JP2003343245A - Exhaust purifying device of internal combustion engine - Google Patents

Exhaust purifying device of internal combustion engine

Info

Publication number
JP2003343245A
JP2003343245A JP2002155366A JP2002155366A JP2003343245A JP 2003343245 A JP2003343245 A JP 2003343245A JP 2002155366 A JP2002155366 A JP 2002155366A JP 2002155366 A JP2002155366 A JP 2002155366A JP 2003343245 A JP2003343245 A JP 2003343245A
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
exhaust
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002155366A
Other languages
Japanese (ja)
Other versions
JP3858763B2 (en
Inventor
Kotaro Hayashi
孝太郎 林
Soichi Matsushita
宗一 松下
Hisashi Oki
久 大木
Daisuke Shibata
大介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002155366A priority Critical patent/JP3858763B2/en
Publication of JP2003343245A publication Critical patent/JP2003343245A/en
Application granted granted Critical
Publication of JP3858763B2 publication Critical patent/JP3858763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology wherein a reducing agent and hydrogen sulfide flown on feeding the reducing agent to NOx catalyst are removed in an exhaust purifying device of an internal combustion engine. <P>SOLUTION: The exhaust gas purifying device is provided with: a NOx catalyst 14; a reducing agent feeding means 28; an oxidation catalyst 18 at the downstream side of the NOx catalyst 14; a supercharger 15; a secondary air intake pipe 24 communicating an exhaust system 13 from NOx catalyst 14 to the oxidation catalyst 18 with an intake system 9 from the supercharger 15 to the internal combustion engine 1; a secondary air quantity regulating valve 25 for regulating the secondary air quantity; a differential pressure detecting means 26 for detecting the differential pressure between the exhaust system 13 from the NOx catalyst 14 to the oxidation catalyst 18 and the intake system 9 from the supercharger 15 to the internal combustion engine 1; and a sulfur poison recovering means for recovering the sulfur poison only when the pressure of the exhaust system 13 is higher than that of the intake system 9. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関する。
TECHNICAL FIELD The present invention relates to an exhaust emission control device for an internal combustion engine.

【0002】[0002]

【従来の技術】近年、自動車等に搭載される内燃機関、
特に酸素過剰状態の混合気(所謂、リーン空燃比の混合
気)を燃焼可能とするディーゼル機関やリーンバーン・
ガソリン機関では、該内燃機関の排気中に含まれる窒素
酸化物(NOx)を浄化する技術が望まれている。
2. Description of the Related Art In recent years, internal combustion engines mounted in automobiles,
In particular, diesel engines and lean burn engines that can burn an air-fuel mixture that is in an oxygen excess state (so-called lean air-fuel mixture)
In a gasoline engine, a technique for purifying nitrogen oxides (NOx) contained in exhaust gas of the internal combustion engine is desired.

【0003】このような要求に対し、内燃機関の排気系
にNOx吸蔵剤を配置する技術が提案されている。この
NOx吸蔵剤の一つとして、流入する排気の酸素濃度が
高いときは排気中の窒素酸化物(NOx)を吸蔵(吸
収、吸着)し、流入する排気の酸素濃度が低下し且つ還
元剤が存在するときは吸蔵していた窒素酸化物(NO
x)を還元する吸蔵還元型NOx触媒が知られている。
In response to such demands, a technique for arranging a NOx storage agent in the exhaust system of an internal combustion engine has been proposed. As one of the NOx storage agents, when the oxygen concentration of the inflowing exhaust gas is high, nitrogen oxides (NOx) in the exhaust gas are stored (absorbed, adsorbed), the oxygen concentration of the inflowing exhaust gas decreases, and the reducing agent becomes Nitrogen oxides (NO when stored)
Storage-reduction type NOx catalysts that reduce x) are known.

【0004】吸蔵還元型NOx触媒が内燃機関の排気系
に配置されると、内燃機関が希薄燃焼運転されて排気の
空燃比が高くなるときは排気中の窒素酸化物(NOx)
が吸蔵還元型NOx触媒に吸蔵され、吸蔵還元型NOx触
媒に流入する排気の空燃比が低くなったときは吸蔵還元
型NOx触媒に吸蔵されていた窒素酸化物(NOx)が還
元される。
When the NOx storage reduction catalyst is arranged in the exhaust system of the internal combustion engine, nitrogen oxide (NOx) in the exhaust gas is generated when the internal combustion engine is operated in lean combustion and the air-fuel ratio of the exhaust gas becomes high.
Are stored in the NOx storage reduction catalyst, and when the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst becomes low, the nitrogen oxides (NOx) stored in the NOx storage reduction catalyst are reduced.

【0005】ところで、吸蔵還元型NOx触媒には燃料
に含まれる硫黄分が燃焼して生成される硫黄酸化物(S
Ox)もNOxと同じメカニズムで吸蔵される。このよう
に吸蔵されたSOxはNOxよりも放出されにくく、吸蔵
還元型NOx触媒内に蓄積される。これをSOx被毒とい
い、NOx浄化率が低下するため、適宜の時期にSOx被
毒から回復させる被毒回復処理を施す必要がある。この
被毒回復処理は、吸蔵還元型NOx触媒を高温(例えば
600乃至650℃程度)にしつつ燃料添加により酸素
濃度を低下させた排気を吸蔵還元型NOx触媒に流通さ
せて行われている。
By the way, the NOx storage reduction catalyst is a sulfur oxide (S) produced by combustion of sulfur contained in fuel.
Ox) is also stored by the same mechanism as NOx. The SOx thus stored is less likely to be released than NOx, and is stored in the NOx storage reduction catalyst. This is called SOx poisoning, and since the NOx purification rate decreases, it is necessary to perform poisoning recovery processing for recovering from SOx poisoning at an appropriate time. This poisoning recovery process is carried out by flowing the exhaust gas whose oxygen concentration is lowered by adding fuel to the storage reduction type NOx catalyst while keeping the storage reduction type NOx catalyst at a high temperature (for example, about 600 to 650 ° C.).

【0006】このようにして、NOxの還元及びSOx被
毒の回復をリッチ雰囲気にて行うと、吸蔵還元型NOx
触媒下流に還元剤や硫化水素(H2S)が流出すること
がある。
In this way, when the reduction of NOx and the recovery of SOx poisoning are performed in a rich atmosphere, the storage reduction type NOx
A reducing agent or hydrogen sulfide (H 2 S) may flow out downstream of the catalyst.

【0007】ここで、特開2000−110552号公
報に記載された発明では、下流に酸化触媒を設け、更に
該酸化触媒に空気を供給して酸素過剰の雰囲気を形成
し、還元剤や硫化水素を酸化させることを可能としてい
る。
Here, in the invention described in Japanese Patent Application Laid-Open No. 2000-110552, an oxidation catalyst is provided in the downstream side, and further air is supplied to the oxidation catalyst to form an oxygen-excess atmosphere, and a reducing agent and hydrogen sulfide are formed. It is possible to oxidize.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記公報によ
れば、酸化触媒へ空気を供給するためにエアポンプを備
えているため、コスト高となり、また設置スペースが必
要となっていた。
However, according to the above publication, since the air pump is provided for supplying air to the oxidation catalyst, the cost becomes high and the installation space is required.

【0009】本発明は、上記したような問題点に鑑みて
なされたものであり、内燃機関の排気浄化装置におい
て、NOx触媒への還元剤供給時に流出する還元剤及び
硫化水素を除去することができる技術を提供することを
目的とする。
The present invention has been made in view of the above problems, and it is possible to remove the reducing agent and hydrogen sulfide that flow out at the time of supplying the reducing agent to the NOx catalyst in the exhaust purification system of the internal combustion engine. The purpose is to provide technology that can.

【0010】[0010]

【課題を解決するための手段】上記課題を達成するため
に本発明の内燃機関の排気浄化装置は、以下の手段を採
用した。即ち、内燃機関の排気系に設けられ還元剤の存
在下でNOxを還元するNOx触媒と、前記NOx触媒へ
還元剤を供給する還元剤供給手段と、前記NOx触媒の
下流に設けられ酸化機能を有する触媒と、過給機と、前
記NOx触媒から前記酸化機能を有する触媒までの排気
系と前記過給機から内燃機関までの吸気系とを連通する
二次空気導入管と、前記二次空気導入管の流通面積を可
変とし該二次空気導入管を流通する空気の量を調整する
二次空気量調整弁と、前記NOx触媒から前記酸化機能
を有する触媒までの排気系と前記過給機から内燃機関ま
での吸気系との圧力差を検出する差圧検出手段と、前記
過給機から内燃機関までの吸気系の圧力が前記NOx触
媒から前記酸化機能を有する触媒までの排気系の圧力よ
りも高いと前記差圧検出手段により検出されたときに限
り前記NOx触媒へ還元剤を供給して硫黄被毒を回復さ
せる硫黄被毒回復手段と、を具備することを特徴とす
る。
In order to achieve the above object, the exhaust gas purifying apparatus for an internal combustion engine of the present invention employs the following means. That is, a NOx catalyst provided in the exhaust system of an internal combustion engine to reduce NOx in the presence of a reducing agent, a reducing agent supply means for supplying the reducing agent to the NOx catalyst, and an oxidizing function provided downstream of the NOx catalyst. A catalyst having, a supercharger, a secondary air introducing pipe that communicates an exhaust system from the NOx catalyst to the catalyst having the oxidizing function and an intake system from the supercharger to an internal combustion engine, and the secondary air A secondary air amount adjusting valve that adjusts the flow area of the introduction pipe to adjust the amount of air flowing through the secondary air introduction pipe, an exhaust system from the NOx catalyst to the catalyst having the oxidizing function, and the supercharger. From the NOx catalyst to the catalyst having the oxidizing function, the pressure in the intake system from the supercharger to the internal combustion engine is the pressure in the exhaust system from the NOx catalyst to the catalyst having the oxidizing function. Is higher than the differential pressure detection means Sulfur poisoning recovery means for supplying a reducing agent to the NOx catalyst to recover from sulfur poisoning only when detected.

【0011】本発明の最大の特徴は、内燃機関の排気浄
化装置において、酸化機能を有する触媒へ過給空気を供
給可能な場合に限り硫黄被毒回復を行うことにより、N
Ox触媒から流出する還元剤や硫化水素を下流の酸化触
媒で酸化可能とすることにある。
The most significant feature of the present invention is that in an exhaust gas purification apparatus for an internal combustion engine, sulfur poisoning recovery is performed only when supercharged air can be supplied to a catalyst having an oxidizing function.
This is to make it possible to oxidize the reducing agent and hydrogen sulfide flowing out from the Ox catalyst by the downstream oxidation catalyst.

【0012】このように構成された内燃機関の排気浄化
装置では、NOx触媒に還元剤が供給されると、NOx触
媒に流入する排気の空燃比がリッチ空燃比となり、硫黄
酸化物(SOx)が放出される。しかし、このときに炭
化水素(HC)、一酸化炭素(CO)等の還元剤の一部
が下流へ流出することがある。また、SOx被毒回復時
には、NOx触媒から放出されたSOxが硫化水素になり
易い。このようにしてNOx触媒から流出した炭化水素
(HC)、一酸化炭素(CO)、硫化水素を下流の酸化
触媒により酸化させる。ここで、酸化機能を有する触媒
は、酸素過剰の雰囲気において酸化機能が有効に働く
が、SOx被毒回復時には、還元剤の供給により酸素濃
度が低下して、酸化触媒の酸化能力も低下してしまう。
このような状態であっても、二次空気導入管から酸化機
能を有する触媒の上流へ空気を供給することにより、該
酸化触媒の酸化能力を向上させることができる。ここ
で、吸気系は過給機により該過給機下流の空気の圧力が
上昇されているため、二次空気導入管を吸気系から排気
系へ向かって空気が流通する。これにより、酸化触媒の
酸化能力を向上させることが可能となる。また、過給機
による過給圧が十分でない場合には、SOx被毒回復等
を行わないようにすることにより還元剤及び硫化水素等
の大気中への放出を抑止することが可能となる。
In the exhaust gas purification apparatus for an internal combustion engine configured as above, when the reducing agent is supplied to the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst becomes a rich air-fuel ratio, and the sulfur oxide (SOx) is reduced. Is released. However, at this time, a part of the reducing agent such as hydrocarbon (HC) and carbon monoxide (CO) may flow out to the downstream. Further, when recovering from SOx poisoning, SOx released from the NOx catalyst easily becomes hydrogen sulfide. In this way, the hydrocarbon (HC), carbon monoxide (CO), and hydrogen sulfide that have flowed out from the NOx catalyst are oxidized by the downstream oxidation catalyst. Here, the catalyst having an oxidizing function has an effective oxidizing function in an atmosphere of excess oxygen, but at the time of SOx poisoning recovery, the oxygen concentration is lowered by the supply of the reducing agent, and the oxidizing ability of the oxidizing catalyst is also lowered. I will end up.
Even in such a state, by supplying air from the secondary air introducing pipe to the upstream of the catalyst having an oxidizing function, the oxidizing ability of the oxidizing catalyst can be improved. Here, in the intake system, since the pressure of the air downstream of the supercharger is increased by the supercharger, the air flows from the intake system to the exhaust system through the secondary air introducing pipe. This makes it possible to improve the oxidation ability of the oxidation catalyst. Further, when the supercharging pressure by the supercharger is not sufficient, it is possible to suppress the release of the reducing agent and hydrogen sulfide into the atmosphere by not performing SOx poisoning recovery.

【0013】尚、前記過給機から内燃機関までの吸気系
に吸気絞り弁が配設されている場合には、前記二次空気
導入管は、NOx触媒から酸化機能を有する触媒までの
排気系と過給機から吸気絞り弁までの吸気系とを連通す
ることが望ましい。
When an intake throttle valve is provided in the intake system from the supercharger to the internal combustion engine, the secondary air introduction pipe is provided with an exhaust system from the NOx catalyst to the catalyst having an oxidizing function. It is desirable to communicate with the intake system from the supercharger to the intake throttle valve.

【0014】本発明においては、内燃機関の排気系と吸
気系とを連通し内燃機関から排出された排気の一部を内
燃機関の吸気系へ還流させるEGR通路と、前記EGR
通路内を流通するEGRガスの流量を調整するEGR弁
と、を更に備え、前記二次空気供給手段により二次空気
の供給が行われている場合には、前記EGR弁を閉じ側
へ制御することができる。
According to the present invention, the EGR passage for connecting the exhaust system and the intake system of the internal combustion engine to recirculate a part of the exhaust gas discharged from the internal combustion engine to the intake system of the internal combustion engine, and the EGR passage.
An EGR valve for adjusting the flow rate of EGR gas flowing in the passage, and when the secondary air is being supplied by the secondary air supply means, the EGR valve is controlled to be closed. be able to.

【0015】このように、EGR弁が閉じ側へ制御され
ると、EGRガス量が減少して排気の温度が上昇するた
め、排気のエネルギにより過給を行う過給機では、過給
圧を上昇させることができ、酸化機能を有する触媒へ多
くの空気を供給することが可能となる。
As described above, when the EGR valve is controlled to the closing side, the EGR gas amount decreases and the temperature of the exhaust gas rises. Therefore, in the supercharger that supercharges with the energy of the exhaust gas, the supercharging pressure is increased. It is possible to raise the temperature, and it becomes possible to supply a large amount of air to the catalyst having an oxidizing function.

【0016】本発明においては、前記過給機は、吸気の
過給圧を所望の圧力とすべくタービンホイールに吹き付
けられる排気の流速をノズルベーンの開閉により可変と
する可変容量型ターボチャージャであって、前記二次空
気供給手段により二次空気の供給が行われている場合に
は、前記ノズルベーンを閉じ側へ制御することができ
る。
In the present invention, the supercharger is a variable capacity type turbocharger that changes the flow velocity of the exhaust gas blown to the turbine wheel by opening and closing the nozzle vanes so that the supercharging pressure of the intake air becomes a desired pressure. When the secondary air is being supplied by the secondary air supply means, the nozzle vane can be controlled to the closing side.

【0017】このように、ノズルベーンが閉じ側へ制御
されると、過給圧が上昇し、酸化機能を有する触媒への
空気の供給量を増加させることが可能となる。
As described above, when the nozzle vane is controlled to the closing side, the supercharging pressure rises, and it becomes possible to increase the supply amount of air to the catalyst having the oxidizing function.

【0018】本発明においては、前記酸化機能を有する
触媒を流通する排気の酸素濃度を検出する酸素濃度検出
手段を更に備え、前記硫黄被毒回復手段は、酸化機能を
有する触媒を流通する排気の酸素濃度が酸化機能を有す
る触媒を活性させる濃度となる範囲内で、前記二次空気
量調整弁を閉じ側へ制御することができる。
In the present invention, an oxygen concentration detecting means for detecting the oxygen concentration of the exhaust gas flowing through the catalyst having the oxidizing function is further provided, and the sulfur poisoning recovery means is provided for the exhaust gas flowing through the catalyst having the oxidizing function. The secondary air amount adjusting valve can be controlled to the closing side within a range where the oxygen concentration is a concentration that activates the catalyst having an oxidizing function.

【0019】このように構成された内燃機関の排気浄化
装置では、酸化機能を有する触媒へ必要最低限の空気を
供給することができるため、過給圧が早期に低下するこ
とを抑制し、長期に亘り酸化機能を有する触媒へ空気を
供給することが可能となる。
In the exhaust gas purifying apparatus for an internal combustion engine configured as described above, the required minimum amount of air can be supplied to the catalyst having an oxidizing function, so that the supercharging pressure can be prevented from decreasing early and the long-term operation can be prevented. It is possible to supply air to the catalyst having an oxidizing function over a period of time.

【0020】[0020]

【発明の実施の形態】以下、本発明に係る内燃機関の具
体的な実施態様について図面に基づいて説明する。ここ
では、本発明に係る内燃機関を車両駆動用のディーゼル
機関に適用した場合を例に挙げて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of an internal combustion engine according to the present invention will be described below with reference to the drawings. Here, a case where the internal combustion engine according to the present invention is applied to a diesel engine for driving a vehicle will be described as an example.

【0021】図1は、本実施の形態に係るエンジンとそ
の吸排気系の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an engine and its intake and exhaust system according to the present embodiment.

【0022】図1に示すエンジン1は、4つの気筒2を
有する水冷式の4サイクル・ディーゼル機関である。
The engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

【0023】エンジン1は、各気筒2の燃焼室に直接燃
料を噴射する燃料噴射弁3を備えている。各燃料噴射弁
3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレー
ル)4と接続されている。
The engine 1 is equipped with a fuel injection valve 3 for directly injecting fuel into the combustion chamber of each cylinder 2. Each fuel injection valve 3 is connected to a pressure accumulator (common rail) 4 that accumulates fuel to a predetermined pressure.

【0024】前記コモンレール4は、燃料供給管5を介
して燃料ポンプ6と連通している。この燃料ポンプ6
は、エンジン1の出力軸(クランクシャフト)の回転ト
ルクを駆動源として作動するポンプであり、該燃料ポン
プ6の入力軸に取り付けられたポンププーリ6aがエン
ジン1の出力軸(クランクシャフト)に取り付けられた
クランクプーリ1aとベルト7を介して連結されてい
る。
The common rail 4 communicates with a fuel pump 6 via a fuel supply pipe 5. This fuel pump 6
Is a pump that operates using the rotational torque of the output shaft (crankshaft) of the engine 1 as a drive source. A pump pulley 6a attached to the input shaft of the fuel pump 6 is attached to the output shaft (crankshaft) of the engine 1. The crank pulley 1a is connected to the crank pulley 1a via a belt 7.

【0025】このように構成された燃料噴射系では、ク
ランクシャフトの回転トルクが燃料ポンプ6の入力軸へ
伝達されると、燃料ポンプ6は、クランクシャフトから
該燃料ポンプ6の入力軸へ伝達された回転トルクに応じ
た圧力で燃料を吐出する。
In the fuel injection system thus constructed, when the rotational torque of the crankshaft is transmitted to the input shaft of the fuel pump 6, the fuel pump 6 is transmitted from the crankshaft to the input shaft of the fuel pump 6. The fuel is discharged at a pressure according to the rotating torque.

【0026】前記燃料ポンプ6から吐出された燃料は、
燃料供給管5を介してコモンレール4へ供給され、コモ
ンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴
射弁3へ分配される。そして、燃料噴射弁3に駆動電流
が印加されると、燃料噴射弁3が開弁し、その結果、燃
料噴射弁3から気筒2内へ燃料が噴射される。
The fuel discharged from the fuel pump 6 is
It is supplied to the common rail 4 through the fuel supply pipe 5, accumulated in the common rail 4 up to a predetermined pressure, and distributed to the fuel injection valve 3 of each cylinder 2. When a drive current is applied to the fuel injection valve 3, the fuel injection valve 3 opens, and as a result, fuel is injected from the fuel injection valve 3 into the cylinder 2.

【0027】また、エンジン1には、吸気枝管8が接続
されており、吸気枝管8の各枝管は、各気筒2の燃焼室
と吸気ポート(図示省略)を介して連通している。
Further, an intake branch pipe 8 is connected to the engine 1, and each branch pipe of the intake branch pipe 8 communicates with a combustion chamber of each cylinder 2 through an intake port (not shown). .

【0028】前記吸気枝管8は、吸気管9に接続され、
該吸気管9の途中には、排気の熱エネルギを駆動源とし
て作動する遠心過給機(ターボチャージャ)15のコン
プレッサハウジング15aが設けられている。
The intake branch pipe 8 is connected to the intake pipe 9,
In the middle of the intake pipe 9, a compressor housing 15a of a centrifugal supercharger (turbocharger) 15 that operates by using heat energy of exhaust gas as a drive source is provided.

【0029】前記吸気管9における吸気枝管8の直上流
に位置する部位には、該吸気管9内を流通する吸気の流
量を調節する吸気絞り弁10が設けられている。この吸
気絞り弁10には、ステップモータ等で構成されて該吸
気絞り弁10を開閉駆動する吸気絞り用アクチュエータ
11が取り付けられている。
An intake throttle valve 10 for adjusting the flow rate of intake air flowing through the intake pipe 9 is provided at a portion of the intake pipe 9 located immediately upstream of the intake branch pipe 8. The intake throttle valve 10 is provided with an intake throttle actuator 11 configured by a step motor or the like for driving the intake throttle valve 10 to open and close.

【0030】このように構成された吸気系では、吸気は
吸気管9を介してコンプレッサハウジング15aに流入
する。
In the intake system thus constructed, the intake air flows into the compressor housing 15a via the intake pipe 9.

【0031】コンプレッサハウジング15aに流入した
吸気は、該コンプレッサハウジング15aに内装された
コンプレッサホイールの回転によって圧縮された後、吸
気枝管8に流入する。吸気枝管8に流入した吸気は、各
枝管を介して各気筒2の燃焼室へ分配され、各気筒2の
燃料噴射弁3から噴射された燃料を着火源として燃焼さ
れる。
The intake air that has flowed into the compressor housing 15a is compressed by the rotation of the compressor wheel installed in the compressor housing 15a, and then flows into the intake branch pipe 8. The intake air that has flowed into the intake branch pipe 8 is distributed to the combustion chamber of each cylinder 2 through each branch pipe, and is burned using the fuel injected from the fuel injection valve 3 of each cylinder 2 as an ignition source.

【0032】一方、エンジン1には、排気枝管12が接
続され、排気枝管12の各枝管が排気ポート1bを介し
て各気筒2の燃焼室と連通している。
On the other hand, an exhaust branch pipe 12 is connected to the engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with a combustion chamber of each cylinder 2 via an exhaust port 1b.

【0033】前記排気枝管12は、前記遠心過給機15
のタービンハウジング15bと接続されている。前記タ
ービンハウジング15bは、排気管13と接続され、こ
の排気管13は、下流にてマフラー(図示省略)に接続
されている。
The exhaust branch pipe 12 is provided with the centrifugal supercharger 15.
Is connected to the turbine housing 15b. The turbine housing 15b is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected downstream to a muffler (not shown).

【0034】前記排気管13の途中には、吸蔵還元型N
Ox触媒を担持したパティキュレートフィルタ(以下、
単にフィルタという。)14が設けられている。フィル
タ14は吸蔵還元型NOx触媒を担持し、排気中の粒子
状物質(以下、PMという。)を捕集するとともに、流
入する排気の酸素濃度が高いときは排気中のNOxを吸
蔵(吸収、吸着)し、流入する排気の酸素濃度が低下し
且つ還元剤が存在するときは吸蔵していたNOxを還元
する機能を有する。このフィルタ14の上流には、酸化
機能を有する第1酸化触媒16が設けられている。ま
た、フィルタ14と第1酸化触媒16との間には、流通
する排気の温度に対応した電気信号を出力する第1排気
温度センサ17が取り付けられている。更に、フィルタ
14の下流には、酸化機能を有する第2酸化触媒18が
設けられている。フィルタ14と第2酸化触媒18との
間には、流通する排気の温度に対応した電気信号を出力
する第2排気温度センサ19及び流通する排気の空燃比
に対応した電気信号を出力する第1空燃比センサ20が
取り付けられている。また、第2酸化触媒18の下流に
は、流通する排気の空燃比に対応した電気信号を出力す
る第2空燃比センサ21が取り付けられている。
In the middle of the exhaust pipe 13, a storage reduction type N
A particulate filter carrying an Ox catalyst (hereinafter,
Simply called a filter. ) 14 are provided. The filter 14 carries a storage-reduction type NOx catalyst, collects particulate matter (hereinafter referred to as PM) in the exhaust gas, and stores (absorbs, absorbs, NOx in the exhaust gas when the oxygen concentration of the inflowing exhaust gas is high). It has a function of reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is reduced and a reducing agent is present. A first oxidation catalyst 16 having an oxidation function is provided upstream of the filter 14. Further, a first exhaust gas temperature sensor 17 that outputs an electric signal corresponding to the temperature of the exhaust gas that flows is attached between the filter 14 and the first oxidation catalyst 16. Further, a second oxidation catalyst 18 having an oxidizing function is provided downstream of the filter 14. Between the filter 14 and the second oxidation catalyst 18, a second exhaust gas temperature sensor 19 for outputting an electric signal corresponding to the temperature of the exhaust gas flowing therethrough and a first output for outputting an electric signal corresponding to the air-fuel ratio of the exhaust gas flowing therethrough The air-fuel ratio sensor 20 is attached. Further, downstream of the second oxidation catalyst 18, a second air-fuel ratio sensor 21 that outputs an electric signal corresponding to the air-fuel ratio of the flowing exhaust gas is attached.

【0035】このように構成された排気系では、エンジ
ン1の各気筒2で燃焼された混合気(既燃ガス)が排気
ポート1bを介して排気枝管12へ排出され、次いで排
気枝管12からフィルタ14上流の第1酸化触媒16へ
流入する。この第1酸化触媒16では、還元剤の一部が
酸化して排気の温度を上昇させることができ、後述する
SOx被毒回復時に吸蔵還元型NOx触媒を昇温させるこ
とができる。また、還元剤によるフィルタ14の目詰ま
りを抑制することができる。第1酸化触媒16を通過し
た排気はフィルタ14へ流入し、該フィルタ14で排気
中のPMが捕集され、またNOxが吸蔵される。フィル
タ14から流出した排気は、下流の第2酸化触媒18へ
流入する。該第2酸化触媒18では、炭化水素(H
C)、一酸化炭素(CO)等を酸化させることができ
る。
In the exhaust system thus constructed, the air-fuel mixture (burnt gas) burned in each cylinder 2 of the engine 1 is discharged to the exhaust branch pipe 12 through the exhaust port 1b, and then the exhaust branch pipe 12 is exhausted. Flows into the first oxidation catalyst 16 upstream of the filter 14. In the first oxidation catalyst 16, part of the reducing agent is oxidized and the temperature of the exhaust gas can be raised, and the temperature of the NOx storage reduction catalyst can be raised at the time of SOx poisoning recovery described later. Further, it is possible to prevent the filter 14 from being clogged with the reducing agent. The exhaust gas that has passed through the first oxidation catalyst 16 flows into the filter 14, where PM in the exhaust gas is collected and NOx is stored. The exhaust gas flowing out from the filter 14 flows into the second oxidation catalyst 18 on the downstream side. In the second oxidation catalyst 18, hydrocarbons (H
C), carbon monoxide (CO), etc. can be oxidized.

【0036】排気枝管12と吸気枝管8とは、排気枝管
12内を流通する排気の一部を吸気枝管8へ再循環させ
るEGR通路(以下、EGR通路とする。)22を介し
て連通されている。このEGR通路22の途中には、電
磁弁などで構成され、印加電力の大きさに応じて前記E
GR通路22内を流通する排気(以下、EGRガスとす
る。)の流量を変更する流量調整弁(以下、EGR弁と
する。)23が設けられている。
The exhaust branch pipe 12 and the intake branch pipe 8 are provided with an EGR passage (hereinafter referred to as an EGR passage) 22 for recirculating a part of the exhaust gas flowing in the exhaust branch pipe 12 to the intake branch pipe 8. Are in communication. A solenoid valve or the like is provided in the middle of the EGR passage 22, and the E
A flow rate adjusting valve (hereinafter, referred to as an EGR valve) 23 that changes a flow rate of exhaust gas (hereinafter, referred to as an EGR gas) flowing in the GR passage 22 is provided.

【0037】このように構成されたEGR機構では、E
GR弁23が開弁されると、EGR通路22が導通状態
となり、排気枝管12内を流通する排気の一部が前記E
GR通路22へ流入し、吸気枝管8へ導かれる。吸気枝
管8へ還流されたEGRガスは、吸気枝管8の上流から
流れてきた新気と混ざり合いつつ各気筒2の燃焼室へ導
かれる。
In the EGR mechanism constructed as described above, E
When the GR valve 23 is opened, the EGR passage 22 is brought into a conductive state, and a part of the exhaust gas flowing through the exhaust branch pipe 12 becomes E.
It flows into the GR passage 22 and is guided to the intake branch pipe 8. The EGR gas recirculated to the intake branch pipe 8 is introduced into the combustion chamber of each cylinder 2 while being mixed with fresh air flowing from the upstream side of the intake branch pipe 8.

【0038】ここで、EGRガスには、水(H2O)や
二酸化炭素(CO2)などのように、自らが燃焼するこ
とがなく、且つ、熱容量が高い不活性ガス成分が含まれ
ているため、EGRガスが混合気中に含有されると、混
合気の燃焼温度が低められ、以て窒素酸化物(NOx)
の発生量が抑制される。
Here, the EGR gas contains an inert gas component such as water (H 2 O) and carbon dioxide (CO 2 ) which does not burn by itself and has a high heat capacity. Therefore, when EGR gas is contained in the air-fuel mixture, the combustion temperature of the air-fuel mixture is lowered, and thus nitrogen oxide (NOx)
Is suppressed.

【0039】一方、ターボチャージャ15と吸気絞り弁
10との間の吸気管9には、二次空気導入管24の一端
が接続されている。一方、フィルタ14と第2酸化触媒
18との間の排気管13には、二次空気導入管24の他
端が接続されている。この二次空気導入管24を介して
吸気系と排気系とが連通されている。この二次空気導入
管24の途中には、電磁弁などで構成され、印加電力の
大きさに応じて前記二次空気導入管24内を流通する空
気の流量を変更する二次空気量調整弁25が設けられて
いる。
On the other hand, one end of a secondary air introducing pipe 24 is connected to the intake pipe 9 between the turbocharger 15 and the intake throttle valve 10. On the other hand, the other end of the secondary air introduction pipe 24 is connected to the exhaust pipe 13 between the filter 14 and the second oxidation catalyst 18. The intake system and the exhaust system are communicated with each other via the secondary air introduction pipe 24. A secondary air amount adjusting valve configured by a solenoid valve or the like in the middle of the secondary air introducing pipe 24 and changing the flow rate of the air flowing through the secondary air introducing pipe 24 according to the magnitude of the applied power. 25 are provided.

【0040】このように構成された二次空気導入機構で
は、二次空気量調整弁25が開弁されると、二次空気導
入管24が導通状態となる。排気系よりも吸気系の圧力
が高い場合には、吸気管9内を流通する空気の一部が前
記二次空気導入管24へ流入し、排気管13へ導入され
る。排気管13へ導入された空気は、排気管13の上流
から流れてきた排気と混ざり合いつつ第2酸化触媒18
へ流入する。
In the secondary air introducing mechanism constructed as described above, when the secondary air amount adjusting valve 25 is opened, the secondary air introducing pipe 24 becomes conductive. When the pressure of the intake system is higher than that of the exhaust system, part of the air flowing through the intake pipe 9 flows into the secondary air introduction pipe 24 and is introduced into the exhaust pipe 13. The air introduced into the exhaust pipe 13 mixes with the exhaust gas flowing from the upstream side of the exhaust pipe 13 while mixing with the second oxidation catalyst 18
Flow into.

【0041】また、ターボチャージャ15と吸気絞り弁
10との間の吸気管9には、吸気を導入する吸気導入管
26aの一端が接続され、フィルタ14と第2酸化触媒
18との間の排気管13には、排気導入管26bの一端
が接続される。吸気導入管26aの他端及び排気導入管
26bの他端は差圧センサ26に接続されている。差圧
センサ26は、吸気導入管26aから導入された吸気
と、排気導入管26bから導入された排気との圧力差に
対応した電気信号を出力する。
The intake pipe 9 between the turbocharger 15 and the intake throttle valve 10 is connected to one end of an intake introduction pipe 26a for introducing intake air, and the exhaust gas between the filter 14 and the second oxidation catalyst 18 is exhausted. One end of an exhaust introduction pipe 26b is connected to the pipe 13. The other end of the intake introduction pipe 26a and the other end of the exhaust introduction pipe 26b are connected to the differential pressure sensor 26. The differential pressure sensor 26 outputs an electric signal corresponding to the pressure difference between the intake air introduced through the intake introduction pipe 26a and the exhaust gas introduced through the exhaust introduction pipe 26b.

【0042】尚、本実施の形態では、フィルタ14より
上流の排気枝管12を流通する排気中に還元剤たる燃料
(軽油)を添加する還元剤供給機構を備え、この還元剤
供給機構から排気中へ燃料を添加することにより、フィ
ルタ14に流入する排気の酸素濃度を低下させるととも
に還元剤の濃度を高めるようにした。
In the present embodiment, a reducing agent supply mechanism for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust branch pipe 12 upstream of the filter 14 is provided. By adding fuel into the exhaust gas, the oxygen concentration of the exhaust gas flowing into the filter 14 is reduced and the concentration of the reducing agent is increased.

【0043】還元剤供給機構は、図1に示されるよう
に、その噴孔が排気枝管12内に臨むように取り付けら
れ、後述するECU27からの信号により開弁して燃料
を噴射する還元剤噴射弁28と、前述した燃料ポンプ6
から吐出された燃料を前記還元剤噴射弁28へ導く還元
剤供給路29と、を備えている。
As shown in FIG. 1, the reducing agent supply mechanism is installed so that its injection hole faces the inside of the exhaust branch pipe 12, and the reducing agent is opened by a signal from an ECU 27 described later to inject fuel. The injection valve 28 and the fuel pump 6 described above.
A reducing agent supply path 29 for guiding the fuel discharged from the reducing agent injection valve 28 to the reducing agent injection valve 28.

【0044】このような還元剤供給機構では、燃料ポン
プ6から吐出された高圧の燃料が還元剤供給路29を介
して還元剤噴射弁28へ印加される。そして、ECU2
7からの信号により該還元剤噴射弁28が開弁して排気
枝管12内へ還元剤としての燃料が噴射される。還元剤
噴射弁28から排気枝管12内へ噴射された燃料は、該
排気枝管12の上流から流れてきた排気の酸素濃度を低
下させる。
In such a reducing agent supply mechanism, the high-pressure fuel discharged from the fuel pump 6 is applied to the reducing agent injection valve 28 via the reducing agent supply passage 29. And the ECU 2
The reducing agent injection valve 28 is opened by a signal from 7 and fuel as a reducing agent is injected into the exhaust branch pipe 12. The fuel injected from the reducing agent injection valve 28 into the exhaust branch pipe 12 reduces the oxygen concentration of the exhaust gas flowing from the upstream side of the exhaust branch pipe 12.

【0045】その後、ECU27からの信号により還元
剤噴射弁28が閉弁し、排気枝管12内への燃料の添加
が停止される。
After that, the reducing agent injection valve 28 is closed by a signal from the ECU 27, and the addition of fuel into the exhaust branch pipe 12 is stopped.

【0046】このようにして、フィルタ14に燃料が供
給された結果、フィルタ14に流入する排気は、比較的
に短い周期で酸素濃度が変化することになる。これによ
り、フィルタ14に吸蔵されていた窒素酸化物(NO
x)は還元される。
As a result of the fuel being supplied to the filter 14 in this way, the oxygen concentration of the exhaust gas flowing into the filter 14 changes in a relatively short cycle. As a result, the nitrogen oxides (NO
x) is reduced.

【0047】以上述べたように構成されたエンジン1に
は、該エンジン1を制御するための電子制御ユニット
(ECU:Electronic Control Unit)27が併設され
ている。このECU27は、エンジン1の運転条件や運
転者の要求に応じてエンジン1の運転状態を制御するユ
ニットである。
The engine 1 configured as described above is provided with an electronic control unit (ECU) 27 for controlling the engine 1. The ECU 27 is a unit that controls the operating state of the engine 1 according to the operating conditions of the engine 1 and the driver's request.

【0048】ECU27には、各種センサが電気配線を
介して接続され、上記した各種センサの出力信号がEC
U27に入力されるようになっている。一方、ECU2
7には、燃料噴射弁3、吸気絞り用アクチュエータ1
1、EGR弁23、二次空気量調整弁25、還元剤噴射
弁28等が電気配線を介して接続され、これらを制御す
ることが可能になっている。また、前記ECU27は、
各種アプリケーションプログラム及び各種制御マップを
記憶している。
Various sensors are connected to the ECU 27 through electrical wiring, and the output signals of the various sensors described above are EC.
It is designed to be input to U27. On the other hand, the ECU 2
7, a fuel injection valve 3 and an intake throttle actuator 1
1, the EGR valve 23, the secondary air amount adjusting valve 25, the reducing agent injection valve 28, etc. are connected via electric wiring, and these can be controlled. Further, the ECU 27 is
It stores various application programs and various control maps.

【0049】ところで、吸蔵還元型NOx触媒には燃料
に含まれる硫黄分が燃焼して生成される硫黄酸化物(S
Ox)もNOxと同じメカニズムで吸蔵される。このよう
に吸蔵されたSOxはNOxよりも放出されにくく、吸蔵
還元型NOx触媒内に蓄積される。これをSOx被毒とい
い、NOx浄化率が低下するため、適宜の時期にSOx被
毒から回復させる被毒回復処理を施す必要がある。この
被毒回復処理は、吸蔵還元型NOx触媒を高温(例えば
600乃至650℃程度)にしつつ燃料添加により酸素
濃度を低下させた排気を吸蔵還元型NOx触媒に流通さ
せて行われている。ここで、第1排気温度センサ17
は、SOx被毒回復時にフィルタ14温度が所定温度
(例えば600乃至650度)となっているか否か判定
するために用いることができる。また、第2排気温度セ
ンサ19は、SOx被毒回復時にフィルタ14が過度に
温度上昇したことを検出するために用いることができ
る。
By the way, in the NOx storage reduction catalyst, sulfur oxides (S
Ox) is also stored by the same mechanism as NOx. The SOx thus stored is less likely to be released than NOx, and is stored in the NOx storage reduction catalyst. This is called SOx poisoning, and since the NOx purification rate decreases, it is necessary to perform poisoning recovery processing for recovering from SOx poisoning at an appropriate time. This poisoning recovery process is carried out by flowing the exhaust gas whose oxygen concentration is lowered by adding fuel to the storage reduction type NOx catalyst while keeping the storage reduction type NOx catalyst at a high temperature (for example, about 600 to 650 ° C.). Here, the first exhaust gas temperature sensor 17
Can be used to determine whether the temperature of the filter 14 is at a predetermined temperature (for example, 600 to 650 degrees) when SOx poisoning is recovered. Further, the second exhaust gas temperature sensor 19 can be used to detect that the temperature of the filter 14 excessively rises when the SOx poisoning is recovered.

【0050】図2は、SOx被毒回復時にフィルタから
放出されるSOxの濃度及びフィルタ内の空燃比の時間
推移を示したタイムチャート図である。
FIG. 2 is a time chart diagram showing the concentration of SOx released from the filter and the time course of the air-fuel ratio in the filter when the SOx poisoning is recovered.

【0051】SOx被毒回復時には、ECU27は、フ
ィルタ14に流入する排気中の酸素濃度を比較的に短い
周期でスパイク的に低くする、燃料添加制御(所謂リッ
チスパイク制御)を実行する。
When recovering from SOx poisoning, the ECU 27 executes fuel addition control (so-called rich spike control) for reducing the oxygen concentration in the exhaust gas flowing into the filter 14 in a spike manner in a relatively short cycle.

【0052】燃料添加制御では、ECU27は、還元剤
噴射弁28からスパイク的に還元剤たる燃料を噴射させ
るべく当該還元剤噴射弁28を制御することにより、フ
ィルタ14に流入する排気の空燃比を一時的に所定の目
標リッチ空燃比とする。
In the fuel addition control, the ECU 27 controls the reducing agent injection valve 28 so that the reducing agent injection valve 28 injects the fuel serving as the reducing agent in a spike manner, thereby changing the air-fuel ratio of the exhaust gas flowing into the filter 14. The predetermined target rich air-fuel ratio is temporarily set.

【0053】具体的には、ECU27は、記憶されてい
る機関回転数、機関負荷(アクセル開度)、エアフロー
メータ(図示省略)の出力信号値(吸入空気量)、第1
空燃比センサ20の出力信号、燃料噴射量等を読み出
す。
Specifically, the ECU 27 controls the stored engine speed, engine load (accelerator opening), output signal value (intake air amount) of an air flow meter (not shown), first
The output signal of the air-fuel ratio sensor 20, the fuel injection amount, etc. are read.

【0054】ECU27は、前記した機関回転数と機関
負荷と吸入空気量と燃料噴射量とをパラメータとして燃
料添加量制御マップへアクセスし、排気の空燃比を予め
設定された目標空燃比とする上で必要となる燃料の添加
量(目標添加量)を算出する。
The ECU 27 accesses the fuel addition amount control map using the engine speed, the engine load, the intake air amount and the fuel injection amount as parameters, and sets the exhaust air-fuel ratio to the preset target air-fuel ratio. Calculate the fuel addition amount (target addition amount) required in.

【0055】続いて、ECU27は、前記目標添加量を
パラメータとして還元剤噴射弁制御マップへアクセス
し、還元剤噴射弁28から目標添加量の燃料を噴射させ
る上で必要となる還元剤噴射弁28の開弁時間(目標開
弁時間)を算出する。
Subsequently, the ECU 27 accesses the reducing agent injection valve control map using the target addition amount as a parameter, and the reducing agent injection valve 28 necessary for injecting the target addition amount of fuel from the reducing agent injection valve 28. The valve opening time of (target valve opening time) is calculated.

【0056】還元剤噴射弁28の目標開弁時間が算出さ
れると、ECU27は、還元剤噴射弁28を開弁させ
る。
When the target opening time of the reducing agent injection valve 28 is calculated, the ECU 27 opens the reducing agent injection valve 28.

【0057】ECU27は、還元剤噴射弁28を開弁さ
せた時点から前記目標開弁時間が経過すると、還元剤噴
射弁28を閉弁させる。
The ECU 27 closes the reducing agent injection valve 28 when the target valve opening time elapses from the time when the reducing agent injection valve 28 is opened.

【0058】このように還元剤噴射弁28が目標開弁時
間だけ開弁されると、目標添加量の燃料が還元剤噴射弁
28から排気枝管12内へ噴射されることになる。そし
て、還元剤噴射弁28から噴射された燃料は、排気枝管
12の上流から流れてきた排気と混ざり合って目標空燃
比の混合気を形成して第1酸化触媒16及びフィルタ1
4に流入する。
As described above, when the reducing agent injection valve 28 is opened for the target valve opening time, the target addition amount of fuel is injected from the reducing agent injection valve 28 into the exhaust branch pipe 12. Then, the fuel injected from the reducing agent injection valve 28 mixes with the exhaust gas flowing from the upstream side of the exhaust branch pipe 12 to form the air-fuel mixture having the target air-fuel ratio to form the first oxidation catalyst 16 and the filter 1.
Inflow to 4.

【0059】第1酸化触媒では、燃料が酸化され、その
ときに熱が発生する。この熱により排気の温度が上昇し
下流のフィルタ14の温度が上昇される。これにより、
フィルタ14の温度は、SOx被毒回復に必要となる温
度まで上昇する。
In the first oxidation catalyst, the fuel is oxidized and heat is generated at that time. Due to this heat, the temperature of the exhaust gas rises and the temperature of the downstream filter 14 rises. This allows
The temperature of the filter 14 rises to the temperature required for SOx poisoning recovery.

【0060】一方、フィルタ14に流入する排気の空燃
比は、比較的に短い周期で酸素濃度が変化することにな
る。フィルタ14では、温度の上昇とともに吸蔵還元型
NOx触媒からSOxが放出され、以て、フィルタ14に
担持された吸蔵還元型NOx触媒のSOx被毒を回復する
ことが可能となる。
On the other hand, in the air-fuel ratio of the exhaust gas flowing into the filter 14, the oxygen concentration changes in a relatively short cycle. In the filter 14, SOx is released from the NOx storage reduction catalyst as the temperature rises, so that SOx poisoning of the NOx storage reduction catalyst carried by the filter 14 can be recovered.

【0061】尚、本実施の形態では、1回のリッチスパ
イクを複数回の燃料により形成させて、空燃比が過剰な
リッチとならないようにしても良い。ここで、1回に多
量の燃料を噴射させると空燃比が過リッチとなり、フィ
ルタ14で燃料が反応しきれずに下流へ流出する虞があ
る。そこで、本実施の形態では、1回当たりの燃料噴射
量を減量し且つ複数回噴射させることにより、過リッチ
を抑制しつつリッチ雰囲気を形成させるようにした。
In the present embodiment, one rich spike may be formed by the fuel a plurality of times to prevent the air-fuel ratio from becoming excessively rich. Here, when a large amount of fuel is injected at one time, the air-fuel ratio becomes excessively rich, and there is a risk that the fuel will not fully react in the filter 14 and will flow out to the downstream side. Therefore, in the present embodiment, the fuel injection amount per injection is reduced and the fuel is injected a plurality of times to form the rich atmosphere while suppressing the excessive rich.

【0062】ここで、図3は、図2中のAで示した箇所
に対応する還元剤噴射弁28の開閉信号を示した図であ
る。還元剤噴射弁28は、信号がOFFのときに閉弁
し、ONとなったときに開弁する。
Here, FIG. 3 is a diagram showing an opening / closing signal of the reducing agent injection valve 28 corresponding to the portion indicated by A in FIG. The reducing agent injection valve 28 closes when the signal is OFF and opens when the signal is ON.

【0063】1回のリッチスパイクは、例えば17回の
燃料噴射により形成されている。燃料噴射弁14の1回
当たりの開弁時間は例えば60msで、その後例えば1
50msの間閉弁される。これを、17回繰り返すこと
により、全体として1回のリッチスパイクが形成されて
いる。このように、1回のリッチスパイクを複数回の燃
料噴射により形成させると、空燃比が過剰にリッチとな
ることを抑制することができる。従って、フィルタ14
で反応せずに下流へ流出する燃料を低減することが可能
となる。また、リッチスパイクは、例えば7.5sのリ
ッチ休止期間毎に形成されている。このリッチ休止期間
により、フィルタ14の過熱を抑止することができ、フ
ィルタ14の熱劣化を抑制することが可能となる。
One rich spike is formed by, for example, 17 times of fuel injection. The valve opening time per time of the fuel injection valve 14 is, for example, 60 ms, and then 1
It is closed for 50 ms. By repeating this 17 times, one rich spike is formed as a whole. In this way, when one rich spike is formed by a plurality of fuel injections, it is possible to suppress the air-fuel ratio from becoming excessively rich. Therefore, the filter 14
It is possible to reduce the amount of fuel flowing downstream without reacting with. Further, the rich spike is formed, for example, at every rich rest period of 7.5 s. By this rich pause period, overheating of the filter 14 can be suppressed, and heat deterioration of the filter 14 can be suppressed.

【0064】ところで、吸蔵還元型NOx触媒のSOx被
毒を回復させるために、燃料が供給されると、前述のよ
うに吸蔵還元型NOx触媒からSOxが放出されるが、こ
の放出されたSOxはリッチ雰囲気では硫化水素(H
2S)になり易い。また、炭化水素(HC)、一酸化炭
素(CO)等の還元成分が吸蔵還元型NOx触媒を通過
して下流へ流出することがある。
By the way, when fuel is supplied to recover SOx poisoning of the NOx storage reduction catalyst, SOx is released from the NOx storage reduction catalyst as described above. Hydrogen sulfide (H
2 S) tends to occur. In addition, reducing components such as hydrocarbons (HC) and carbon monoxide (CO) may pass through the NOx storage reduction catalyst and flow out downstream.

【0065】これに対し、下流に酸化触媒を設けて、炭
化水素(HC)等を酸化させることも考えられるが、S
Ox被毒回復時では還元雰囲気となるため酸化触媒の酸
化能力が著しく低下してしまう。
On the other hand, it is possible to oxidize hydrocarbons (HC) and the like by providing an oxidation catalyst on the downstream side.
When the Ox poisoning is recovered, a reducing atmosphere is created, so that the oxidizing ability of the oxidation catalyst is significantly reduced.

【0066】ここで、従来の内燃機関の排気浄化装置で
は、吸蔵還元型NOx触媒の下流に酸化触媒を設け、該
酸化触媒へ二次空気を供給していた。これにより、SO
x被毒回復時においても酸化触媒の酸化能力を高めるこ
とができた。しかし、二次空気を供給するためにエアポ
ンプが必要であったためコスト高となっていた。
Here, in the conventional exhaust gas purifying apparatus for an internal combustion engine, an oxidation catalyst is provided downstream of the NOx storage reduction catalyst, and secondary air is supplied to the oxidation catalyst. This allows SO
x The oxidation ability of the oxidation catalyst could be increased even when the poisoning was recovered. However, the cost was high because an air pump was required to supply the secondary air.

【0067】そこで、本実施の形態では、第2酸化触媒
18の上流にターボチャージャ15で昇圧された過給空
気を導入し、該第2酸化触媒18に流入する排気を酸化
雰囲気にして、該第2酸化触媒18の酸化能力を高める
ようにした。これにより、第2酸化触媒18にて一酸化
炭素(CO)及び炭化水素(HC)並びに硫化水素(H
2S)等を酸化させることが可能となる。
Therefore, in the present embodiment, supercharged air whose pressure has been boosted by the turbocharger 15 is introduced upstream of the second oxidation catalyst 18, and the exhaust gas flowing into the second oxidation catalyst 18 is made into an oxidizing atmosphere, The oxidizing ability of the second oxidation catalyst 18 is increased. As a result, carbon monoxide (CO) and hydrocarbons (HC) and hydrogen sulfide (H) are generated in the second oxidation catalyst 18.
2 S) etc. can be oxidized.

【0068】ここで、SOx被毒回復は、吸気絞り弁1
0を閉じ側へ制御して、吸入空気量を減量させつつ空燃
比を例えば20以下にして行われることが多い。このよ
うに、吸入空気量を減量させることにより、少量の燃料
の添加で空燃比を低下させることができ、燃費を向上さ
せることが可能となる。そして、SOx被毒回復時に吸
入空気量が減少される運転状態では、過給機による過給
は不要である。従って、機関の運転状態やSOx被毒回
復にはほとんど影響を及ぼさずに吸気管内の圧縮された
空気を二次空気として酸化触媒へ供給することができ
る。
Here, the SOx poisoning recovery is performed by the intake throttle valve 1
In many cases, the air-fuel ratio is set to 20 or less by controlling 0 to the closing side to reduce the intake air amount. As described above, by reducing the intake air amount, the air-fuel ratio can be lowered by adding a small amount of fuel, and the fuel consumption can be improved. Then, in the operating state in which the intake air amount is reduced when SOx poisoning is recovered, supercharging by the supercharger is unnecessary. Therefore, the compressed air in the intake pipe can be supplied to the oxidation catalyst as secondary air with almost no influence on the operating state of the engine or recovery of SOx poisoning.

【0069】また、ターボチャージャ15により圧縮さ
れた空気を酸化触媒へ供給するため、空気を供給するた
めのポンプを設ける必要がない。
Further, since the air compressed by the turbocharger 15 is supplied to the oxidation catalyst, it is not necessary to provide a pump for supplying the air.

【0070】尚、本実施の形態では、ターボチャージャ
15から吸気絞り弁10までの間の吸気管9内の圧力
と、フィルタ14から第2酸化触媒18までの間の排気
管13内の圧力と、の差圧を検出し、排気管13内の圧
力よりも吸気管9内の圧力が高い場合に限り二次空気量
調整弁25を開弁させてSOx被毒回復を行う。
In this embodiment, the pressure in the intake pipe 9 between the turbocharger 15 and the intake throttle valve 10 and the pressure in the exhaust pipe 13 between the filter 14 and the second oxidation catalyst 18 are , The secondary air amount adjusting valve 25 is opened to recover SOx poisoning only when the pressure in the intake pipe 9 is higher than the pressure in the exhaust pipe 13.

【0071】ここで、図4は、SOx被毒回復時に各触
媒から排出される排気の空燃比、炭化水素(HC)、一
酸化炭素(CO)及び硫化水素(H2S)の量を示した
図である。
Here, FIG. 4 shows the air-fuel ratio, the amount of hydrocarbons (HC), carbon monoxide (CO), and hydrogen sulfide (H 2 S) of the exhaust gas discharged from each catalyst at the time of SOx poisoning recovery. It is a figure.

【0072】フィルタ14では、SOx被毒の回復のた
めにリッチ空燃比が必要となる。また、このときに、還
元剤がフィルタ14を通過して、下流へ炭化水素(H
C)、一酸化炭素(CO)が排出される。さらに、少量
ではあるが、吸蔵還元型NOx触媒からSOxが放出さ
れ、リッチ雰囲気のため硫化水素(H2S)となって下
流へ流出する。
The filter 14 needs a rich air-fuel ratio to recover SOx poisoning. In addition, at this time, the reducing agent passes through the filter 14 and the hydrocarbon (H
C), carbon monoxide (CO) is discharged. Further, although a small amount, SOx is released from the NOx storage reduction catalyst, and due to the rich atmosphere, it becomes hydrogen sulfide (H 2 S) and flows out downstream.

【0073】第2酸化触媒18では、二次空気の導入に
より最小空燃比が上昇し弱リーンとなる。このように、
第2酸化触媒18では排気の空燃比は理論空燃比以上と
なるため炭化水素(HC)、一酸化炭素(CO)及び硫
化水素(H2S)を酸化させることが可能となる。
In the second oxidation catalyst 18, the minimum air-fuel ratio rises due to the introduction of the secondary air, resulting in a weak lean. in this way,
In the second oxidation catalyst 18, since the air-fuel ratio of the exhaust gas becomes equal to or higher than the stoichiometric air-fuel ratio, it becomes possible to oxidize hydrocarbon (HC), carbon monoxide (CO) and hydrogen sulfide (H 2 S).

【0074】以上により、上流から吸蔵還元型NOx触
媒を担持したフィルタ14、第2酸化触媒18の順に配
置し、第2酸化触媒18上流から二次空気を導入するこ
とにより、SOx被毒回復時に吸蔵還元型NOx触媒から
流出する炭化水素(HC)、一酸化炭素(CO)及び硫
化水素(H2S)の酸化を行うことが可能となる。
As described above, the filter 14 carrying the NOx storage reduction catalyst and the second oxidation catalyst 18 are arranged in this order from the upstream side, and the secondary air is introduced from the upstream side of the second oxidation catalyst 18 to recover SOx poisoning. It is possible to oxidize hydrocarbon (HC), carbon monoxide (CO) and hydrogen sulfide (H 2 S) flowing out from the NOx storage reduction catalyst.

【0075】尚、本実施の形態では、SOx被毒回復制
御時には、差圧センサ26及び第2空燃比センサ21の
出力信号に基づいて、二次空気量調整弁25の開度をフ
ィードバック制御するようにしても良い。ここで、SO
x被毒回復は、軽負荷時に実施され、吸気絞り弁10は
閉じ側へ制御されている。従って、排気の流量が減少す
るため、過給圧が上昇しにくくなる。このような状態
で、二次空気量調整弁25を全開に開弁させると、吸気
管9内の圧力が早期に低下するため、第2酸化触媒18
へ長期間二次空気を供給することが困難となる。そこ
で、第2空燃比センサ21の出力信号から得られる空燃
比がストイキよりも大きくなる範囲内で二次空気量調整
弁25を閉じ側へ制御する。このような状態では、酸化
雰囲気を維持できるため、第2酸化触媒18において炭
化水素(HC)、一酸化炭素(CO)及び硫化水素(H
2S)を酸化することが可能である。しかも、必要最低
限の空気を供給するため、過給圧が早期に低下すること
を抑制でき、従って、長期に亘り二次空気を供給するこ
とが可能となる。
In the present embodiment, during the SOx poisoning recovery control, the opening degree of the secondary air amount adjusting valve 25 is feedback controlled based on the output signals of the differential pressure sensor 26 and the second air-fuel ratio sensor 21. You may do it. Where SO
x Poisoning recovery is performed at light load, and the intake throttle valve 10 is controlled to the closing side. Therefore, the flow rate of exhaust gas is reduced, and the boost pressure is less likely to rise. When the secondary air amount adjusting valve 25 is fully opened in such a state, the pressure in the intake pipe 9 drops early, so the second oxidation catalyst 18
It becomes difficult to supply secondary air for a long time. Therefore, the secondary air amount adjusting valve 25 is controlled to the closing side within a range in which the air-fuel ratio obtained from the output signal of the second air-fuel ratio sensor 21 becomes larger than stoichiometry. In such a state, since the oxidizing atmosphere can be maintained, hydrocarbons (HC), carbon monoxide (CO) and hydrogen sulfide (H) are generated in the second oxidation catalyst 18.
It is possible to oxidize 2 S). Moreover, since the necessary minimum amount of air is supplied, it is possible to prevent the supercharging pressure from decreasing early, and thus it is possible to supply the secondary air for a long period of time.

【0076】また、本実施の形態では、吸気管9内の圧
力と排気管13内の圧力との差圧が所定値以下となった
場合に、二次空気量調整弁25を閉じ側へ制御しても良
い。このようにして、過給圧の低下を抑制しつつ、二次
空気を継続して供給することが可能となる。ここで、所
定値とは、第2酸化触媒へ二次空気を供するために最低
限必要となる差圧であって、予め実験等により求めてお
く。
Further, in the present embodiment, when the pressure difference between the pressure in the intake pipe 9 and the pressure in the exhaust pipe 13 becomes a predetermined value or less, the secondary air amount adjusting valve 25 is controlled to the closing side. You may. In this way, it becomes possible to continuously supply the secondary air while suppressing the decrease in the supercharging pressure. Here, the predetermined value is the minimum pressure difference required to supply the secondary air to the second oxidation catalyst, and is determined in advance by experiments or the like.

【0077】尚、本実施の形態では、第2酸化触媒18
にセリア(Ce)等を含有させて酸素貯蔵能力を持たせ
ても良い。第2酸化触媒18が酸素貯蔵能力を備えるこ
とにより弱リッチ空燃比又は理論空燃比の排気が第2酸
化触媒18に流入すると、貯蔵されていた酸素が放出さ
れ、酸化雰囲気を容易に形成することが可能となる。こ
のように、酸素貯蔵能力を備えることにより、酸化雰囲
気を容易に形成することが可能ではあるが、酸素貯蔵量
には限りがあるために、SOxの被毒量が多い場合には
酸素量が不足してしまう。このような場合であっても、
本実施の形態による二次空気の供給を併用することによ
り、長期間酸化雰囲気を形成することが可能となる。
In the present embodiment, the second oxidation catalyst 18
May be made to contain ceria (Ce) or the like to have an oxygen storage capacity. When the exhaust gas having a weak rich air-fuel ratio or the stoichiometric air-fuel ratio flows into the second oxidation catalyst 18 because the second oxidation catalyst 18 has an oxygen storage capacity, the stored oxygen is released and an oxidizing atmosphere is easily formed. Is possible. As described above, by providing the oxygen storage capacity, it is possible to easily form the oxidizing atmosphere, but since the oxygen storage amount is limited, the oxygen amount is increased when the SOx poisoning amount is large. I will run out. Even in this case,
By additionally using the supply of the secondary air according to the present embodiment, it becomes possible to form an oxidizing atmosphere for a long period of time.

【0078】本実施の形態では、SOx被毒回復時にE
GR弁23を閉じ側へ制御しても良い。このように、E
GR弁23が閉じ側へ制御されると、機関に吸入される
新気量が増加するため排気の温度が上昇する。これによ
り、排気のエネルギが上昇するため、ターボチャージャ
15の過給圧を上昇させることができ、第2酸化触媒1
8へより多くの空気を供給することが可能となる。ここ
で、EGR弁23は全閉としても良い。
In this embodiment, when SOx poisoning is recovered, E
The GR valve 23 may be controlled to the closing side. Thus, E
When the GR valve 23 is controlled to the closing side, the amount of fresh air drawn into the engine increases, so the temperature of the exhaust gas rises. As a result, the energy of the exhaust increases, so that the supercharging pressure of the turbocharger 15 can be increased, and the second oxidation catalyst 1
It is possible to supply more air to 8. Here, the EGR valve 23 may be fully closed.

【0079】また、本実施の形態では、ターボチャージ
ャ15を吸気の過給圧を所望の圧力とすべくタービンホ
イール(図示省略)に吹き付けられる排気の流速をノズ
ルベーン(図示省略)の開閉により可変とする可変容量
型ターボチャージャとし、SOx被毒回復時には、該タ
ーボチャージャのノズルベーンを閉じ側へ制御しても良
い。
Further, in this embodiment, the flow velocity of the exhaust gas blown to the turbine wheel (not shown) in the turbocharger 15 so that the supercharging pressure of the intake air becomes a desired pressure can be changed by opening and closing the nozzle vane (not shown). Alternatively, the nozzle vane of the turbocharger may be controlled to the closing side when SOx poisoning is recovered.

【0080】可変容量型ターボチャージャは、ノズルベ
ーンの回動方向と回動量とを調整することにより、ノズ
ルベーン間の流路の向き、及びノズルベーン間の間隙を
変更することが可能である。即ち、ノズルベーンの回動
方向と回動量とを制御することにより、タービンホイー
ルに吹き付けられる排気の方向と流速が調節されること
になる。
The variable capacity turbocharger can change the direction of the flow path between the nozzle vanes and the gap between the nozzle vanes by adjusting the rotating direction and the rotating amount of the nozzle vanes. That is, by controlling the rotation direction and the rotation amount of the nozzle vane, the direction and flow velocity of the exhaust gas blown to the turbine wheel are adjusted.

【0081】例えば、エンジン1からの排気の量が少な
い場合は、ノズルベーンを閉じることにより、タービン
ホイールに吹き付けられる排気の流速が高まると共に、
排気とタービンインペラ(図示省略)との衝突角度がよ
り垂直に近づくため、少ない排気量でもタービンホイー
ルの回転速度及び回転力を高めることが可能となる。
For example, when the amount of exhaust gas from the engine 1 is small, the nozzle vane is closed to increase the flow velocity of the exhaust gas blown to the turbine wheel, and
Since the collision angle between the exhaust gas and the turbine impeller (not shown) becomes more vertical, the rotational speed and rotational force of the turbine wheel can be increased even with a small amount of exhaust gas.

【0082】一方、エンジン1からの排気の量が十分に
多い場合は、ノズルベーンを開くことにより、タービン
ホイールに吹き付けられる排気の流速の過剰な上昇が制
御され、タービンホイールの回転速度及び回転力の過剰
な上昇を抑制することが可能となる。
On the other hand, when the amount of exhaust gas from the engine 1 is sufficiently large, the nozzle vane is opened to control an excessive increase in the flow velocity of the exhaust gas blown to the turbine wheel, and the rotational speed and rotational force of the turbine wheel are increased. It is possible to suppress an excessive rise.

【0083】従って、本実施の形態では、SOx被毒回
復時にノズルベーンを閉じ側へ制御することにより、過
給圧を上昇させることができ、第2酸化触媒18へより
多くの空気を供給することが可能となる。
Therefore, in this embodiment, the supercharging pressure can be increased by controlling the nozzle vanes to the closing side when the SOx poisoning is recovered, and more air can be supplied to the second oxidation catalyst 18. Is possible.

【0084】尚、本実施の形態では、還元剤を供給する
方法として前記したように排気中への燃料添加を採用し
たが、その他に、再循環するEGRガス量を増大させて
煤の発生量が増加して最大となった後に、更にEGRガ
ス量を増大させる低温燃焼(特許第3116876
号)、機関出力のための燃料を噴射させる主噴射の後の
膨張行程若しくは排気行程中に再度燃料を噴射させる副
噴射等の方法を採用しても良い。
In the present embodiment, the addition of fuel into the exhaust gas is adopted as the method of supplying the reducing agent as described above, but in addition to this, the amount of recirculated EGR gas is increased to generate soot. Low temperature combustion that further increases the amount of EGR gas after increasing to the maximum (Patent No. 3116876)
No.), a method such as sub-injection in which fuel is injected again during the expansion stroke or the exhaust stroke after main injection for injecting fuel for engine output.

【0085】また、本実施の形態では、最下流の第2酸
化触媒18は、例えば三元触媒のような酸化機能を有す
る他の触媒であっても良い。また、フィルタ14は、単
に、吸蔵還元型NOx触媒であっても良い。更に、最上
流の第1酸化触媒16は必ずしも必要ではない。
Further, in the present embodiment, the most downstream second oxidation catalyst 18 may be another catalyst having an oxidation function such as a three-way catalyst. Further, the filter 14 may simply be an occlusion reduction type NOx catalyst. Furthermore, the most upstream first oxidation catalyst 16 is not always necessary.

【0086】本実施の形態では、SOx被毒回復時の二
次空気の供給について説明したが、同様にして、吸蔵還
元型NOx触媒に吸蔵されたNOxの還元時に二次空気を
供給する場合に適用しても良い。即ち、二次空気の供給
が可能である場合に限りリッチスパイク制御を行い、N
Oxの還元を行っても良い。
In the present embodiment, the supply of secondary air at the time of recovery from SOx poisoning has been described. Similarly, when the secondary air is supplied when reducing NOx stored in the NOx storage reduction catalyst, You may apply. That is, the rich spike control is performed only when the secondary air can be supplied, and N
Ox reduction may be performed.

【0087】以上述べたように、本実施の形態による内
燃機関の排気浄化装置によれば、昇圧された吸気を酸化
触媒へ供給することにより、SOx被毒回復時に流出す
る一酸化炭素(CO)及び炭化水素(HC)、更には硫
化水素(H2S)等を酸化することができる。
As described above, according to the exhaust purification system of the internal combustion engine of the present embodiment, by supplying the boosted intake air to the oxidation catalyst, carbon monoxide (CO) flowing out at the time of SOx poisoning recovery. It is also possible to oxidize hydrocarbon (HC), further hydrogen sulfide (H 2 S) and the like.

【0088】[0088]

【発明の効果】本発明に係る内燃機関の排気浄化装置で
は、上流からNOx触媒、酸化触媒の順に配設し、過給
機で昇圧された空気を酸化触媒にのみ供給することがで
き、この空気の供給が可能な場合に限りSOx被毒回復
を実施することができる。これにより、SOx被毒回復
時に酸化触媒にて、一酸化炭素(CO)、炭化水素(H
C)を酸化させ浄化することができ、更には硫化水素
(H2S)等を酸化させてにおい成分を除去することが
できる。
In the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, the NOx catalyst and the oxidation catalyst are arranged in this order from the upstream side, and the air boosted by the supercharger can be supplied only to the oxidation catalyst. SOx poisoning recovery can be implemented only when air can be supplied. As a result, carbon monoxide (CO), hydrocarbons (H
C) can be oxidized and purified, and further hydrogen sulfide (H 2 S) and the like can be oxidized to remove odorous components.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施の形態に係るエンジンとその吸排気系
の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an engine and an intake / exhaust system thereof according to the present embodiment.

【図2】 SOx被毒回復時にフィルタから放出される
SOxの濃度及びフィルタ内の空燃比の時間推移を示し
たタイムチャート図である。
FIG. 2 is a time chart diagram showing the time transition of the concentration of SOx released from the filter and the air-fuel ratio in the filter at the time of SOx poisoning recovery.

【図3】 図2中のAで示した箇所に対応する還元剤噴
射弁の開閉信号を示した図である。
FIG. 3 is a diagram showing an opening / closing signal of a reducing agent injection valve corresponding to a portion indicated by A in FIG.

【図4】 SOx被毒回復時に各触媒から排出される排
気の空燃比、炭化水素(HC)、一酸化炭素(CO)及
び硫化水素(H2S)の量を示した図である。
FIG. 4 is a diagram showing the air-fuel ratio, the amount of hydrocarbons (HC), carbon monoxide (CO), and hydrogen sulfide (H 2 S) of the exhaust gas discharged from each catalyst when recovering from SOx poisoning.

【符号の説明】[Explanation of symbols]

1・・・・エンジン 1a・・・クランクプーリ 1b・・・排気ポート 2・・・・気筒 3・・・・燃料噴射弁 4・・・・コモンレール 5・・・・燃料供給管 6a・・・ポンププーリ 6・・・・燃料ポンプ 7・・・・ベルト 8・・・・吸気枝管 9・・・・吸気管 10・・・吸気絞り弁 11・・・吸気絞り用アクチュエータ 12・・・排気枝管 13・・・排気管 14・・・パティキュレートフィルタ 15・・・ターボチャージャ 15a・・コンプレッサハウジング 15b・・タービンハウジング 16・・・第1酸化触媒 17・・・第1排気温度センサ 18・・・第2酸化触媒 19・・・第2排気温度センサ 20・・・第1空燃比センサ 21・・・第2空燃比センサ 22・・・EGR通路 23・・・EGR弁 24・・・二次空気導入管 25・・・二次空気量調整弁 26・・・差圧センサ 26a・・吸気導入管 26b・・排気導入管 27・・・ECU 28・・・還元剤噴射弁 29・・・還元剤供給路 1 ... Engine 1a: Crank pulley 1b ... Exhaust port 2 ... Cylinder 3 ... Fuel injection valve 4 ... Common rail 5 ... Fuel supply pipe 6a ... Pump pulley 6 ... Fuel pump 7 ... Belt 8 ... Intake branch pipe 9 ... Intake pipe 10 ... Intake throttle valve 11 ... Actuator for intake throttle 12 ... Exhaust branch pipe 13 ... Exhaust pipe 14 ... Particulate filter 15 ... Turbocharger 15a ... Compressor housing 15b · Turbine housing 16 ... First oxidation catalyst 17 ... First exhaust temperature sensor 18 ... Second oxidation catalyst 19 ... Second exhaust temperature sensor 20: First air-fuel ratio sensor 21 ... Second air-fuel ratio sensor 22 ... EGR passage 23 ... EGR valve 24 ... Secondary air inlet pipe 25 ... Secondary air amount adjusting valve 26 ... Differential pressure sensor 26a ... Intake pipe 26b ... Exhaust gas introduction pipe 27 ... ECU 28 ... Reducing agent injection valve 29 ... Reductant supply path

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/22 F01N 3/24 T 4D048 3/24 3/28 301D F02B 37/00 302F 3/28 301 F02D 21/08 301F F02B 37/00 302 301H 37/24 311B F02D 21/08 301 23/00 J 43/00 301N 311 301R 23/00 301T 43/00 301 F02M 25/07 550C 550R F02B 37/12 301Q F02M 25/07 550 B01D 53/36 103B K 101A (72)発明者 大木 久 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 柴田 大介 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G005 DA02 EA15 EA16 FA35 GA04 GB25 GB26 HA12 HA18 3G062 AA01 AA05 AA06 BA02 BA07 GA14 GA22 3G084 AA01 AA03 BA05 BA07 BA08 BA09 BA13 BA15 BA20 BA24 BA25 DA10 DA22 DA27 EB11 EB22 FA07 FA12 FA20 FA26 FA27 FA30 FA33 FA38 3G091 AA10 AA11 AA18 AA28 AB02 AB06 AB13 BA00 BA04 BA11 BA14 BA15 BA19 BA20 BA38 CA13 CA18 CA22 CB02 CB03 CB07 CB08 DA01 DA02 DA04 DB10 EA01 EA03 EA05 EA17 EA30 EA32 EA34 FB10 FB12 FC02 GA06 GB04W HA02 HA09 HA10 HA12 HA14 HA36 HA37 HA38 HA42 HA47 HB05 HB06 HB07 3G092 AA02 AA06 AA13 AA17 AA18 AB03 AB20 BA02 BA04 BB01 BB06 DB03 DC03 DC09 DC15 DC16 DE03S DF01 DF02 DF06 EA07 EC01 FA17 FA18 FA20 FA37 FB06 HA01Y HA01Z HA06Y HA06Z HA11Y HA11Z HA16Y HA16Z HD01Y HD01Z HD02Y HD02Z HD06Y HD06Z HD07Y HD07Z HD08Y HD08Z HE01Y HE01Z HE03Y HE03Z HE08Y HE08Z HF08Y HF08Z 4D048 AA06 AA13 AA14 AA18 AB01 AB02 AB05 AB07 AC02 AC10 BB01 BD03 CC32 CC46 CC61 DA01 DA02 DA06 DA07 DA10 EA04 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/22 F01N 3/24 T 4D048 3/24 3/28 301D F02B 37/00 302F 3/28 301 F02D 21/08 301F F02B 37/00 302 301H 37/24 311B F02D 21/08 301 23/00 J 43/00 301N 311 301R 23/00 301T 43/00 301 F02M 25/07 550C 550R F02B 37/12 301Q F02M 25/07 550 B01D 53/36 103B K 101A (72) Inventor Hisashi Oki 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor, Daisuke Shibata 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. F Terms (reference) 3G005 DA02 EA15 EA16 FA35 GA04 GB25 GB26 HA12 HA18 3G062 AA01 AA05 AA06 BA02 BA07 GA14 GA22 3G084 AA01 AA03 BA05 BA07 BA08 BA09 BA13 BA15 BA20 BA24 BA25 DA10 DA22 DA27 EB11 EB22 FA07 FA12 FA 20 FA26 FA27 FA30 FA33 FA38 3G091 AA10 AA11 AA18 AA28 AB02 AB06 AB13 BA00 BA04 BA11 BA14 BA15 BA19 BA20 BA38 CA13 CA18 CA22 CB02 CB03 CB07 CB08 DA01 DA02 DA04 DB10 EA01 EA03 EA05 EA17 EA30 EA32 EA34 FB10 FB12 FC02 GA06 GB04W HA02 HA09 HA10 HA12 HA14 HA36 HA37 HA38 HA42 HA47 HB05 HB06 HB07 3G092 AA02 AA06 AA13 AA17 AA18 AB03 AB20 BA02 BA04 BB01 BB06 DB03 DC03 DC09 DC15 DC16 DE03S DF01 DF02 DF06 HAY HD16 HA01 HAZ HA16 HA01 HA01 HA01Y02 HD07Y HD07Z HD08Y HD08Z HE01Y HE01Z HE03Y HE03Z HE08Y HE08Z HF08Y HF08Z 4D048 AA06 AA13 AA14 AA18 AB01 AB02 AB05 AB07 AC02 AC10 BB01 BD03 CC32 CC46 CC61 DA01 DA02 DA06 DA07 DA10 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系に設けられ還元剤の存在
下でNOxを還元するNOx触媒と、 前記NOx触媒へ還元剤を供給する還元剤供給手段と、 前記NOx触媒の下流に設けられ酸化機能を有する触媒
と、 過給機と、 前記NOx触媒から前記酸化機能を有する触媒までの排
気系と前記過給機から内燃機関までの吸気系とを連通す
る二次空気導入管と、 前記二次空気導入管の流通面積を可変とし該二次空気導
入管を流通する空気の量を調整する二次空気量調整弁
と、 前記NOx触媒から前記酸化機能を有する触媒までの排
気系と前記過給機から内燃機関までの吸気系との圧力差
を検出する差圧検出手段と、 前記過給機から内燃機関までの吸気系の圧力が前記NO
x触媒から前記酸化機能を有する触媒までの排気系の圧
力よりも高いと前記差圧検出手段により検出されたとき
に限り前記NOx触媒へ還元剤を供給して硫黄被毒を回
復させる硫黄被毒回復手段と、 を具備することを特徴とする内燃機関の排気浄化装置。
1. An NOx catalyst provided in an exhaust system of an internal combustion engine for reducing NOx in the presence of a reducing agent, a reducing agent supply means for supplying the reducing agent to the NOx catalyst, and a NOx catalyst provided downstream of the NOx catalyst. A catalyst having an oxidizing function, a supercharger, a secondary air introducing pipe that connects an exhaust system from the NOx catalyst to the catalyst having the oxidizing function and an intake system from the supercharger to an internal combustion engine, A secondary air amount adjusting valve that adjusts the amount of air flowing through the secondary air introducing pipe by varying the flow area of the secondary air introducing pipe, an exhaust system from the NOx catalyst to the catalyst having the oxidizing function, and Differential pressure detecting means for detecting a pressure difference between the supercharger and the internal combustion engine and the intake system; and
x Sulfur poisoning for recovering sulfur poisoning by supplying a reducing agent to the NOx catalyst only when it is detected by the differential pressure detection means as being higher than the pressure of the exhaust system from the catalyst to the catalyst having the oxidation function An exhaust emission control device for an internal combustion engine, comprising: a recovery means.
【請求項2】内燃機関の排気系と吸気系とを連通し内燃
機関から排出された排気の一部を内燃機関の吸気系へ還
流させるEGR通路と、 前記EGR通路内を流通するEGRガスの流量を調整す
るEGR弁と、 を更に備え、 前記二次空気供給手段により二次空気の供給が行われて
いる場合には、前記EGR弁を閉じ側へ制御することを
特徴とする請求項1に記載の内燃機関の排気浄化装置。
2. An EGR passage that connects the exhaust system and the intake system of the internal combustion engine to recirculate a part of the exhaust gas discharged from the internal combustion engine to the intake system of the internal combustion engine, and an EGR gas flowing in the EGR passage. An EGR valve for adjusting a flow rate is further provided, and when the secondary air is being supplied by the secondary air supply means, the EGR valve is controlled to a closing side. An exhaust emission control device for an internal combustion engine as set forth in.
【請求項3】前記過給機は、吸気の過給圧を所望の圧力
とすべくタービンホイールに吹き付けられる排気の流速
をノズルベーンの開閉により可変とする可変容量型ター
ボチャージャであって、 前記二次空気供給手段により二次空気の供給が行われて
いる場合には、前記ノズルベーンを閉じ側へ制御するこ
とを特徴とする請求項1又は2に記載の内燃機関の排気
浄化装置。
3. The turbocharger is a variable capacity type turbocharger for varying the flow rate of exhaust gas blown to a turbine wheel by opening and closing a nozzle vane so that a supercharging pressure of intake air becomes a desired pressure. The exhaust gas purification device for an internal combustion engine according to claim 1 or 2, wherein when the secondary air is being supplied by the secondary air supply means, the nozzle vane is controlled to the closing side.
【請求項4】前記酸化機能を有する触媒を流通する排気
の酸素濃度を検出する酸素濃度検出手段を更に備え、 前記硫黄被毒回復手段は、酸化機能を有する触媒を流通
する排気の酸素濃度が酸化機能を有する触媒を活性させ
る濃度となる範囲内で、前記二次空気量調整弁を閉じ側
へ制御することを特徴とする請求項1乃至3の何れかに
記載の内燃機関の排気浄化装置。
4. The oxygen concentration detecting means for detecting the oxygen concentration of the exhaust gas flowing through the catalyst having the oxidizing function, wherein the sulfur poisoning recovery means is configured to detect the oxygen concentration of the exhaust gas flowing through the catalyst having the oxidizing function. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 3, wherein the secondary air amount adjusting valve is controlled to a closing side within a range where a concentration having a catalyst having an oxidizing function is activated. .
JP2002155366A 2002-05-29 2002-05-29 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3858763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155366A JP3858763B2 (en) 2002-05-29 2002-05-29 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155366A JP3858763B2 (en) 2002-05-29 2002-05-29 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003343245A true JP2003343245A (en) 2003-12-03
JP3858763B2 JP3858763B2 (en) 2006-12-20

Family

ID=29771908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155366A Expired - Fee Related JP3858763B2 (en) 2002-05-29 2002-05-29 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3858763B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1550796A1 (en) * 2003-12-29 2005-07-06 Iveco S.p.A. Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
WO2005095767A1 (en) * 2004-04-02 2005-10-13 Komatsu Ltd. Exhaust emission control device of internal combustion engine
FR2881177A1 (en) * 2005-01-27 2006-07-28 Renault Sas Motor vehicle exhaust sulfur reduction procedure uses oxydant introduced before catalytic particle filter to convert hydrogen sulfide into sulfur dioxide
JP2007285242A (en) * 2006-04-19 2007-11-01 Denso Corp Exhaust emission control device for internal combustion engine
WO2007145178A1 (en) * 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
JP2008169808A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Exhaust emission control system of internal combustion engine
WO2010115487A1 (en) * 2009-04-09 2010-10-14 Albonair Gmbh Metering system for injecting a reducing agent into the exhaust gas flow of an internal combustion engine
JP2011521166A (en) * 2008-05-23 2011-07-21 ボーグワーナー・インコーポレーテッド Exhaust-driven auxiliary air pump and product and method of use thereof
JP2011157922A (en) * 2010-02-03 2011-08-18 Toyota Motor Corp Device for control of internal combustion engine
EP1770252B1 (en) * 2005-09-30 2016-04-06 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Internal combustion engine with an exhaust emission aftertreatment device for reducing nitrogen oxides (NOx) emissions and method for controlling such an engine
WO2018084039A1 (en) * 2016-11-02 2018-05-11 日立オートモティブシステムズ株式会社 Internal combustion engine control device and method
JP2019199862A (en) * 2018-05-18 2019-11-21 愛三工業株式会社 Air supply system, suction/discharge system and controller for suction/discharge system
CN110645071A (en) * 2019-09-23 2020-01-03 南京科益环保科技有限公司 External hydrocarbon injection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210150180A (en) 2020-06-03 2021-12-10 현대자동차주식회사 System and method for controlling urea injection for Selective Catalyst Reduction

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1550796A1 (en) * 2003-12-29 2005-07-06 Iveco S.p.A. Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP4653736B2 (en) * 2004-04-02 2011-03-16 株式会社小松製作所 Exhaust gas purification device for internal combustion engine
WO2005095767A1 (en) * 2004-04-02 2005-10-13 Komatsu Ltd. Exhaust emission control device of internal combustion engine
KR100787484B1 (en) * 2004-04-02 2007-12-21 가부시키가이샤 고마쓰 세이사쿠쇼 Exhaust emission control device of internal combustion engine
JPWO2005095767A1 (en) * 2004-04-02 2008-02-21 株式会社小松製作所 Exhaust gas purification device for internal combustion engine
US7765793B2 (en) 2004-04-02 2010-08-03 Komatsu Ltd. Exhaust emission control device of internal combustion engine
FR2881177A1 (en) * 2005-01-27 2006-07-28 Renault Sas Motor vehicle exhaust sulfur reduction procedure uses oxydant introduced before catalytic particle filter to convert hydrogen sulfide into sulfur dioxide
EP1770252B1 (en) * 2005-09-30 2016-04-06 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Internal combustion engine with an exhaust emission aftertreatment device for reducing nitrogen oxides (NOx) emissions and method for controlling such an engine
JP2007285242A (en) * 2006-04-19 2007-11-01 Denso Corp Exhaust emission control device for internal combustion engine
JP4687548B2 (en) * 2006-04-19 2011-05-25 株式会社デンソー Exhaust purification device for internal combustion engine
WO2007145178A1 (en) * 2006-06-15 2007-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus and exhaust gas purifying method using the same
JP4720748B2 (en) * 2007-01-15 2011-07-13 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2008169808A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2011521166A (en) * 2008-05-23 2011-07-21 ボーグワーナー・インコーポレーテッド Exhaust-driven auxiliary air pump and product and method of use thereof
WO2010115487A1 (en) * 2009-04-09 2010-10-14 Albonair Gmbh Metering system for injecting a reducing agent into the exhaust gas flow of an internal combustion engine
CN102317588A (en) * 2009-04-09 2012-01-11 阿尔博耐尔有限公司 Be used for rationing system to the exhaust flow injection reduction agent of internal-combustion engine
US9273580B2 (en) 2009-04-09 2016-03-01 Albonair Gmbh Metering system for injecting a reducing agent into the exhaust gas flow of an internal combustion engine
JP2011157922A (en) * 2010-02-03 2011-08-18 Toyota Motor Corp Device for control of internal combustion engine
WO2018084039A1 (en) * 2016-11-02 2018-05-11 日立オートモティブシステムズ株式会社 Internal combustion engine control device and method
JP2019199862A (en) * 2018-05-18 2019-11-21 愛三工業株式会社 Air supply system, suction/discharge system and controller for suction/discharge system
WO2019220753A1 (en) * 2018-05-18 2019-11-21 愛三工業株式会社 Air supply system, intake and exhaust system, and device for controlling intake and exhaust system
CN110645071A (en) * 2019-09-23 2020-01-03 南京科益环保科技有限公司 External hydrocarbon injection device
CN110645071B (en) * 2019-09-23 2020-11-03 南京科益环保科技有限公司 External hydrocarbon injection device

Also Published As

Publication number Publication date
JP3858763B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
EP1965050B1 (en) Exhaust gas purification system for internal combustion engine
KR100679540B1 (en) Exhaust gas cleaning device
JP4288942B2 (en) Exhaust gas purification device for internal combustion engine
JP3617450B2 (en) Exhaust gas purification device for internal combustion engine
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
JP2003343245A (en) Exhaust purifying device of internal combustion engine
JP2002155724A (en) Exhaust emission control device
KR100478073B1 (en) Exhaust gas purifying device for internal combustion engine
JP3680727B2 (en) Exhaust gas purification device for internal combustion engine
JP3897621B2 (en) Exhaust gas purification device for internal combustion engine
JP2008184925A (en) Egr system of internal combustion engine
JP3912001B2 (en) Exhaust gas purification device for internal combustion engine
JP2002129996A (en) Exhaust emission control device for internal combustion engine
JP2003314257A (en) Exhaust emission control device for internal combustion engine and controlling method thereof
JP3552649B2 (en) Exhaust gas purification device for internal combustion engine
JP2003041929A (en) Exhaust emission control device for internal combustion engine
US10598121B2 (en) Control system for engine
JP2002081311A (en) Exhaust emission control device for internal combustion engine
JP2002317670A (en) Control device of internal combustion engine
JP2002195025A (en) Exhaust emission control device for internal combustion engine
JP2003097254A (en) Exhaust gas purifier of internal combustion engine
JP3743272B2 (en) Internal combustion engine
JP5589987B2 (en) Exhaust temperature control device
JP2003336518A (en) Emission control device of internal combustion engine
JP2004232555A (en) Exhaust gas cleaning system for internal-combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees