JP2003344324A - Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid - Google Patents

Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid

Info

Publication number
JP2003344324A
JP2003344324A JP2002150069A JP2002150069A JP2003344324A JP 2003344324 A JP2003344324 A JP 2003344324A JP 2002150069 A JP2002150069 A JP 2002150069A JP 2002150069 A JP2002150069 A JP 2002150069A JP 2003344324 A JP2003344324 A JP 2003344324A
Authority
JP
Japan
Prior art keywords
sample
container
flow rate
heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002150069A
Other languages
Japanese (ja)
Inventor
Kimihiko Uematsu
公彦 上松
Katsuyuki Tanaka
勝之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002150069A priority Critical patent/JP2003344324A/en
Publication of JP2003344324A publication Critical patent/JP2003344324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an isopiestic specific heat measurement method for a high pressure fluid implemented by using a simple structure which is a batch type sealed in a container and has the container accommodating a sample installed in a thermostatic chamber. <P>SOLUTION: A variable container 3 having a volume varied by external pressure is communicated with a sample container 1 through piping 2. The sample container 1 and the variable container 3 are installed in the thermostatic chamber 30. While a constant pressure is applied to the variable container 3, a thermal flow is externally supplied to the sample S in the sample container 1 and the temperature of the sample S is in a static state. In a cooling process, a thermal flow emitted to the thermostatic chamber is found from the temperature difference between the sample and the thermostatic chamber and a heat transfer coefficient, a thermal flow emitted from the sample container is found by using a standard sample, a thermal flow emitted from the sample is found from a difference between the thermal flow emitted to the thermostatic chamber and the thermal flow emitted from the sample container, and the thermal capacity of the sample is found from a summation of the thermal flow emitted from the sample and the temperature difference between the sample and the thermostatic chamber. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高圧流体の定圧比
熱測定方法及び装置に関し、特に、動力プラントや空調
冷凍機器を始めとした流体及び混合流体を対象とし、測
定装置に圧力容器を必要とする高圧流体の定圧比熱測定
方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a constant pressure specific heat of a high-pressure fluid, and more particularly to a fluid and a mixed fluid such as a power plant and an air conditioning refrigerating machine, which requires a pressure vessel for the measuring apparatus. The present invention relates to a constant pressure specific heat measuring method and device for high pressure fluid.

【0002】[0002]

【従来の技術】技術の発展に伴い、流体の利用範囲が高
温高圧域に広がっている。このような過酷な条件下で定
圧比熱容量や密度を測定できる装置はほとんどないが、
従来の比熱容量測定法として、示差走査法、断熱法、投
下法、周期的加熱法、混合法、熱交換法、フロー法等が
ある(例えば、日本熱物性学会編「熱物性ハンドブッ
ク」p.561 〜565,養賢堂出版(1990))。
2. Description of the Related Art With the development of technology, the range of use of fluids is expanding to high temperature and high pressure regions. There are few devices that can measure the specific heat capacity and density under constant pressure conditions,
As a conventional specific heat capacity measuring method, there are a differential scanning method, an adiabatic method, a dropping method, a periodic heating method, a mixing method, a heat exchange method, a flow method and the like (for example, `` Thermophysical Property Handbook '' p. 561-565, Yokendo Publishing (1990)).

【0003】[0003]

【発明が解決しようとする課題】現在、定圧比熱測定装
置の解析方法のほとんどが断熱法によるものである。断
熱法は、試料を周囲から完全に断熱することで、供給す
る熱量は全て試料の温度上昇のみに使われるとし、次の
基礎式が成り立つとしている。
At present, most of the analysis methods of the constant pressure specific heat measuring device are based on the adiabatic method. In the adiabatic method, the sample is completely insulated from the surroundings, and all the amount of heat supplied is used only for increasing the temperature of the sample, and the following basic formula is established.

【0004】Q=MCp ΔT あるいは熱流量として、 Q’=MCp (dΔT/dt) ただし、Qは熱量、Q’は熱流量、Mは試料の質量、Δ
Tは温度上昇、Cp は試料の定圧比熱、tは時間であ
る。
Q = MC p ΔT or as the heat flow rate, Q ′ = MC p (dΔT / dt) where Q is the heat quantity, Q ′ is the heat flow rate, M is the mass of the sample, Δ
T is the temperature rise, C p is the constant pressure specific heat of the sample, and t is the time.

【0005】この方法の基礎式は単純で解析が容易であ
る。しかしながら、完全に断熱をするということは、周
囲への熱損失を0にすることであり、測定装置で実現す
ることが非常に難しい。基本的な装置の構造は、試料の
周囲を真空にして対流熱伝達による熱損失をほとんど0
にしている。また、ヒータあるいは試料容器の内壁に反
射板を設けて熱放射による熱損失をほとんど0にしてい
る。さらに、熱伝導による熱損失を0にするために、ヒ
ータや温度計のリード線を細いものにしたり、試料を支
持する場所を少ない面積にしたり、支持部を断熱材にし
たり、それらにも温度計とヒータを取り付けて、試料と
熱損失のある所の温度差を0になるよう制御して対処し
ている。断熱法を実現するには、特に最後の熱伝導によ
る熱損失を0にできる構造でなければならない。
The basic equation of this method is simple and easy to analyze. However, complete heat insulation means zero heat loss to the surroundings, which is very difficult to realize with a measuring device. The structure of the basic device is such that the vacuum around the sample causes almost no heat loss due to convective heat transfer.
I have to. Further, a reflection plate is provided on the inner wall of the heater or the sample container to make the heat loss due to heat radiation almost zero. In addition, in order to reduce the heat loss due to heat conduction, the lead wires of the heater and thermometer should be thin, the area for supporting the sample should be small, and the support should be a heat insulating material. A meter and a heater are attached to control the temperature difference between the sample and the place where there is heat loss to be 0, and this is dealt with. In order to realize the adiabatic method, the structure must be such that the heat loss due to the final heat conduction can be made zero.

【0006】ここで、高圧流体を対象と考える。まず、
流体であるため容器を必要とする。常圧流体であれば薄
い熱容量の小さい容器を用いて上記の原理で「試料」と
したところを「試料+容器」として考え、「容器」のみ
の測定を加えて行うことで、「試料+容器」から「容
器」を差し引くことにより扱うことができる。
Here, a high-pressure fluid is considered. First,
Since it is a fluid, it requires a container. If a normal pressure fluid is used, a thin sample container with a small heat capacity is used as a “sample + container” based on the above principle, and only the “container” is measured. It can be handled by subtracting "container" from ".

【0007】ところが、高圧流体であれば、耐圧設計に
より肉の厚い圧力容器を必要とし、 (1)試料に対して容器の熱容量の割合が大きくなり、
精度が出ない。 (2)容器内の温度分布が大きくなり、代表温度が得ら
れず不確かさが大きい。 (3)(2)より制御をすることが困難。 (4)容器から圧力制御用の配管が必要で、配管からの
熱損失は大きく、配管も同様に厚肉なので、(2)、
(3)のように制御が困難である。 等の点に注意しなければならない。
However, in the case of high-pressure fluid, a thick pressure vessel is required due to the pressure resistance design, and (1) the ratio of the heat capacity of the vessel to the sample becomes large,
Precision is not obtained. (2) The temperature distribution in the container becomes large, and the representative temperature cannot be obtained, resulting in large uncertainty. (3) It is more difficult to control than (2). (4) Since a pressure control pipe is required from the container, heat loss from the pipe is large, and the pipe is similarly thick, so (2),
Control is difficult as in (3). You must be careful about such points.

【0008】他の方法として示差走査法がある。参照容
器を用い、熱損失を含めて熱量を加え、参照容器との熱
量の差を取ることにより補償を行っているので、断熱制
御をする必要がないが、試験容器と参照容器との制御を
行っているため、高圧流体を測定するには断熱法と同様
な制御の困難さがあげられる。
Another method is a differential scanning method. It is not necessary to perform adiabatic control because the reference container is used to add the amount of heat including heat loss and the difference in the amount of heat from the reference container is used for compensation, but it is not necessary to control the test container and the reference container. Since it is carried out, it is difficult to control the high-pressure fluid as in the adiabatic method.

【0009】また、断熱制御をせず、あえて熱損失を行
わせ、補償するのではなく、その熱損失を温度差の経時
変化のデータより解析し、定圧比熱を算出する方法とし
て、熱緩和法があり、次の基礎式で表される。
In addition, the thermal relaxation method is used as a method for calculating the constant pressure specific heat by analyzing the heat loss from the data of the time-dependent change in the temperature difference without compensating the heat loss without intentionally performing adiabatic control. And is represented by the following basic formula.

【0010】Q’=MCp (dΔT/dt)+αΔT ここで、αは熱通過係数である。Q '= MC p (dΔT / dt) + αΔT where α is a heat transfer coefficient.

【0011】この場合、周囲への熱損失をαΔTとして
とらえ、断熱制御を行う代わりに、周囲が一定温度場に
なるように置かれていればよい。この一定温度場は、恒
温槽を用いることで容易に実現することができる。
In this case, the heat loss to the surroundings is regarded as αΔT, and instead of performing adiabatic control, the surroundings may be placed in a constant temperature field. This constant temperature field can be easily realized by using a constant temperature bath.

【0012】しかしながら、この方法は固体を対象にし
てよく用いられいるが、高圧流体を対象とした際に圧力
容器や対流による熱通過係数の影響が考えられ、流体を
対象とした解析には用いられていない。
However, although this method is often used for solids, it is considered that the influence of the heat transfer coefficient due to a pressure vessel or convection when a high-pressure fluid is targeted, and it is used for analysis targeting a fluid. Has not been done.

【0013】以上は、容器に試料を充填して行うバッチ
式について述べてきた。市販されている熱量計はほとん
どがバッチ式であり、小型サイズのものが多い。
The batch system in which the container is filled with the sample has been described above. Most of the calorimeters on the market are of batch type, and many of them are of small size.

【0014】フロー式と呼ばれる流体を配管の中で流通
させるタイプのものがある。原理的には、断熱法や示差
走査法によるものでバッチ式と同じであるが、ポンプに
より圧力制御も容易にできるので、等圧線に沿った測定
を行うことができる。精度も良く、誤差1%程度で測定
されている。ただし、装置が大規模になり、配管が長い
ことから、使用する試料が多量になることや、危険な物
質を扱う場合は特に漏れる場所が多数考えられ、対処が
困難であること等があげられる。また、ポンプ等の性能
等から圧力の限界があり、より高圧に適しているのはバ
ッチ式といえる。
There is a type called a flow type in which a fluid is circulated in a pipe. In principle, the method is based on the adiabatic method or the differential scanning method and is the same as the batch method, but since the pressure can be easily controlled by the pump, the measurement along the isobar can be performed. The accuracy is good, and the measurement is performed with an error of about 1%. However, due to the large scale of the equipment and the long piping, there are many samples to be used and it is difficult to deal with it because there are many leaking places when handling dangerous substances. . Further, there is a pressure limit due to the performance of the pump and the like, and it can be said that the batch type is suitable for higher pressure.

【0015】本発明は、従来技術のこのような問題点に
鑑みてなされたものであり、その目的は、試料が少量で
行えるようにフロー式ではなく、容器に密閉したバッチ
式で、試料の内外で制御を行うような複雑な構造を持た
ず、恒温槽の中に試料を入れた容器を設置する単純な構
造で行うことのできる高圧流体の定圧比熱測定方法と装
置を提供することである。
The present invention has been made in view of the above problems of the prior art, and the object thereof is not a flow type so that a small amount of sample can be carried out, but a batch type closed in a container, and It is an object of the present invention to provide a constant pressure specific heat measuring method and device for high pressure fluid, which does not have a complicated structure for controlling inside and outside, and can be performed with a simple structure in which a container containing a sample is installed in a constant temperature bath. .

【0016】すなわち、従来の固体を対象とした熱緩和
法を、高圧流体を対象とする際の特有な圧力容器の影響
と対流の影響を考慮した方法である。これにより、等温
度線、等圧線に沿った測定を1回の充填で行うことがで
きるようになり、特に、取り扱いの困難な物質について
も、安全にかつ短時間で測定可能で、構造が単純でメン
テナンスが容易で、装置の製造にかかる費用も下げるこ
とができるものである。
That is, the conventional thermal relaxation method for solids takes into consideration the effects of the specific pressure vessel and the effects of convection when targeting high-pressure fluid. This makes it possible to perform measurements along the isothermal line and isobar with a single filling, and especially for difficult-to-handle substances, it can be measured safely and in a short time, and the structure is simple. Maintenance is easy and the cost of manufacturing the device can be reduced.

【0017】[0017]

【課題を解決するための手段】上記目的を達成する本発
明の高圧流体の定圧比熱測定方法は、所定容積の試料容
器と、外部から圧力により体積が可変の可変容器とを配
管で連通させ、その試料容器と可変容器とを恒温槽内に
設置して前記可変容器に一定の圧力を加えた状態で、前
記試料容器内の試料に外部から熱流量を供給して試料の
温度を定常状態にし、その冷却過程において前記恒温槽
へ放出される熱流量を、試料と恒温槽の温度差と熱通過
係数とから求め、一方、標準試料を用いて前記試料容器
から放出される熱流量を求めて、求められた前記恒温槽
へ放出される熱流量と前記試料容器から放出される熱流
量との差から、試料から放出される熱流量を求め、求め
られた試料から放出される熱流量の総和とそのときの試
料と恒温槽の温度差から試料の熱容量を求めることを特
徴とする方法である。
A method for measuring the constant pressure specific heat of a high-pressure fluid of the present invention which achieves the above object, comprises connecting a sample container of a predetermined volume and a variable container whose volume is variable by pressure from the outside by piping. The sample container and the variable container are installed in a constant temperature bath and a constant pressure is applied to the variable container, and a heat flow rate is externally supplied to the sample in the sample container to bring the temperature of the sample to a steady state. In the cooling process, the heat flow rate released to the constant temperature bath is determined from the temperature difference between the sample and the constant temperature bath and the heat passage coefficient, while the heat flow rate released from the sample container is determined using a standard sample. , The sum of the heat flow rates released from the determined sample, by determining the heat flow rate released from the sample from the difference between the heat flow rate released to the constant temperature bath and the heat flow rate released from the sample container And the temperature of the sample and the constant temperature bath at that time Determining the heat capacity of the sample from a method comprising.

【0018】この場合、一定の圧力状態での試料の体積
を可変容器の変形量から求め、その体積から試料の密度
を求め、求めた密度を基に試料の比熱を求めるようにす
ることが望ましい。
In this case, it is desirable that the volume of the sample under a constant pressure state is obtained from the deformation amount of the variable container, the density of the sample is obtained from the volume, and the specific heat of the sample is obtained based on the obtained density. .

【0019】また、熱通過係数は、試料容器内の試料に
外部から供給する熱流量を変えて試料の温度を複数の定
常状態にした結果から求めるようにすることが望まし
い。
Further, it is desirable that the heat transfer coefficient is obtained from the result of making the temperature of the sample into a plurality of steady states by changing the heat flow rate supplied from the outside to the sample in the sample container.

【0020】本発明の高圧流体の定圧比熱測定装置は、
流体の試料を入れるための試料容器と、配管によって前
記試料容器と連通された可変容器と、前記可変容器を中
に収容している圧力容器とが温度制御可能な恒温槽内に
配置され、前記可変容器と前記圧力容器の間の空間の圧
力を所定の値に設定制御する手段と、前記可変容器の変
形量を検出する手段と、前記試料容器内の試料に所定の
量の熱エネルギーを供給する加熱手段と、前記試料容器
内の試料の温度を検出する温度検出手段とを備えて構成
され、前記可変容器に一定の圧力を加えた状態で、前記
試料容器内の試料に前記加熱手段により熱流量を供給し
て試料の温度を定常状態にし、その冷却過程において前
記恒温槽へ放出される熱流量を、試料と恒温槽の温度差
と熱通過係数とから求め、一方、標準試料を用いて前記
試料容器から放出される熱流量を求めて、求められた前
記恒温槽へ放出される熱流量と前記試料容器から放出さ
れる熱流量との差から、試料から放出される熱流量を求
め、求められた試料から放出される熱流量の総和とその
ときの試料と恒温槽の温度差から試料の熱容量を求める
ようにしたことを特徴とするものである。
The constant pressure specific heat measuring device for high pressure fluid of the present invention comprises:
A sample container for containing a fluid sample, a variable container communicated with the sample container by a pipe, and a pressure container containing the variable container are arranged in a temperature-controlled thermostatic chamber, and Means for setting and controlling the pressure in the space between the variable container and the pressure container to a predetermined value, means for detecting the amount of deformation of the variable container, and supplying a predetermined amount of thermal energy to the sample in the sample container And a temperature detecting means for detecting the temperature of the sample in the sample container, and a constant pressure is applied to the variable container, the sample in the sample container by the heating means. A heat flow rate is supplied to bring the temperature of the sample to a steady state, and the heat flow rate released to the constant temperature bath in the cooling process is determined from the temperature difference between the sample and the constant temperature bath and the heat passage coefficient, while using a standard sample. Released from the sample container The heat flow rate released from the sample is calculated from the difference between the heat flow rate released to the constant temperature bath and the heat flow rate released from the sample container. It is characterized in that the heat capacity of the sample is obtained from the total sum of the heat flow rates and the temperature difference between the sample and the constant temperature bath at that time.

【0021】この場合、可変容器としては、例えば金属
ベローズ、シリンダーとピストンとからなるもの等があ
げられる。
In this case, examples of the variable container include a metal bellows, a container including a cylinder and a piston, and the like.

【0022】本発明においては、試料を容器に密封した
バッチ式で、試料の内外で制御を行うような複雑な構造
を持たずに、恒温槽の中に試料を入れた容器を設置する
単純な構造により、高圧流体の定圧比熱容量を測定する
ことができ、等温度線、等圧線に沿った測定を1回の試
料充填で行うことができるようになり、特に、取り扱い
の困難な毒性がある等の試料についても密封されている
ため、安全にかつ短時間で測定可能で、装置の構造が単
純でメンテナンスが容易で、製作にかかる費用も下げる
ことができることとなる。また、少量の試料で測定が可
能であるため、開発されたばかりのような高価で貴重な
試料にも適している。
In the present invention, the sample is sealed in a container in a batch system, and the container containing the sample is placed in a constant temperature bath without a complicated structure for controlling the inside and outside of the sample. Due to the structure, the constant pressure specific heat capacity of the high-pressure fluid can be measured, and the measurement along the isothermal line and the isobar can be performed with one sample filling. Especially, there is toxicity that is difficult to handle. Since the sample (1) is also sealed, it can be measured safely and in a short time, the structure of the device is simple, the maintenance is easy, and the manufacturing cost can be reduced. Moreover, since it is possible to measure with a small amount of sample, it is suitable for an expensive and valuable sample that has just been developed.

【0023】[0023]

【発明の実施の形態】本発明の高圧流体の定圧比熱測定
装置は、図1に示すように、定圧比熱容量を測定する熱
量計10と密度を測定する金属ベローズ容積計20が配
管2で連結されており、質量調整された少量の流体の試
料Sが熱量計10と金属ベローズ容積計20の両方に充
填され、伸縮自在の金属ベローズ3により、試料Sと完
全に隔離された金属ベローズ3外側から窒素ガス等のガ
スGを圧媒体として加圧、制御することで、金属ベロー
ズ3内側及び熱量計10の試料Sを高圧域まで加圧、制
御することができ、また、熱量計10と金属ベローズ容
積計20は共にシリコンオイル等のオイルOを熱媒体と
した恒温槽30に設置することで、高温域まで昇温、制
御することができ、1回の少量の試料Sの充填により高
温高圧域において多数の状態点で測定できることを特徴
とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a constant pressure specific heat measuring device for high pressure fluid of the present invention comprises a calorimeter 10 for measuring a constant pressure specific heat capacity and a metal bellows volume meter 20 for measuring a density connected by a pipe 2. The calorimeter 10 and the metal bellows volume meter 20 are filled with a small amount of the sample S of a mass-adjusted fluid, and the expandable metal bellows 3 completely separates the sample S from the outside of the metal bellows 3. By pressurizing and controlling the gas G such as nitrogen gas as a pressure medium, the inside of the metal bellows 3 and the sample S of the calorimeter 10 can be pressurized and controlled to a high pressure region, and the calorimeter 10 and the metal can be controlled. Both the bellows volume meter 20 can be heated and controlled to a high temperature range by installing both in a constant temperature tank 30 using oil O such as silicon oil as a heat medium, and high temperature and high pressure can be achieved by filling a small amount of sample S once. In the area Is characterized in that can be measured in the number of state point.

【0024】以下に、図面を参照して本発明の実施形態
を説明する。図1に、本発明の高圧流体の定圧比熱測定
装置の基本構成を示す。この測定装置は、流体の試料S
を入れるための試料容器1と、細く熱伝導が無視できる
配管2によって試料容器1と連通させた金属ベローズ3
と、金属ベローズ3を中に収容している圧力容器4と、
圧力容器4中の金属ベローズ3に外側からガスGで所定
の圧力を加えると共にその圧力を測定するための配管5
と、金属ベローズ3先端の移動量を検出して試料容器1
と配管2と金属ベローズ3内に充填されている流体試料
Sの容積を計測する容積計6と、バルブ8を経て試料容
器1と配管2と金属ベローズ3内に試料Sを充填するた
めの配管7と、試料容器1内に配置されたヒータ11及
び温度計12と、オイルOを熱媒体として内部に収容し
ている液体恒温槽30と、液体恒温槽30内のオイルO
中に配置れたヒータ13、温度計14及び攪拌器15と
を備えており、熱量計10は、試料容器1とヒータ11
と温度計12で構成され、金属ベローズ容積計20は、
金属ベローズ3と、圧力容器4と、容積計6とから構成
されており、長時間一定温度に保たれる液体恒温槽30
のオイルO中に試料容器1、配管2、圧力容器4に配置
されていて、試料容器1中のヒータ11と温度計12、
容積計6、配管5、配管7、液体恒温槽30中のヒータ
13と温度計14と攪拌器15は、それぞれ図示のよう
に液体恒温槽30の外部と接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic configuration of a constant pressure specific heat measuring device for high pressure fluid according to the present invention. This measuring device uses a fluid sample S
A sample container 1 for holding a sample and a metal bellows 3 connected to the sample container 1 by a pipe 2 which is thin and has negligible heat conduction
And a pressure vessel 4 containing a metal bellows 3 therein,
A pipe 5 for applying a predetermined pressure with the gas G from the outside to the metal bellows 3 in the pressure vessel 4 and measuring the pressure.
And the amount of movement of the tip of the metal bellows 3 is detected to detect the sample container 1
A volume meter 6 for measuring the volume of the fluid sample S filled in the pipe 2 and the metal bellows 3, and a pipe for filling the sample container 1, the pipe 2 and the metal bellows 3 with the sample S via the valve 8. 7, a heater 11 and a thermometer 12 arranged in the sample container 1, a liquid constant temperature tank 30 containing oil O as a heat medium therein, and an oil O in the liquid constant temperature tank 30.
It is provided with a heater 13, a thermometer 14, and a stirrer 15 arranged therein, and the calorimeter 10 includes a sample container 1 and a heater 11.
And the thermometer 12, the metal bellows volume meter 20
A liquid thermostatic chamber 30 that includes a metal bellows 3, a pressure vessel 4, and a volume meter 6, and is kept at a constant temperature for a long time.
Of the sample container 1, the pipe 2 and the pressure container 4 in the oil O of the heater 11 and the thermometer 12 in the sample container 1,
The volume meter 6, the pipe 5, the pipe 7, the heater 13, the thermometer 14, and the stirrer 15 in the liquid constant temperature tank 30 are connected to the outside of the liquid constant temperature tank 30 as shown in the drawing.

【0025】このような装置を用いて、定圧比熱容量、
密度の算出の原理について説明する。試料Sの質量は質
量法により天秤を用いて測定され、配管7とバルブ8を
経て試料容器1と配管2と金属ベローズ3内に充填さ
れ、バルブ8を閉じることにより密封される。熱量計1
0と金属ベローズ容積計20は共に恒温槽30に設置さ
れ、一定温度に保たれている。この状態から、試料容器
1内のヒータ11により試料Sに一定の熱流量Q’を供
給すると、図2に示したように、試料Sの温度は上昇
し、やがて一定温度になる。図2の縦軸は試料Sの温度
と恒温槽温度との温度差ΔTであり、与えた熱流量に対
して一定となる温度ΔTmax が測定される。図2の冷却
過程ではエネルギーは供給されず(Q’=0)、恒温槽
30に放出される熱流量QL ’は、試料Sから放出され
る熱流量QX ’と試料容器1から放出される熱流量
V ’との和となる。すなわち、 QL ’=QX ’+QV ’ ・・・(1) である。
Using such a device, a constant pressure specific heat capacity,
The principle of calculating the density will be described. The mass of the sample S is measured by a mass method using a balance, filled in the sample container 1, the pipe 2 and the metal bellows 3 through the pipe 7 and the valve 8 and sealed by closing the valve 8. Calorimeter 1
0 and the metal bellows volume meter 20 are both installed in a constant temperature bath 30 and kept at a constant temperature. From this state, when a constant heat flow rate Q ′ is supplied to the sample S by the heater 11 in the sample container 1, the temperature of the sample S rises and eventually becomes constant as shown in FIG. The vertical axis of FIG. 2 is the temperature difference ΔT between the temperature of the sample S and the temperature of the constant temperature bath, and the temperature ΔT max that becomes constant with respect to the applied heat flow rate is measured. Energy in the cooling process of Figure 2 is not supplied (Q is' = 0), the heat flow Q L emitted in a constant temperature bath 30 'is released from the heat flow Q X' the sample container 1 which is emitted from the sample S Heat flow rate Q V '. That is, the Q L '= Q X' + Q V '··· (1).

【0026】ここで、定常状態(図2の温度差ΔTが一
定になった状態)におけるエネルギー収支を計算する
と、供給熱流量Q’と放出される熱流量QL ’が釣合っ
ているので、 Q’=QL ’ ・・・(2) であり、放出される熱流量QL ’は、試料Sの温度と恒
温槽30の温度との温度差ΔTに比例すると考えると、 QL ’=αΔT ・・・(3) となる。なお、この式(3)は定常状態以外の状態でも
成立する。したがって、熱通過係数αは式(4)によっ
て求めることができる。
[0026] Here, when calculating the energy balance in the steady state (the temperature difference ΔT becomes constant 2) because is balanced 'heat flow Q L emitted a' supply heat flow Q, Q is a '= Q L' ··· (2 ), heat flow Q L emitted ', given to be proportional to the temperature difference ΔT between the temperature of the temperature and a thermostat 30 of the sample S, Q L' = αΔT (3) It should be noted that this equation (3) holds even in a state other than the steady state. Therefore, the heat transfer coefficient α can be obtained by the equation (4).

【0027】 α=Q’/ΔTmax ・・・(4) ヒータ11により供給する熱流量Q’を変えた条件で数
回測定して得られた結果から、熱通過係数αが式(5)
のような関係で得られる。
Α = Q ′ / ΔT max (4) From the results obtained by measuring several times under the condition that the heat flow rate Q ′ supplied by the heater 11 is changed, the heat transfer coefficient α is expressed by the equation (5).
It is obtained in a relationship like.

【0028】 α=βΔTr ・・・(5) ここで、ベキのrは装置定数を表すもので、図3に示す
ように、ΔTmax とαを共に対数表示した両対数グラフ
に、上記のようにして得られたαとΔTmax の関係をプ
ロットして結んだ直線の傾きを表している。
Α = βΔT r (5) Here, the power r represents a device constant, and as shown in FIG. 3, the above logarithmic graph in which both ΔT max and α are expressed in logarithm is shown above. The relationship between α and ΔT max thus obtained is plotted and the slope of the straight line is shown.

【0029】試料容器1から放出される熱流量QV ’を
水等を用いて検定することで、図2の冷却過程で試料S
から放出される熱流量QX ’は、式(6)で計算するこ
とができる。
By calibrating the heat flow rate Q V 'released from the sample container 1 with water or the like, the sample S is cooled in the cooling process of FIG.
The heat flow rate Q X 'which is released from can be calculated by equation (6).

【0030】 QX ’=QL ’−QV ’ ・・・(6) 試料Sの熱流量QX ’と試料の質量M、定圧比熱Cp
温度差ΔTの間には式(7)の関係が成り立ち、 QX ’=MCp (−dΔT/dt) ・・・(7) 式(7)により、試料Sの温度降下に伴って放出される
熱量QX は、 QX =∫QX ’dt=−∫MCp dΔT ・・・(8) となる。例えば約0.2秒(=Δt)に1回測定をして
いるデータを用いて数値積分を行い、定圧比熱Cp を測
定中の温度差では温度には無関係であると仮定すれば、
式(8)は式(9)で近似できる。
Q X '= Q L ' -Q V '(6) Heat flow Q X ' of sample S, sample mass M, constant pressure specific heat C p ,
The relationship of the formula (7) is established between the temperature differences ΔT, and Q X '= MC p (−dΔT / dt) (7) According to the formula (7), the sample S is released with the temperature drop. The heat quantity Q X to be obtained is Q X = ∫Q X 'dt = −∫MC p dΔT (8) For example, if it is assumed that the temperature difference during measurement of the constant pressure specific heat C p is irrelevant to the temperature, numerical integration is performed using the data measured once in about 0.2 seconds (= Δt).
Expression (8) can be approximated by Expression (9).

【0031】 QX ≒ΣQX ’Δt=−MCp ΔT ・・・(9) 式(9)より試料Sの熱容量MCp が求まる。試料Sの
質量Mは予め試料容器1の内容積VC を検定しておき、
後記する方法で測定した試料の密度ρから算出される。
Q X ≉ΣQ X 'Δt = −MC p ΔT (9) The heat capacity MC p of the sample S can be obtained from the equation (9). For the mass M of the sample S, the internal volume V C of the sample container 1 is preliminarily tested,
It is calculated from the density ρ of the sample measured by the method described below.

【0032】 M=ρVC ・・・(10) これらより、試料Sの定圧比熱Cp が算出される。M = ρV C (10) From these, the constant pressure specific heat C p of the sample S is calculated.

【0033】ここで、上記の試料容器1から放出される
熱流量QV ’を水等を用いて検定する際、式(1)よ
り、 QV ’=QL ’−QX ’ ・・・(11) 試料(水)の冷却速度は、図2に示した冷却曲線を片対
数グラフにとると、図4に示したように略直線になるの
で、式(12)で表すことができる。
Here, when the heat flow rate Q V 'released from the sample container 1 is tested using water or the like, from the equation (1), Q V ' = Q L '-Q X ' ... (11) The cooling rate of the sample (water) becomes a substantially straight line as shown in FIG. 4 when the cooling curve shown in FIG.

【0034】 ΔT=aebt ・・・(12) したがって、冷却速度は、 dΔT/dt=baebt=bΔT ・・・(13) となり、式(13)の結果を式(7)に代入すると、試
料(水)に関して、 QX ’=−MCp bΔT≡BΔT ・・・(14) となり、式(14)と式(3)を式(11)に代入すれ
ば、 QV ’=αΔT−BΔT ・・・(15) となる。ここで、α=βΔTr 、B=−MCp bであ
り、各状態点で決定しておく。なお、ここでのM、Cp
はそれぞれ試料(水)の質量、定圧比熱である。
ΔT = ae bt (12) Therefore, the cooling rate becomes dΔT / dt = bae bt = bΔT (13), and when the result of equation (13) is substituted into equation (7), Regarding the sample (water), Q X '= -MC p bΔT≡BΔT (14), and by substituting the equations (14) and (3) into the equation (11), Q V ' = αΔT-BΔT (15) Here, α = βΔT r and B = −MC p b, which are determined at each state point. Note that M and C p here
Are the mass of the sample (water) and the specific heat of constant pressure, respectively.

【0035】このようにして、図2の冷却過程で、式
(15)で試料容器1から放出される熱流量QV ’が求
まる。一方、式(3)から恒温槽30に放出される熱流
量QL’が求まるので、式(6)の関係から試料Sから
放出される熱流量QX ’が求まり、その熱流量QX ’が
式(9)の関係にあることから、試料Sの熱容量MCp
が求まる。そして、式(10)から試料Sの定圧比熱C
p が算出される。
In this way, in the cooling process of FIG. 2, the heat flow rate Q V ′ released from the sample container 1 is obtained by the equation (15). On the other hand, 'since the obtained formula (6) heat flow Q X emitted from the sample S from the relationship of' heat flow Q L emitted from the equation (3) in a thermostat 30 Motomari is, the heat flow Q X ' Is related to the equation (9), the heat capacity MC p of the sample S is
Is required. Then, from the equation (10), the constant pressure specific heat C of the sample S
p is calculated.

【0036】ところで、試料容器1内の試料Sの質量M
については、測定する状態点の温度、圧力をそれぞれ恒
温槽30の温度及び金属ベローズ3に加える圧力で設定
し、十分に定常状態になった後、金属ベローズ3の変位
の測定値を得る。予め水を用いて、金属ベローズ3の変
位Lと内容積Vの関係を検定して相関式を作成しておく
ことにより、各測定における金属ベローズ3の変位の測
定値Lから試料Sの体積Vが算出される。充填した試料
Sの質量Mall は、予め天秤で測定されており、次式
(16)より密度ρが算出される。
By the way, the mass M of the sample S in the sample container 1
With respect to, the temperature and pressure at the state point to be measured are set by the temperature of the thermostatic bath 30 and the pressure applied to the metal bellows 3, respectively, and after a sufficiently steady state is obtained, the measured value of the displacement of the metal bellows 3 is obtained. By previously using water to test the relationship between the displacement L of the metal bellows 3 and the internal volume V and creating a correlation formula, the measured value L of the displacement of the metal bellows 3 in each measurement is used to calculate the volume V of the sample S. Is calculated. The mass M all of the filled sample S is measured by a balance in advance, and the density ρ is calculated from the following equation (16).

【0037】 ρ=Mall /V ・・・(16) 予め水を用いて試料容器1の内容積VC を決定しておく
ことで、上記で得られた密度ρより、上記の式(10)
により、試料Sの質量Mを求めることができる。
Ρ = M all / V (16) By previously determining the internal volume V C of the sample container 1 using water, the above equation (10) is obtained from the density ρ obtained above. )
Thus, the mass M of the sample S can be obtained.

【0038】図5は、図1の定圧比熱測定装置を実際に
構成した1実施例のシステム構成図であり、図6にその
装置の全体を示す斜視図、図7にその主要部を示す斜視
図を示す。液体恒温槽30内の伝熱媒体のオイルOとし
ては例えばシリコンオイルを用い、その温度は、例えば
標準白金抵抗測温体からなる温度計14を用いて検出
し、その抵抗値を精密級交流ブリッジ41で測定し、I
TS−90に準拠して算出される。シリコンオイルOの
温度制御には、外部へ流出する熱量をメインヒータ61
の他、微調整をサブヒータ63で行う。メインヒータ6
1の調整は、手動により大まかにコントロールするが、
微調整は精密級交流ブリッジ41で設定した所定の温度
の抵抗値からの偏差信号の電圧をPIDコントローラ6
4へ送り、PIDコントローラ64で調整された電圧を
サブヒータ63に出力して制御を行う。低温度域につい
ては、さらにクーラー62を用いる。また、シリコンオ
イルの温度分布を小さくするよう攪拌器15を取り付け
てある。ここで、PIDコントローラ(比例・積分・微
分コントローラ)64は、定値制御を行う際の一般的な
制御方式(PID制御)を搭載した機器であり、ITS
−90とは1990年国際温度目盛のことであり、国際
的な温度標準を規定しているものである。
FIG. 5 is a system configuration diagram of one embodiment in which the constant pressure specific heat measuring device of FIG. 1 is actually configured. FIG. 6 is a perspective view showing the whole of the device, and FIG. 7 is a perspective view showing its main part. The figure is shown. Silicon oil, for example, is used as the oil O of the heat transfer medium in the liquid constant temperature bath 30, and its temperature is detected by using the thermometer 14 composed of a standard platinum resistance thermometer, and the resistance value is detected by the precision AC bridge. Measured at 41, I
Calculated according to TS-90. To control the temperature of the silicon oil O, the amount of heat flowing out to the outside is adjusted to the main heater 61.
Besides, fine adjustment is performed by the sub heater 63. Main heater 6
Adjustment of 1 is roughly controlled manually,
For the fine adjustment, the voltage of the deviation signal from the resistance value at the predetermined temperature set by the precision AC bridge 41 is adjusted by the PID controller 6
4 and outputs the voltage adjusted by the PID controller 64 to the sub-heater 63 for control. For the low temperature range, a cooler 62 is further used. Further, a stirrer 15 is attached to reduce the temperature distribution of the silicone oil. Here, the PID controller (proportional / integral / derivative controller) 64 is a device equipped with a general control method (PID control) for performing constant value control.
-90 is the 1990 international temperature scale, which defines an international temperature standard.

【0039】金属ベローズ3の圧力を所定の値に設定制
御するために、金属ベローズ3の外側から所定の圧力を
加えるガスGとしては例えば窒素ガスを用い、窒素ガス
を窒素ボンベ67から供給し、高圧域では油式の高圧ポ
ンプ65を用いて油−窒素セパレータ66を介して窒素
ガスを加圧し、窒素ガスGの圧力は重錘型圧力計42を
用いて測定される。重錘型圧力計42は、圧力を測定す
ると共に圧力を一定に保持することができ、その微調整
に圧力コントローラ68を用いる。
In order to set and control the pressure of the metal bellows 3 to a predetermined value, for example, nitrogen gas is used as the gas G which applies a predetermined pressure from the outside of the metal bellows 3, and nitrogen gas is supplied from the nitrogen cylinder 67. In the high pressure region, the oil type high pressure pump 65 is used to pressurize the nitrogen gas through the oil-nitrogen separator 66, and the pressure of the nitrogen gas G is measured using the dead weight type pressure gauge 42. The dead weight type pressure gauge 42 can measure the pressure and can keep the pressure constant, and the pressure controller 68 is used for the fine adjustment.

【0040】試料容器1内部には、白金抵抗測温体から
なる温度計12と棒状のマイクロヒータからなるヒータ
11が挿入されており、高圧に耐えられるよう共にステ
ンレスシースのものを用いている。ヒータ11により試
料Sを直接加熱し、その際の試料Sの温度の変化を温度
計12によって検出する。この温度計12の抵抗値は、
恒温槽30の温度に対応した抵抗値との差として精密級
交流ブリッジ43で測定し、加熱及び冷却過程による試
料Sの温度変化として算出される。また、供給熱流量
は、マイクロヒータ11と標準抵抗体44、直流定電圧
源45を用い、その電圧をデジタルマルチメータ46で
測定し、ジュール熱として算出される。金属ベローズ3
の変位量は、金属ベローズ3に取り付けたロッド53の
先端に差動トランス47用のセンサーを取り付け、恒温
槽30外部の変位計48で測定される。差動トランス4
7は、非接触型で測定できるため、ロッド53は圧力容
器4と連通している圧力配管の中に収められ、その圧力
配管の外側から位置を検出している。差動トランス47
は直動ステージ49に固定し、ロッド53の移動と平行
に直動ステージ49は動くようになっている。金属ベロ
ーズ3の動きに連動してロッド53が動くと、デジタル
マルチメーター46に示される誘導起電力が変位量に応
じて生じ、誘導起電力は常に0になるようにすることで
位置基準を決め、その値が0になるよう差動トランス4
7を平行移動させ、そのときの直動ステージ49の移動
量を直動ステージ49に取り付けたマグネスケール50
で測定し、カウンタ51に表示させ、それを金属ベロー
ズ3の変位量として測定する。これらデジタルマルチメ
ータ46、精密級交流ブリッジ41の出力をGPIB、
RS232C(送信ケーブル規格)を介してパーソナル
コンピュータ52に取り込み、ほぼ0.2秒間隔でその
データが記録される。
Inside the sample container 1, a thermometer 12 made of a platinum resistance thermometer and a heater 11 made of a rod-shaped micro-heater are inserted, and both have a stainless sheath so as to withstand high pressure. The sample S is directly heated by the heater 11, and the temperature change of the sample S at that time is detected by the thermometer 12. The resistance value of this thermometer 12 is
The difference from the resistance value corresponding to the temperature of the constant temperature bath 30 is measured by the precision grade AC bridge 43 and calculated as the temperature change of the sample S due to the heating and cooling processes. Further, the supplied heat flow rate is calculated as Joule heat by using the micro heater 11, the standard resistor 44, and the DC constant voltage source 45, measuring the voltage with the digital multimeter 46. Metal bellows 3
The displacement amount is measured by a displacement meter 48 outside the thermostatic chamber 30 with a sensor for the differential transformer 47 attached to the tip of the rod 53 attached to the metal bellows 3. Differential transformer 4
Since 7 can be measured by a non-contact type, the rod 53 is housed in the pressure pipe communicating with the pressure vessel 4, and the position is detected from the outside of the pressure pipe. Differential transformer 47
Is fixed to the linear movement stage 49, and the linear movement stage 49 moves in parallel with the movement of the rod 53. When the rod 53 moves in conjunction with the movement of the metal bellows 3, the induced electromotive force shown in the digital multimeter 46 is generated according to the displacement amount, and the induced electromotive force is always 0 so that the position reference is determined. , The differential transformer 4 so that the value becomes 0
7 is moved in parallel, and the moving amount of the linear movement stage 49 at that time is attached to the linear movement stage 49.
Is measured and displayed on the counter 51, which is measured as the displacement amount of the metal bellows 3. The outputs of these digital multimeter 46 and precision AC bridge 41 are GPIB,
The data is taken into the personal computer 52 via RS232C (transmission cable standard) and the data is recorded at intervals of approximately 0.2 seconds.

【0041】このような構成において、供給熱流量は、
熱量計10に挿入されたマイクロヒータ11のジュール
熱により供給する。熱流量供給回路を図8に示す。マイ
クロヒータ11にかかる電圧をV1 、標準抵抗器44の
抵抗値をR2 とし、それにかかる電圧をV2 とすると、
ジュール熱Q’は、 Q’=V1 ・V2 /R2 として算出される。電圧の測定には、デジタルマルチメ
ータ46を用いる。
In such a structure, the supply heat flow rate is
It is supplied by the Joule heat of the micro heater 11 inserted in the calorimeter 10. The heat flow rate supply circuit is shown in FIG. If the voltage applied to the micro-heater 11 is V 1 , the resistance value of the standard resistor 44 is R 2, and the voltage applied to it is V 2 ,
The Joule heat Q ′ is calculated as Q ′ = V 1 · V 2 / R 2 . A digital multimeter 46 is used to measure the voltage.

【0042】また、温度計12の抵抗値は、恒温槽30
の温度に対応した抵抗値との差として精密級交流ブリッ
ジ43で測定し、加熱及び冷却過程による試料Sの温度
変化として算出される。偏差信号の電圧から温度変化に
換算する。熱流量を供給する前の恒温槽30の温度での
精密級交流ブリッジ43からの偏差信号の電圧を0にな
るよう精密級交流ブリッジ43の抵抗値設定ボタンを合
わせると、熱流量供給後の試料Sの温度変化は、偏差信
号の電圧と温度変換係数を用いて、ΔT=k・VT /1
0として算出できる。ただし、温度変換係数kは、偏差
信号の電圧10V当たりの温度差(K)であり、上昇す
るであろう最大温度差より大きめの値で予め設定する必
要がある。
The resistance value of the thermometer 12 is determined by the constant temperature bath 30.
The difference with the resistance value corresponding to the temperature is measured by the precision grade AC bridge 43, and is calculated as the temperature change of the sample S due to the heating and cooling processes. Convert the voltage of the deviation signal into a temperature change. If the resistance value setting button of the precision AC bridge 43 is adjusted so that the voltage of the deviation signal from the precision AC bridge 43 at the temperature of the constant temperature bath 30 before the heat flow is supplied becomes 0, the sample after the heat flow is supplied. The temperature change of S is ΔT = k · V T / 1 using the voltage of the deviation signal and the temperature conversion coefficient.
It can be calculated as 0. However, the temperature conversion coefficient k is a temperature difference (K) per voltage of 10 V of the deviation signal, and needs to be set in advance to a value larger than the maximum temperature difference that will rise.

【0043】この図5〜図7の実施例の装置を用いた定
圧比熱測定方法は、前記の定圧比熱容量、密度の算出の
原理の説明から明らかであるので説明を省く。
The constant pressure specific heat measuring method using the apparatus of the embodiment shown in FIGS. 5 to 7 will be omitted because it is clear from the explanation of the principle of calculating the constant pressure specific heat capacity and density.

【0044】このような装置を用いてすでに250〜4
73K、20MPaまでの温度圧力範囲で測定できるも
のが完成している。
Using such a device, there have already been 250-4
The one that can be measured in the temperature and pressure range up to 73K and 20MPa is completed.

【0045】以上、本発明の高圧流体の定圧比熱測定方
法及び装置をその原理と実施例に基づいて説明してきた
が、本発明は種々の変形と展開が可能である。例えば、
金属ベローズ3の代わりにシリンダーとピストンとから
可変容器を用いてもよい。
Although the method and apparatus for measuring the constant pressure specific heat of high-pressure fluid of the present invention have been described above based on the principle and embodiments thereof, the present invention can be modified and developed in various ways. For example,
Instead of the metal bellows 3, a variable container composed of a cylinder and a piston may be used.

【0046】[0046]

【発明の効果】以上に説明したように、本発明の高圧流
体の定圧比熱測定方法及び装置によれば、試料を容器に
密封したバッチ式で、試料の内外で制御を行うような複
雑な構造を持たずに、恒温槽の中に試料を入れた容器を
設置する単純な構造により、高圧流体の定圧比熱容量を
測定することができ、等温度線、等圧線に沿った測定を
1回の試料充填で行うことができるようになり、特に、
取り扱いの困難な毒性がある等の試料についても密封さ
れているため、安全にかつ短時間で測定可能で、装置の
構造が単純でメンテナンスが容易で、製作にかかる費用
も下げることができることとなる。また、少量の試料で
測定が可能であるため、開発されたばかりのような高価
で貴重な試料にも適している。
As described above, according to the method and apparatus for measuring the constant pressure specific heat of high-pressure fluid of the present invention, the sample is hermetically sealed in a container in a batch system, and a complicated structure for performing control inside and outside the sample is provided. With a simple structure of installing a container containing a sample in a thermostatic chamber without having a fixed volume, it is possible to measure the constant pressure specific heat capacity of a high-pressure fluid. It will be possible to do by filling, especially,
Since it is sealed even for samples that are difficult to handle, such as toxicity, it can be measured safely and in a short time, the structure of the device is simple, maintenance is easy, and the cost of manufacturing can be reduced. . Moreover, since it is possible to measure with a small amount of sample, it is suitable for an expensive and valuable sample that has just been developed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高圧流体の定圧比熱測定装置の基本構
成を示す図である。
FIG. 1 is a diagram showing a basic configuration of a constant pressure specific heat measuring device for high pressure fluid according to the present invention.

【図2】試料に一定の熱流量を供給したときの温度上昇
過程と定常状態と冷却過程を示すグラフである。
FIG. 2 is a graph showing a temperature rising process, a steady state, and a cooling process when a constant heat flow rate is supplied to the sample.

【図3】供給する熱流量を変えた場合の熱通過係数と与
えた熱流量に対して一定となる温度との関係をプロット
して結んだ直線の図である。
FIG. 3 is a diagram of a straight line obtained by plotting and connecting a relationship between a heat passage coefficient when a heat flow rate to be supplied is changed and a temperature which is constant with respect to a given heat flow rate.

【図4】図2に示した冷却曲線を片対数グラフにした図
である。
FIG. 4 is a semilogarithmic graph of the cooling curve shown in FIG.

【図5】本発明の定圧比熱測定装置を実際に構成した1
実施例のシステム構成図である。
FIG. 5 is a view showing an actual configuration 1 of the constant pressure specific heat measuring device of the present invention.
It is a system block diagram of an Example.

【図6】図5の装置の全体を示す斜視図である。FIG. 6 is a perspective view showing the entire apparatus of FIG.

【図7】図5の装置の主要部を示す斜視図である。7 is a perspective view showing a main part of the apparatus of FIG.

【図8】熱流量供給回路を示す図である。FIG. 8 is a diagram showing a heat flow rate supply circuit.

【符号の説明】[Explanation of symbols]

S…試料 G…ガス O…オイル 1…試料容器 2…配管 3…金属ベローズ 4…圧力容器 5…配管 6…容積計 7…配管 8…バルブ 10…熱量計 11…ヒータ 12…温度計 13…ヒータ 14…温度計 15…攪拌器 20…金属ベローズ容積計 30…液体恒温槽 41…精密級交流ブリッジ 42…重錘型圧力計 43…精密級交流ブリッジ 44…標準抵抗体 45…直流定電圧源 46…デジタルマルチメータ 47…差動トランス 48…変位計 49…直動ステージ 50…マグネスケール 51…カウンタ 52…パーソナルコンピュータ 53…ロッド 61…メインヒータ 62…クーラ 63…サブヒータ 64…PIDコントローラ 65…高圧ポンプ 66…油−窒素セパレータ 67…窒素ボンベ 68…圧力コントローラ S ... Sample G ... Gas O ... oil 1 ... Sample container 2 ... Piping 3 ... Metal bellows 4 ... Pressure vessel 5 ... Piping 6 ... Volumetric 7 ... Piping 8 ... Valve 10 ... Calorimeter 11 ... Heater 12 ... Thermometer 13 ... Heater 14 ... Thermometer 15 ... Stirrer 20 ... Metal bellows volume meter 30 ... Liquid thermostat 41 ... Precision grade AC bridge 42 ... Weight pressure gauge 43 ... Precision AC bridge 44 ... Standard resistor 45 ... DC constant voltage source 46 ... Digital multimeter 47 ... Differential transformer 48 ... Displacement meter 49 ... Linear stage 50 ... Magnescale 51 ... Counter 52 ... Personal computer 53 ... Rod 61 ... Main heater 62 ... Cooler 63 ... Sub heater 64 ... PID controller 65 ... High-pressure pump 66 ... Oil-nitrogen separator 67 ... Nitrogen cylinder 68 ... Pressure controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G040 AB05 AB08 BA24 CA02 CB03 DA02 DA14 EA02 EA08 EB02 EC03 GB01 HA16 ZA05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G040 AB05 AB08 BA24 CA02 CB03                       DA02 DA14 EA02 EA08 EB02                       EC03 GB01 HA16 ZA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定容積の試料容器と、外部から圧力に
より体積が可変の可変容器とを配管で連通させ、その試
料容器と可変容器とを恒温槽内に設置して前記可変容器
に一定の圧力を加えた状態で、前記試料容器内の試料に
外部から熱流量を供給して試料の温度を定常状態にし、
その冷却過程において前記恒温槽へ放出される熱流量
を、試料と恒温槽の温度差と熱通過係数とから求め、一
方、標準試料を用いて前記試料容器から放出される熱流
量を求めて、求められた前記恒温槽へ放出される熱流量
と前記試料容器から放出される熱流量との差から、試料
から放出される熱流量を求め、求められた試料から放出
される熱流量の総和とそのときの試料と恒温槽の温度差
から試料の熱容量を求めることを特徴とする高圧流体の
定圧比熱測定方法。
1. A sample container having a predetermined volume and a variable container whose volume is variable by pressure from the outside are connected by a pipe, and the sample container and the variable container are installed in a thermostatic chamber so that the variable container is fixed. With pressure applied, a heat flow rate is externally supplied to the sample in the sample container to bring the temperature of the sample to a steady state,
In the cooling process, the heat flow rate released to the constant temperature bath is determined from the temperature difference between the sample and the constant temperature bath and the heat transmission coefficient, while the heat flow rate released from the sample container using a standard sample is determined, From the difference between the heat flow rate released to the constant temperature bath and the heat flow rate released from the sample container, the heat flow rate released from the sample is obtained, and the total heat flow rate released from the obtained sample is calculated. A constant pressure specific heat measuring method for high-pressure fluid, characterized in that the heat capacity of the sample is obtained from the temperature difference between the sample and the constant temperature bath at that time.
【請求項2】 前記一定の圧力状態での前記試料の体積
を前記可変容器の変形量から求め、その体積から試料の
密度を求め、求めた密度を基に試料の比熱を求めること
を特徴とする請求項1記載の高圧流体の定圧比熱測定方
法。
2. The volume of the sample under the constant pressure state is obtained from the deformation amount of the variable container, the density of the sample is obtained from the volume, and the specific heat of the sample is obtained based on the obtained density. The constant pressure specific heat measuring method of the high-pressure fluid according to claim 1.
【請求項3】 前記熱通過係数を、前記試料容器内の試
料に外部から供給する熱流量を変えて試料の温度を複数
の定常状態にした結果から求めることを特徴とする請求
項1又は2記載の高圧流体の定圧比熱測定方法。
3. The heat transfer coefficient is obtained from the result of changing the heat flow rate supplied to the sample in the sample container from the outside to bring the temperature of the sample into a plurality of steady states. A method for measuring a constant pressure specific heat of a high-pressure fluid as described above.
【請求項4】 流体の試料を入れるための試料容器と、
配管によって前記試料容器と連通された可変容器と、前
記可変容器を中に収容している圧力容器とが温度制御可
能な恒温槽内に配置され、前記可変容器と前記圧力容器
の間の空間の圧力を所定の値に設定制御する手段と、前
記可変容器の変形量を検出する手段と、前記試料容器内
の試料に所定の量の熱エネルギーを供給する加熱手段
と、前記試料容器内の試料の温度を検出する温度検出手
段とを備えて構成され、前記可変容器に一定の圧力を加
えた状態で、前記試料容器内の試料に前記加熱手段によ
り熱流量を供給して試料の温度を定常状態にし、その冷
却過程において前記恒温槽へ放出される熱流量を、試料
と恒温槽の温度差と熱通過係数とから求め、一方、標準
試料を用いて前記試料容器から放出される熱流量を求め
て、求められた前記恒温槽へ放出される熱流量と前記試
料容器から放出される熱流量との差から、試料から放出
される熱流量を求め、求められた試料から放出される熱
流量の総和とそのときの試料と恒温槽の温度差から試料
の熱容量を求めるようにしたことを特徴とする高圧流体
の定圧比熱測定装置。
4. A sample container for containing a fluid sample,
A variable container communicated with the sample container by a pipe and a pressure container accommodating the variable container are arranged in a temperature-controllable thermostatic chamber, and a space between the variable container and the pressure container is provided. Means for setting and controlling the pressure to a predetermined value, means for detecting the amount of deformation of the variable container, heating means for supplying a predetermined amount of thermal energy to the sample in the sample container, and sample in the sample container And a constant temperature is applied to the variable container, the sample in the sample container is supplied with a heat flow rate by the heating means to keep the temperature of the sample constant. State, the heat flow rate released to the constant temperature bath in the cooling process is determined from the temperature difference between the sample and the constant temperature bath and the heat transfer coefficient, while the heat flow rate released from the sample container using a standard sample is determined. Sought, said sought From the difference between the heat flow rate discharged to the warm bath and the heat flow rate discharged from the sample container, the heat flow rate released from the sample is obtained, and the total heat flow rate released from the obtained sample and the sample at that time And a constant pressure specific heat measuring device for high-pressure fluid, characterized in that the heat capacity of the sample is obtained from the temperature difference between the constant temperature bath and the constant temperature bath.
【請求項5】 前記可変容器が金属ベローズからなるこ
とを特徴とする請求項4記載の高圧流体の定圧比熱測定
装置。
5. The constant pressure specific heat measuring device for high-pressure fluid according to claim 4, wherein the variable container is made of a metal bellows.
【請求項6】 前記可変容器がシリンダーとピストンと
からなることを特徴とする請求項4記載の高圧流体の定
圧比熱測定装置。
6. The constant pressure specific heat measuring device for high pressure fluid according to claim 4, wherein the variable container comprises a cylinder and a piston.
JP2002150069A 2002-05-24 2002-05-24 Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid Pending JP2003344324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150069A JP2003344324A (en) 2002-05-24 2002-05-24 Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150069A JP2003344324A (en) 2002-05-24 2002-05-24 Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid

Publications (1)

Publication Number Publication Date
JP2003344324A true JP2003344324A (en) 2003-12-03

Family

ID=29768011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150069A Pending JP2003344324A (en) 2002-05-24 2002-05-24 Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid

Country Status (1)

Country Link
JP (1) JP2003344324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466333B1 (en) * 2013-11-25 2014-04-09 株式会社パルメトリクス Thermal measurement device
CN105021648A (en) * 2015-07-21 2015-11-04 浙江大学 Heat exchange-reduction self-balance compression-type liquid specific heat capacity measurement device and method
CN111458367A (en) * 2020-04-21 2020-07-28 吉林大学 Novel method for predicting structure of lithium-rich material
CN112748145A (en) * 2020-12-29 2021-05-04 西安交通大学 Double-flow-method specific heat capacity measuring device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466333B1 (en) * 2013-11-25 2014-04-09 株式会社パルメトリクス Thermal measurement device
CN105021648A (en) * 2015-07-21 2015-11-04 浙江大学 Heat exchange-reduction self-balance compression-type liquid specific heat capacity measurement device and method
CN111458367A (en) * 2020-04-21 2020-07-28 吉林大学 Novel method for predicting structure of lithium-rich material
CN111458367B (en) * 2020-04-21 2022-02-08 吉林大学 Method for predicting structure of lithium-rich material
CN112748145A (en) * 2020-12-29 2021-05-04 西安交通大学 Double-flow-method specific heat capacity measuring device and method
CN112748145B (en) * 2020-12-29 2022-02-22 西安交通大学 Double-flow-method specific heat capacity measuring device and method

Similar Documents

Publication Publication Date Title
Ahlers Heat capacity near the superfluid transition in He 4 at saturated vapor pressure
Dachs et al. Precision and accuracy of the heat-pulse calorimetric technique low-temperature heat capacities of milligram-sized synthetic mineral samples
McLinden et al. Apparatus for wide-ranging, high-accuracy fluid (p, ρ, T) measurements based on a compact two-sinker densimeter
Suehiro et al. Critical parameters of {xCO2+ (1− x) CHF3} forx=(1.0000, 0.7496, 0.5013, and 0.2522)
Sagdeev et al. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure
JP6042449B2 (en) Apparatus and method for measuring fluid mass flow
US5322360A (en) Isothermal calorimeter
Kwon et al. Precise measurement of thermal conductivity of liquid over a wide temperature range using a transient hot-wire technique by uncertainty analysis
Mursalov et al. Isochoric heat capacity of heavy water at subcritical and supercritical conditions
Polikhronidi et al. Isochoric heat capacity measurements of nitrogen tetroxide system at temperatures between 410 and 484 K and pressures up to 35 MPa
CN109655485B (en) A method of specific heat of liquid is measured using null method
US8613545B2 (en) Scan adiabatic resistive calorimeter (SARC) with ohm heating in the sample
GB2280506A (en) Thermostatic device
Zandt et al. Capabilities for dielectric-constant gas thermometry in a special large-volume liquid-bath thermostat
JP2003344324A (en) Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid
Gardner et al. Thermodynamic properties of high-temperature aqueous solutions. XI. Calorimetric determination of the standard partial molal heat capacity and entropy of sodium chloride solutions from 100 to 200. deg.
US6157009A (en) Advanced reactive system screening tool
Pocock et al. Isothermal Joule–Thomson coefficient of nitrogen
Merlone et al. A liquid bath for accurate temperature measurements
RU2364845C1 (en) Differential adiabatic scanning high-pressure microcalorimetre
US10139292B2 (en) Calorimeter with stabilized temperature
JP2006038607A (en) Measuring method of specific heat at constant pressure of high pressure fluid and device therefor
Schnelle et al. Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control
Rogers et al. Sample-Extrusion Apparatus for High-Pressure Vapor-Liquid Equilibria Compositions and Densities at Pressures up to the Critical
El'dar et al. Automated high-temperature and high-pressure adiabatic calorimeter for measurements of the fundamental property (CVV T) of fluids for scientific applications. Constant-volume heat capacity of compressed liquids and gases