JP2003342562A - Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby - Google Patents

Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby

Info

Publication number
JP2003342562A
JP2003342562A JP2002153903A JP2002153903A JP2003342562A JP 2003342562 A JP2003342562 A JP 2003342562A JP 2002153903 A JP2002153903 A JP 2002153903A JP 2002153903 A JP2002153903 A JP 2002153903A JP 2003342562 A JP2003342562 A JP 2003342562A
Authority
JP
Japan
Prior art keywords
temperature
inorganic phosphor
rate
producing
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002153903A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
隆行 鈴木
Satoshi Ito
聡 伊藤
Naoko Furusawa
直子 古澤
Hisahiro Okada
尚大 岡田
Hideki Hoshino
秀樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002153903A priority Critical patent/JP2003342562A/en
Publication of JP2003342562A publication Critical patent/JP2003342562A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an inorganic fluorescent material having excellent controllability of luminescent property, particle size and particle size distribution and provide an inorganic fluorescent material produced by the method. <P>SOLUTION: The method for the production of an inorganic fluorescent material contains a baking step to raise the temperature in a manner that the average heating rate U<SB>0</SB>from the heat-starting temperature t<SB>0</SB>to an arbitrary temperature t<SB>1</SB>is set to be higher than the average heating rate U<SB>t</SB>from the arbitrary temperature t<SB>1</SB>to the heat-finishing temperature T<SB>1</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無機蛍光体の製造
方法及び該無機蛍光体に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic phosphor and the inorganic phosphor.

【0002】[0002]

【従来の技術】従来から、様々な分野で、種々の無機蛍
光体が用いられている。例えば、照明装置の一例である
三波長型蛍光ランプにおいては、蛍光体として青色、緑
色、赤色の三波長に発光する蛍光体が用いられ、又、表
示装置の一例である陰極線管(CRT)、プラズマディ
スプレイパネル(PDP)、エレクトロルミネッセンス
装置、能動発光液晶装置等においても各種の蛍光体が用
いられている。
2. Description of the Related Art Conventionally, various inorganic phosphors have been used in various fields. For example, in a three-wavelength fluorescent lamp which is an example of a lighting device, a phosphor that emits three wavelengths of blue, green and red is used as a phosphor, and a cathode ray tube (CRT) that is an example of a display device. Various phosphors are also used in plasma display panels (PDPs), electroluminescent devices, active light emitting liquid crystal devices, and the like.

【0003】ところで、これら無機蛍光体は、通常、種
々の蛍光体原料混合物を焼成することにより製造でき
る。この焼成工程は、蛍光体の母体結晶が成長すると同
時に、母体結晶中に賦活剤元素が拡散する工程であり、
得られる蛍光体の発光特性に影響を及ぼす重要な工程で
ある。特に焼成工程における昇温制御や焼成工程後の冷
却制御は、蛍光体の発光特性、粒子サイズ及び粒子サイ
ズ分布等、蛍光体の安定した特性を得るために極めて重
要となる。
By the way, these inorganic phosphors can usually be produced by firing various phosphor raw material mixtures. This firing step is a step in which the activator element diffuses into the host crystal at the same time when the host crystal of the phosphor grows,
This is an important step that affects the emission characteristics of the obtained phosphor. In particular, temperature control in the firing step and cooling control after the firing step are extremely important in order to obtain stable characteristics of the phosphor such as emission characteristics of the phosphor, particle size and particle size distribution.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
鑑み提案されたものであり、その目的とするところは、
発光特性、粒子サイズ及び粒子サイズ分布の制御性に優
れた無機蛍光体の製造方法及び該製造方法により得られ
た無機蛍光体を提供することである。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above problems, and its object is to:
It is an object of the present invention to provide a method for producing an inorganic phosphor excellent in controllability of light emission characteristics, particle size and particle size distribution, and an inorganic phosphor obtained by the production method.

【0005】[0005]

【課題を解決するための手段】本発明の課題は下記構成
を採ることにより達成される。
The object of the present invention can be achieved by adopting the following constitution.

【0006】1.昇温開始温度t0から任意の温度t1
での平均昇温速度U0が、任意の温度t1から昇温終了時
の温度T1までの平均昇温速度Utよりも速くなるように
昇温する焼成工程を有することを特徴とする無機蛍光体
の製造方法。
1. As the average heating rate U 0 from temperature increase start temperature t 0 to an arbitrary temperature t 1, is faster than the average heating rate U t from any temperature t 1 to a temperature T 1 of the at the end heating A method for producing an inorganic phosphor, comprising a firing step of raising the temperature.

【0007】2.昇温速度の温度に対する変化を示す曲
線が、n(nは1以上の自然数を表す。)の屈曲点又は
屈折点を有することを特徴とする前記1項に記載の無機
蛍光体の製造方法。
2. The method for producing an inorganic phosphor according to the above item 1, wherein the curve showing the change of the temperature rising rate with respect to temperature has n (n is a natural number of 1 or more) inflection point or refraction point.

【0008】3.昇温開始温度t0から任意の温度t1
での平均昇温速度U0又は任意の温度t1から昇温終了時
の温度T1までの平均昇温速度Utを一定速度に維持する
か、もしくは温度に対して連続的、又は断続的に変化さ
せることを特徴とする前記1項又は2項に記載の無機蛍
光体の製造方法。
3. Or to maintain the average Atsushi Nobori rate U t from the mean heating rate U 0 or any temperature t 1 from temperature increase start temperature t 0 to an arbitrary temperature t 1 to a temperature T 1 of the at the end of heating at a constant rate Or the method for producing an inorganic phosphor according to the item 1 or 2, wherein the temperature is changed continuously or intermittently with respect to temperature.

【0009】4.降温開始温度T2から任意の温度t2
での平均降温速度D0が、任意の温度t2から降温終了時
の温度t3までの平均降温速度D1よりも速くなるように
降温する冷却工程を有することを特徴とする無機蛍光体
の製造方法。
4. Cooling step in which the average temperature decrease rate D 0 from the temperature decrease start temperature T 2 to the arbitrary temperature t 2 is higher than the average temperature decrease rate D 1 from the arbitrary temperature t 2 to the temperature t 3 at the end of the temperature decrease A method for producing an inorganic phosphor, which comprises:

【0010】5.降温速度の温度に対する変化を示す曲
線が、n(nは1以上の自然数を表す。)の屈曲点又は
屈折点を有することを特徴とする前記4項に記載の無機
蛍光体の製造方法。
5. 5. The method for producing an inorganic phosphor according to the item 4, wherein the curve showing the change of the temperature falling rate with respect to temperature has n (n is a natural number of 1 or more) inflection point or refraction point.

【0011】6.降温開始温度T2から任意の温度t2
での平均降温速度D0又は任意の温度t2から降温終了時
の温度t3までの平均降温速度D1を一定速度に維持する
か、もしくは温度に対して連続的、又は断続的に変化さ
せることを特徴とする前記4又は5に記載の無機蛍光体
の製造方法。
6. The average cooling rate D 0 from the cooling start temperature T 2 to the arbitrary temperature t 2 or the average cooling rate D 1 from the arbitrary temperature t 2 to the temperature t 3 at the end of the cooling is maintained at a constant rate or The method for producing an inorganic phosphor as described in 4 or 5 above, wherein the method is changed continuously or intermittently.

【0012】7.前記1〜3項のいずれか1項の無機蛍
光体の製造方法及び請求項4〜6のいずれか1項の無機
蛍光体の製造方法を併用することを特徴とする無機蛍光
体の製造方法。
7. A method for producing an inorganic phosphor, wherein the method for producing an inorganic phosphor according to any one of claims 1 to 3 and the method for producing an inorganic phosphor according to any one of claims 4 to 6 are used in combination.

【0013】8.前記1〜7項のいずれか1項に記載の
無機蛍光体の製造方法により製造されたことを特徴とす
る無機蛍光体。
8. An inorganic phosphor manufactured by the method for manufacturing an inorganic phosphor according to any one of 1 to 7 above.

【0014】以下、本発明を詳細に説明する。本発明の
無機蛍光体の製造方法は、無機蛍光体前駆体を調製する
工程と、無機蛍光体前駆体を焼成して無機蛍光体を得る
焼成工程と、焼成後、冷却を行う冷却工程を有する。必
要に応じて粒子の表面処理の工程を有してもよい。
The present invention will be described in detail below. The method for producing an inorganic phosphor of the present invention includes a step of preparing an inorganic phosphor precursor, a firing step of firing the inorganic phosphor precursor to obtain an inorganic phosphor, and a cooling step of performing cooling after firing. . A step of surface treatment of particles may be included if necessary.

【0015】本発明では、前記焼成工程において、昇温
開始温度t0から任意の温度t1までの平均昇温速度U0
が、任意の温度t1から昇温終了時の温度T1までの平均
昇温速度U1よりも速くなるように昇温(但し、t0<t
1<T1)することを特徴とする。
In the present invention, in the firing step, the average heating rate U 0 from the heating start temperature t 0 to an arbitrary temperature t 1 is increased.
Is higher than the average temperature increase rate U 1 from the arbitrary temperature t 1 to the temperature T 1 at the end of temperature increase (where t 0 <t
1 <T 1 ).

【0016】無機蛍光体前駆体の焼成工程では、蛍光体
の母体結晶が成長すると同時に、母体結晶中に賦活剤元
素が拡散し始める。この際に本発明では、昇温速度を前
記のように調節することにより、得られる蛍光体結晶の
発光特性、粒子サイズ及び粒子サイズ分布を制御してい
る。
In the step of firing the inorganic phosphor precursor, the activator element begins to diffuse into the host crystal at the same time as the host crystal of the phosphor grows. At this time, in the present invention, the light emission characteristics, particle size and particle size distribution of the obtained phosphor crystal are controlled by adjusting the heating rate as described above.

【0017】昇温速度は、前記条件を満たしている限
り、温度に対してどのように変化させてもよい。例え
ば、昇温開始温度t0から任意の温度t1までは、平均昇
温速度U 0を保持し、母体結晶を成長させた後、任意の
温度t1から昇温終了時の温度T1までは、平均昇温速度
t(但し、Ut<U0)に維持し、母体結晶の成長を抑
制してもよい。昇温速度は、温度に対して変化させても
よく、温度に対する変化は連続的であっても、断続的で
あってもよい。又、連続的変化と断続的変化を組み合わ
せてもよい。昇温速度を温度に対して変化させる場合
は、n次関数的(n=1、2又は3)、指数関数的、あ
るいは微分関数的に変化させてもよい。その他、温度に
対する昇温速度の変化が、ヒステリシスカーブ、cos
関数等を示すような昇温パターンであってもよい。
The temperature rising rate is limited as long as the above conditions are satisfied.
And may be changed in any manner with respect to temperature. example
For example, the temperature rise start temperature t0To any temperature t1Until the average rise
Temperature rate U 0After holding and growing the host crystal,
Temperature t1To the temperature T at the end of heating1Up to average heating rate
Ut(However, Ut<U0) To suppress the growth of the host crystal.
You may control. Even if the heating rate is changed with temperature,
Well, the change with temperature is continuous, but intermittent.
It may be. It also combines continuous and intermittent changes
You may let me. When changing the heating rate with temperature
Is an nth-order function (n = 1, 2 or 3), an exponential function,
Alternatively, it may be changed in a differential function. In addition, to temperature
The change in the heating rate against the hysteresis curve, cos
It may be a temperature rising pattern showing a function or the like.

【0018】図1に、焼成工程の昇温パターンの態様を
いくつか示すが、特にこれに限定されるものではない。
FIG. 1 shows some aspects of the heating pattern of the firing step, but the present invention is not particularly limited to this.

【0019】又、本発明において、昇温速度の温度に対
する変化を示す曲線は、屈曲点又は屈折点を有していて
も、有していなくてもよく、有している場合は、その数
についても特に限定されない。ここで、屈折点とは、傾
きが異なる複数の直線が結合した曲線において、傾きの
異なる2つの直線の交点をいう。一方、屈曲点とは、非
直線からなる曲線を、傾きが異なる複数の直線が結合し
た曲線に近似させた場合に、その近似曲線が有する前記
屈折点をいう。
Further, in the present invention, the curve showing the change of the temperature rising rate with respect to temperature may or may not have a bending point or an inflection point. Is also not particularly limited. Here, the refraction point means an intersection of two straight lines having different slopes in a curve formed by connecting a plurality of straight lines having different slopes. On the other hand, the inflection point refers to the inflection point that the approximated curve has when a curve made up of non-straight lines is approximated to a curve in which a plurality of straight lines having different slopes are combined.

【0020】本発明では、前記冷却工程において、降温
開始温度T2から任意の温度t2までの平均降温速度D0
が、任意の温度t2から降温終了時の温度t3までの平均
降温速度D1よりも速くなるように降温(但し、t3<t
2<T2)することを特徴とする。
In the present invention, in the cooling step, the average cooling rate D 0 from the cooling start temperature T 2 to an arbitrary temperature t 2 is increased.
Is lower than the average temperature decrease rate D 1 from the arbitrary temperature t 2 to the temperature t 3 at the end of the temperature decrease (where t 3 <t
2 <T 2 ).

【0021】無機蛍光体前駆体焼成後の冷却工程では、
蛍光体の母体結晶の成長が止まるのと同時に、粒子サイ
ズ及び粒子形状が安定化する。この際に本発明では、降
温速度を前記のように調節することにより、得られる蛍
光体結晶の発光特性、粒子サイズ及び粒子サイズ分布を
制御している。
In the cooling step after firing the inorganic phosphor precursor,
At the same time as the growth of the host crystal of the phosphor is stopped, the particle size and particle shape are stabilized. At this time, in the present invention, the emission rate, particle size and particle size distribution of the obtained phosphor crystal are controlled by adjusting the temperature lowering rate as described above.

【0022】降温速度は、前記条件を満たしている限
り、温度に対してどのように変化させてもよい。例え
ば、降温開始温度T2から任意の温度t2までは、平均降
温速度D 0を保持し、任意の温度t2から降温終了時の温
度t3までは、平均降温速度Dt(但し、Dt<D0)に維
持し、粒子サイズ及び粒子形状を安定化させてもよい。
降温速度は、温度に対して変化させてもよく、温度に対
する変化は連続的であっても、断続的であってもよい。
又、連続的変化と断続的変化を組み合わせてもよい。降
温速度を温度に対して変化させる場合は、n次関数的
(n=1、2又は3)、指数関数的、あるいは微分関数
的に変化させてもよい。その他、温度に対する降温速度
の変化が、ヒステリシスカーブ、cos関数等を示すよ
うな降温パターンであってもよい。
The cooling rate is limited to the above-mentioned conditions.
And may be changed in any manner with respect to temperature. example
For example, the temperature start temperature T2To any temperature t2Until the average drop
Temperature rate D 0Hold any temperature t2The temperature at the end of cooling
Degree t3Up to average temperature decrease rate Dt(However, Dt<D0)
The particle size and the particle shape may be stabilized.
The rate of temperature decrease may be changed with respect to temperature and
The changes that occur may be continuous or intermittent.
Further, continuous change and intermittent change may be combined. Descending
When changing the temperature rate with respect to the temperature,
(N = 1, 2 or 3), exponential or differential function
May be changed. Other rate of temperature drop
Changes show hysteresis curve, cos function, etc.
It may be a temperature drop pattern.

【0023】図2に、降温工程の降温パターンの態様を
いくつか示すが、特にこれに限定されるものではない。
FIG. 2 shows some aspects of the temperature lowering pattern of the temperature lowering step, but the present invention is not limited to this.

【0024】又、本発明において、降温速度の温度に対
する変化を示す曲線は、屈曲点又は屈折点を有していて
も、有していなくてもよく、有している場合は、その数
についても特に限定されない。ここで、屈折点とは、傾
きが異なる複数の直線が結合した曲線において、傾きの
異なる2つの直線の交点をいう。一方、屈曲点とは、非
直線からなる曲線を、傾きが異なる複数の直線が結合し
た曲線に近似させた場合に、その近似曲線が有する前記
屈折点をいう。
Further, in the present invention, the curve showing the change of the cooling rate with respect to temperature may or may not have a bending point or a refraction point. Is not particularly limited. Here, the refraction point means an intersection of two straight lines having different slopes in a curve formed by connecting a plurality of straight lines having different slopes. On the other hand, the inflection point refers to the inflection point that the approximated curve has when a curve made up of non-straight lines is approximated to a curve in which a plurality of straight lines having different slopes are combined.

【0025】本発明の無機蛍光体の製造方法には、従来
から公知の固相法、液相法等、種々の製法を適用するこ
とができるが、これらの中では液相法を適用することが
好ましい。特に前記無機蛍光体前駆体を調製する工程
は、発光強度の観点から、調製時に機械的破砕工程を経
ない、つまりビルドアップ法で合成されるものが好まし
く、液相法によって製造されるものが好ましい。
For the method for producing the inorganic phosphor of the present invention, various production methods such as a conventionally known solid phase method and liquid phase method can be applied. Among them, the liquid phase method is applied. Is preferred. In particular, the step of preparing the inorganic phosphor precursor does not undergo a mechanical crushing step at the time of preparation from the viewpoint of emission intensity, that is, those synthesized by the build-up method are preferable, and those manufactured by the liquid phase method are preferable. preferable.

【0026】(液相法)液相法とは、共沈法、晶析法、
ゾルゲル法等の一般的な液相中での反応方法を称して表
しており、本発明では適宜選択することが可能である。
(Liquid phase method) The liquid phase method includes coprecipitation method, crystallization method,
It represents a general reaction method in a liquid phase such as a sol-gel method, and can be appropriately selected in the present invention.

【0027】本発明に係る液相法としては、例えば、ゾ
ルゲル法や晶析法が好ましいがこれらに限定されるもの
ではない。晶析法の中では反応晶析法が好ましい。
The liquid phase method according to the present invention is preferably, but not limited to, a sol-gel method or a crystallization method. Among the crystallization methods, the reaction crystallization method is preferable.

【0028】ゾルゲル法とは、一般的には母体、賦活剤
又は共賦活剤に用いる元素(金属)を、例えば、Si
(OCH34やEu3+(CH3COCHCOCH33
の金属アルコキシドや金属錯体又はそれらの有機溶媒溶
液に金属単体を加えて作るダブルアルコキシド(例え
ば、Al(OC493の2−ブタノール溶液に金属マ
グネシウムを加えて作るMg[Al(OC494
2等)、金属ハロゲン化物、有機酸の金属塩又は金属単
体として必要量混合し、熱的又は化学的に重縮合するこ
とによる製造方法を意味する。
In the sol-gel method, an element (metal) generally used in a matrix, an activator or a co-activator, such as Si, is used.
Double alkoxides (for example, Al (OC 4 H 9 ) 3 of metal alkoxides such as (OCH 3 ) 4 and Eu 3+ (CH 3 COCHCOCH 3 ) 3 or metal complexes or organic solvent solutions thereof added with a metal simple substance. Mg [Al (OC 4 H 9 ) 4 ] made by adding metallic magnesium to a 2-butanol solution
2 etc.), a metal halide, a metal salt of an organic acid, or a metal simple substance is mixed in a necessary amount and thermally or chemically polycondensed.

【0029】反応晶析法とは、冷却、蒸発、pH調節、
濃縮等による物理的又は化学的な環境の変化、或は化学
反応によって混合系の状態に変化を生じる場合等におい
て液相中から固相を析出させることであり、一般に晶析
現象と言われているが、この様な晶析現象発生を誘引す
る物理的、化学的操作を施す製造方法を意味する。
The reaction crystallization method includes cooling, evaporation, pH adjustment,
When the physical or chemical environment changes due to concentration, or when the state of the mixed system changes due to a chemical reaction, it is the precipitation of the solid phase from the liquid phase, which is generally called the crystallization phenomenon. However, it means a manufacturing method in which physical and chemical operations that induce the occurrence of such a crystallization phenomenon are performed.

【0030】ゾルゲル法を適用する際の溶媒としては、
反応原料が溶解すれば何を用いてもよいが、環境面の観
点からエタノールが好ましい。又、反応開始剤又は触媒
としては、酸でも塩基でも用いることができるが、加水
分解速度の観点から塩基の方が好ましい。塩基の種類と
しては反応が開始すれば水酸化ナトリウム、アンモニア
等一般的なものを用いることができるが、除去しやすさ
の観点からアンモニアが好ましい。反応開始剤又は触媒
の混合方法としては、先に母液に添加されていてもよ
く、原料と同時に添加してもよく、予め原料に加えてい
てもよいが、均一性を高めるために、先に母液に添加さ
れている方法がより好ましい。複数の反応原料を用いる
場合は、原料の添加順序は同時でも異なってもよく、活
性によって適切な順序を適宜組み立てることができ、場
合によってはダブルアルコキシドを形成してもよい。
As the solvent when applying the sol-gel method,
Any material may be used as long as the reaction raw material is dissolved, but ethanol is preferable from the viewpoint of environment. As the reaction initiator or catalyst, either an acid or a base can be used, but a base is preferred from the viewpoint of the hydrolysis rate. As the type of base, common ones such as sodium hydroxide and ammonia can be used if the reaction starts, but ammonia is preferred from the viewpoint of easy removal. As a method of mixing the reaction initiator or the catalyst, it may be added to the mother liquor in advance, may be added at the same time as the raw materials, or may be added to the raw materials in advance. The method of being added to the mother liquor is more preferable. When using a plurality of reaction raw materials, the order of addition of the raw materials may be the same or different, and a suitable order can be appropriately assembled depending on the activity, and a double alkoxide may be formed in some cases.

【0031】又、反応晶析法を適用する際の溶媒は、反
応原料が溶解すれば何を用いてもよいが、過飽和度制御
のしやすさの観点から水が好ましい。複数の反応原料を
用いる場合は、反応原料の添加順序は同時でも異なって
もよく、活性によって適切な順序を適宜組み立てること
ができる。
Any solvent may be used when the reaction crystallization method is applied as long as the reaction raw materials are dissolved, but water is preferable from the viewpoint of easy control of supersaturation. When using a plurality of reaction raw materials, the order of adding the reaction raw materials may be the same or different, and an appropriate order can be appropriately assembled depending on the activity.

【0032】液相法で前駆体を合成する場合、どの方法
の場合でも反応中は温度、添加速度、撹拌速度、pH等
を制御してもよく、反応中に超音波を照射してもよい。
粒径制御又は凝集防止のために界面活性剤、ポリマー、
ゼラチン等を添加してもよい。原料を添加終了後、必要
に応じて液を濃縮、及び/又は熟成することも好ましい
態様の1つである。
When the precursor is synthesized by the liquid phase method, the temperature, the addition rate, the stirring rate, the pH, etc. may be controlled during the reaction in any method, and ultrasonic waves may be irradiated during the reaction. .
Surfactants, polymers to control particle size or prevent agglomeration
Gelatin or the like may be added. It is also one of the preferred embodiments that the liquid is concentrated and / or aged if necessary after the completion of the addition of the raw materials.

【0033】液相法で前駆体を合成した後、必要に応じ
て濾過、蒸発乾固、遠心分離等の方法で回収した後に好
ましくは洗浄を行い、更に乾燥、焼成等の諸工程を施し
てもよく、分級してもよい。
After synthesizing the precursor by the liquid phase method, if necessary, it is recovered by a method such as filtration, evaporation to dryness, centrifugation, and then preferably washed, and further subjected to various steps such as drying and firing. Well, you may classify.

【0034】乾燥温度は特に制限されないが、使用した
溶媒が気化する温度付近以上の温度であることが好まし
く、具体的には50〜300℃が好ましい。
The drying temperature is not particularly limited, but it is preferably a temperature around the temperature at which the solvent used is vaporized or higher, and specifically 50 to 300 ° C. is preferable.

【0035】本発明の無機蛍光体の製造方法は、上記、
無機蛍光体前駆体を調製する工程の後、無機蛍光体前駆
体を焼成して無機蛍光体を得る焼成工程と、焼成後、冷
却を行う冷却工程を有する。
The method for producing an inorganic phosphor of the present invention is described above.
After the step of preparing the inorganic phosphor precursor, there is a baking step of baking the inorganic phosphor precursor to obtain the inorganic phosphor, and a cooling step of cooling after the baking.

【0036】焼成工程における昇温速度は前記条件で行
うことを特徴とするが、焼成工程の焼成温度には特に制
限は無く、一般に600〜1800℃が好ましく使用で
きる。前記焼成時の焼成時間としては、無機蛍光体前駆
体の充填量、焼成温度又は炉からの取出温度等によって
も異なるが、一般に、0.5〜6時間が好ましく、1〜
3時間がより好ましい。焼成は還元雰囲気下、酸化雰囲
気下、硫化物存在下又は不活性ガス存在下等のどの条件
下でも良く、適宜選択することができる。焼成方法は現
在知られているいろいろな方法を用いることができる
が、回転型の焼成装置を用いることが好ましい。更に、
必要に応じて焼成の後に還元処理又は酸化処理等を施し
ても良い。
The temperature rising rate in the firing step is characterized by being performed under the above conditions, but the firing temperature in the firing step is not particularly limited, and generally 600 to 1800 ° C. can be preferably used. The firing time at the time of firing varies depending on the filling amount of the inorganic phosphor precursor, the firing temperature, the temperature at which it is taken out of the furnace, etc., but is generally 0.5 to 6 hours, preferably 1 to
3 hours is more preferred. The firing may be performed under any conditions such as a reducing atmosphere, an oxidizing atmosphere, the presence of sulfides or the presence of an inert gas, and can be appropriately selected. Various firing methods known at present can be used, but it is preferable to use a rotary firing apparatus. Furthermore,
If necessary, reduction treatment or oxidation treatment may be performed after firing.

【0037】本発明の無機蛍光体の製造方法では、前記
焼成工程を経た後、冷却工程に移行する。冷却工程にお
ける冷却速度は前記条件で行うことを特徴とするが、冷
却工程における冷却方法は、特に限定されるものではな
く、公知の冷却方法より適宜選択することができ、冷却
機等を用いて、所望の温度に制御して冷却する方法が好
ましい。
In the method for producing an inorganic phosphor of the present invention, after passing through the firing step, a cooling step is performed. The cooling rate in the cooling step is characterized by being performed under the above conditions, but the cooling method in the cooling step is not particularly limited and can be appropriately selected from known cooling methods, using a cooler or the like. A method of controlling the temperature to a desired temperature and cooling is preferable.

【0038】又、冷却後の無機蛍光体に対し、必要に応
じて、さらに洗浄工程、乾燥工程、篩分工程等の一般的
な各種工程を設けることもできる。
If necessary, various general steps such as a washing step, a drying step, and a sieving step can be added to the cooled inorganic phosphor.

【0039】本発明の無機蛍光体の製造方法により製造
される、無機蛍光体の組成は、例えば、特開昭50−6
410号公報、同61−65226号公報、同64−2
2987号公報、同64−60671号公報、特開平1
−168911号公報等に記載されており、特に制限は
ないが、結晶母体であるY22S、Zn2SiO4、Ca
5(PO43Cl等に代表される金属酸化物及びZn
S、SrS、CaS等に代表される硫化物に、Ce、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb等の希土類金属のイオンやAg、
Al、Mn、Sb等の金属のイオンを賦活剤又は共賦活
剤として組み合わせたものが好ましい。
The composition of the inorganic phosphor produced by the method for producing an inorganic phosphor of the present invention is, for example, JP-A-50-6.
No. 410, No. 61-65226, No. 64-2
2987, 64-60671, and JP-A-1
No. 168911 and the like, and is not particularly limited, but is a crystal matrix such as Y 2 O 2 S, Zn 2 SiO 4 , and Ca.
5 (PO 4 ) 3 Cl and other metal oxides and Zn
S, SrS, CaS, and other sulfides have Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
ions of rare earth metals such as o, Er, Tm, Yb and Ag,
A combination of ions of metals such as Al, Mn and Sb as an activator or co-activator is preferable.

【0040】結晶母体の好ましい例としては、例えば、
ZnS、Y22S、Y3Al512、Y2SiO5、Zn2
SiO4、Y23、BaMgAl1017、BaAl12
19、(Ba、Sr、Mg)O・aAl23、(Y、G
d)BO3、YO3、(Zn、Cd)S、SrGa24
SrS、GaS、SnO2、Ca10(PO46(F,C
l)2、(Ba、Sr)(Mg、Mn)Al1017
(Sr、Ca、Ba、Mg)1 0(PO46Cl2、(L
a、Ce)PO4、CeMgAl1119、GdMgB5
10、Sr227、Sr4Al1425等が挙げられる。
Preferred examples of the crystal matrix are, for example,
ZnS, Y2O2S, Y3AlFiveO12, Y2SiOFive, Zn2
SiOFour, Y2O3, BaMgAlTenO17, BaAl12O
19, (Ba, Sr, Mg) O · aAl2O3, (Y, G
d) BO3, YO3, (Zn, Cd) S, SrGa2SFour,
SrS, GaS, SnO2, CaTen(POFour)6(F, C
l)2, (Ba, Sr) (Mg, Mn) AlTenO17,
(Sr, Ca, Ba, Mg)1 0(POFour)6Cl2, (L
a, Ce) POFour, CeMgAl11O19, GdMgBFiveO
Ten, Sr2P2O7, SrFourAl14Otwenty fiveEtc.

【0041】以上の結晶母体及び賦活剤又は共賦活剤
は、同族の元素と一部置き換えたものでも問題はなく、
とくに元素組成に制限はない。
The crystal matrix and the activator or co-activator described above may be partially replaced with a homologous element, and there is no problem.
There is no particular limitation on the elemental composition.

【0042】以下に、本発明に係る無機蛍光体の化合物
例を示すが、本発明はこれらの化合物に限定されるもの
ではない。
Examples of compounds of the inorganic phosphor according to the present invention are shown below, but the present invention is not limited to these compounds.

【0043】[青色発光無機蛍光体] (BL−1) Sr227:Sn4+ (BL−2) Sr4Al1425:Eu2+ (BL−3) BaMgAl1017:Eu2+ (BL−4) SrGa24:Ce3+ (BL−5) CaGa24:Ce3+ (BL−6) (Ba,Sr)(Mg,Mn)Al10
17:Eu2+ (BL−7) (Sr,Ca,Ba,Mg)10(P
46Cl2:Eu2+ (BL−8) ZnS:Ag (BL−9) CaWO4 (BL−10) Y2SiO5:Ce3+ (BL−11) ZnS:Ag,Ga,Cl (BL−12) Ca259Cl:Eu2+ (BL−13) BaMgAl1423:Eu2+ (BL−14) BaMgAl1017:Eu2+,T
3+,Sm2+ (BL−15) BaMgAl1423:Sm2+ (BL−16) Ba2Mg2Al1222:Eu2+ (BL−17) Ba2Mg4Al818:Eu2+ (BL−18) Ba3Mg5Al1835:Eu2+ (BL−19) (Ba,Sr,Ca)(Mg,Zn,
Mn)Al1017:Eu2+ [緑色発光無機蛍光体] (GL−1) (Ba,Mg)Al1627:Eu2+,M
2+ (GL−2) Sr4Al1425:Eu2+ (GL−3) (Sr,Ba)Al2Si28:Eu2+ (GL−4) (Ba,Mg)2SiO4:Eu2+ (GL−5) Y2SiO5:Ce3+,Tb3+ (GL−6) Sr227−Sr225:Eu2+ (GL−7) (Ba,Ca,Mg)5(PO43
l:Eu2+ (GL−8) Sr2Si38−2SrCl2:Eu2+ (GL−9) Zr2SiO4,MgAl1119:C
3+,Tb3+ (GL−10) Ba2SiO4:Eu2+ (GL−11) ZnS:Cu,Al (GL−12) (Zn,Cd)S:Cu,Al (GL−13) ZnS:Cu,Au,Al (GL−14) Zn2SiO4:Mn2+ (GL−15) ZnS:Ag,Cu (GL−16) (Zn,Cd)S:Cu (GL−17) ZnS:Cu (GL−18) Gd22S:Tb3+ (GL−19) La22S:Tb3+ (GL−20) Y2SiO5:Ce3+,Tb3+ (GL−21) Zn2GeO4:Mn2+ (GL−22) CeMgAl1119:Tb3+ (GL−23) SrGa24:Eu2+ (GL−24) ZnS:Cu,Co (GL−25) MgO・nB23:Ce3+,Tb3+ (GL−26) LaOBr:Tb3+,Tm3+ (GL−27) La22S:Tb3+ (GL−28) SrGa24:Eu2+,Tb3+,Sm
2+ [赤色発光無機蛍光体] (RL−1) Y22S:Eu3+ (RL−2) (Ba,Mg)2SiO4:Eu3+ (RL−3) Ca28(SiO462:Eu3+ (RL−4) LiY9(SiO462:Eu3+ (RL−5) (Ba,Mg)Al1627:Eu3+ (RL−6) (Ba,Ca,Mg)5(PO43
l:Eu3+ (RL−7) YVO4:Eu3+ (RL−8) YVO4:Eu3+,Bi3+ (RL−9) CaS:Eu3+ (RL−10) Y23:Eu3+ (RL−11) 3.5MgO,0.5MgF2Ge
2:Mn4+ (RL−12) YAlO3:Eu3+ (RL−13) YBO3:Eu3+ (RLー14) (Y,Gd)BO3:Eu3+ 本発明の無機蛍光体の製造方法により製造される、無機
蛍光体の平均粒径は0.1〜1.0μmが好ましく、
0.2〜0.8μmがより好ましい。上記の平均粒径
は、球換算粒径であり、球換算粒径とは、粒子の体積と
同体積の球を想定し、該球の粒径をもって表わした粒径
である。ここで、本発明に係る無機蛍光体の粒径は、透
過型電子顕微鏡「TEM」又は走査型電子顕微鏡「SE
M」を用いて測定できる。又、好ましくは粒径が0.1
〜1.0μmの粒子が質量で全粒子の50%以上を占め
る無機蛍光体で、より好ましくは粒径が0.1〜1.0
μmの粒子が質量で全粒子の70%以上を占める無機蛍
光体である。更に、平均粒径が0.1〜1.0μmの粒
子の粒径分布の変動係数が50%以下である無機蛍光体
が好ましく、変動係数が30%以下である無機蛍光体が
より好ましい。ここで粒径分布の変動係数(粒子分布の
広さ)とは、下式によって定義される値である。
[Blue emitting inorganic phosphor] (BL-1) Sr 2 P 2 O 7 : Sn 4+ (BL-2) Sr 4 Al 14 O 25 : Eu 2+ (BL-3) BaMgAl 10 O 17 : Eu 2+ (BL-4) SrGa 2 S 4 : Ce 3+ (BL-5) CaGa 2 S 4 : Ce 3+ (BL-6) (Ba, Sr) (Mg, Mn) Al 10 O
17 : Eu 2+ (BL-7) (Sr, Ca, Ba, Mg) 10 (P
O 4 ) 6 Cl 2 : Eu 2+ (BL-8) ZnS: Ag (BL-9) CaWO 4 (BL-10) Y 2 SiO 5 : Ce 3+ (BL-11) ZnS: Ag, Ga, Cl (BL-12) Ca 2 B 5 O 9 Cl: Eu 2+ (BL-13) BaMgAl 14 O 23: Eu 2+ (BL-14) BaMgAl 10 O 17: Eu 2+, T
b 3+ , Sm 2+ (BL-15) BaMgAl 14 O 23 : Sm 2+ (BL-16) Ba 2 Mg 2 Al 12 O 22 : Eu 2+ (BL-17) Ba 2 Mg 4 Al 8 O 18 : Eu 2+ (BL-18) Ba 3 Mg 5 Al 18 O 35 : Eu 2+ (BL-19) (Ba, Sr, Ca) (Mg, Zn,
Mn) Al 10 O 17 : Eu 2+ [green light emitting inorganic phosphor] (GL-1) (Ba, Mg) Al 16 O 27 : Eu 2+ , M
n 2+ (GL-2) Sr 4 Al 14 O 25 : Eu 2+ (GL-3) (Sr, Ba) Al 2 Si 2 O 8 : Eu 2+ (GL-4) (Ba, Mg) 2 SiO 4: Eu 2+ (GL-5 ) Y 2 SiO 5: Ce 3+, Tb 3+ (GL-6) Sr 2 P 2 O 7 -Sr 2 B 2 O 5: Eu 2+ (GL-7) ( Ba, Ca, Mg) 5 (PO 4 ) 3 C
l: Eu 2+ (GL-8) Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ (GL-9) Zr 2 SiO 4 , MgAl 11 O 19 : C
e 3+ , Tb 3+ (GL-10) Ba 2 SiO 4 : Eu 2+ (GL-11) ZnS: Cu, Al (GL-12) (Zn, Cd) S: Cu, Al (GL-13) ZnS: Cu, Au, Al ( GL-14) Zn 2 SiO 4: Mn 2+ (GL-15) ZnS: Ag, Cu (GL-16) (Zn, Cd) S: Cu (GL-17) ZnS: Cu (GL-18) Gd 2 O 2 S: Tb 3+ (GL-19) La 2 O 2 S: Tb 3+ (GL-20) Y 2 SiO 5 : Ce 3+ , Tb 3+ (GL-21 ) Zn 2 GeO 4 : Mn 2+ (GL-22) CeMgAl 11 O 19 : Tb 3+ (GL-23) SrGa 2 S 4 : Eu 2+ (GL-24) ZnS: Cu, Co (GL-25). MgO · nB 2 O 3: Ce 3+, Tb 3+ (GL-26) LaOBr: Tb 3+, Tm 3+ (GL 27) La 2 O 2 S: Tb 3+ (GL-28) SrGa 2 S 4: Eu 2+, Tb 3+, Sm
2+ [red emitting inorganic phosphor] (RL-1) Y 2 O 2 S: Eu 3+ (RL-2) (Ba, Mg) 2 SiO 4: Eu 3+ (RL-3) Ca 2 Y 8 ( SiO 4) 6 O 2: Eu 3+ (RL-4) LiY 9 (SiO 4) 6 O 2: Eu 3+ (RL-5) (Ba, Mg) Al 16 O 27: Eu 3+ (RL-6 ) (Ba, Ca, Mg) 5 (PO 4 ) 3 C
l: Eu 3+ (RL-7 ) YVO 4: Eu 3+ (RL-8) YVO 4: Eu 3+, Bi 3+ (RL-9) CaS: Eu 3+ (RL-10) Y 2 O 3 : Eu 3+ (RL-11) 3.5MgO, 0.5MgF 2 Ge
O 2: Mn 4+ (RL- 12) YAlO 3: Eu 3+ (RL-13) YBO 3: Eu 3+ (RL over 14) (Y, Gd) BO 3: Eu 3+ inorganic phosphor of the present invention The average particle size of the inorganic phosphor produced by the production method is preferably 0.1 to 1.0 μm,
0.2 to 0.8 μm is more preferable. The above-mentioned average particle size is a sphere-converted particle size, and the sphere-converted particle size is a particle size represented by the particle size of the sphere, assuming a sphere having the same volume as the volume of the particle. Here, the particle size of the inorganic phosphor according to the present invention is the transmission electron microscope “TEM” or the scanning electron microscope “SE”.
It can be measured using "M". The particle size is preferably 0.1
Inorganic phosphors having particles of ˜1.0 μm occupy 50% or more of all particles by mass, more preferably having a particle size of 0.1 to 1.0.
It is an inorganic phosphor in which particles of μm occupy 70% or more of all particles by mass. Furthermore, an inorganic phosphor having a variation coefficient of particle size distribution of particles having an average particle diameter of 0.1 to 1.0 μm of 50% or less is preferable, and an inorganic phosphor having a variation coefficient of 30% or less is more preferable. Here, the coefficient of variation of particle size distribution (width of particle distribution) is a value defined by the following equation.

【0044】粒径分布の変動係数(%)=(粒径の標準
偏差/平均粒径)×100
Coefficient of variation of particle size distribution (%) = (standard deviation of particle size / average particle size) × 100

【0045】[0045]

【実施例】以下に、実施例を挙げて具体的に説明する
が、本発明の実施態様はこれらに限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the embodiments of the present invention are not limited thereto.

【0046】実施例1 「無機蛍光体(GL−14−1)」の製造(組成式:Z
2SiO4:Mn2+) 下記の反応晶析法にて無機蛍光体前駆体を製造した。
Example 1 Production of "inorganic phosphor (GL-14-1)" (compositional formula: Z
n 2 SiO 4 : Mn 2+ ) An inorganic phosphor precursor was manufactured by the following reaction crystallization method.

【0047】ゼラチン45gとNa2SiO3の0.1m
olを水200mlに溶解し、その溶液を「A液」とし
た。
45 g of gelatin and 0.1 m of Na 2 SiO 3
was dissolved in 200 ml of water, and the solution was designated as "A solution".

【0048】ZnCl2の0.19molを水200m
lに60℃で溶解し、その溶液を「B液」とした。
0.19 mol of ZnCl 2 was added to 200 m of water.
It was dissolved in 1 at 60 ° C., and the solution was designated as “B solution”.

【0049】MnCl2・4H2Oの0.01molを水
50mlに溶解し、その溶液を「C液」とした。
0.01 mol of MnCl 2 .4H 2 O was dissolved in 50 ml of water, and the solution was designated as "C liquid".

【0050】「A液」を40℃に保ちながら、撹拌下、
「B液」、「C液」を同時に等速添加を行い、添加後、
40℃で2時間熟成させた。その後、析出した無機蛍光
体前駆体を濾過分取し、100℃で10時間乾燥し、
「無機蛍光体前駆体(GP−14−1)」を得た。
While maintaining the "liquid A" at 40 ° C., under stirring,
"B liquid" and "C liquid" are added at a constant rate at the same time, and after addition,
It was aged at 40 ° C. for 2 hours. Then, the deposited inorganic phosphor precursor is filtered and separated, and dried at 100 ° C. for 10 hours,
"Inorganic phosphor precursor (GP-14-1)" was obtained.

【0051】焼成工程では、焼成容器であるチタン酸ア
ルミナ製ボートに「無機蛍光体前駆体(GP−14−
1)」を充填し、大気中、昇温速度を8℃/分で700
℃まで加熱し、その後、昇温速度を4℃/分に変えて1
000℃まで加熱し、同温度で3時間の焼成処理を施し
た。焼成後、冷却工程で冷却速度を4℃/分で200℃
まで冷却した後、焼成物を取り出し、組成式:Zn1.9
SiO4:Mn2+ 0.1の「無機蛍光体(GL−14−
1)」を得た。得られた「無機蛍光体(GL−14−
1)」は、極大励起波長235nm、極大発光波長52
4nmであった。
In the firing step, an inorganic titanate precursor (GP-14-GP-14-
1) ”, and the temperature rise rate in the atmosphere is 700 at a rate of 8 ° C./min.
After heating to ℃, change the heating rate to 4 ℃ / min
It was heated up to 000 ° C. and subjected to a firing treatment at the same temperature for 3 hours. After firing, the cooling rate is 200 ° C at 4 ° C / min in the cooling process.
After cooling to room temperature, the fired product is taken out and the composition formula: Zn 1.9
SiO 4 : Mn 2+ 0.1 "inorganic phosphor (GL-14-
1) ”was obtained. The obtained "inorganic phosphor (GL-14-
1) ”means a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 52
It was 4 nm.

【0052】次に、得られた「無機蛍光体(GL−14
−1)」の発光強度の測定、平均粒径及び粒径分布の変
動係数の算出を行った。
Next, the obtained "inorganic phosphor (GL-14
−1) ”was measured, and the variation coefficient of the average particle size and the particle size distribution was calculated.

【0053】発光強度測定は励起源として235nmの
紫外線を照射し、524nmの発光強度を測定した。
The emission intensity was measured by irradiating ultraviolet rays of 235 nm as an excitation source and measuring the emission intensity of 524 nm.

【0054】平均粒径及び粒径分布の変動係数は、走査
型電子顕微鏡「SEM」を用いて、任意の100個の蛍
光体粒子について測定した結果から算出した。
The average particle size and the coefficient of variation of the particle size distribution were calculated from the results of measurement for 100 arbitrary phosphor particles using a scanning electron microscope "SEM".

【0055】得られた結果を表1に示す。 実施例2 「無機蛍光体(GL−14−2)」の製造(組成式:Z
2SiO4:Mn2+)実施例1に記載の「無機蛍光体
(GL−14−1)」の製造において、「無機蛍光体前
駆体(GP−14−1)」の焼成工程で、昇温速度を4
℃/分で1000℃まで加熱し、同温度で3時間の焼成
処理を施した。焼成後、冷却工程で、冷却速度を8℃/
分で500℃まで冷却し、その後、冷却速度を4℃/分
に変えて200℃まで冷却した以外は、実施例1と同様
にして、「無機蛍光体(GL−14−2)」を得た。得
られた「無機蛍光体(GL−14−2)」は、極大励起
波長235nm、極大発光波長524nmであった。
The results obtained are shown in Table 1. Example 2 Production of “inorganic phosphor (GL-14-2)” (compositional formula: Z
n 2 SiO 4 : Mn 2+ ) In the production of “inorganic phosphor (GL-14-1)” described in Example 1, in the firing step of “inorganic phosphor precursor (GP-14-1)”, Heating rate 4
It was heated to 1000 ° C. at a rate of ° C./minute and calcined at the same temperature for 3 hours. After firing, in the cooling step, the cooling rate was 8 ° C /
In minutes, and then cooled to 200 ° C. by changing the cooling rate to 4 ° C./minute, and in the same manner as in Example 1, “inorganic phosphor (GL-14-2)” was obtained. It was The obtained "inorganic phosphor (GL-14-2)" had a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 524 nm.

【0056】実施例1と同様に、得られた「無機蛍光体
(GL−14−2)」の発光強度の測定、平均粒径及び
粒径分布の変動係数の算出を行った。得られた結果を表
1に示す。
In the same manner as in Example 1, the emission intensity of the obtained "inorganic phosphor (GL-14-2)" was measured, and the average particle size and the coefficient of variation of the particle size distribution were calculated. The results obtained are shown in Table 1.

【0057】実施例3 「無機蛍光体(GL−14−3)」の製造(組成式:Z
2SiO4:Mn2+)実施例1に記載の「無機蛍光体
(GL−14−1)」の製造において、「無機蛍光体前
駆体(GP−14−1)」の焼成工程で、昇温速度を8
℃/分で700℃まで加熱し、その後、昇温速度を4℃
/分に変えて1000℃まで加熱し、同温度で3時間の
焼成処理を施し、焼成後、冷却工程で、冷却速度を8℃
/分で500℃まで冷却し、その後、冷却速度を4℃/
分に変えて200℃まで冷却した以外は、実施例1と同
様にして、「無機蛍光体(GL−14−3)」を得た。
得られた「無機蛍光体(GL−14−3)」は、極大励
起波長235nm、極大発光波長524nmであった。
Example 3 Production of "inorganic phosphor (GL-14-3)" (compositional formula: Z
n 2 SiO 4 : Mn 2+ ) In the production of “inorganic phosphor (GL-14-1)” described in Example 1, in the firing step of “inorganic phosphor precursor (GP-14-1)”, Temperature rising rate is 8
Heat up to 700 ℃ at ℃ / minute, then increase the temperature by 4 ℃
/ Min, heated to 1000 ° C, subjected to calcination treatment at the same temperature for 3 hours, and after calcination, cooling rate is 8 ° C in the cooling step.
At a cooling rate of 4 ° C / min.
"Inorganic phosphor (GL-14-3)" was obtained in the same manner as in Example 1 except that the temperature was changed to minutes and the temperature was cooled to 200 ° C.
The obtained "inorganic phosphor (GL-14-3)" had a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 524 nm.

【0058】実施例1と同様に、得られた「無機蛍光体
(GL−14−3)」の発光強度の測定、平均粒径及び
粒径分布の変動係数の算出を行った。得られた結果を表
1に示す。
In the same manner as in Example 1, the emission intensity of the obtained "inorganic phosphor (GL-14-3)" was measured, and the average particle size and the coefficient of variation of the particle size distribution were calculated. The results obtained are shown in Table 1.

【0059】実施例4 「無機蛍光体(GL−14−4)」の製造(組成式:Z
2SiO4:Mn2+)実施例1に記載の「無機蛍光体
(GL−14−1)」の製造において、「無機蛍光体前
駆体(GP−14−1)」の焼成工程で、昇温速度を1
0℃/分で800℃まで加熱し、その後、昇温速度を4
℃/分に変えて1000℃まで加熱し、同温度で3時間
の焼成処理を施し、焼成後、冷却工程で、冷却速度を1
0℃/分で400℃まで冷却し、その後、冷却速度を4
℃/分に変えて200℃まで冷却した以外は、実施例1
と同様にして、「無機蛍光体(GL−14−4)」を得
た。得られた「無機蛍光体(GL−14−4)」は、極
大励起波長235nm、極大発光波長524nmであっ
た。
Example 4 Production of "inorganic phosphor (GL-14-4)" (compositional formula: Z
n 2 SiO 4 : Mn 2+ ) In the production of “inorganic phosphor (GL-14-1)” described in Example 1, in the firing step of “inorganic phosphor precursor (GP-14-1)”, Heating rate is 1
Heat at 0 ° C / min to 800 ° C, then increase the heating rate to 4
The temperature is changed to ℃ / min and heated up to 1000 ℃, calcination is performed for 3 hours at the same temperature, and after calcination, the cooling rate is 1 in the cooling step.
Cool to 400 ° C at 0 ° C / min, then cool at 4
Example 1 except that the temperature was changed to ° C / min and the temperature was cooled to 200 ° C.
In the same manner as in, "Inorganic phosphor (GL-14-4)" was obtained. The obtained "inorganic phosphor (GL-14-4)" had a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 524 nm.

【0060】実施例1と同様に、得られた「無機蛍光体
(GL−14−4)」の発光強度の測定、平均粒径及び
粒径分布の変動係数の算出を行った。得られた結果を表
1に示す。
In the same manner as in Example 1, the emission intensity of the obtained "inorganic phosphor (GL-14-4)" was measured, and the average particle size and the coefficient of variation of the particle size distribution were calculated. The results obtained are shown in Table 1.

【0061】実施例5 「無機蛍光体(GL−14−5)の製造」(組成式:Z
2SiO4:Mn2+)実施例1に記載の「無機蛍光体
(GL−14−1)」の製造において、「無機蛍光体前
駆体(GP−14−1)」の焼成工程で、昇温速度を4
℃/分で1000℃まで加熱し、同温度で3時間の焼成
処理を施し、焼成後、冷却工程で、冷却速度を4℃/分
で200℃まで冷却した以外は、実施例1と同様にし
て、「無機蛍光体(GL−14−5)」を得た。得られ
た「無機蛍光体(GL−14−5)」は、極大励起波長
235nm、極大発光波長524nmであった。
Example 5 "Production of Inorganic Phosphor (GL-14-5)" (Compositional Formula: Z
n 2 SiO 4 : Mn 2+ ) In the production of “inorganic phosphor (GL-14-1)” described in Example 1, in the firing step of “inorganic phosphor precursor (GP-14-1)”, Heating rate 4
The same procedure as in Example 1 was performed except that the temperature was heated to 1000 ° C at a rate of 3 ° C / minute, the baking was performed at the same temperature for 3 hours, and after the baking, the cooling rate was 4 ° C / minute to 200 ° C in the cooling step. Thus, "inorganic phosphor (GL-14-5)" was obtained. The obtained "inorganic phosphor (GL-14-5)" had a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 524 nm.

【0062】実施例1と同様に、得られた「無機蛍光体
(GL−14−5)」の発光強度の測定、平均粒径及び
粒径分布の変動係数の算出を行った。得られた結果を表
1に示す。
In the same manner as in Example 1, the emission intensity of the obtained "inorganic phosphor (GL-14-5)" was measured, and the average particle size and the coefficient of variation of the particle size distribution were calculated. The results obtained are shown in Table 1.

【0063】実施例6 「無機蛍光体(GL−14−6)」の製造(組成式:Z
2SiO4:Mn2+)実施例1に記載の「無機蛍光体
(GL−14−1)」の製造において、「無機蛍光体前
駆体(GP−14−1)」の焼成工程で、昇温速度を8
℃/分で1000℃まで加熱し、同温度で3時間の焼成
処理を施し、焼成後、冷却工程で、冷却速度を8℃/分
で200℃まで冷却した以外は、実施例1と同様にし
て、「無機蛍光体(GL−14−6)」を得た。得られ
た「無機蛍光体(GL−14−6)」は、極大励起波長
235nm、極大発光波長524nmであった。
Example 6 Production of "inorganic phosphor (GL-14-6)" (compositional formula: Z
n 2 SiO 4 : Mn 2+ ) In the production of “inorganic phosphor (GL-14-1)” described in Example 1, in the firing step of “inorganic phosphor precursor (GP-14-1)”, Temperature rising rate is 8
The same procedure as in Example 1 was repeated except that heating was performed at 1000 ° C./minute to 1000 ° C., baking treatment was performed at the same temperature for 3 hours, and after baking, the cooling rate was 8 ° C./minute to 200 ° C. in the cooling step. Thus, "inorganic phosphor (GL-14-6)" was obtained. The obtained "inorganic phosphor (GL-14-6)" had a maximum excitation wavelength of 235 nm and a maximum emission wavelength of 524 nm.

【0064】実施例1と同様に、得られた「無機蛍光体
(GL−14−6)」の発光強度の測定、平均粒径及び
粒径分布の変動係数の算出を行った。得られた結果を表
1に示す。
In the same manner as in Example 1, the emission intensity of the obtained "inorganic phosphor (GL-14-6)" was measured, and the average particle size and the coefficient of variation of particle size distribution were calculated. The results obtained are shown in Table 1.

【0065】[0065]

【表1】 [Table 1]

【0066】表1から明らかなように、本発明の昇温パ
ターン及び/又は降温パターンを用いて製造した無機蛍
光体は発光強度が高く、小粒径で、粒径分布も狭い範囲
に制御できていることがわかる。
As is clear from Table 1, the inorganic phosphor manufactured by using the temperature rising pattern and / or the temperature falling pattern of the present invention has high emission intensity, a small particle size, and a narrow particle size distribution can be controlled. You can see that

【0067】[0067]

【発明の効果】実施例で実証した如く、本発明の無機蛍
光体の製造方法及び該製造方法により得られた無機蛍光
体は、発光特性、粒子サイズ及び粒子サイズ分布の制御
性に優れた効果を有する。
INDUSTRIAL APPLICABILITY As demonstrated in the examples, the method for producing an inorganic phosphor of the present invention and the inorganic phosphor obtained by the production method are excellent in light emission characteristics, particle size and controllability of particle size distribution. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る焼成工程の昇温パターンの態様を
いくつか示した図である。
FIG. 1 is a diagram showing some aspects of a heating pattern of a firing step according to the present invention.

【図2】本発明に係る冷却工程の降温パターンの態様を
いくつか示した図である。
FIG. 2 is a diagram showing some aspects of the cooling pattern of the cooling step according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 尚大 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 星野 秀樹 東京都日野市さくら町1番地コニカ株式会 社内 Fターム(参考) 4H001 CA01 CF02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naohiro Okada             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house (72) Inventor Hideki Hoshino             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house F-term (reference) 4H001 CA01 CF02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 昇温開始温度t0から任意の温度t1まで
の平均昇温速度U0が、任意の温度t1から昇温終了時の
温度T1までの平均昇温速度Utよりも速くなるように昇
温する焼成工程を有することを特徴とする無機蛍光体の
製造方法。
1. A mean heating rate U 0 from temperature increase start temperature t 0 to an arbitrary temperature t 1 is than the average heating rate U t from any temperature t 1 to a temperature T 1 of the at the end heating A method for producing an inorganic phosphor, comprising a firing step of raising the temperature so as to be faster.
【請求項2】 昇温速度の温度に対する変化を示す曲線
が、n(nは1以上の自然数を表す。)の屈曲点又は屈
折点を有することを特徴とする請求項1に記載の無機蛍
光体の製造方法。
2. The inorganic fluorescence according to claim 1, wherein the curve showing the change of the temperature rising rate with respect to temperature has n (n is a natural number of 1 or more) inflection point or inflection point. Body manufacturing method.
【請求項3】 昇温開始温度t0から任意の温度t1まで
の平均昇温速度U0又は任意の温度t1から昇温終了時の
温度T1までの平均昇温速度Utを一定速度に維持する
か、もしくは温度に対して連続的、又は断続的に変化さ
せることを特徴とする請求項1又は2に記載の無機蛍光
体の製造方法。
Wherein an average heating rate U t from the mean heating rate U 0 or any temperature t 1 from temperature increase start temperature t 0 to an arbitrary temperature t 1 to a temperature T 1 of the at the end of heating constant The method for producing an inorganic phosphor according to claim 1 or 2, wherein the method is maintained at a speed or is continuously or intermittently changed with respect to temperature.
【請求項4】 降温開始温度T2から任意の温度t2まで
の平均降温速度D0が、任意の温度t2から降温終了時の
温度t3までの平均降温速度D1よりも速くなるように降
温する冷却工程を有することを特徴とする無機蛍光体の
製造方法。
4. The average cooling rate D 0 from the cooling start temperature T 2 to an arbitrary temperature t 2 is faster than the average cooling rate D 1 from the arbitrary temperature t 2 to the temperature t 3 at the end of cooling. A method for producing an inorganic phosphor, which comprises a cooling step of lowering the temperature.
【請求項5】 降温速度の温度に対する変化を示す曲線
が、n(nは1以上の自然数を表す。)の屈曲点又は屈
折点を有することを特徴とする請求項4に記載の無機蛍
光体の製造方法。
5. The inorganic phosphor according to claim 4, wherein the curve showing the change of the temperature decreasing rate with respect to temperature has n (n is a natural number of 1 or more) inflection point or inflection point. Manufacturing method.
【請求項6】 降温開始温度T2から任意の温度t2まで
の平均降温速度D0又は任意の温度t2から降温終了時の
温度t3までの平均降温速度D1を一定速度に維持する
か、もしくは温度に対して連続的、又は断続的に変化さ
せることを特徴とする請求項4又は5に記載の無機蛍光
体の製造方法。
6. The average temperature decrease rate D 0 from the temperature decrease start temperature T 2 to an arbitrary temperature t 2 or the average temperature decrease rate D 1 from the arbitrary temperature t 2 to the temperature t 3 at the end of the temperature decrease is maintained at a constant speed. Alternatively, the method for producing an inorganic phosphor according to claim 4 or 5, wherein the temperature is changed continuously or intermittently with respect to temperature.
【請求項7】 請求項1〜3のいずれか1項の無機蛍光
体の製造方法及び請求項4〜6のいずれか1項の無機蛍
光体の製造方法を併用することを特徴とする無機蛍光体
の製造方法。
7. An inorganic fluorescent material, characterized in that the method for producing an inorganic fluorescent material according to any one of claims 1 to 3 and the method for producing an inorganic fluorescent material according to any one of claims 4 to 6 are used in combination. Body manufacturing method.
【請求項8】 請求項1〜7のいずれか1項に記載の無
機蛍光体の製造方法により製造されたことを特徴とする
無機蛍光体。
8. An inorganic phosphor manufactured by the method for manufacturing an inorganic phosphor according to any one of claims 1 to 7.
JP2002153903A 2002-05-28 2002-05-28 Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby Pending JP2003342562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153903A JP2003342562A (en) 2002-05-28 2002-05-28 Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153903A JP2003342562A (en) 2002-05-28 2002-05-28 Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby

Publications (1)

Publication Number Publication Date
JP2003342562A true JP2003342562A (en) 2003-12-03

Family

ID=29770825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153903A Pending JP2003342562A (en) 2002-05-28 2002-05-28 Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby

Country Status (1)

Country Link
JP (1) JP2003342562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197412A (en) * 2011-03-09 2012-10-18 Toshiba Corp Phosphor, and light emitting device using the same
JP2013227587A (en) * 2011-03-09 2013-11-07 Toshiba Corp Phosphor and light-emitting device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197412A (en) * 2011-03-09 2012-10-18 Toshiba Corp Phosphor, and light emitting device using the same
JP2013227587A (en) * 2011-03-09 2013-11-07 Toshiba Corp Phosphor and light-emitting device using the same

Similar Documents

Publication Publication Date Title
US6576156B1 (en) Phosphors with nanoscale grain sizes and methods for preparing the same
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
JP2004018709A (en) Apparatus and method for producing phosphor precursor
JP2010520325A (en) Method for producing green luminescent borate phosphor
JP2003342562A (en) Method for producing inorganic fluorescent material and inorganic fluorescent material produced thereby
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
JP2003342563A (en) Inorganic fluorescent material, inorganic fluorescent material paste and method for producing inorganic fluorescent material
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
JPWO2007040063A1 (en) Nano-sized phosphor
JP2007314709A (en) Metal oxide phosphor, its manufacturing method, and scintillator plate for radiation obtained using the same
JP2003336051A (en) Inorganic phosphor and method for producing the same
JP2004018679A (en) Phosphor particle and its manufacturing method
US20030178603A1 (en) Production method of phosphor and phosphor
JP3915482B2 (en) Method for producing inorganic phosphor
JP2003213254A (en) Method for producing silicate phosphor
JP2008101225A (en) Method for producing phosphor
JP2004051737A (en) Apparatus for producing inorganic phosphor and method for producing inorganic phosphor
JP2004018545A (en) Phosphor
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JP2003160782A (en) Calcining apparatus for production of inorganic phosphor, calcining vessel for production of inorganic phosphor, method for production of inorganic phosphor, and inorganic phosphor
JP2004018768A (en) Method for producing fluorescent substance and apparatus for forming fluorescent substance precursor
JP3360901B2 (en) Phosphors and fluorescent lamps
JP2008101224A (en) Method for producing phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Effective date: 20070918

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205