JP2003342100A - Method and apparatus for controlling crystal orientation of material by applying magnetic field thereto - Google Patents

Method and apparatus for controlling crystal orientation of material by applying magnetic field thereto

Info

Publication number
JP2003342100A
JP2003342100A JP2002149808A JP2002149808A JP2003342100A JP 2003342100 A JP2003342100 A JP 2003342100A JP 2002149808 A JP2002149808 A JP 2002149808A JP 2002149808 A JP2002149808 A JP 2002149808A JP 2003342100 A JP2003342100 A JP 2003342100A
Authority
JP
Japan
Prior art keywords
crystal orientation
magnetic field
solid
controlling
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002149808A
Other languages
Japanese (ja)
Other versions
JP3915093B2 (en
Inventor
Shigeo Asai
滋生 浅井
Kensuke Sasa
健介 佐々
Tasuku Sugiyama
翼 杉山
Masahiro Tahashi
正浩 田橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002149808A priority Critical patent/JP3915093B2/en
Publication of JP2003342100A publication Critical patent/JP2003342100A/en
Application granted granted Critical
Publication of JP3915093B2 publication Critical patent/JP3915093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the crystal orientation of a material to improve, especially, its properties. <P>SOLUTION: The crystal orientation of the material is controlled either by re-heating the material to the solid-liquid coexistence temperature under an applied strong magnetic field or by agitating it in the solid-liquid coexistence temperature region during the course of coagulation under an applied strong magnetic field to thereby separate the crystal grains from each other so as to bring them into a state in which the individual crystal grains can float and freely rotate in the melt and can face the direction in which the magnetization energy is minimized. This method does not necessitate the pretreatment, such as quenching or rolling, of a material and can be applied to nonmagnetic metals, ceramics, and organic matter as well as ferromagnetic materials. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属、セラミック
スあるいは有機材料の結晶方位制御に関し、特に結晶磁
気異方性を有するこれらの材料を、磁場中で、(a)固
液共存温度に加熱するか、または(b)溶融状態から凝
固させる際に固液共存温度領域で攪拌することにより、
材料を構成する結晶の磁化容易軸を印加磁場方向に揃え
るようにした結晶方位制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of crystal orientation of metals, ceramics or organic materials, and particularly to heating these materials having crystal magnetic anisotropy to (a) solid-liquid coexisting temperature in a magnetic field. Or (b) by stirring in the solid-liquid coexistence temperature range when solidifying from the molten state,
The present invention relates to a crystal orientation control method and device in which the easy axis of magnetization of crystals constituting a material is aligned with the direction of an applied magnetic field.

【0002】[0002]

【従来の技術】材料の諸性質はその結晶方位に強く依存
しており、結晶方位を制御することで材料の特性を大き
く改善することが可能である。従来、磁場を用いた結晶
方位制御方法として、例えば特開平8−323141号
公報に記載されているように、一方向性電磁鋼板を磁場
中で再加熱処理を行って、結晶配向性の高い組織を得る
方法が提案されている。しかし、この方法は、再加熱温
度が固液共存温度以下であり、固相反応を用いるもので
あるため、長時間の処理が必要である。
2. Description of the Related Art Various properties of a material strongly depend on its crystal orientation, and it is possible to greatly improve the characteristics of the material by controlling the crystal orientation. Conventionally, as a crystal orientation control method using a magnetic field, as described in, for example, Japanese Patent Laid-Open No. 8-323141, a unidirectional electrical steel sheet is reheated in a magnetic field to have a structure with high crystal orientation. Have been proposed. However, in this method, the reheating temperature is not higher than the solid-liquid coexisting temperature and the solid-phase reaction is used, so that long-time treatment is required.

【0003】また、磁場を用いた配向方法としては、
(1)雑誌「金属」VOL.71(2001)に記載さ
れている「双極子相互作用による鉄鋼材料の組織制御」
にあるように、鉄鋼材料の相変態時に磁場を印加して、
配向組織を得る方法が提案されているが、この方法は、
前処理として急冷または圧延を行わなければならず、磁
場印加による凝固組織の配向は得られているが、結晶配
向は得られていない。
Further, as an alignment method using a magnetic field,
(1) Magazine "Metal" VOL. 71 (2001), "Microstructure control of steel materials by dipole interaction".
As shown in, by applying a magnetic field during the phase transformation of steel materials,
Although a method for obtaining an oriented structure has been proposed, this method is
Quenching or rolling must be performed as a pretreatment, and the orientation of the solidified structure by applying a magnetic field has been obtained, but the crystal orientation has not been obtained.

【0004】また、(2)日本学術振興会製鋼第19委
員会、凝固プロセス研究会提出資料:19委11876
−凝固プロセス75(2000)に報告されている「凝
固現象を利用した磁場配向組織形成プロセスの検討」と
いう研究報告では、二元系金属を磁場中で固液共存温度
に再加熱して金属間化合物の結晶方位を揃えることが提
案されているが、この方法は前処理として急冷を行わな
ければならず、また処理対象材料の磁性が強磁性に限定
されており、常磁性または反磁性を示す材料は対象とさ
れていない。
(2) Material submitted by Japan Society for the Promotion of Science, Steelmaking 19th Committee, Solidification Process Study Group: 19 Committee 11876
-In the research report "Study of magnetic field oriented texture formation process utilizing solidification phenomenon" reported in Solidification Process 75 (2000), binary metal was reheated to solid-liquid coexistence temperature in magnetic field and Although it has been proposed to align the crystallographic orientations of the compounds, this method requires quenching as a pretreatment, and the magnetism of the material to be treated is limited to ferromagnetism, and it exhibits paramagnetism or diamagnetism. Material not targeted.

【0005】さらに、(3)Journal of C
rystal Growth,52(1981)に記載
されている「Control of Crystall
ization Processes by Mean
s of MagneticField」の研究報告で
は、二元系合金に磁場を印加して配向組織を得る方法が
提案されているが、昇温する温度は固液共存温度以上で
なければならず、また凝固組織の配向を指向していて結
晶配向を目的としておらず、さらに組織配向の定量的評
価方法が記載されていないなど不明な点が多い。
Furthermore, (3) Journal of C
“Control of Crystal” described in “Rystal Growth”, 52 (1981).
ization Processes by Mean
In the research report of "s of Magnetic Field", a method of applying a magnetic field to a binary alloy to obtain an oriented structure is proposed, but the temperature to be raised must be a solid-liquid coexisting temperature or higher, and However, there are many unclear points, such as not aiming at the crystal orientation and not quantitatively evaluating the texture orientation.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、上
記従来技術における問題点を克服した、材料の結晶方位
制御方法及び装置を提供し、材料特性を向上させること
を目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method and apparatus for controlling the crystal orientation of a material, which overcomes the problems of the prior art described above, and to improve the material properties.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、磁場中で、結晶磁気異方性を有する材料
を固液共存温度に再加熱することにより、または、該材
料を溶融状態から凝固させる際、磁場を印加しながら固
液共存温度領域で撹拌することにより、材料の結晶を磁
化容易軸に揃える結晶方位の制御方法を提供するもので
ある。
In order to achieve the above object, the present invention provides a method of reheating a material having crystal magnetic anisotropy to a solid-liquid coexisting temperature in a magnetic field, or It is intended to provide a method for controlling a crystal orientation in which a crystal of a material is aligned with an easy axis of magnetization by stirring in a solid-liquid coexisting temperature region while applying a magnetic field when solidifying from a molten state.

【0008】結晶磁気異方性を有する材料に磁場を印加
すると、印加磁場方向にその磁化容易軸を揃えようとす
る磁化力が働く。しかし、材料が完全に固相状態にある
と回転は不可能である。そこで、材料を固液共存温度に
再加熱することにより、または、凝固過程において固液
共存温度領域で撹拌することにより、材料の各結晶が融
液中で自由に回転できる状況を作り出すことで、磁化力
による材料の結晶方位制御が可能となる。
When a magnetic field is applied to a material having crystalline magnetic anisotropy, a magnetic force acts to align the easy axis of magnetization in the direction of the applied magnetic field. However, rotation is not possible if the material is completely in the solid state. Therefore, by reheating the material to the solid-liquid coexistence temperature, or by stirring in the solid-liquid coexistence temperature region in the solidification process, to create a situation in which each crystal of the material can freely rotate in the melt, The crystal orientation of the material can be controlled by the magnetizing force.

【0009】なお、材料が結晶磁気異方性を有していれ
ば金属であることは必ずしも必要とせず、同様の原理が
セラミックスあるいは有機材料にも適用可能である。ま
た、本発明においては材料が金属である場合、上記従来
の技術(1)、(2)にあるような急冷または圧延等の
前処理を必要としないことを特徴とする。さらに、材料
の磁性が強磁性のみならず常磁性または反磁性の材料に
も適用できることが大きな特徴である。
If the material has crystal magnetic anisotropy, it does not necessarily have to be a metal, and the same principle can be applied to ceramics or organic materials. Further, the present invention is characterized in that when the material is a metal, pretreatment such as quenching or rolling as in the above-mentioned conventional techniques (1) and (2) is not required. Further, it is a great feature that the magnetism of the material can be applied not only to ferromagnetic but also to paramagnetic or diamagnetic material.

【0010】さらに、単元および多元系材料の両者のい
ずれにおいても適用可能である。また、本発明において
は、磁場中でバルク材を固液共存温度に再加熱、また
は、凝固過程において磁場を印加しながら固液共存温度
領域で撹拌することによりバルク材全体の結晶方位をも
制御することができる。また、溶融めっきの金属被膜を
磁場中で固液共存温度に再加熱することによりその結晶
方位を制御することができる。
Further, it is applicable to both unitary and multi-component materials. Further, in the present invention, the bulk material is also reheated to a solid-liquid coexistence temperature in a magnetic field, or stirred in the solid-liquid coexistence temperature region while applying a magnetic field in the solidification process to control the crystal orientation of the entire bulk material. can do. Further, the crystal orientation can be controlled by reheating the metal film of the hot dip coating to a solid-liquid coexisting temperature in a magnetic field.

【0011】本発明による材料の結晶方位の制御装置
は、超伝導磁石と、この超伝導磁石内に配設された加熱
炉とを少なくとも含み、請求項1〜10のいずれかに記
載の方法の実施することを特徴とする。材料特性は結晶
方位に依存するため、本発明による材料の結晶方位の制
御方法及び装置を用いれば、材料特性の向上につなが
る。
The apparatus for controlling the crystallographic orientation of a material according to the present invention includes at least a superconducting magnet and a heating furnace arranged in the superconducting magnet, and the method according to any one of claims 1 to 10. It is characterized by carrying out. Since the material properties depend on the crystal orientation, use of the method and apparatus for controlling the crystal orientation of the material according to the present invention leads to the improvement of the material properties.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面を参照しつつ詳細に説明する。まず、本発明の原
理について説明する。磁場中に物質を置くと物質は磁化
される。磁化された物質はその物質固有の値である磁化
率に比例した磁化エネルギーを持つ。物質が結晶磁気異
方性を有する場合、結晶方位によって磁化エネルギーが
異なる。物質が磁場中に置かれたとき、エネルギー的に
安定な結晶方位である磁化容易軸が存在する。金属であ
る亜鉛とビスマスを例に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will now be described in detail with reference to the drawings. First, the principle of the present invention will be described. Placing a substance in a magnetic field magnetizes it. A magnetized substance has a magnetization energy proportional to the magnetic susceptibility, which is a value peculiar to the substance. When the substance has crystal magnetic anisotropy, the magnetization energy varies depending on the crystal orientation. When a substance is placed in a magnetic field, there is an easy axis of magnetization, which is an energetically stable crystallographic orientation. A description will be given by taking the metals zinc and bismuth as an example.

【0013】図1は、亜鉛とビスマスの磁化率の結晶方
位依存性、及び本発明の方法による結晶配向を示す図で
あり、図1(a)は亜鉛、同(b)はビスマスの場合を
示している。磁化率がマイナスであることは、両物質が
反磁性体であることを示している。なお、以下におい
て、χに添え字a,b及びcを付し、それぞれa,b及
びc結晶軸方向の磁化率を示す。印加磁場方向(B)は
図において下から上向きである。図1(a)に示すよう
に、亜鉛の場合には、χa,b がχc に対してより小さい
ために、c軸が印加磁場方向を向くことによって、磁化
エネルギーが最小となる。図1(b)に示すように、ビ
スマスの場合には、χc がχa,b に対してより小さいた
めに、aまたはb軸が印加磁場方向(B)を向くことに
よって、磁化エネルギーが最小となる。この時、材料を
固液共存温度に再加熱することにより、または、凝固過
程において固液共存温度領域で撹拌することにより結晶
粒の分断を図り、個々の結晶粒が融液に浮遊して自由に
回転できる状態を生み出せば、結晶粒は磁化エネルギー
が最小となる方向に回転し、図1(a),(b)に示す
ように印加磁場方向(B)に特定の面が配向した材料を
形成することができる。以下、実施例により本発明をさ
らに詳細に説明する。
FIG. 1 is a diagram showing the crystal orientation dependence of the magnetic susceptibility of zinc and bismuth, and the crystal orientation by the method of the present invention. FIG. 1 (a) shows the case of zinc and FIG. 1 (b) shows the case of bismuth. Shows. The negative magnetic susceptibility indicates that both substances are diamagnetic materials. In the following, χ is attached with subscripts a, b and c to indicate the magnetic susceptibility in the crystal axis directions of a, b and c, respectively. The applied magnetic field direction (B) is from bottom to top in the figure. As shown in FIG. 1A, in the case of zinc, since χ a, b is smaller than χ c , the c-axis is oriented in the direction of the applied magnetic field, so that the magnetization energy is minimized. As shown in FIG. 1B, in the case of bismuth, since χ c is smaller than χ a, b , the a or b axis faces the applied magnetic field direction (B), so that the magnetization energy is It is the smallest. At this time, by reheating the material to the solid-liquid coexistence temperature or by stirring in the solid-liquid coexistence temperature region during the solidification process, the crystal grains are divided, and individual crystal grains float in the melt and are free. If a state capable of being rotated is generated, the crystal grains rotate in the direction in which the magnetization energy is minimized, and as shown in FIGS. 1 (a) and 1 (b), a material with a specific plane oriented in the applied magnetic field direction (B) is used. Can be formed. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0014】実施例1 本実施例で用いた実験装置の概要図を図2に示す。この
装置は、円筒形の超伝導磁石1(最大で12Tの磁束密
度を発生する)内に円筒形のウォータージャケット6を
介して配設された加熱炉2から基本的に構成されてい
る。加熱炉2は、アルミナ製坩堝2aに抵抗発熱線2b
を巻いて作った電気炉であり、抵抗発熱線2bには直流
電源7が接続されている。この加熱炉2を超伝導磁石1
の内部に固定する。なお、ウォータージャケット6には
水入口6aと水出口6bが設けられている。
Example 1 FIG. 2 shows a schematic diagram of the experimental apparatus used in this example. This apparatus is basically composed of a heating furnace 2 arranged in a cylindrical superconducting magnet 1 (which produces a magnetic flux density of 12T at maximum) via a cylindrical water jacket 6. The heating furnace 2 includes a crucible 2a made of alumina and a resistance heating wire 2b.
Is an electric furnace made by winding a wire, and a DC power supply 7 is connected to the resistance heating wire 2b. This heating furnace 2 is connected to the superconducting magnet 1
Fixed inside. The water jacket 6 is provided with a water inlet 6a and a water outlet 6b.

【0015】試料S1としてあらかじめ鉄基板(10×
30mm)上に単元系金属である亜鉛のめっきを施した
ものを試料ホルダー3に取り付け、加熱炉2内に配置し
た。なお、試料S1の亜鉛被膜の温度を検出するために
熱電対4を用いた。加熱炉2を用いて試料S1を亜鉛被
膜の固液共存温度の419℃に昇温し、超伝導磁石1を
用いて静磁場12Tを印加した。なお、この時、試料S
1の酸化を防止するために、加熱炉2内にはアルゴンガ
スが供給される。その後ただちに炉冷した。
As a sample S1, an iron substrate (10 ×
30 mm) plated with zinc, which is a unitary metal, was attached to the sample holder 3 and placed in the heating furnace 2. The thermocouple 4 was used to detect the temperature of the zinc coating of the sample S1. Sample S1 was heated to 419 ° C., which is the solid-liquid coexisting temperature of the zinc coating, using heating furnace 2, and a static magnetic field of 12 T was applied using superconducting magnet 1. At this time, sample S
In order to prevent the oxidation of No. 1, the heating furnace 2 is supplied with argon gas. The furnace was cooled immediately after that.

【0016】図3及び図4は、得られた試料のX線回折
による基板面に垂直方向の結晶配向を測定した結果を示
す図であり、図3は試料S1の鉄基板を印加磁場方向に
対し垂直に設置した場合、図4は平行に設置した場合の
結果をそれぞれ示している。なお、これらの図中におけ
る下側の測定結果は、比較のために測定した磁場無印加
の場合を示している。
3 and 4 are diagrams showing the results of measuring the crystal orientation of the obtained sample in the direction perpendicular to the substrate surface by X-ray diffraction. FIG. 3 shows the iron substrate of sample S1 in the direction of the applied magnetic field. On the other hand, when they are installed vertically, FIG. 4 shows the results when they are installed in parallel. Note that the measurement results on the lower side in these figures show the case where no magnetic field was measured, which was measured for comparison.

【0017】これらのグラフから明らかなように、試料
S1の鉄基板を印加磁場方向に対し垂直に設置した場合
は、図1(a)に示したように、亜鉛が磁場印加方向に
c軸配向したことを示す(002)面の回折ピークが増
加しており、平行に設置した場合は磁場印加方向にc軸
配向し、従って基板面に垂直な方向にはa軸、またはb
軸配向したことを示す(100)面の回折ピークが増加
している。すなわち、これらの結果から、磁場印加によ
って亜鉛の結晶方位が制御されていることが分かる。
As is clear from these graphs, when the iron substrate of the sample S1 is set perpendicularly to the applied magnetic field direction, zinc is c-axis oriented in the applied magnetic field direction as shown in FIG. 1 (a). The diffraction peak of the (002) plane indicating that the above was increased, and when they were installed in parallel, they were oriented along the c-axis in the direction of the magnetic field application, and thus the a-axis or the b in the direction perpendicular to the substrate surface.
The diffraction peak of the (100) plane showing the axial orientation is increased. That is, it can be seen from these results that the crystal orientation of zinc is controlled by applying a magnetic field.

【0018】実施例2 本実施例で用いた実験装置の概要図を図5に示す。図2
の装置の構成要素と同じ要素は同一符号を付してその説
明は省略する。試料S2として多元系金属であるBi5
mass%−Snを用い、試料S2を充填した坩堝5を
加熱炉2内に設置した。なお、試料S2の温度を検出す
るために熱電対4を用いた。
Example 2 FIG. 5 shows a schematic diagram of the experimental apparatus used in this example. Figure 2
The same elements as those of the apparatus of 1 are given the same reference numerals and the description thereof will be omitted. Bi5 which is a multi-component metal as sample S2
Mass% -Sn was used, and the crucible 5 filled with the sample S2 was placed in the heating furnace 2. The thermocouple 4 was used to detect the temperature of the sample S2.

【0019】加熱炉2を用いて試料S2を室温から30
0℃まで昇温したのち、固液共存領域である260℃か
ら255℃にわたって試料S2の融液を撹拌し、その
後、炉冷により室温まで冷却した。なお、溶融状態から
凝固終了まで静磁場12Tを印加した。
The sample S2 was heated from room temperature to 30 ° C by using the heating furnace 2.
After the temperature was raised to 0 ° C., the melt of Sample S2 was stirred from 260 ° C. to 255 ° C. in the solid-liquid coexistence region, and then cooled to room temperature by furnace cooling. A static magnetic field of 12 T was applied from the molten state to the end of solidification.

【0020】得られた試料S2を印加磁場方向に対して
垂直に切断し、その表面を研磨した後、X線回折により
表面に垂直方向の結晶配向を測定した。得られた試料の
X線回折の結果を図6に示す。
The obtained sample S2 was cut perpendicularly to the direction of the applied magnetic field, and after polishing the surface, the crystal orientation perpendicular to the surface was measured by X-ray diffraction. The result of X-ray diffraction of the obtained sample is shown in FIG.

【0021】この結果から明らかなように、図1(b)
に示したように、Bi5mass%−Snが磁場印加方
向にa,b軸配向したことを示す(110)面、(22
0)面の回折ピークが増加していることがわかる。それ
に伴いc面である(003)面、(006)面、(00
9)面の回折ピークは減少していることがわかる。すな
わち、磁場印加によってBi5mass%−Snの結晶
方位が制御されているのが分かる。
As is clear from this result, FIG.
As shown in, the (110) plane, (22) showing that Bi5mass% -Sn was a- and b-axis oriented in the magnetic field application direction.
It can be seen that the diffraction peak of the 0) plane is increasing. Accordingly, the (003) plane, the (006) plane, and the (00
It can be seen that the diffraction peak of the 9) plane has decreased. That is, it can be seen that the crystal orientation of Bi5mass% -Sn is controlled by applying the magnetic field.

【0022】なお、上記説明では、非磁性体についての
実施例を説明したが、ほとんど全ての物質は非磁性特性
を有しており、従って、金属、セラミック、あるいは有
機物であっても、本発明の方法、装置によって結晶方位
を制御した材料に変換することができるのは明らかであ
る。
In the above description, the examples of the non-magnetic material have been described, but almost all substances have non-magnetic characteristics, and therefore, even if they are metals, ceramics or organic substances, the present invention It is obvious that the method and apparatus of (1) can be used to convert the material into a material whose crystal orientation is controlled.

【0023】[0023]

【発明の効果】以上の説明から理解されるように、本発
明は結晶磁気異方性を有する材料を磁場中で固液共存温
度に再加熱することにより、または、融解状態から凝固
させる際に磁場を印加しながら固液共存温度領域で撹拌
することによって、印加磁場方向に磁化容易軸を揃える
ことができる。本発明では、急冷、圧延等の前処理を必
要とせず、また、強磁性体に限らず、反磁性体、常磁性
体の金属、セラミックス、有機物にも適用することがで
きる。これにより、様々な異方性材料の作製が可能にな
る。
As can be understood from the above description, the present invention can be achieved by reheating a material having crystal magnetic anisotropy to a solid-liquid coexisting temperature in a magnetic field or when solidifying from a molten state. By stirring in the solid-liquid coexistence temperature region while applying a magnetic field, the easy axis of magnetization can be aligned in the direction of the applied magnetic field. The present invention does not require pretreatment such as quenching and rolling, and can be applied not only to ferromagnetic materials but also to diamagnetic materials, paramagnetic metals, ceramics and organic materials. This enables the production of various anisotropic materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】亜鉛とビスマスの磁化率の結晶方位依存性、及
び本発明の方法による結晶配向を示す図であり、(a)
は亜鉛を、また(b)はビスマスの場合を示している。
FIG. 1 is a diagram showing the crystal orientation dependence of the magnetic susceptibility of zinc and bismuth and the crystal orientation by the method of the present invention, (a)
Shows zinc, and (b) shows bismuth.

【図2】実施例1における実験装置の概要図である。FIG. 2 is a schematic diagram of an experimental device in Example 1.

【図3】得られた試料のX線回折による基板面に垂直方
向の結晶配向を測定した結果を示す図であり、試料S1
の鉄基板を印加磁場方向に対し垂直に設置した場合を示
すものである。
FIG. 3 is a diagram showing a result of measuring a crystal orientation in a direction perpendicular to a substrate surface by X-ray diffraction of the obtained sample, which is a sample S1.
2 shows a case where the iron substrate of (1) is installed perpendicular to the direction of the applied magnetic field.

【図4】得られた試料のX線回折による基板面に垂直方
向の結晶配向を測定した結果を示す図であり、試料S1
の鉄基板を印加磁場方向に対し平行に設置した場合を示
すものである。
FIG. 4 is a diagram showing a result of measuring a crystal orientation in a direction perpendicular to a substrate surface by X-ray diffraction of the obtained sample, which is a sample S1.
2 shows a case where the iron substrate of 1 is installed parallel to the direction of the applied magnetic field.

【図5】実施例2における実験装置の概要図である。5 is a schematic diagram of an experimental device in Example 2. FIG.

【図6】得られた試料を印加磁場方向に対して垂直に切
断し、その表面を研磨した後、X線回折により表面に垂
直方向の結晶配向を測定した結果を示す図である。
FIG. 6 is a diagram showing the results of measuring the crystal orientation in the direction perpendicular to the surface by X-ray diffraction after the obtained sample was cut perpendicular to the direction of the applied magnetic field and the surface was polished.

【符号の説明】[Explanation of symbols]

1 超伝導磁石 2 加熱炉 2a アルミナ製坩堝 2b 抵抗発熱線 3 試料ホルダー 4 熱伝対 5 坩堝 6 ウォータージャケット 7 直流電源 1 Superconducting magnet 2 heating furnace 2a Alumina crucible 2b Resistance heating wire 3 sample holder 4 thermocouple 5 crucible 6 water jacket 7 DC power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 13/02 C22C 13/02 (72)発明者 田橋 正浩 愛知県名古屋市瑞穂区軍水町1−5−1 Fターム(参考) 4G077 AA02 AA03 BA01 BA07 CD08 EA02 EJ02 HA20 4K027 AA05 AA22 AB42 AC72 AD29 AE21 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C22C 13/02 C22C 13/02 (72) Inventor Masahiro Tabashi 1-Misuicho, Mizuho-ku, Nagoya-shi, Aichi 5-1 F term (reference) 4G077 AA02 AA03 BA01 BA07 CD08 EA02 EJ02 HA20 4K027 AA05 AA22 AB42 AC72 AD29 AE21

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 結晶磁気異方性を有する材料を磁場中で
固液共存温度に再加熱することにより、該材料の結晶方
位を制御することを特徴とする、磁場印加による材料の
結晶方位制御方法。
1. A crystal orientation control of a material by applying a magnetic field, which comprises controlling a crystal orientation of the material having a crystal magnetic anisotropy by reheating to a solid-liquid coexisting temperature in a magnetic field. Method.
【請求項2】 結晶磁気異方性を有する材料を溶融状態
から凝固させる際、磁場を印加しながら固液共存温度領
域で撹拌することにより、該材料の結晶方位を制御する
ことを特徴とする、磁場印加による材料の結晶方位制御
方法。
2. When the material having crystalline magnetic anisotropy is solidified from a molten state, the crystal orientation of the material is controlled by stirring in a solid-liquid coexisting temperature region while applying a magnetic field. , Method of controlling crystal orientation of material by applying magnetic field.
【請求項3】 前記材料の急冷または圧延等の前処理を
必要としないことを特徴とする、請求項1に記載の材料
の結晶方位制御方法。
3. The crystal orientation control method for a material according to claim 1, wherein a pretreatment such as quenching or rolling of the material is not required.
【請求項4】 前記材料が単元系または多元系材料であ
ることを特徴とする、請求項1または2に記載の材料の
結晶方位制御方法。
4. The method for controlling crystal orientation of a material according to claim 1, wherein the material is a unitary material or a multi-elemental material.
【請求項5】 前記材料の磁性が強磁性、常磁性または
反磁性のいずれかであることを特徴とする、請求項1ま
たは2に記載の材料の結晶方位制御方法。
5. The crystal orientation control method for a material according to claim 1, wherein the magnetism of the material is any of ferromagnetism, paramagnetism and diamagnetism.
【請求項6】 前記材料が金属であることを特徴とす
る、請求項1〜5のいずれかに記載の材料の結晶方位制
御方法。
6. The crystal orientation control method for a material according to claim 1, wherein the material is a metal.
【請求項7】 前記材料がセラミックスもしくは結晶組
織を有する有機物質であることを特徴とする、請求項1
〜5のいずれかに記載の材料の結晶方位制御方法。
7. The material according to claim 1, wherein the material is ceramics or an organic substance having a crystalline structure.
6. A method for controlling a crystal orientation of the material according to any one of 5 to 5.
【請求項8】 前記材料がバルク材であることを特徴と
する、請求項1〜7のいずれかに記載の材料の結晶方位
制御方法。
8. The crystal orientation control method for a material according to claim 1, wherein the material is a bulk material.
【請求項9】 前記材料が溶融めっきの金属被膜である
ことを特徴とする、請求項1、3〜6のいずれかに記載
の材料の結晶方位制御方法。
9. The method for controlling the crystal orientation of a material according to claim 1, wherein the material is a metal film formed by hot dip plating.
【請求項10】 超伝導磁石と、該超伝導磁石内に配設
された加熱炉とを少なくとも含み、請求項1〜9のいず
れかに記載の方法の実施することを特徴とする、材料の
結晶方位を制御する装置。
10. A material comprising at least a superconducting magnet and a heating furnace arranged in the superconducting magnet, characterized in that the method according to claim 1 is carried out. A device that controls the crystal orientation.
JP2002149808A 2002-05-23 2002-05-23 Method and apparatus for controlling crystal orientation of metal coating of hot-dip plating by applying magnetic field Expired - Fee Related JP3915093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149808A JP3915093B2 (en) 2002-05-23 2002-05-23 Method and apparatus for controlling crystal orientation of metal coating of hot-dip plating by applying magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149808A JP3915093B2 (en) 2002-05-23 2002-05-23 Method and apparatus for controlling crystal orientation of metal coating of hot-dip plating by applying magnetic field

Publications (2)

Publication Number Publication Date
JP2003342100A true JP2003342100A (en) 2003-12-03
JP3915093B2 JP3915093B2 (en) 2007-05-16

Family

ID=29767855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149808A Expired - Fee Related JP3915093B2 (en) 2002-05-23 2002-05-23 Method and apparatus for controlling crystal orientation of metal coating of hot-dip plating by applying magnetic field

Country Status (1)

Country Link
JP (1) JP3915093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482042B2 (en) 2004-09-29 2009-01-27 Fujifilm Corporation Film forming method and film forming apparatus
JP2009184007A (en) * 2008-02-08 2009-08-20 Sintokogio Ltd Casting method of cast
CN102059337A (en) * 2010-11-23 2011-05-18 宁波市磁正稀土材料科技有限公司 Method for controlling orientation of TbxDy (1-x) Fe (1.75-1.95) alloy along easy magnetic axis by being solidified in magnetic field
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482042B2 (en) 2004-09-29 2009-01-27 Fujifilm Corporation Film forming method and film forming apparatus
JP2009184007A (en) * 2008-02-08 2009-08-20 Sintokogio Ltd Casting method of cast
CN102059337A (en) * 2010-11-23 2011-05-18 宁波市磁正稀土材料科技有限公司 Method for controlling orientation of TbxDy (1-x) Fe (1.75-1.95) alloy along easy magnetic axis by being solidified in magnetic field
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Also Published As

Publication number Publication date
JP3915093B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
Arai et al. Ribbon-form silicon-iron alloy containing around 6.5 percent silicon
US6274022B1 (en) Method for producing electro- or electroless-deposited film with a controlled crystal orientation
Huh et al. Magnetic and Structural Properties of Rapidly Quenched Tetragonal Mn $ _ {3-{\rm x}} $ Ga Nanostructures
Yoshida et al. Preparation of highly pure MnBi intermetallic compounds by arc-melting
Watanabe et al. A new challenge: grain boundary engineering for advanced materials by magnetic field application
Xu et al. Effect of high magnetic field on growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al
Simpson et al. The Magnetic and Structural Properties of Bulk Amorphous and Crystalline Co‐P Alloys
Wang et al. Microstructure and magnetic properties of 6.5 Wt Pct Si steel strip produced by simulated strip casting process
JP3915093B2 (en) Method and apparatus for controlling crystal orientation of metal coating of hot-dip plating by applying magnetic field
Decarlo et al. Effect of applied magnetic fields during directional solidification of eutectic Bi-Mn
Solomon et al. Microstructural characterization of Ni-Mn-Ga ferromagnetic shape memory alloy powders
Dong et al. Magnetostriction induced by crystallographic orientation and morphological alignment in a TbFe2-based alloy
Fujimori et al. Huge magnetostriction of amorphous bulk (Sm, Tb) Fe2-B with low exciting fields
Vdovin et al. Influence of the magnetic field on the crystallization of aluminum melts
Watanabe et al. Phase Formation of a Solid-Liquid Mn–Ga Diffusion Couple under a Magnetic Field
Fuerst et al. Magnetic and structural studies of erbium‐iron‐manganese‐boron alloy
Xu et al. Solidification Process, Mechanical and Electrochemical Properties of Amorphous and Nanocrystalline Iron Alloy for a Power System Application
Manwani et al. Effect of thermal oxidation on the structural and magnetic properties of TbFe2 alloys
Livingston Magnetic domains in cobalt and iron borides
Guo et al. Magnetic domain and magnetic properties of Tb–Dy–Fe alloys directionally solidified and heat treated in high magnetic fields
Kobayashi et al. In-field annealing and quenching for ferromagnetic MnBi under 19 T
Mathur et al. Effect of trivalent additions and processing on structural and magnetic transitions in Ni-Mn-Ga ferromagnetic shape memory alloys
Hermann et al. Single crystal growth of antiferromagnetic Mn3Si by a two-phase RF floating-zone method
Ho et al. High Efficiency of Electroplating Ni–Co Nanowires Upon the Capture of Immobilization of Histidine-Tagged Protein
Gao et al. Effect of Cooling Rate on Crystal Orientation, and Magnetic and Magnetostrictive Properties of TbFe 2-Based Alloy Treated in Semisolid State Under a High Magnetic Field

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees