a diagram showing a waveform of 3-pulse power applied to the high-concentration electrolyzed water manufacturing apparatus shown in FIG.

【図9】 図6に示す高濃度電解水製造装置に印加されるシーケンス制御さ
れた3パルス電力の波形を示す図である。
9 is a diagram showing a waveform of sequence-controlled three-pulse power applied to the high-concentration electrolyzed water manufacturing apparatus shown in FIG.

【図10】 図6に示す高濃度電解水製造装置に印加されるシーケンス制御
された3パルス電力の別の波形を示す図である。
FIG. 10 is a diagram showing another waveform of sequence-controlled three-pulse power applied to the high-concentration electrolyzed water manufacturing apparatus shown in FIG. 6.

【図11】 図6に示す高濃度電解水製造装置に印加されるシーケンス制御
された3パルス電力を生成する回路を示す回路図である。
11 is a circuit diagram showing a circuit for generating sequence-controlled three-pulse power applied to the high-concentration electrolyzed water manufacturing apparatus shown in FIG.

【図12】 本発明のさらに別の実施の形態に係る高濃度電解水製造装置の
構成を示す断面図である。
FIG. 12 is a cross-sectional view showing a configuration of a high concentration electrolyzed water manufacturing apparatus according to still another embodiment of the present invention.

【図13】 通常の水道水から製造される電解水のオゾン濃度を示すグラフ
である。
FIG. 13 is a graph showing the ozone concentration of electrolyzed water produced from ordinary tap water.

【図14】 微量の塩を溶存する水道水から製造される電解水のオキシダン
ト濃度を示すグラフである。
FIG. 14 is a graph showing the oxidant concentration of electrolyzed water produced from tap water in which a trace amount of salt is dissolved.

【図15】 通常の水道水から製造される電解水のpHレベルを示すグラフ
である。
FIG. 15 is a graph showing the pH level of electrolyzed water produced from ordinary tap water.

【図16】 微量の塩を溶存する水道水から製造される電解水のpHレベル
を示すグラフである。
FIG. 16 is a graph showing the pH level of electrolyzed water produced from tap water in which a trace amount of salt is dissolved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 11/08 C25B 9/00 A 15/00 302 K (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,TZ,UG,ZW ),EA(AM,AZ,BY,KG,KZ,MD,RU, TJ,TM),AE,AL,AM,AT,AU,AZ, BA,BB,BG,BR,BY,CA,CH,CN,C R,CU,CZ,DE,DK,DM,EE,ES,FI ,GB,GD,GE,GH,GM,HR,HU,ID, IL,IN,IS,JP,KE,KG,KP,KZ,L C,LK,LR,LS,LT,LU,LV,MA,MD ,MG,MK,MN,MW,MX,NO,NZ,PL, PT,RO,RU,SD,SE,SG,SI,SK,S L,TJ,TM,TR,TT,TZ,UA,UG,US ,UZ,VN,YU,ZA,ZW Fターム(参考) 4D061 DA03 DB07 EA02 EB04 EB07 EB12 EB17 EB19 EB30 EB35 EB39 GC14 GC18 4K011 AA06 AA10 AA11 AA31 CA04 CA05 DA01 4K021 AA09 AB07 AB15 BA02 BA03 BB03 CA05 CA06 CA08 CA09 DB01 DB12 DB13 DB18 DB20─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C25B 11/08 C25B 9/00 A 15/00 302 K (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), EA (AM, AZ, BY, KG) , KZ, MD, RU, TJ, TM), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, L C, LK, LR , LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZWF F term (reference) 4D061 DA03 DB07 EA02 EB04 EB07 EB12 EB17 EB19 EB30 EB35 EB39 GC14 GC18 4K011 AA06 AA10 AA05 CAA31 CAA31 CAA31 CAA31 4K021 AA09 AB07 AB15 BA02 BA03 BB03 CA05 CA06 CA08 CA09 DB01 DB12 DB13 DB18 DB20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 給水口及び排水口を有する絶縁ケース内に分離膜を挟んで対
向させて設置され、一部又は全部にスリットを有するか、又は細線型、細帯片型
若しくはメッシュ型に形成され、陽電極がパラジウム(Pd)を含有する白金(
Pt)合金で形成された、一対の平板状の陽電極及び陰電極からなる対向電極と
、 前記陽電極及び前記陰電極の間に直流(DC)電圧又はパルス電圧を印加する
第1の手段とを備えていることを特徴とする高濃度電解水製造装置。
1. An insulating case having a water supply port and a drain port, which are installed to face each other with a separation membrane interposed therebetween and have slits in a part or all of them, or formed into a thin wire type, a thin strip type, or a mesh type. And the positive electrode contains platinum (Pd) -containing platinum (
A counter electrode composed of a pair of plate-shaped positive and negative electrodes made of Pt) alloy; and a first means for applying a direct current (DC) voltage or a pulse voltage between the positive electrode and the negative electrode. An apparatus for producing high-concentration electrolyzed water, comprising:
【請求項2】 前記対向電極及び前記分離膜が、円筒状であることを特徴と
する請求項1に記載の高濃度電解水製造装置。
2. The high-concentration electrolyzed water production apparatus according to claim 1, wherein the counter electrode and the separation membrane have a cylindrical shape.
【請求項3】 前記対向電極のそれぞれの外側に配置される外部電極と、 該外部電極と前記対向電極との間に電圧を印加する第2の手段とをさらに備え
ていることを特徴とする請求項1又は2に記載の高濃度電解水製造装置。
3. The apparatus further comprises external electrodes arranged outside each of the counter electrodes, and second means for applying a voltage between the external electrodes and the counter electrodes. The high-concentration electrolyzed water manufacturing apparatus according to claim 1.
【請求項4】 電圧を印加する前記第1の手段又は第2の手段が、 前記陽電極及び前記陰電極の間に短い電圧立上り時間を有するパルス電圧を印
加する手段と、 周期がシーケンス制御されるパルス電圧を交番させて印加する手段とを備えて
いることを特徴とする請求項1〜3のいずれかの項に記載の高濃度電解水製造装
置。
4. A means for applying a voltage, wherein the first means or the second means applies a pulse voltage having a short voltage rise time between the positive electrode and the negative electrode, and a cycle is sequence controlled. The apparatus for producing high-concentration electrolyzed water according to any one of claims 1 to 3, further comprising:
【請求項5】 前記対向電極が、パラジウム(Pd)及び白金(Pt)の合金
、又は該合金でメッキされていることを特徴とする請求項1〜3のいずれかの項
に記載の高濃度電解水製造装置。
5. The high concentration according to claim 1, wherein the counter electrode is plated with an alloy of palladium (Pd) and platinum (Pt) or with the alloy. Electrolyzed water production equipment.
【請求項6】 前記対向電極が部分的又は全体的に強誘電物質でメッキされ
ている、又は、強誘電物質が部分的又は全体的に前記対向電極の間及び前記外部
電極の間に充填されていることを特徴とする請求項1〜3のいずれかの項に記載
の高濃度電解水製造装置。
6. The counter electrode is partially or wholly plated with a ferroelectric material, or the ferroelectric material is partially or wholly filled between the counter electrodes and between the outer electrodes. The high-concentration electrolyzed water production apparatus according to any one of claims 1 to 3, wherein
【請求項7】 強酸化性物質が溶存された中性水を前記排水口に排出させる
ために、前記対向電極の間に配置される前記分離膜が除去されていることを特徴
とする請求項1〜6のいずれかの項に記載の高濃度電解水製造装置。
7. The separation membrane disposed between the counter electrodes is removed in order to discharge the neutral water in which the strong oxidizing substance is dissolved to the drainage port. The high-concentration electrolyzed water production apparatus according to any one of 1 to 6.
【請求項8】 前記排水口に排出される強アルカリ性水と強酸性水を混合し
て中性水を生成し、且つpH値を調節する手段をさらに備えていることを特徴と
する請求項1〜6のいずれかの項に記載の高濃度電解水製造装置。
8. The apparatus further comprises means for mixing the strongly alkaline water and the strongly acidic water discharged to the drain outlet to generate neutral water and adjusting the pH value. ~ The high-concentration electrolyzed water production apparatus according to any one of items 6 to 6.
JP2001530062A 1999-10-14 2000-01-06 High concentration electrolyzed water production equipment Pending JP2003516216A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1999/44562 1999-10-14
KR1019990044562A KR100346824B1 (en) 1999-10-14 1999-10-14 High Efficiency Electrolytic Cell and System
PCT/KR2000/000004 WO2001027037A1 (en) 1999-10-14 2000-01-06 Apparatus for producing high-concentration electrolytic water

Publications (1)

Publication Number Publication Date
JP2003516216A true JP2003516216A (en) 2003-05-13

Family

ID=19615361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001530062A Pending JP2003516216A (en) 1999-10-14 2000-01-06 High concentration electrolyzed water production equipment

Country Status (6)

Country Link
EP (1) EP1235751A1 (en)
JP (1) JP2003516216A (en)
KR (1) KR100346824B1 (en)
CN (1) CN1379737A (en)
AU (1) AU3078900A (en)
WO (1) WO2001027037A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
JP2012507385A (en) * 2008-11-05 2012-03-29 メディクエヌ.アール.ジー. リミテッド Apparatus and method for dental cavity treatment
KR20140086498A (en) * 2012-12-28 2014-07-08 코웨이 주식회사 A sterilized water creation device using TDS and method for controlling the same
WO2020136982A1 (en) * 2018-12-28 2020-07-02 日本碍子株式会社 Sterilizing water, sterilizing water production method and sterilized object production method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491175B1 (en) * 2002-08-29 2005-05-24 대한민국 A solution for sterilizing pathogenic bacteria in fish and a method for producing the same , and a method for neutralizing thereof
KR100541989B1 (en) * 2003-05-28 2006-01-10 김재용 Electrochemical industrial wastewater treatment system by means of square wave alternating current
KR101053800B1 (en) * 2003-12-22 2011-08-03 재단법인 포항산업과학연구원 Filmless electrolysis alkaline and acidic water production equipment
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
KR101212292B1 (en) 2007-05-17 2012-12-12 삼성전자주식회사 Water softening apparatus
WO2009046279A2 (en) 2007-10-04 2009-04-09 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
WO2009155545A2 (en) 2008-06-19 2009-12-23 Tennant Company Hand-held spray bottle electrolysis cell and dc-dc converter
KR101156758B1 (en) * 2011-11-03 2012-06-14 주식회사 엘라이저 Cylinder-type pole plate for generating brown gas and cylinder-type brown gas generator having pole plate
CN102609010A (en) * 2012-03-28 2012-07-25 彭勇 Power supply for remotely transmitting signals of liquid level controller by electric water pump
WO2013151704A1 (en) * 2012-04-02 2013-10-10 The Board Of Trustees Of The Leland Stanford Junior University Water sterilization devices and uses thereof
JP5522247B2 (en) * 2012-09-28 2014-06-18 ダイキン工業株式会社 Discharge unit
US9163319B2 (en) 2012-11-02 2015-10-20 Tennant Company Three electrode electrolytic cell and method for making hypochlorous acid
KR101668985B1 (en) * 2014-06-19 2016-11-09 주식회사 공진에너지 Heat Generating Apparatus using Electrolysis
CA3017410A1 (en) 2016-03-14 2017-09-21 Frimann Innoswiss Portable electrolyzer and its use
JP6276803B2 (en) * 2016-05-25 2018-02-07 株式会社日本トリム Functional water generator
KR101991063B1 (en) * 2016-11-23 2019-06-21 한국기계연구원 Ion water filter apparatus and electric generator using the apparatus
CN106698602A (en) * 2017-01-10 2017-05-24 昆山泰瑞克智能科技有限公司 Electrolyzed water sterilization device and sterilization method
KR101952044B1 (en) * 2017-12-08 2019-02-25 (주) 원일화학엔환경 Acid / alkaline electrolytic unit with improved treatment efficiency
KR102009876B1 (en) * 2018-07-16 2019-08-12 주식회사 세광마린텍 Electrolytic sewage treatment apparatus with extended electrode bar useful life
KR20200034263A (en) * 2018-09-21 2020-03-31 장학정 Electrolysis Type Water Heating Apparatus and Radiator System using thereof
CN113479973B (en) * 2021-08-16 2024-06-18 浙江浙能技术研究院有限公司 Automatic scale-inhibiting and descaling electrochemical oxidation system and treatment process
CN114409022B (en) * 2022-03-02 2023-06-02 昆山北极光电子科技有限公司 Electromagnetic water treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201860B2 (en) * 1993-02-22 2001-08-27 日本インテック株式会社 Method and apparatus for producing electrolyzed water
JPH06277667A (en) * 1993-03-26 1994-10-04 Brother Ind Ltd Water preparation device
KR0135687B1 (en) * 1994-08-18 1998-04-22 문재덕 Alloyed platinum and palladium positive pole of electrolysis
JPH091147A (en) * 1995-06-20 1997-01-07 Kobe Steel Ltd Electrode material for electrolyzed ion water-producing device and production therefor and electrolyzed ion water-producing device
KR0168037B1 (en) * 1996-05-01 1999-01-15 문재덕 Ion separation apparatus from solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
US8652319B2 (en) 2006-02-20 2014-02-18 Walter Kothe System and method for splitting water
JP2012507385A (en) * 2008-11-05 2012-03-29 メディクエヌ.アール.ジー. リミテッド Apparatus and method for dental cavity treatment
KR20140086498A (en) * 2012-12-28 2014-07-08 코웨이 주식회사 A sterilized water creation device using TDS and method for controlling the same
KR101984956B1 (en) * 2012-12-28 2019-06-03 웅진코웨이 주식회사 A sterilized water creation device using TDS and method for controlling the same
WO2020136982A1 (en) * 2018-12-28 2020-07-02 日本碍子株式会社 Sterilizing water, sterilizing water production method and sterilized object production method
JPWO2020136982A1 (en) * 2018-12-28 2021-11-04 日本碍子株式会社 Sterilized water, sterilized water manufacturing method and sterilized object manufacturing method

Also Published As

Publication number Publication date
KR100346824B1 (en) 2002-08-03
AU3078900A (en) 2001-04-23
EP1235751A1 (en) 2002-09-04
KR20010037187A (en) 2001-05-07
CN1379737A (en) 2002-11-13
WO2001027037A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
JP2003516216A (en) High concentration electrolyzed water production equipment
JP2949322B2 (en) Ionized water, its production method and production apparatus
JP4116949B2 (en) Electrochemical sterilization and sterilization method
US9079788B2 (en) Reducing waterborne bacteria and viruses by a controlled electric field
EP1640343A1 (en) Photocatalyst water treating apparatus
RU2602110C2 (en) Method and device for water treatment
EA002646B1 (en) Disinfectant and method of use
CN102224110A (en) Device and process for removing microbial impurities in water based liquids as well as the use of the device
KR100359480B1 (en) Water brushing device with sterilizer
US11420885B2 (en) Electrolysis method and device for water
CN116018194A (en) Cleaning of water for bathing and medical treatment
KR100253661B1 (en) Manufacturing device of high concentrated ozone water
KR20130040627A (en) Apparatus for producing reducing water by electrolysis
JP3742769B2 (en) Reduced water production equipment
KR20010035910A (en) High Efficiency Electrolytic Water Production Equipment
JP2759458B2 (en) Method and apparatus for producing treated water
WO2012159206A1 (en) Electrolytic cells and methods for minimizing the formation of deposits on diamond electrodes
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
TWI418518B (en) An electrode block and a fluid reforming device using the block
RU2165894C1 (en) Water electrolyzer
WO2001017908A1 (en) Device for electrolysis
JP3401294B2 (en) Electrolytic water treatment method
US20220371925A1 (en) Clean water for bathing and medical treatments
US20160031728A1 (en) Reducing waterborne bacteria and viruses by a controlled electric field
JP2009142768A (en) Pulse electric field sterilization method and device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060712