JP2003342062A - Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME - Google Patents

Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Info

Publication number
JP2003342062A
JP2003342062A JP2002149962A JP2002149962A JP2003342062A JP 2003342062 A JP2003342062 A JP 2003342062A JP 2002149962 A JP2002149962 A JP 2002149962A JP 2002149962 A JP2002149962 A JP 2002149962A JP 2003342062 A JP2003342062 A JP 2003342062A
Authority
JP
Japan
Prior art keywords
thd
sintered body
ferrite sintered
temperature
vacancies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002149962A
Other languages
Japanese (ja)
Inventor
Masahiro Takahashi
昌弘 高橋
Tokukazu Koyuhara
徳和 小湯原
Katsuyuki Kiguchi
勝之 城口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002149962A priority Critical patent/JP2003342062A/en
Publication of JP2003342062A publication Critical patent/JP2003342062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Mn-Zn-based ferrite sintered compact showing only a small amount of distortion of an output wave form to an input wave and excellent in THD characteristics, and to provide a method for producing the same. <P>SOLUTION: The number of holes in crystal grains is 40% or less relative to the total number of holes in the Mn-Zn-based ferrite sintered compact composed mainly of Fe<SB>2</SB>O<SB>3</SB>, ZnO and manganese oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、xDSL用通信機
器の伝送トランス、フィルタに使用されるMn−Zn系
フェライト焼結体に関し、特に信号が磁心を通過する際
に発生する波形歪の少ない、THD特性に優れたMn−
Zn系フェライト焼結体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Mn-Zn type ferrite sintered body used for a transmission transformer and a filter of a communication device for xDSL, and particularly, there is little waveform distortion generated when a signal passes through a magnetic core, Mn- with excellent THD characteristics
The present invention relates to a Zn-based ferrite sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来高透磁率を有するMn−Zn系フェ
ライト焼結体は磁心として各種トランス、フィルタに使
用されているがxDSLモデム等の通信機器用電子部品
に使用される磁心には高透磁率であることに加えて、通
信信号が通信機器用電子部品を通過する際に発生する波
形歪が少ないことが要求される。
2. Description of the Related Art Conventionally, a Mn--Zn ferrite sintered body having a high magnetic permeability has been used as a magnetic core in various transformers and filters, but a magnetic core used in electronic parts for communication equipment such as an xDSL modem has a high magnetic permeability. In addition to the magnetic susceptibility, it is required that the waveform distortion that occurs when a communication signal passes through an electronic component for communication equipment is small.

【0003】[0003]

【発明が解決しようとする課題】特に高速・大容量の通
信に対応したADSL(Asymmetric Dig
ital Subscriber Line)に代表さ
れるxDSL用通信機器に使用される磁心においては、
信号が通過する際に発生する信号波形の歪が、情報伝送
の際にエラーレートの増加を招くため、信号が出力する
際の波形歪のよりいっそうの低減が要求され、その主要
部材である磁心の特性の改善が求められている。
SUMMARY OF THE INVENTION ADSL (Asymmetric Metric Dig) especially for high-speed and large-capacity communication
In the magnetic core used in the communication device for xDSL represented by ital Subscriber Line),
Since the distortion of the signal waveform that occurs when the signal passes causes an increase in the error rate during information transmission, it is required to further reduce the waveform distortion when the signal is output. It is required to improve the characteristics of

【0004】例えば、信号が磁心を通過する際に発生す
る出力波形の歪は、入力する基本波に対する三次高調波
を中心とした高調波成分が出力基本波に含まれることに
より生じる。それは磁界Hと磁束密度Bの非線形性・ヒ
ステリシスカーブ特性に起因すると考えられる。実用的
には、かかる出力波形の歪に対して磁心にギャップを設
けて、実効透磁率を下げることにより線形性を改善し、
通信用トランスなどとして用いているのが現状である。
しかし、かかる方法では保磁力低減等のBHループの線
形性の本質的な改善には至っておらず、また必要なイン
ダクタンスを得るためには巻線数の増加という負荷を伴
うといった問題があった。そのためxDSL用通信機器
に使用される磁心そのものの改善によるさらなる低歪化
が必要とされていた。
For example, the distortion of the output waveform that occurs when a signal passes through the magnetic core is caused by the fact that the output fundamental wave contains a harmonic component centered on the third harmonic of the input fundamental wave. It is considered that this is due to the non-linearity / hysteresis curve characteristics of the magnetic field H and the magnetic flux density B. Practically, the linearity is improved by providing a gap in the magnetic core for the distortion of the output waveform and reducing the effective magnetic permeability.
It is currently used as a communication transformer.
However, such a method has not been able to substantially improve the linearity of the BH loop such as reduction of coercive force, and has a problem that a load of increasing the number of windings is required to obtain a required inductance. Therefore, further distortion reduction is required by improving the magnetic core itself used in the xDSL communication device.

【0005】本発明は上記問題を解決するために鋭意検
討した結果見いだされたものであり、入力波に対する出
力波形の歪の小さい、THD特性に優れたMn−Zn系
フェライト焼結体とその製造方法を提供することを目的
とする。
The present invention has been found as a result of extensive studies to solve the above problems, and is a Mn-Zn ferrite sintered body excellent in THD characteristics and having a small output waveform distortion with respect to an input wave, and its production. The purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】第1の発明は、Fe
、ZnOおよび酸化マンガンを主成分とするMn−Z
n系フェライト焼結体であって、前記Mn−Zn系フェ
ライト焼結体に占める全空孔数に対して結晶粒内空孔数
が40%以下であるTHD特性に優れたMn−Zn系フ
ェライト焼結体である。本発明においてはFe
算で52.0〜54.0モル%、ZnO換算で18.0
〜25.0モル%、残部酸化マンガンを主成分とし、副
成分としてCaO換算で0〜0.2wt%(0を含ま
ず)のCa、とSiO換算で0〜0.01wt%(0
を含む)のSiを含有することが好ましい。本発明のM
n−Zn系フェライト焼結体では、THD値と振幅透磁
率μaとの比で表されるTHD/μaが、最大磁束密度
30mT、周波数5kHz、0℃〜85℃の温度範囲に
おいて−135dB以下とすることが出来る。
A first invention is Fe 2 O.
3 , Mn-Z containing ZnO and manganese oxide as main components
An n-based ferrite sintered body, which is 40% or less of the total number of holes in the Mn-Zn-based ferrite sintered body and has excellent THD characteristics and excellent THD characteristics. It is a sintered body. In the present invention, it is 52.0 to 54.0 mol% in terms of Fe 2 O 3 , and 18.0 in terms of ZnO.
˜25.0 mol%, with the balance manganese oxide as the main component, and 0 to 0.2 wt% (excluding 0) of Ca in terms of CaO as subcomponents and 0 to 0.01 wt% (0 in terms of SiO 2 ).
It is preferable to contain Si). M of the present invention
In the n-Zn-based ferrite sintered body, THD / μa represented by the ratio between the THD value and the amplitude magnetic permeability μa is −135 dB or less in the maximum magnetic flux density of 30 mT, the frequency of 5 kHz, and the temperature range of 0 ° C. to 85 ° C. You can do it.

【0007】第2の発明は、焼結雰囲気を酸素分圧5%
〜大気中、かつ焼結温度を1300℃〜1380℃と
し、焼結体の粒内空孔数を全空孔数の40%以下とする
THD特性に優れたMn−Zn系フェライト焼結体の製
造方法である。本発明においては、1000℃から焼結
温度までの昇温速度を5℃/時間〜150℃/時間とす
るのが好ましい。
The second invention is that the sintering atmosphere is set to an oxygen partial pressure of 5%.
Of an Mn-Zn-based ferrite sintered body excellent in THD characteristics in which the sintering temperature is set to 1300 ° C. to 1380 ° C. and the number of pores in the grain of the sintered body is 40% or less of the total number of pores It is a manufacturing method. In the present invention, the rate of temperature increase from 1000 ° C to the sintering temperature is preferably 5 ° C / hour to 150 ° C / hour.

【0008】[0008]

【発明の実施の形態】以下本発明を実施例によって具体
的に説明するが、本発明はこれらの実施例によって限定
されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0009】本発明において出力波形の歪量を示す指標
として用いているTHD/μaについて説明する。TH
D(Total Harmonic Distorti
on総高調波歪)は基本波Vb(V)に対する高調波成
分Vh(V)の比であり、次式で与えられ、 THD=20×LOG10(Vh/Vb) [dB] また、THD/μaは次式で与えられる。 THD/μa=20×LOG10((Vh/Vb)/μ
a) [dB] ここで、μaは振幅透磁率である。高調波成分の割合を
μaで除した値を歪の指標としているのは、例えばPr
oceedings of The Eighth I
nternational Conference o
n Ferrite、509、2000にあるように、
ギャップ形成等によるμa変化がTHDへ与える影響を
除いて材料固有の評価をするためである。このTHD/
μaを指標とすることによって、材料評価に用いるトロ
イダル形状における評価と実製品の形状における評価に
相関関係を持たせることができる。
The THD / μa used as an index indicating the distortion amount of the output waveform in the present invention will be described. TH
D (Total Harmonic Distorti
on total harmonic distortion) is the ratio of the harmonic component Vh (V) to the fundamental wave Vb (V) and is given by the following equation: THD = 20 × LOG 10 (Vh / Vb) [dB] Also, THD / μa is given by the following equation. THD / μa = 20 × LOG 10 ((Vh / Vb) / μ
a) [dB] Here, μa is the amplitude permeability. The value obtained by dividing the ratio of the harmonic component by μa is used as an index of distortion, for example, Pr.
ocedings of the Eight I
international Conference o
n Ferrite, 509, 2000,
This is because the evaluation peculiar to the material is performed excluding the influence of μa change due to gap formation or the like on THD. This THD /
By using μa as an index, the evaluation in the toroidal shape used for material evaluation and the evaluation in the shape of the actual product can be correlated.

【0010】本発明では、さらに巻線数、回路抵抗、イ
ンダクタンスなどのファクターの影響を除くように、以
下に示すDistortion of Transfo
rmer Coefficient(DTC)も用い
た。
In the present invention, in order to further eliminate the influence of factors such as the number of windings, the circuit resistance, and the inductance, the following Distortion of Transform is performed.
The rmer Coefficient (DTC) was also used.

【0011】[0011]

【数1】 [Equation 1]

【0012】そして、前記DTCとTHD/μaとで得
られ、次式で求められるTHD特性を磁心特性の指標
として併記した。これにより、実製品の形状・仕様の影
響を極力排除して磁心特性の評価を行うことが出来る。 THD=THD/μa+20×LOG10(1/DT
C) [dB] ここで、かかるTHD/μa、THDは小さいほど出
力波形の歪量が少ないことを示す。なおADSLの使用
周波数は20kHz〜1.1MHzであるが、THDの
測定に使用するオーディオアナライザーはその周波数範
囲の低周波数側の一部しかカバーしていないうえ、かか
る範囲でも十分な精度が得られない場合があるため、本
発明においてはTHD/μaの測定の便宜上周波数を5
kHzとした。
Then, the THD F characteristic obtained by the above DTC and THD / μa and obtained by the following equation is also shown as an index of the magnetic core characteristic. This makes it possible to evaluate the magnetic core characteristics while eliminating the influence of the shape and specifications of the actual product as much as possible. THD F = THD / μa + 20 × LOG 10 (1 / DT
C) [dB] Here, it is shown that the smaller the THD / μa and THD F, the smaller the distortion amount of the output waveform. The frequency used by ADSL is 20 kHz to 1.1 MHz, but the audio analyzer used for THD measurement covers only a part of the low frequency side of the frequency range, and sufficient accuracy can be obtained even in this range. In the present invention, the frequency is set to 5 for convenience of measurement of THD / μa.
It was set to kHz.

【0013】また、THD/μaの値は最大磁束密度が
増加するにつれて大きくなるが、実用される際の水準か
ら本発明では30mTとした。すなわち、THD/μa
の値は測定周波数、磁束密度によって異なり一義的でな
いため、本発明におけるTHD/μa値は上記測定条件
における値を用い、材料評価の基準とした。また、本発
明におけるTHD/μaの評価は、ADSLモデムの使
用環境温度から0℃〜85℃とした。周波数5kHz、
最大磁束密度30mTの測定条件で−135dB以下
(THDで−114dB以下に相当)とすることによ
り実機での情報伝送のエラーレートが改善され実用上十
分かつ高い伝送特性を提供することができる。
Although the value of THD / μa increases as the maximum magnetic flux density increases, it is set to 30 mT in the present invention from the level of practical use. That is, THD / μa
Since the value of is different from the measurement frequency and the magnetic flux density and is not unambiguous, the THD / μa value in the present invention is the value under the above-mentioned measurement conditions and is used as the standard for material evaluation. In addition, the evaluation of THD / μa in the present invention was set to 0 ° C. to 85 ° C. from the operating environment temperature of the ADSL modem. Frequency 5kHz,
By setting the magnetic flux density to -135 dB or less (corresponding to -114 dB or less in THD F ) under the measurement conditions of the maximum magnetic flux density of 30 mT, the error rate of information transmission in an actual device is improved, and practically sufficient and high transmission characteristics can be provided.

【0014】本発明におけるMn−Zn系フェライト焼
結体は、焼結体の粒内空孔数が全空孔数の40%以下で
あることを特徴とする。焼結体の欠陥である空孔は少な
いことが好ましいが、実際のMn−Zn系フェライト焼
結体の製造工程においてかかる空孔を完全に除去するこ
とは困難である。かかる空孔の存在は焼結体密度・飽和
磁化の低下を招くとともに初透磁率等の軟磁気特性を劣
化させると考えられるが、本発明者らはこの空孔とTH
D特性との関係について鋭意検討した結果、本発明に至
ったものである。すなわち、上記空孔には、粒界に存在
する空孔と粒内に存在する空孔があるが、このうち粒内
の空孔数を低減し、全空孔数の40%以下とすることで
THD特性が著しく改善され、常温領域(25℃)で−
140dB以下の良好なTHD/μa値を得ることが可
能となる。さらに良好なTHD特性を得るためには、よ
り好ましくは25%以下であり、さらに好ましくは15
%以下である。粒内空孔の減少がTHD特性を改善する
理由は必ずしも明らかではないが、粒内空孔は磁壁のピ
ンニングサイトとして働くと考えられるため、かかる粒
内空孔の減少はB―Hループの線形性の改善を通じてT
HD特性の改善に寄与しているものと推測される。焼結
体の全空孔および粒内空孔の計数は、例えば、焼結体を
切断し、その切断面を鏡面研磨し、SIM(Scann
ing Ion Microscopy)像を観察して
行うことができる。かかるSIM像は、SEM(Sca
nningElectron Microscopy)
像或いは光学顕微鏡像と異なり、各結晶粒の結晶方位に
よるコントラストがつくため、エッチングを施すことな
く粒界・粒内空孔を認識することができる。また、鏡面
研磨面をエッチング処理することにより粒界・粒内空孔
を認識し、SEM(Scanning Electro
n Microscopy)或いは光学顕微鏡で全空孔
・粒内空孔を計数することも可能である。
The Mn-Zn ferrite sintered body according to the present invention is characterized in that the number of voids in the grain of the sintered body is 40% or less of the total number of voids. It is preferable that there are few voids that are defects in the sintered body, but it is difficult to completely remove such voids in the actual manufacturing process of the Mn—Zn ferrite sintered body. The presence of such holes is considered to cause a decrease in the density and saturation magnetization of the sintered body and deteriorate the soft magnetic properties such as the initial permeability.
As a result of extensive studies on the relationship with the D characteristic, the present invention has been achieved. That is, among the above-mentioned vacancies, there are vacancies existing at the grain boundaries and vacancies existing inside the grains, but the number of vacancies within the grains should be reduced to 40% or less of the total number of vacancies. The THD characteristics are remarkably improved in the room temperature range (25 ° C)
It becomes possible to obtain a good THD / μa value of 140 dB or less. In order to obtain a better THD characteristic, it is more preferably 25% or less, further preferably 15%.
% Or less. It is not always clear why the reduction of intragranular vacancies improves THD characteristics, but it is considered that intragranular vacancies act as pinning sites for domain walls. Through improving sex
It is presumed that it contributes to the improvement of HD characteristics. The total number of vacancies in the sintered body and the number of vacancies in the grains can be calculated, for example, by cutting the sintered body, polishing the cut surface with mirror surface, and performing SIM (Scann).
ing Ion Microscopy) image. The SIM image is an SEM (Sca
nningElectron Microscopy)
Unlike an image or an optical microscope image, contrast is obtained depending on the crystal orientation of each crystal grain, so that grain boundaries and intra-grain vacancies can be recognized without etching. In addition, by observing grain boundaries and intra-grain vacancies by etching the mirror-polished surface, SEM (Scanning Electron)
It is also possible to count all vacancies / intra-granular vacancies by using n Microscopy) or an optical microscope.

【0015】結晶粒内の空孔は、焼結の進行が早いため
に粒界に吐き出されることなく粒内に取り残されて形成
されたものと考えられる。このため、焼結の進行を緩や
かにすることによって粒内の空孔数を低減することがで
きる。かかる目的を達成する方法について検討した結
果、本発明者らは焼結温度および焼結時の雰囲気を所定
の範囲とすることで結晶粒内の空孔割合を低減し、TH
D特性が改善されることを見いだしたものである。すな
わち、焼結時の雰囲気を酸素分圧5%〜大気中とし、か
つ焼結温度を1300〜1380℃とすることで、結晶
粒径が微細化するとともに粒内空孔が減少し、良好なT
HD特性が得られる。焼結温度を上記範囲に限定したの
は、焼結温度が1380℃を超えると粒内空孔の割合が
増加してTHD特性が劣化し、1300℃よりも低いと
焼結体密度と初透磁率の低下が大きくなるからである。
また、焼結時の雰囲気を上記範囲に限定したのは、酸素
分圧が5%よりも小さくなると初透磁率の低下・粒内空
孔割合の増加によるTHD特性の劣化を招き、大気中よ
りも酸素分圧が高い場合は酸素ガス導入に係るコスト増
を招き実用的でないからである。
It is considered that the voids in the crystal grains are formed by being left in the grains without being discharged to the grain boundaries because of the rapid progress of sintering. Therefore, the number of holes in the grains can be reduced by slowing the progress of sintering. As a result of studying a method for achieving such an object, the present inventors reduced the void ratio in the crystal grains by setting the sintering temperature and the atmosphere at the time of sintering within a predetermined range, and
It was found that the D characteristic was improved. That is, when the atmosphere during sintering is set to an oxygen partial pressure of 5% to the atmosphere and the sintering temperature is set to 1300 to 1380 ° C., the crystal grain size becomes finer and the intragranular vacancies decrease, which is favorable. T
HD characteristics can be obtained. The reason for limiting the sintering temperature to the above range is that if the sintering temperature exceeds 1380 ° C., the ratio of intragranular vacancies increases and the THD characteristics deteriorate, and if it is lower than 1300 ° C., the sintered body density and initial permeability are reduced. This is because the decrease in magnetic susceptibility increases.
Also, the atmosphere during sintering is limited to the above range, because when the oxygen partial pressure is less than 5%, the initial magnetic permeability is lowered and the THD property is deteriorated due to the increase of the intragranular void ratio, and the atmosphere is more This is also because when the oxygen partial pressure is high, the cost for introducing oxygen gas increases and it is not practical.

【0016】また、本発明者らはさらに結晶粒内の空孔
の割合を低減し、良好なTHD特性を得る方法について
検討した結果、特に昇温速度を一定の範囲とすることが
特に有効であることを見いだしたものである。すなわち
1000℃から焼結温度までの昇温速度を5℃/時間〜
150℃/時間とすることで粒内空孔が減少し、良好な
THD特性が得られる。昇温速度を低下させることは、
結晶粒の微細化を招くため、粒径を大きくして高透磁率
材を製造する場合には、かかる昇温速度の低下は必ずし
も好ましくない。しかし、昇温速度を所定の範囲とする
ことによって結晶粒径が微細化するとともに粒内空孔が
減少した結果、THD特性が改善されるとともに、初透
磁率は逆に増加することとなり、良好なTHD特性と高
透磁率を併せ持ったMn−Zn系フェライト焼結体を得
ることができる。昇温速度を上記範囲に限定したのは、
昇温速度が150℃/時間を超えると全空孔数に対する
粒内空孔数の割合が増えて、良好なTHD特性が得られ
ないからであり、昇温速度が5℃/時間未満であると焼
結工程に多大な時間を要することとなるため生産性が著
しく悪化するためである。粒内空孔数を低減し、さらに
良好なTHD特性を得るためにはより好ましくは5℃/
時間〜100℃/時間である。
The present inventors have further studied the method of obtaining a good THD characteristic by reducing the ratio of vacancies in the crystal grains, and as a result, it is particularly effective to keep the temperature rising rate within a certain range. It was one that was found. That is, the temperature rising rate from 1000 ° C. to the sintering temperature is 5 ° C./hour
By setting the temperature to 150 ° C./hour, intragranular vacancies are reduced and good THD characteristics can be obtained. Decreasing the heating rate is
When the high magnetic permeability material is manufactured by increasing the grain size, the decrease in the temperature rising rate is not always preferable, because the crystal grains become finer. However, as a result of the crystal grain size becoming finer and the intragranular vacancies decreasing by setting the heating rate within a predetermined range, the THD characteristics are improved and the initial permeability is increased on the contrary, which is good. It is possible to obtain a Mn-Zn based ferrite sintered body having both excellent THD characteristics and high magnetic permeability. The reason for limiting the rate of temperature rise to the above range is that
This is because when the heating rate exceeds 150 ° C./hour, the ratio of the number of intragranular vacancies to the total number of vacancies increases and good THD characteristics cannot be obtained, and the heating rate is less than 5 ° C./hour. This is because the sintering process requires a great deal of time, which significantly deteriorates the productivity. In order to reduce the number of intragranular vacancies and obtain better THD characteristics, it is more preferably 5 ° C. /
Time to 100 ° C./hour.

【0017】なお、室温〜1000℃までの昇温速度
は、造粒に使用するバインダー除去のため、当該バイン
ダー等に応じて適当な昇温速度を選択する。また、10
00℃〜焼結温度までの昇温工程における雰囲気は、粒
内空孔に割合を低減する観点からは、酸素分圧1%〜大
気中とすることが好ましく、より好ましくは、5%〜大
気中である。
The temperature rising rate from room temperature to 1000 ° C. is selected in accordance with the binder and the like in order to remove the binder used for granulation. Also, 10
From the viewpoint of reducing the proportion of intragranular vacancies, the atmosphere in the temperature raising step from 00 ° C. to the sintering temperature is preferably 1% to atmospheric oxygen partial pressure, and more preferably 5% to atmospheric air. In the middle.

【0018】また、本発明において副成分としてCaO
換算で0〜0.2wt%(0を含まず)のCaとSiO
換算で0〜0.01wt%(0を含む)のSiを含有
することで粒内空孔数を低減し、良好なTHD特性を得
ることができる。CaはSiとともに粒界層を形成し、
抵抗率を増加させ渦電流損失を低減することが知られて
いるが、かかるCaの含有は結晶粒を微細化するととも
に粒内空孔数を低減し、THD特性改善に寄与する。C
a含有量を上記範囲に限定したのは、Caの含有は上述
のように結晶粒の微細化・粒内空孔数の低減に寄与する
が、CaO換算で0.2wt%を超えると異常粒成長が
生じ、逆にTHD特性が劣化するからである。また、S
iはCaとともに粒界層を形成するが、SiO換算で
0〜0.01wt%(0を含む)を超えるとやはり異常
粒成長が生じTHD特性が劣化するからである。
Further, in the present invention, CaO is used as an accessory component.
0 to 0.2 wt% (excluding 0) of Ca and SiO
By including 0 to 0.01 wt% (including 0) of Si in terms of 2 , the number of intragranular vacancies can be reduced and good THD characteristics can be obtained. Ca forms a grain boundary layer with Si,
It is known that the resistivity is increased and the eddy current loss is reduced. However, the inclusion of Ca contributes to the improvement of THD characteristics by making the crystal grains fine and reducing the number of intragranular vacancies. C
The reason for limiting the a content to the above range is that the Ca content contributes to the refinement of the crystal grains and the reduction of the number of vacancies in the grain as described above. This is because growth occurs and, conversely, the THD characteristic deteriorates. Also, S
This is because i forms a grain boundary layer together with Ca, but if it exceeds 0 to 0.01 wt% (including 0) in terms of SiO 2 , abnormal grain growth also occurs and THD characteristics deteriorate.

【0019】本発明におけるMn−Zn系フェライトの
主成分組成はFe換算で52.0〜54.0モル
%、より好ましくは52.0〜53.0モル%、ZnO
換算で18.0〜25.0モル%、より好ましくは2
2.0〜25.0モル%、残部酸化マンガンとした。主
成分をかかる範囲に限定したのは以下の理由による。主
成分であるFe、ZnOおよび酸化マンガンの比
を変化させることによってキュリー温度(Tc)および
初透磁率μiが極大を示すいわゆるセカンダリーピーク
温度(Ts)を制御することができるが、本発明におい
て波形歪の指標としているTHD/μa値も上記主成分
比によってその温度変化を制御することができる。すな
わちTHD/μaの温度変化はμiの温度変化と連動
し、μiのセカンダリーピーク温度(Ts)で極小とな
る。THD/μaはセカンダリーピーク温度を超えると
温度上昇に伴って増加した後、キュリー温度(Tc)に
向かって再び減少する。このTsとTcの温度差が大き
くなればなるほど、TsとTc間でのTHD/μaの増
加が大きくなることが確認できた。したがって0℃〜8
5℃の範囲にいおいて安定したTHD/μaを得るため
にはこれらTsおよびTcを一定の範囲に制御する必要
がある。かかる目的を達成するためには、好ましくはT
sは−20℃〜50℃かつTcは90〜160℃、さら
に好ましくはTsは−20℃〜50℃かつTcは90〜
140℃、よりさらに好ましくはTsは0℃〜40℃か
つTcは100℃〜130℃である。
The main component composition of the Mn-Zn ferrite in the present invention is 52.0 to 54.0 mol% in terms of Fe 2 O 3 , more preferably 52.0 to 53.0 mol%, ZnO.
Converted to 18.0 to 25.0 mol%, more preferably 2
2.0 to 25.0 mol% and the balance manganese oxide. The reason why the main component is limited to this range is as follows. By changing the ratio of the main components Fe 2 O 3 , ZnO and manganese oxide, the Curie temperature (Tc) and the so-called secondary peak temperature (Ts) at which the initial permeability μi exhibits a maximum can be controlled. The temperature change of the THD / μa value, which is an index of waveform distortion in the invention, can be controlled by the above principal component ratio. That is, the temperature change of THD / μa is interlocked with the temperature change of μi and becomes minimum at the secondary peak temperature (Ts) of μi. When THD / μa exceeds the secondary peak temperature, it increases with increasing temperature and then decreases again toward the Curie temperature (Tc). It was confirmed that the greater the temperature difference between Ts and Tc, the greater the increase in THD / μa between Ts and Tc. Therefore 0 ℃ ~ 8
In order to obtain stable THD / μa in the range of 5 ° C., it is necessary to control Ts and Tc within a certain range. To achieve such an object, preferably T
s is -20 ° C to 50 ° C and Tc is 90 to 160 ° C, more preferably Ts is -20 ° C to 50 ° C and Tc is 90 to 160 ° C.
140 ° C, and even more preferably Ts is 0 ° C to 40 ° C and Tc is 100 ° C to 130 ° C.

【0020】Feが52.0モル%未満であると
Tsが高温側にシフトする結果低温でのTHD/μaの
増加が顕著となり、54.0モル%を超えるとTsが低
温側にシフトする結果TsおよびTc間でのTHD/μ
aの増加が大きくなるからである。より好ましくは5
2.0〜53.0モル%とすることで0℃〜85℃の常
用温度域でより小さいTHD/μa値を得ることができ
る。
When Fe 2 O 3 is less than 52.0 mol%, Ts shifts to the high temperature side, and as a result, the increase of THD / μa becomes remarkable at low temperature, and when it exceeds 54.0 mol%, Ts shifts to the low temperature side. Result of shift THD / μ between Ts and Tc
This is because the increase of a becomes large. More preferably 5
By setting it as 2.0 to 53.0 mol%, a smaller THD / μa value can be obtained in the normal temperature range of 0 ° C. to 85 ° C.

【0021】また、ZnOを上記範囲に限定したのは、
ZnOが18.0モル%未満であるとTcが高温側にシ
フトする結果TsおよびTc間でのTHD/μaの増加
が大きくなるからであり、25.0モル%を超えるとT
cが低温側にシフトし実用温度の上限以下となり、実用
に耐えないからである。
Further, ZnO is limited to the above range because
If ZnO is less than 18.0 mol%, Tc shifts to the high temperature side, and as a result, the increase in THD / μa between Ts and Tc becomes large, while if it exceeds 25.0 mol%, THD / μa increases.
This is because c shifts to the low temperature side and becomes equal to or lower than the upper limit of the practical temperature, and it cannot be practically used.

【0022】なお、本発明においては上記主成分、副成
分以外の成分の含有を否定するものではなく、必要に応
じて上記主成分、副成分以外の成分も含むことができ
る。例えば、焼結促進等の観点から、Bi換算で
0〜0.015wt%(0を含む)のBi、Nb
換算で0〜0.03wt%(0を含む)のNb、MoO
換算で0〜0.01wt%(0を含む)のMo、Zr
換算で0〜0.03wt%のZr(0を含む)、V
換算で0〜0.05wt%(0を含む)のV、T
iO換算で0〜1.0wt%(0を含む)のTi、S
nO換算で0〜0.5wt%(0を含む)のSnのう
ち一種または二種以上を含有することができる。
In the present invention, the above main component and by-product are formed.
It does not deny the inclusion of components other than the above, but may
In addition, it may contain components other than the above main components and subcomponents.
It For example, from the viewpoint of promoting sintering, BiTwoOThreeIn conversion
0 to 0.015 wt% (including 0) Bi, NbTwoO5
0 to 0.03 wt% (including 0) Nb and MoO
Three0 to 0.01 wt% (including 0) of Mo and Zr
OTwo0 to 0.03 wt% Zr (including 0), V
TwoO50, 0.05 wt% (including 0) V and T
iOTwo0 to 1.0 wt% (including 0) of Ti and S
nOTwo0 to 0.5 wt% (including 0) of Sn
One kind or two or more kinds can be contained.

【0023】[0023]

【実施例】以下本発明に係るMn−Zn系フェライト焼
結体について以下具体的に説明する。Feを5
2.50モル%、ZnOを23.10モル%、残部酸化
マンガン(Mnを使用)を計量・混合し、これを
850℃で2時間仮焼した。これにCaO(なお本発明
ではCaCOを用いた)換算で0.005wt%、S
iO換算で0.002wt%となるように添加した。
次に、湿式ボールミルにて5時間粉砕した後、これらに
バインダーを添加し、スプレイドライヤーで造粒後リン
グ状に圧縮成形した後以下の内容の焼結に供した。すな
わち表1に示す雰囲気、焼結温度で、1000℃からの
昇温速度を150℃/時間とし、5時間焼結した後、酸
素濃度を制御した窒素雰囲気中で冷却した。得られた外
形25mm、内径15mm、高さ5mmのリング状焼結
体の25℃における初透磁率およびTHD/μaを測定
した。リング形状の巻線数は、インダクタンスが3mH
となるよう調整した。THDの測定は図3に示すオーデ
ィオプレシジョン社製オーディオアナライザー(Sys
temTwo)を使用し、測定周波数は5kHz、測定
磁束密度は30mTとした。また、リング状焼結体の断
面を鏡面研磨し、700倍のSIM像を用い、120μ
m×120μmの領域における全空孔数(N)および
粒内空孔数(N)を計数し、粒内空孔の割合を以下の
式により算出した。 粒内空孔の割合=100×(N/N) [%]
EXAMPLES The Mn—Zn based ferrite sintered body according to the present invention will be specifically described below. Fe 2 O 3 5
2.50 mol%, 23.10 mol% ZnO, and the balance manganese oxide (using Mn 3 O 4 ) were weighed and mixed, and calcined at 850 ° C. for 2 hours. In this, 0.005 wt% in terms of CaO (note that CaCO 3 was used in the present invention), S
It was added so as to be 0.002 wt% in terms of iO 2 .
Next, after pulverizing with a wet ball mill for 5 hours, a binder was added to these, the mixture was granulated with a spray dryer, compression-molded into a ring shape, and then subjected to the sintering described below. That is, in the atmosphere and the sintering temperature shown in Table 1, the temperature rising rate from 1000 ° C. was set to 150 ° C./hour, and after sintering for 5 hours, it was cooled in a nitrogen atmosphere in which the oxygen concentration was controlled. The initial magnetic permeability and THD / μa at 25 ° C. of the obtained ring-shaped sintered body having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm were measured. The number of windings in the ring shape has an inductance of 3 mH
It was adjusted so that The THD is measured by an audio analyzer (Sys) manufactured by Audio Precision Co., Ltd. shown in FIG.
temTwo) was used, the measurement frequency was 5 kHz, and the measurement magnetic flux density was 30 mT. In addition, the cross section of the ring-shaped sintered body was mirror-polished and a SIM image of 700 times was used.
The total number of vacancies (N a ) and the number of intragranular vacancies (N i ) in the region of m × 120 μm were counted, and the ratio of intragranular vacancies was calculated by the following formula. Ratio of voids in grains = 100 × (N i / N a ) [%]

【0024】リング形状の試料の評価結果を表1に示
す。表中、本発明の範囲内のものを実施例とし、範囲外
のものを比較例とした。表1に示すように、空孔数に対
する粒内空孔の割合を本発明の範囲とすることで、TH
D/μaの小さいかつ初透磁率の高いMn−Zn系フェ
ライト焼結体を得られることがわかる。また、焼結雰囲
気、焼結温度を本発明の範囲とすることにより、全空孔
数に対する粒内空孔の割合が小さく、THD/μaの小
さい、Mn−Zn系フェライト焼結体を製造することが
できることがわかる
Table 1 shows the evaluation results of the ring-shaped samples. In the table, those within the range of the present invention were taken as Examples and those outside the range were taken as Comparative Examples. As shown in Table 1, by setting the ratio of intragranular vacancies to the number of vacancies within the range of the present invention, TH
It can be seen that an Mn-Zn based ferrite sintered body having a small D / [mu] a and a high initial permeability can be obtained. Further, by setting the sintering atmosphere and the sintering temperature within the ranges of the present invention, a Mn—Zn-based ferrite sintered body having a small ratio of intragranular vacancies to all vacancies and a small THD / μa is manufactured. Know that you can

【0025】[0025]

【表1】 [Table 1]

【0026】Feを52.50モル%、ZnOを
23.10モル%、残部酸化マンガン(Mnを使
用)を計量・混合し、これを850℃で2時間仮焼し
た。これにCaO(なお本発明ではCaCOを用い
た)換算で0.005wt%、SiO換算で0.00
2wt%となるように添加した。次に、湿式ボールミル
にて5時間粉砕した後、これらにバインダーを添加し、
スプレイドライヤーで造粒後リング状に圧縮成形した後
以下の内容の焼結に供した。すなわち大気中において、
1000℃〜1360℃の温度範囲を表2に示す所定の
昇温速度で昇温し、1360℃にて5時間焼結した後、
酸素濃度を制御した窒素雰囲気中で冷却した。得られた
外形25mm、内径15mm、高さ5mmのリング状焼
結体の25℃における初透磁率およびTHD/μaを測
定した。巻線数、THDの測定条件等は上述の実施例と
同様の条件とした。
52.50 mol% of Fe 2 O 3 , 23.10 mol% of ZnO and the balance manganese oxide (using Mn 3 O 4 ) were weighed and mixed, and calcined at 850 ° C. for 2 hours. In addition to this, 0.005 wt% in terms of CaO (note that CaCO 3 was used in the present invention) and 0.00 in terms of SiO 2
It was added so as to be 2 wt%. Next, after crushing with a wet ball mill for 5 hours, a binder is added to these,
After granulation with a spray dryer, compression molding into a ring shape was performed and then sintering was performed with the following contents. That is, in the atmosphere,
After raising the temperature range of 1000 ° C. to 1360 ° C. at a predetermined heating rate shown in Table 2 and sintering at 1360 ° C. for 5 hours,
It was cooled in a nitrogen atmosphere with controlled oxygen concentration. The initial magnetic permeability and THD / μa at 25 ° C. of the obtained ring-shaped sintered body having an outer diameter of 25 mm, an inner diameter of 15 mm and a height of 5 mm were measured. The number of windings, THD measurement conditions, etc. were the same as those in the above-described embodiment.

【0027】リング形状の試料の評価結果を表2に示
す。表中、本発明の範囲内のものを実施例とし、範囲外
のものを比較例とした。表2に示すように、全空孔数に
対する粒内空孔の割合を本発明の範囲とすることで、T
HD/μaの小さいかつ初透磁率の高いMn−Zn系フ
ェライトを得られることがわかる。また、実施例7のS
IM像を図1に、比較例5のSIM像を図2に示すが、
昇温速度を本発明の範囲とすることで粒内空孔の割合が
顕著に低減されていることがわかる。すなわち1000
℃〜焼結温度までの昇温速度を本発明の範囲とすること
で全空孔数に対する粒内空孔の割合が小さく、THD/
μaの小さい、かつ初透磁率の高いMn−Zn系フェラ
イト焼結体を製造することができることが可能となる。
Table 2 shows the evaluation results of the ring-shaped sample. In the table, those within the range of the present invention were taken as Examples and those outside the range were taken as Comparative Examples. As shown in Table 2, by setting the ratio of intragranular vacancies to the total number of vacancies within the range of the present invention, T
It can be seen that a Mn-Zn ferrite having a small HD / μa and a high initial permeability can be obtained. In addition, S of Example 7
The IM image is shown in FIG. 1 and the SIM image of Comparative Example 5 is shown in FIG.
It can be seen that the ratio of intragranular vacancies is remarkably reduced by setting the heating rate within the range of the present invention. Ie 1000
By setting the rate of temperature increase from ℃ to the sintering temperature within the range of the present invention, the ratio of intragranular vacancies to the total number of vacancies is small, and THD /
It becomes possible to manufacture a Mn—Zn-based ferrite sintered body having a small μa and a high initial permeability.

【0028】[0028]

【表2】 [Table 2]

【0029】次に、表3に示す組成比にFe、Z
nO、酸化マンガン(Mnを使用)を計量・混合
し、850℃で2時間仮焼した。これに、CaO(Ca
CO を使用)、SiOをフェライト磁心中の含有量
が、CaO(なお本発明ではCaCOを用いた)換算
で0.005wt%、SiO換算で0.002wt%
となるように添加し、湿式ボールミルにて5時間粉砕し
た。これらにバインダーを添加し、スプレイドライヤー
で造粒後リング形状に圧縮成形した後、以下の内容の焼
結に供した。すなわち大気中において、1000℃〜1
360℃の温度範囲を100℃/時間の昇温速度で昇温
し、1360℃にて5時間焼結した後、酸素濃度を制御
した窒素雰囲気中で冷却した。得られた外形25mm、
内径15mm、高さ5mmのリング状焼結体の25℃に
おける初透磁率および初透磁率とTHD/μaの温度依
存性を測定した。巻線数、THDの測定条件等は上述の
実施例と同様の条件とした。
Next, in the composition ratio shown in Table 3, FeTwoOThree, Z
nO, manganese oxide (MnThreeOFourWeigh) and mix
Then, it was calcined at 850 ° C. for 2 hours. In addition to this, CaO (Ca
CO ThreeUsed), SiOTwoContent in the ferrite core
However, CaO (in the present invention, CaCOThreeConversion)
0.005wt%, SiOTwo0.002 wt% in conversion
And pulverize with a wet ball mill for 5 hours.
It was Add a binder to these and spray dryer
After granulating with, press-molding into ring shape,
I gave it to the conclusion. That is, in the atmosphere, 1000 ° C to 1
Raises temperature range of 360 ℃ at a heating rate of 100 ℃ / hour
And then control the oxygen concentration after sintering at 1360 ° C for 5 hours
And cooled in a nitrogen atmosphere. The obtained outer shape is 25 mm,
For a ring-shaped sintered body with an inner diameter of 15 mm and a height of 5 mm at 25 ° C
Initial permeability and temperature dependence of initial permeability and THD / μa
Existence was measured. The number of windings and THD measurement conditions are as described above.
The conditions were the same as in the example.

【0030】リング形状の試料の評価結果を表3および
表4に示す。表中、本発明の範囲内のものを実施例と
し、範囲外のものを比較例とした。表3に0℃〜85℃
までの温度範囲における初透磁率μiとTHD/μaの
最小値および最大値を測定温度とともに示すが、実施例
に該当するものは0℃〜85℃までの温度範囲において
THD/μaが−135dB以下(THDで−114
dB以下)であり、Fe 、ZnO、酸化マンガン
を本発明の範囲とすることによって0℃〜85℃におけ
る温度範囲でTHD/μaが良好なMn−Zn系フェラ
イト焼結体を得ることができる。
The evaluation results of the ring-shaped sample are shown in Table 3 and
It shows in Table 4. In the table, those within the scope of the present invention are shown as examples.
However, those outside the range were used as comparative examples. Table 3 shows 0 ° C to 85 ° C
Of the initial permeability μi and THD / μa in the temperature range up to
The minimum and maximum values are shown along with the measured temperature, but examples
Is applicable in the temperature range from 0 ℃ to 85 ℃.
THD / μa is -135 dB or less (THD /FAt -114
dB or less), and Fe TwoOThree, ZnO, manganese oxide
Is within the range of the present invention.
Mn-Zn-based blower with good THD / μa in a certain temperature range
An ito sintered body can be obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】次に、Feを52.40モル%、Z
nOを25.00モル%、残部酸化マンガン(Mn
を使用)を計量・混合し、これを850℃で2時間仮
焼した。これにCaO(CaCOを使用)、SiO
を、フェライト磁心中の含有量が表5に示した組成量と
なるように添加した。表5においてSiOの組成量に
括弧を付した実施例、比較例があるが、これは主成分中
に不純物として混入してフェライト焼結体に含まれるS
iO量を示したものであり、素原料中に添加してフェ
ライト焼結体に含まれるSiO量と区別するようにし
た。なお、一般に不純物としてフェライト焼結体には、
V,Co,Ni,Zrなどの金属元素が含有される場合
がある。次に、湿式ボールミルにて5時間粉砕した後、
これらにバインダーを添加し、スプレイドライヤーで造
粒後リング状に圧縮成形した後、以下の内容の焼結に供
した。すなわち大気中において、1000℃〜1360
℃の温度範囲を150℃/時間の昇温速度で昇温し、1
360℃にて5時間焼結した後、酸素濃度を制御した窒
素雰囲気中で焼結した。得られた外形25mm、内径1
5mm、高さ5mmのリング状焼結体の20℃における
初透磁率および初透磁率とTHD/μaの温度依存性を
測定した。巻線数、THDの測定条件等は上述の実施例
と同様の条件とした。
Next, 52.40 mol% of Fe 2 O 3 and Z
25.00 mol% of nO and the balance manganese oxide (Mn 3 O
4 ) was weighed and mixed, and calcined at 850 ° C. for 2 hours. CaO (using CaCO 3 ), SiO 2
Was added so that the content in the ferrite core would be the composition shown in Table 5. In Table 5, there are Examples and Comparative Examples in which the composition amount of SiO 2 is parenthesized, but this is mixed in the main component as an impurity and contained in the ferrite sintered body.
The amount of iO 2 is shown, which is added to the raw material to be distinguished from the amount of SiO 2 contained in the ferrite sintered body. In addition, in general, ferrite sintered body as impurities,
Metal elements such as V, Co, Ni and Zr may be contained. Next, after crushing with a wet ball mill for 5 hours,
A binder was added to these, and the mixture was granulated with a spray dryer, compression-molded into a ring shape, and then subjected to sintering with the following contents. That is, in the atmosphere, 1000 ° C to 1360
The temperature range of ℃ is raised at a heating rate of 150 ℃ / hour, 1
After sintering at 360 ° C. for 5 hours, it was sintered in a nitrogen atmosphere with controlled oxygen concentration. Obtained outer diameter 25 mm, inner diameter 1
The ring-shaped sintered body having a size of 5 mm and a height of 5 mm was measured for the initial magnetic permeability at 20 ° C. and the temperature dependence of the initial magnetic permeability and THD / μa. The number of windings, THD measurement conditions, etc. were the same as those in the above-described embodiment.

【0034】リング形状の試料の評価結果を表5に示
す。表中、本発明の範囲内のものを実施例とし、範囲外
のものを比較例とした。なお、表中には明記されていな
いが、0.3wt%のCaOを含有する比較例10およ
び0.015wt%のSiOを含有した比較例11の
試料の焼結体組織においては、いずれも異常粒成長が確
認された。表5に示すようにCaO、SiOを本発明
の範囲とすることで、THD/μaの小さいMn−Zn
系フェライトを得られることがわかる。
Table 5 shows the evaluation results of the ring-shaped samples. In the table, those within the range of the present invention were taken as Examples and those outside the range were taken as Comparative Examples. Although not specified in the table, in the sintered body structures of the samples of Comparative Example 10 containing 0.3 wt% CaO and Comparative Example 11 containing 0.015 wt% SiO 2 , both were Abnormal grain growth was confirmed. As shown in Table 5, by setting CaO and SiO 2 in the range of the present invention, Mn-Zn having a small THD / μa.
It can be seen that a system ferrite can be obtained.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】本発明によれば、全空孔数に対する粒内
空孔の割合を所定の範囲とすることで入力波に対する出
力波形の歪の小さい、THD特性に優れたMn−Zn系
フェライト焼結体とその製造方法を提供することが出来
る。
According to the present invention, by setting the ratio of intragranular vacancies to the total number of vacancies within a predetermined range, the output waveform distortion with respect to the input wave is small, and the Mn-Zn system ferrite having excellent THD characteristics is obtained. A sintered body and a manufacturing method thereof can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る焼結体の顕微鏡写真
である。
FIG. 1 is a micrograph of a sintered body according to an example of the present invention.

【図2】 従来の焼結体の顕微鏡写真である。FIG. 2 is a micrograph of a conventional sintered body.

【図3】 THD特性評価用の測定回路図である。FIG. 3 is a measurement circuit diagram for THD characteristic evaluation.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G018 AA08 AA21 AA25 AA31 AC14 AC16 5E041 AB02 AB19 BD01 CA01 HB03 HB11 NN06 NN18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G018 AA08 AA21 AA25 AA31 AC14                       AC16                 5E041 AB02 AB19 BD01 CA01 HB03                       HB11 NN06 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Fe、ZnOおよび酸化マンガン
を主成分とするMn−Zn系フェライト焼結体であっ
て、前記Mn−Zn系フェライト焼結体に占める全空孔
数に対して結晶粒内空孔数が40%以下であることを特
徴とするTHD特性に優れたMn−Zn系フェライト焼
結体。
1. A Mn—Zn-based ferrite sintered body containing Fe 2 O 3 , ZnO and manganese oxide as main components, wherein the crystal is formed with respect to the total number of holes in the Mn—Zn-based ferrite sintered body. A Mn-Zn ferrite sintered body having excellent THD characteristics, characterized in that the number of voids in the grains is 40% or less.
【請求項2】 Fe換算で52.0〜54.0モ
ル%、ZnO換算で18.0〜25.0モル%、残部酸
化マンガンを主成分とし、副成分としてCaO換算で0
〜0.2wt%(0を含まず)のCaと、SiO換算
で0〜0.01wt%(0を含む)のSiを含有するこ
とを特徴とする請求項1に記載のTHD特性に優れたM
n−Zn系フェライト焼結体。
2. A Fe 2 O 3 conversion of 52.0 to 54.0 mol%, a ZnO conversion of 18.0 to 25.0 mol%, a balance of manganese oxide as a main component, and a CaO conversion of 0 as a minor component.
Excellent in THD characteristics according to claim 1, characterized in that it contains Ca of 0.2 wt% (not including 0) and Si of 0 to 0.01 wt% (including 0) in terms of SiO 2. M
n-Zn ferrite sintered body.
【請求項3】 THD値と振幅透磁率μaとの比で表さ
れるTHD/μaが、最大磁束密度30mT、周波数5
kHz、0℃〜85℃の温度範囲において−135dB
以下であることを特徴とする請求項1または2に記載の
THD特性に優れたMn−Zn系フェライト焼結体。
3. THD / μa represented by the ratio of the THD value and the amplitude permeability μa has a maximum magnetic flux density of 30 mT and a frequency of 5
-135 dB in the temperature range of 0 ° C to 85 ° C at kHz
The Mn-Zn based ferrite sintered body having excellent THD characteristics according to claim 1 or 2, wherein:
【請求項4】 Fe、ZnOおよび酸化マンガン
を主成分とするMn−Zn系フェライト焼結体の製造方
法であって、焼結雰囲気を酸素分圧5%〜大気中、かつ
焼結温度を1300℃〜1380℃とし、Mn−Zn系
フェライト焼結体の粒内空孔数を全空孔数の40%以下
とすることを特徴とするTHD特性に優れたMn−Zn
系フェライト焼結体の製造方法。
4. A method for producing a Mn—Zn-based ferrite sintered body containing Fe 2 O 3 , ZnO and manganese oxide as main components, wherein the sintering atmosphere is oxygen partial pressure of 5% to the atmosphere and the sintering is performed. Mn-Zn excellent in THD characteristics, characterized in that the temperature is set to 1300 ° C to 1380 ° C and the number of intragranular vacancies in the Mn-Zn ferrite sintered body is set to 40% or less of the total number of vacancies.
Of manufacturing a ferrite ferrite sintered body.
【請求項5】 1000℃から焼結温度までの昇温速度
を5℃/時間〜150℃/時間とすることを特徴とする
請求項4に記載のTHD特性に優れたMn−Zn系フェ
ライト焼結体の製造方法。
5. The Mn-Zn-based ferrite firing excellent in THD characteristics according to claim 4, wherein the temperature rising rate from 1000 ° C. to the sintering temperature is 5 ° C./hour to 150 ° C./hour. A method for producing a bound body.
JP2002149962A 2002-05-24 2002-05-24 Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME Pending JP2003342062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149962A JP2003342062A (en) 2002-05-24 2002-05-24 Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149962A JP2003342062A (en) 2002-05-24 2002-05-24 Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2003342062A true JP2003342062A (en) 2003-12-03

Family

ID=29767925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149962A Pending JP2003342062A (en) 2002-05-24 2002-05-24 Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2003342062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295985A (en) * 2008-06-05 2009-12-17 Tridelta Weichferrite Gmbh Soft-magnetic material, and process for producing article composed of the soft-magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295985A (en) * 2008-06-05 2009-12-17 Tridelta Weichferrite Gmbh Soft-magnetic material, and process for producing article composed of the soft-magnetic material

Similar Documents

Publication Publication Date Title
US6210598B1 (en) Mn-Zn ferrite
EP1447392A1 (en) Electromagnetic wave absorber formed of Mn-Zn ferrite
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
US6180022B1 (en) Mn-Zn ferrite
JP2005150425A (en) Transformer, core therefor and its manufacturing method
JP2022067365A (en) MnZn-based ferrite
JP3288113B2 (en) Mn-Zn ferrite magnetic material
EP1283529B1 (en) Mn-Zn ferrite and coil component using the same
JP2004247370A (en) MnZn FERRITE
JP4279923B2 (en) MnMgCuZn ferrite material
JP2000095560A (en) Mn-Zn FERRITE HIGH IN MAGNETIC PERMEABILITY
JPH113813A (en) Ferrite material
EP1447393A1 (en) Electromagnetic wave absorber formed of Mn-Zn ferrite
JP2003252680A (en) Mn-Zn FERRITE, FERRITE CORE AND ELECTRONIC COMPONENT FOR COMMUNICATION EQUIPMENT
JP2003342062A (en) Mn-Zn-BASED FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP2005272229A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JPH09295862A (en) Low loss ferrite material and signal chip inductor using the same
JP2004006809A (en) Mn-Zn-BASED FERRITE, FERRITE MAGNETIC CORE AND ELECTRONIC COMPONENT FOR COMMUNICATION EQUIPMENT
JP2004247371A (en) MnZn FERRITE
JP2802839B2 (en) Oxide soft magnetic material
JP4436493B2 (en) High frequency low loss ferrite material and ferrite core using the same
JP7406022B1 (en) MnZnCo ferrite
JPH10270231A (en) Mn-ni ferrite material
JP3617070B2 (en) Low loss ferrite manufacturing method
JP2002353024A (en) Ferrite magnetic core having low-temperature coefficient, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080307