JP2003343202A - Free piston engine driving linear generator - Google Patents

Free piston engine driving linear generator

Info

Publication number
JP2003343202A
JP2003343202A JP2002157195A JP2002157195A JP2003343202A JP 2003343202 A JP2003343202 A JP 2003343202A JP 2002157195 A JP2002157195 A JP 2002157195A JP 2002157195 A JP2002157195 A JP 2002157195A JP 2003343202 A JP2003343202 A JP 2003343202A
Authority
JP
Japan
Prior art keywords
pressure
free
cylinder
generator
free piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002157195A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishida
裕幸 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002157195A priority Critical patent/JP2003343202A/en
Publication of JP2003343202A publication Critical patent/JP2003343202A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a free piston engine driving linear generator which is high in thermal efficiency. <P>SOLUTION: The generator is provided with the left and right-hands pair of free piston engines 1L, 1R, and a shaft 3 provided with a magnet 4 reciprocating to connect free pistons 2L, 2R of the engines 1L, 1R between each other. The generator is also provided with a linear generation 5 in which the magnet 4 functions as the generator or an electric motor by reciprocating within variable magnetic field by a control unit (control means) 20, and pressure sensors 21L, 21R which detect pressure inside a cylinder in the free piston engines 1L, 1R. It is characterized in that the control unit 20 calculates the amount of change in volume within which the pressure in the cylinder is constant when being burned on the basis of the pressure in the cylinder which is detected by the pressure sensors 21L, 21R, and further controls such actuation of the free pistons 2L, 2R that the change in the volume within the cylinder results in the amount of the calculated change in the volume by controlling the magnetic field of the linear generator 5. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、フリーピストンエ
ンジンとリニア発電機とを組み合わせて発電を行うフリ
ーピストンエンジン駆動リニア発電装置に係り、特に、
フリーピストンエンジンがディーゼル内燃機関であるも
のに関する。 【0002】 【従来の技術】従来より、クランク、コンロッド及び変
動荷重軸受(ピストンピン軸受)などが不要で小型化に
有利な内燃機関として、フリーピストンエンジンが知ら
れている。また、2ストロークサイクルのフリーピスト
ンエンジンを駆動源として用い、リニア発電機を駆動し
て発電するフリーピストンエンジン駆動リニア発電装置
(以下、フリーピストンリニア発電装置と呼ぶ)が知ら
れている。このフリーピストンリニア発電装置は、図7
に示すように、対向して配置された左右一対の2ストロ
ークサイクルフリーピストンエンジン1L,1Rが互い
のピストン2L、2Rをシャフト3で連結されており、
該シャフト3の中央部に設けられた磁石部4がリニア発
電機5の磁界内を往復移動することで発電するように構
成されたものである。なお、図中の符号6L,6Rはシ
リンダ、7L,7Rは給気口、8L,8Rは排気弁であ
る。 【0003】次に、このような2ストロークサイクルの
フリーピストンエンジンリニア発電装置の動作について
説明する。図8は連結されたピストン2L、2Rの位置
と時間との関係を示したものである。図に示すように、
一方のピストンエンジン1Lは、膨張、ガス交換、圧
縮、燃焼を繰り返し、他方のピストンエンジン1Rは、
一方のピストンエンジン1Lとタイミングをずらして膨
張、ガス交換、圧縮、燃焼を繰り返す。 【0004】 【発明が解決しようとする課題】ところで、一般に熱効
率の面からは、実際のサイクルを図9に示すディーゼル
サイクルにできるだけ近づけることが望ましい。このた
めには、膨脹行程において等圧(定圧)膨脹させる必要
がある。したがって、上記のフリーピストンエンジンに
おいても、熱効率の面から等圧膨張を実現することが望
まれている。 【0005】本発明は、上記の事情に鑑みてなされたも
ので、理想的なディーゼルサイクルを追求することを目
的としており、特に、熱効率の高いフリーピストンエン
ジン駆動リニア発電装置を提供するものである。 【0006】 【課題を解決するための手段】請求項1に記載のフリー
ピストンエンジン駆動リニア発電装置は、同一直線上に
対向して配置し行程をずらして運転される左右一対のフ
リーピストンエンジンと、該エンジンのフリーピストン
同士を連結して往復移動する磁石部を備えたシャフト
と、前記磁石部が制御手段により可変の磁界内を往復移
動して発電機または電動機として機能するリニア発電機
と、前記フリーピストンエンジンのシリンダ内圧力を検
出する圧力センサとが設けられ、前記制御手段は、前記
圧力センサにより検出されたシリンダ内圧力に基づい
て、燃焼時の該シリンダ内圧力が一定となるシリンダ容
積の変化量を算出し、さらに、該制御手段は、前記リニ
ア発電機の磁界を制御してシリンダ容積の変化量が前記
算出した変化量となるように前記フリーピストンの動作
を制御することを特徴とする。 【0007】この発明においては、圧力P、発熱量を
Q、シリンダ容積をVとおくとき、以下のようにフリー
ピストンを制御する。熱力学第1法則及びガスの状態方
程式から、 dp={(κ−1)/V}dQ−κ(P/V)dV κ:ガスの比熱比 が成り立ち、dp=0とするためには、適切なdVはd
Qと同じパターンで変化させればよい。運転において
は、dp=0となるようにdVの変化を制御すること
で、等圧膨張が実現する。 【0008】 【発明の実施の形態】次に、本発明の実施形態につい
て、図面を参照して説明する。以下、本発明に係る2ス
トロークサイクルのフリーピストンエンジン駆動リニア
発電装置(以下、フリーピストンリニア発電装置と呼
ぶ)の一実施形態を図面に基づいて説明する。なお、上
記従来技術と同一の構成については同一の符号を用い、
その説明を省略する。上述したフリーピストンエンジン
1L,1Rについては、熱効率の面から実際のサイクル
を図9に示すディーゼルサイクルにできるだけ近づける
ことが望ましい。このためには、膨脹行程において等圧
(定圧)膨脹させる必要がある。そこで、本実施形態で
は、以下の構成により等圧膨張を実現する。図1におい
て、18は磁界制御部、20は制御部(制御手段)であ
る。磁界制御部18は電力母線へ接続されていることで
電力が供給されている。リニア発電機5は、磁界制御部
18を介して制御部20と接続されており、単に発電を
行うだけではなく、磁界制御部18によって磁界が制御
されることでピストン2L,2Rの動作を積極的に制御
することができるようになっている。また、シリンダ6
L,6R内の圧力、すなわちシリンダ内圧力Pを検出す
る圧力センサ21L,21Rを設け、両センサ21L,
21Rの検出値を制御部20に入力する。シリンダ内圧
Pの入力を受けた制御部20では、磁界制御部18に制
御信号を出力する。この制御信号は、リニア発電機とし
て機能しているリニア発電機5の磁界の強さを可変制御
するもので、図2に示すように、爆発後の膨脹行程でシ
リンダ内圧力Pが一定となる等圧膨脹が実現されるよう
に磁界を制御するものである。すなわち、磁界の強さを
適切に調整することで発電負荷(ブレーキ力)を制御
し、これによってピストン2L,2Rの移動速度を制御
して等圧膨脹を実現するのである。このような構成及び
制御を行うことで、熱効率が高い理想のディーゼルサイ
クルに近づけることが可能になる。なお、図2、図3、
図4において、横軸は時間を示している。 【0009】具体的には、圧力Pを圧力センサ21L、
21Rによって測定する。圧力Pと、図3に示した予め
与えられた発熱量変化dQから、適切な容積変化を求め
る。すなわち、熱力学第1法則及びガスの状態方程式か
ら、 dp={(κ−1)/V}dQ−κ(P/V)dV κ:ガスの比熱比 が成り立ち、dp=0とするためには、適切なdVは図
4に示したようにdQと同じパターンで変化させればよ
い。なお、本例では複数の燃焼パターンによる複数のd
Qパターンa〜eについて示している。したがって、通
常のピストン2L,2Rの移動に伴う容積Vの変化に対
し、等圧膨張時には図5および図6に示すように、上記
図4の容積変化量dVでピストン2L,2Rが移動する
ように制御部20がリニア発電機5を制御する。なお、
図4及び図6において、各線a〜eは各々図3のdQパ
ターンa〜eに対応している。 【0010】このように、圧力変化dP=0となる容積
変化量dVを制御する。これによって、等圧膨張が可能
となり、筒内最高圧力の制限下においても熱効率のよい
ディーゼルサイクルとすることができる。 【0011】 【発明の効果】上述した本発明のフリーピストンエンジ
ン駆動リニア発電装置によれば、制御手段がフリーピス
トンを制御することで、等圧膨張を実現することができ
る。したがって熱効率のよいディーゼルサイクルとする
ことができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a free-piston engine-driven linear power generator that generates power by combining a free-piston engine and a linear generator.
The invention relates to the free piston engine being a diesel internal combustion engine. Conventionally, a free-piston engine has been known as an internal combustion engine that does not require a crank, a connecting rod, a variable load bearing (a piston pin bearing), and is advantageous in miniaturization. Also, a free-piston engine-driven linear power generator (hereinafter, referred to as a free-piston linear power generator) that uses a two-stroke cycle free-piston engine as a drive source and drives a linear generator to generate power is known. This free-piston linear generator is shown in FIG.
As shown in FIG. 2, a pair of left and right two-stroke cycle free piston engines 1L and 1R arranged opposite to each other are connected to each other by pistons 2L and 2R via a shaft 3.
The magnet unit 4 provided at the center of the shaft 3 reciprocates in the magnetic field of the linear generator 5 to generate power. In the drawings, reference numerals 6L and 6R denote cylinders, 7L and 7R denote air supply ports, and 8L and 8R denote exhaust valves. Next, the operation of such a two-stroke cycle free-piston engine linear generator will be described. FIG. 8 shows the relationship between the position of the connected pistons 2L and 2R and time. As shown in the figure,
One piston engine 1L repeats expansion, gas exchange, compression, and combustion, and the other piston engine 1R
The expansion, gas exchange, compression, and combustion are repeated at a timing shifted from one piston engine 1L. [0004] By the way, it is generally desirable to make the actual cycle as close as possible to the diesel cycle shown in FIG. 9 from the viewpoint of thermal efficiency. For this purpose, it is necessary to perform equal-pressure (constant-pressure) expansion during the expansion process. Therefore, it is desired that the above-mentioned free piston engine also realizes equal pressure expansion from the viewpoint of thermal efficiency. The present invention has been made in view of the above circumstances, and has as its object to pursue an ideal diesel cycle. In particular, it is an object of the present invention to provide a free-piston engine-driven linear power generator with high thermal efficiency. . [0006] A free-piston engine-driven linear power generator according to claim 1 comprises a pair of left and right free-piston engines which are arranged on the same straight line so as to face each other and are operated at a different stroke. A shaft having a magnet portion that reciprocates by connecting the free pistons of the engine, and a linear generator that reciprocates in a variable magnetic field by the control means and functions as a generator or an electric motor; A pressure sensor for detecting an in-cylinder pressure of the free-piston engine, wherein the control means is configured to control the cylinder volume at which the in-cylinder pressure during combustion is constant based on the in-cylinder pressure detected by the pressure sensor. And the control means controls the magnetic field of the linear generator to calculate the change in cylinder volume. The operation of the free piston is controlled so as to obtain a change amount. In the present invention, when the pressure P, the heat generation amount is Q, and the cylinder volume is V, the free piston is controlled as follows. From the first law of thermodynamics and the equation of state of gas, dp = {(κ-1) / V} dQ-κ (P / V) dV κ: The specific heat ratio of gas is established, and in order to set dp = 0, The appropriate dV is d
What is necessary is just to change in the same pattern as Q. In operation, constant pressure expansion is realized by controlling the change in dV so that dp = 0. Next, an embodiment of the present invention will be described with reference to the drawings. Hereinafter, an embodiment of a two-stroke cycle free-piston engine-driven linear power generator (hereinafter, referred to as a free-piston linear power generator) according to the present invention will be described with reference to the drawings. Note that the same reference numerals are used for the same configurations as the above-described conventional technology,
The description is omitted. Regarding the free piston engines 1L and 1R described above, it is desirable that the actual cycle be as close as possible to the diesel cycle shown in FIG. 9 from the viewpoint of thermal efficiency. For this purpose, it is necessary to perform equal-pressure (constant-pressure) expansion during the expansion process. Therefore, in the present embodiment, equal pressure expansion is realized by the following configuration. In FIG. 1, reference numeral 18 denotes a magnetic field control unit, and 20 denotes a control unit (control means). The magnetic field control unit 18 is supplied with electric power by being connected to the electric power bus. The linear generator 5 is connected to the control unit 20 via the magnetic field control unit 18. The linear generator 5 not only performs power generation but also actively controls the operation of the pistons 2L and 2R by controlling the magnetic field by the magnetic field control unit 18. Can be controlled. In addition, cylinder 6
Pressure sensors 21L and 21R for detecting the pressure in the cylinders L and 6R, that is, the cylinder pressure P, are provided.
The detected value of 21R is input to the control unit 20. The control unit 20 receiving the input of the cylinder internal pressure P outputs a control signal to the magnetic field control unit 18. This control signal variably controls the strength of the magnetic field of the linear generator 5 functioning as a linear generator. As shown in FIG. 2, the pressure P in the cylinder becomes constant during the expansion stroke after the explosion. The magnetic field is controlled so that equal pressure expansion is realized. That is, the power generation load (braking force) is controlled by appropriately adjusting the strength of the magnetic field, and thereby the moving speed of the pistons 2L and 2R is controlled to realize equal pressure expansion. By performing such a configuration and control, it becomes possible to approach an ideal diesel cycle having high thermal efficiency. 2 and 3,
In FIG. 4, the horizontal axis indicates time. Specifically, the pressure P is measured by a pressure sensor 21L,
Measured by 21R. An appropriate change in volume is determined from the pressure P and the change dQ of heat value given in advance shown in FIG. That is, from the first law of thermodynamics and the equation of state of the gas, dp = {(κ-1) / V} dQ-κ (P / V) dV κ: The specific heat ratio of the gas is established, and in order to set dp = 0 The appropriate dV may be changed in the same pattern as dQ as shown in FIG. Note that in this example, a plurality of d's due to a plurality of combustion patterns
The Q patterns a to e are shown. Therefore, as shown in FIGS. 5 and 6, the pistons 2L, 2R move with the volume change dV shown in FIG. The control unit 20 controls the linear generator 5. In addition,
4 and 6, the lines a to e correspond to the dQ patterns a to e in FIG. 3, respectively. As described above, the volume change dV at which the pressure change dP = 0 is controlled. As a result, equal-pressure expansion becomes possible, and a diesel cycle with good thermal efficiency can be achieved even under the limitation of the maximum in-cylinder pressure. According to the above-described linear power generator driven by a free piston engine according to the present invention, the control means controls the free piston, thereby realizing constant pressure expansion. Therefore, a diesel cycle with high thermal efficiency can be obtained.

【図面の簡単な説明】 【図1】 本発明の一実施形態として示したフリーピス
トンリニア発電装置を示した図である。 【図2】 ディーゼルサイクルにおけるシリンダ内圧力
と時間との関係を示した図である。 【図3】 燃料発熱変化量と時間とを示した図である。 【図4】 シリンダ内容積変化量と時間とを示した図で
ある。 【図5】 シリンダ内容積と時間との関係を示した図で
ある。 【図6】 シリンダ内容積と時間との関係を示した図で
あり、図5の一部を拡大したものである。 【図7】 従来のフリーピストンリニア発電装置を示し
た図である。 【図8】 2ストロークサイクルのフリーピストンエン
ジンの動作過程を示した図である。 【図9】 ディーゼルサイクルを示した図である。 【符号の説明】 1L、1R フリーピストンエンジン 2L、2R ピストン 3 シャフト 4 磁石部 5 リニア発電機 18 磁界制御部 20 制御部(制御手段) 21L、21R 圧力センサ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a free-piston linear power generator shown as one embodiment of the present invention. FIG. 2 is a diagram showing a relationship between a cylinder pressure and time in a diesel cycle. FIG. 3 is a diagram showing a fuel heat generation change amount and time. FIG. 4 is a diagram showing a cylinder volume change amount and time. FIG. 5 is a diagram showing a relationship between a cylinder internal volume and time. 6 is a diagram showing the relationship between the cylinder internal volume and time, and is an enlarged view of a part of FIG. 5; FIG. 7 is a view showing a conventional free piston linear power generator. FIG. 8 is a view showing an operation process of a free piston engine in a two-stroke cycle. FIG. 9 is a view showing a diesel cycle. [Description of Signs] 1L, 1R Free piston engine 2L, 2R Piston 3 Shaft 4 Magnet unit 5 Linear generator 18 Magnetic field control unit 20 Control unit (control means) 21L, 21R Pressure sensor

Claims (1)

【特許請求の範囲】 【請求項1】 同一直線上に対向して配置し行程をずら
して運転される左右一対のフリーピストンエンジンと、
該エンジンのフリーピストン同士を連結して往復移動す
る磁石部を備えたシャフトと、前記磁石部が制御手段に
より可変の磁界内を往復移動して発電機または電動機と
して機能するリニア発電機と、前記フリーピストンエン
ジンのシリンダ内圧力を検出する圧力センサとが設けら
れ、 前記制御手段は、前記圧力センサにより検出されたシリ
ンダ内圧力に基づいて、燃焼時の該シリンダ内圧力が一
定となるシリンダ容積の変化量を算出し、さらに、該制
御手段は、前記リニア発電機の磁界を制御してシリンダ
容積の変化量が前記算出した変化量となるように前記フ
リーピストンの動作を制御することを特徴とするフリー
ピストンエンジン駆動リニア発電装置。
Claims: 1. A pair of left and right free piston engines which are arranged opposite to each other on the same straight line and which are operated at staggered strokes.
A shaft provided with a magnet portion that reciprocates by connecting the free pistons of the engine, a linear generator that reciprocates in a variable magnetic field by the control means and functions as a generator or an electric motor, A pressure sensor for detecting the pressure in the cylinder of the free-piston engine, wherein the control means is configured, based on the pressure in the cylinder, detected by the pressure sensor, to determine a cylinder volume at which the pressure in the cylinder during combustion is constant. Calculating a change amount, and further controlling the magnetic field of the linear generator to control the operation of the free piston so that the change amount of the cylinder volume becomes the calculated change amount. Free piston engine driven linear generator.
JP2002157195A 2002-05-30 2002-05-30 Free piston engine driving linear generator Withdrawn JP2003343202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157195A JP2003343202A (en) 2002-05-30 2002-05-30 Free piston engine driving linear generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157195A JP2003343202A (en) 2002-05-30 2002-05-30 Free piston engine driving linear generator

Publications (1)

Publication Number Publication Date
JP2003343202A true JP2003343202A (en) 2003-12-03

Family

ID=29773158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157195A Withdrawn JP2003343202A (en) 2002-05-30 2002-05-30 Free piston engine driving linear generator

Country Status (1)

Country Link
JP (1) JP2003343202A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062440A1 (en) * 2004-12-16 2006-06-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free-piston device for e.g. motor vehicles has piston receiving element, in which piston device moves linearly whereby pressure sensor is arranged at piston receiving element
JP2008223628A (en) * 2007-03-13 2008-09-25 Mazda Motor Corp Control device for free piston engine
JP2009008068A (en) * 2007-05-30 2009-01-15 Mazda Motor Corp Free-piston engine and its control method
KR100917553B1 (en) 2007-10-22 2009-09-16 주식회사 효성 linear generator system
KR101010664B1 (en) * 2008-10-01 2011-01-24 주식회사 효성 Pre-piston engine of linear generator system
JP2012202386A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Free piston generator
US8402931B2 (en) 2010-11-23 2013-03-26 Etagen, Inc. High-efficiency linear combustion engine
US8413617B2 (en) 2010-11-23 2013-04-09 Etagen, Inc. High-efficiency two-piston linear combustion engine
US8453612B2 (en) 2010-11-23 2013-06-04 Etagen, Inc. High-efficiency linear combustion engine
US8485146B2 (en) 2010-11-24 2013-07-16 Industrial Technology Research Institute Engine device
CN103334795A (en) * 2013-07-17 2013-10-02 北京工业大学 Free stroke piston expander generation device utilizing high pressure gas to output electric energy
US8720317B2 (en) 2011-12-29 2014-05-13 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8899192B2 (en) 2011-12-29 2014-12-02 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
KR101494049B1 (en) 2012-07-19 2015-02-17 명화공업주식회사 Liner engine
US8997699B2 (en) 2011-02-15 2015-04-07 Etagen, Inc. Linear free piston combustion engine with indirect work extraction via gas linkage
US9097203B2 (en) 2011-12-29 2015-08-04 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US9169797B2 (en) 2011-12-29 2015-10-27 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US10215229B2 (en) 2013-03-14 2019-02-26 Etagen, Inc. Mechanism for maintaining a clearance gap
US10985641B2 (en) 2018-07-24 2021-04-20 Mainspring Energy, Inc. Linear electromagnetic machine system with bearing housings having pressurized gas

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062440A1 (en) * 2004-12-16 2006-06-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free-piston device for e.g. motor vehicles has piston receiving element, in which piston device moves linearly whereby pressure sensor is arranged at piston receiving element
DE102004062440B4 (en) * 2004-12-16 2006-09-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Free piston device and method for operating a free piston device
JP2008223628A (en) * 2007-03-13 2008-09-25 Mazda Motor Corp Control device for free piston engine
JP2009008068A (en) * 2007-05-30 2009-01-15 Mazda Motor Corp Free-piston engine and its control method
KR100917553B1 (en) 2007-10-22 2009-09-16 주식회사 효성 linear generator system
KR101010664B1 (en) * 2008-10-01 2011-01-24 주식회사 효성 Pre-piston engine of linear generator system
US8413617B2 (en) 2010-11-23 2013-04-09 Etagen, Inc. High-efficiency two-piston linear combustion engine
US8402931B2 (en) 2010-11-23 2013-03-26 Etagen, Inc. High-efficiency linear combustion engine
US9567898B2 (en) 2010-11-23 2017-02-14 Etagen, Inc. High-efficiency linear combustion engine
US8453612B2 (en) 2010-11-23 2013-06-04 Etagen, Inc. High-efficiency linear combustion engine
US12000331B2 (en) 2010-11-23 2024-06-04 Mainspring Energy, Inc. High-efficiency linear generator
US8662029B2 (en) 2010-11-23 2014-03-04 Etagen, Inc. High-efficiency linear combustion engine
US10221759B2 (en) 2010-11-23 2019-03-05 Etagen, Inc. High-efficiency linear combustion engine
US11525391B2 (en) 2010-11-23 2022-12-13 Mainspring Energy, Inc. High-efficiency linear generator
US10024231B2 (en) 2010-11-23 2018-07-17 Etagen, Inc. High-efficiency linear combustion engine
US10851708B2 (en) 2010-11-23 2020-12-01 Mainspring Energy, Inc. High-efficiency linear combustion engine
US8485146B2 (en) 2010-11-24 2013-07-16 Industrial Technology Research Institute Engine device
US8997699B2 (en) 2011-02-15 2015-04-07 Etagen, Inc. Linear free piston combustion engine with indirect work extraction via gas linkage
JP2012202386A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Free piston generator
US9097203B2 (en) 2011-12-29 2015-08-04 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US9169797B2 (en) 2011-12-29 2015-10-27 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US9004038B2 (en) 2011-12-29 2015-04-14 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US10006401B2 (en) 2011-12-29 2018-06-26 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8899192B2 (en) 2011-12-29 2014-12-02 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8770090B2 (en) 2011-12-29 2014-07-08 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8720317B2 (en) 2011-12-29 2014-05-13 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
USRE49259E1 (en) 2011-12-29 2022-10-25 Mainspring Energy, Inc. Methods and systems for managing a clearance gap in a piston engine
KR101494049B1 (en) 2012-07-19 2015-02-17 명화공업주식회사 Liner engine
US10215229B2 (en) 2013-03-14 2019-02-26 Etagen, Inc. Mechanism for maintaining a clearance gap
CN103334795A (en) * 2013-07-17 2013-10-02 北京工业大学 Free stroke piston expander generation device utilizing high pressure gas to output electric energy
US10985641B2 (en) 2018-07-24 2021-04-20 Mainspring Energy, Inc. Linear electromagnetic machine system with bearing housings having pressurized gas
US11616428B2 (en) 2018-07-24 2023-03-28 Mainspring Energy, Inc. Linear electromagnetic machine system

Similar Documents

Publication Publication Date Title
JP2003343202A (en) Free piston engine driving linear generator
JP5185910B2 (en) Mirror cycle engine
EP2572075B1 (en) Free-piston internal combustion engine
JPH08501851A (en) Method and apparatus for improving engine transient response
WO2011027478A1 (en) Variable-compression-ratio, v-type internal combustion engine
CN105736190A (en) System and method for regulating exhaust gas recirculation in an engine
JP2001241302A (en) Free piston engine driving linear power generator
JP5630123B2 (en) Linear power generation free piston engine and starting method thereof
CN105840305B (en) Uniaxial double expansion type internal combustion engines
JP2004360683A (en) Method for increasing load range of premixed compression ignition, and system and method for realizing heavy load two-stroke hcci engine cycle in internal combustion engine which usually operates in four-stroke hcci engine cycle
FI108567B (en) Two-stroke engine
Wu et al. Research on starting process and control strategy of opposed-piston free-piston engine generator _ simulation and test results
US9605708B2 (en) Single-shaft dual expansion internal combustion engine
US11156249B2 (en) Hybrid opposed-piston internal combustion engine
JPS62155762A (en) Internal combustion type reciprocating generator
Zhenfeng et al. Experimental study on hydraulic free piston diesel engine
RU2468224C1 (en) Free-piston double-cylinder energy module of double purpose with common external combustion chamber and linear power generator
Rosso et al. A variable displacement engine with independently controllable stroke length and compression ratio
Qingzhi et al. Research on Model of Free Piston Linear Generator based on Location Domain and Real-Time Motion Control Strategy
JP5131387B2 (en) Variable compression ratio V-type internal combustion engine
JP4631757B2 (en) Control device for internal combustion engine
RU2520727C1 (en) Control over phases of electric power polymodular electric generator built around free-piston power module with external combustion chamber
KR20110011787A (en) Variable compression ratio &amp; volume internal combustion engine with load controller
JP2006214359A (en) Warm-up control device, and method thereof
GEP20043413B (en) Method for Effecting Work Cycle of Internal Combustion Engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802