JP2003338670A - Fluororesin printed wiring board and manufacturing method therefor - Google Patents

Fluororesin printed wiring board and manufacturing method therefor

Info

Publication number
JP2003338670A
JP2003338670A JP2002147884A JP2002147884A JP2003338670A JP 2003338670 A JP2003338670 A JP 2003338670A JP 2002147884 A JP2002147884 A JP 2002147884A JP 2002147884 A JP2002147884 A JP 2002147884A JP 2003338670 A JP2003338670 A JP 2003338670A
Authority
JP
Japan
Prior art keywords
fluororesin
printed wiring
wiring board
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002147884A
Other languages
Japanese (ja)
Other versions
JP2003338670A5 (en
JP3942489B2 (en
Inventor
Osamu Tsuda
統 津田
Takanori Suzuki
孝典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2002147884A priority Critical patent/JP3942489B2/en
Publication of JP2003338670A publication Critical patent/JP2003338670A/en
Publication of JP2003338670A5 publication Critical patent/JP2003338670A5/ja
Application granted granted Critical
Publication of JP3942489B2 publication Critical patent/JP3942489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluororesin printed wiring board with high relative permittivity, few partial variation of relative permittivity and dielectric loss tangent, a smooth surface with no minute irregularity, and with superior dimensional stability in X, Y and Z-directions, to provide a method for manufacturing it, and to provide a fluororesin printed wiring board with the superior adhesion force of metal foil and the small percentage of absorption in addition to the above properties, and a method for manufacturing it. <P>SOLUTION: A primary sheet, formed by wet sheet forming aqueous slurry containing at least inorganic particulates and heat-resistant insulating fiber with a fluororesin fiber as a main component, is heat-treated at a fusing point or above of the fluororesin, to form a sheet-like material. At least two sheets of the sheet-like materials are laminated by making them cross with each other at 90 degrees with a longitudinal direction or a lateral direction as a reference, to form an insulating layer. This fluororesin printed wiring board comprises the insulating layer and a conductive layer of a circuit pattern provided at least on one surface of the insulating layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明のフッ素樹脂プリント
配線板は、高比誘電率を有するプリント配線板、及びそ
の製造方法に関する。特に情報通信機器などにおいて高
周波帯で使用されるアンテナ部品の配線、ICパッケー
ジ等の半導体の高密度配線及び小型機器の精密配線等に
好適なプリント配線板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The fluororesin printed wiring board of the present invention relates to a printed wiring board having a high relative dielectric constant and a method for manufacturing the same. In particular, the present invention relates to a printed wiring board suitable for wiring of antenna parts used in a high frequency band in information communication equipment and the like, high-density wiring of semiconductors such as IC packages and precision wiring of small equipment, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来のプリント配線板関連分野におい
て、誘電特性が優れたプリント配線板用基板及びその製
造方法としては、例えば特開平7−323501号公報
に開示された次のようなものが一般的である。すなわ
ち、ガラスクロスを基材として用いて、この基材にポリ
テトラフルオロエチレン(以下,PTFEと称す)樹脂
ディスパージョンの含浸および焼成処理を数回繰り返し
て作製したシートを銅箔と重ね、加熱プレスして一体化
して基板とする。前記シートを複数枚重ねて基板とする
場合は、該シート間にテトラフルオロエチレン/パーフ
ルオロアルキルビニルエーテル共重合体樹脂層もしくは
テトラフルオロエチレン/ヘキサフルオロプロピレン共
重合体樹脂層を、フィルムとして介在させるか、もしく
はコーティング等により形成し、さらに最外層に配置さ
れる銅箔との間にも上記の樹脂層を形成し、積み重ねら
れたシートと、銅箔とを加熱プレスして一体化形成する
ものである。このような方法で、比誘電率が2〜3.
5、誘電正接0.0010程度のプリント基板が作製さ
れている。
2. Description of the Related Art In a conventional printed wiring board-related field, a printed wiring board substrate having excellent dielectric properties and a method for manufacturing the same are generally as follows, for example, as disclosed in JP-A-7-323501. Target. That is, using a glass cloth as a substrate, a sheet prepared by repeating impregnation of a polytetrafluoroethylene (hereinafter referred to as PTFE) resin dispersion and firing treatment on the substrate several times is overlaid with a copper foil, and hot pressed. And then integrated into a substrate. When a plurality of the above-mentioned sheets are laminated to form a substrate, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin layer or a tetrafluoroethylene / hexafluoropropylene copolymer resin layer may be interposed between the sheets as a film. Alternatively, the resin layer may be formed by coating or the like, and the above resin layer may be formed between the outermost layer and the copper foil, and the stacked sheets and the copper foil may be heat-pressed to be integrally formed. is there. By such a method, the relative dielectric constant is 2-3.
5. A printed circuit board having a dielectric loss tangent of about 0.0010 is manufactured.

【0003】上記のような従来のガラスクロスを用いた
フッ素樹脂プリント配線板は、基板の長尺方向(縦方
向)、幅方向(横方向)及び厚さ方向とをそれぞれX方
向、Y方向及びZ方向とすると、ガラスクロスの存在に
よりX方向及びY方向の寸法変化率は小さいが、Z方向
は大きい。また、ガラスクロスにおいて経糸と緯糸に残
留するテンションの差により、回路パターンの導電層形
成時や熱処理時等に、X方向とY方向の寸法変化に差が
生じ基板に歪みが発生したり、ガラスクロスの編み目部
分でのガラス繊維同士のずれや動きによって寸法変化の
値が大きくなることがある。また、プリント配線板の表
面に編み目による微小な凹凸が存在する。これらにより
パターン形成やスルーホール形成の精度が低下したり、
導電部が伸縮して損傷を生じたりするため、特に小型な
配線板において性能の信頼性に欠けるという問題があ
る。
In the fluororesin printed wiring board using the conventional glass cloth as described above, the longitudinal direction (longitudinal direction), the width direction (horizontal direction) and the thickness direction of the substrate are respectively X-direction, Y-direction and In the Z direction, the dimensional change rates in the X and Y directions are small due to the presence of the glass cloth, but the Z direction is large. Further, due to the difference in tension remaining between the warp yarn and the weft yarn in the glass cloth, a difference in dimensional change in the X direction and the Y direction occurs during the formation of the conductive layer of the circuit pattern, heat treatment, etc. The value of the dimensional change may increase due to the displacement or movement of the glass fibers in the stitch portion of the cloth. Also, there are fine irregularities due to the stitches on the surface of the printed wiring board. Due to these, the accuracy of pattern formation and through hole formation decreases,
Since the conductive part expands and contracts to cause damage, there is a problem that the reliability of the performance is insufficient particularly in a small wiring board.

【0004】更に、従来のガラスクロスを用いたフッ素
樹脂プリント配線板は、ガラスクロスが編み目構造にな
っているために、材料構成が部分部分で不均一であるが
ため、比誘電率及び誘電正接が部分部分で不均一であ
る。すなわち、配線板上の回路から見て、その真下が目
開き部分であるか、ガラス繊維部分であるか、或いは経
糸と緯糸の交差部分であるかによって比誘電率及び誘電
正接にばらつきを生じる。このために、配線板上に設け
られた高周波フィルター等の特性が安定しないという問
題点がある。編み目構造による不均一性による問題は、
プリント配線板のZ方向についても生じ、例えばスルー
ホールのメッキ層が均一に形成されないばかりでなく、
フッ素樹脂が多い部分でメッキ層が欠落する場合もあ
る。また、ガラスクロスとPTFEとの界面に微細な空
隙が残存し、空隙にエッチング液が入りやすく吸水率が
大きいとか、大気中の水分を取り込みやすく、比誘電率
及び誘電正接が大きくなるという問題もある。
Further, in the conventional fluororesin printed wiring board using the glass cloth, since the glass cloth has a knitted structure, the material composition is non-uniform in parts, so that the relative permittivity and the dielectric loss tangent are small. Is uneven in parts. That is, when viewed from the circuit on the wiring board, the relative permittivity and the dielectric loss tangent vary depending on whether the portion directly below is the opening portion, the glass fiber portion, or the intersection portion of the warp and the weft. For this reason, there is a problem in that the characteristics of the high frequency filter and the like provided on the wiring board are not stable. Problems due to non-uniformity due to the stitch structure,
This also occurs in the Z direction of the printed wiring board. For example, not only the plated layer of through holes is not formed uniformly,
In some cases, the plating layer may be missing in the portion where the fluororesin is large. In addition, there are also problems that fine voids remain at the interface between the glass cloth and PTFE, the etching liquid easily enters the voids, the water absorption is large, or the moisture in the air is easily taken in, and the relative dielectric constant and dielectric loss tangent become large. is there.

【0005】また、従来の高周波用プリント配線板にお
いては、基板内の信号の波長が短いために、特に高密度
配線や基板の小型化には誘電体材料の高比誘電率化が求
められている。勿論、高周波対応のプリント配線板を得
るために低誘電正接である事も同時に必要となり、高比
誘電率でかつ低誘電正接なプリント配線板が求められて
いる。具体的には、移動通信、無線通信及び高速通信な
どの高い周波数帯を使用する分野である。
Further, in the conventional high-frequency printed wiring board, since the wavelength of the signal in the substrate is short, a high relative permittivity of the dielectric material is required especially for high-density wiring and miniaturization of the substrate. There is. Needless to say, a low dielectric loss tangent is required at the same time to obtain a printed wiring board compatible with high frequencies, and a printed wiring board having a high relative dielectric constant and a low dielectric loss tangent is required. Specifically, it is a field that uses a high frequency band such as mobile communication, wireless communication, and high-speed communication.

【0006】そこで、高比誘電率を有するプリント配線
板の製造方法としては例えば次のような方法がある。比
誘電率を高くするためにPTFEディスパージョンに高
比誘電率を有する無機微粒子を分散させてガラスクロス
に含浸させる。この場合、PTFE粒子と無機微粒子の
比重の差、ガラスクロス編み目などにより均一にガラス
クロスに含浸させることが困難であり、シート表面に無
機微粒子が不均一に存在するので微細な配線パターン形
成ができないという問題が生じた。また、厚さ方向に関
しては、無機微粒子が最外層に露出するため銅箔の密着
力が低下し、吸水率も大きくなるという問題が生じた。
Therefore, as a method of manufacturing a printed wiring board having a high relative dielectric constant, there is, for example, the following method. In order to increase the relative permittivity, inorganic fine particles having a high relative permittivity are dispersed in the PTFE dispersion and impregnated in the glass cloth. In this case, it is difficult to uniformly impregnate the glass cloth due to the difference in specific gravity between the PTFE particles and the inorganic particles, the glass cloth stitches, and the like, and since the inorganic particles are unevenly present on the sheet surface, a fine wiring pattern cannot be formed. The problem arises. In addition, in the thickness direction, since the inorganic fine particles are exposed to the outermost layer, the adhesion of the copper foil is reduced and the water absorption is increased.

【0007】また、特開平3−218690号公報に
は、ポリテトラフルオロエチレン繊維と無機繊維とを混
合して湿式抄造して作製したシートを加熱焼結したプリ
ント配線板用基材シートが開示されている。湿式抄造に
より得られたシートは繊維の分布が均一であるので、プ
リント配線板とした場合、ガラスクロスタイプの場合の
ような誘電特性の部分的ばらつきの問題はないし、Z方
向の寸法変化率は小さい。しかし、X方向及びY方向に
関しては、ガラスクロスタイプより大きく、しかも、X
方向とY方向の寸法変化率の差を小さくするために、繊
維の配向性という点で外観的にはランダムとなるような
抄造条件を選択しても、抄造方向(縦方向)または幅方
向(横方向)へ繊維が偏って配向する傾向を抑え切るこ
とはできず、その結果、プリント配線板とした場合、繊
維が配向した方向に寸法変化率が小さく、逆にその直角
方向に大きくなり、そのために、プリント配線板が変形
するという問題を有していた。さらに、プリント配線板
の比誘電率の調整のために、フッ素樹脂繊維一次シート
に無機微粒子を含有させようとすると、該一次シート中
への歩留りが低く所望の比誘電率を有するプリント配線
板が得にくいという問題や、一次シート表面に存在する
無機微粒子が表面から脱離し易く、また金属箔の密着力
が劣り、吸水率も大きいという問題があった。
Further, Japanese Patent Laid-Open No. 3-218690 discloses a base sheet for a printed wiring board obtained by heat-sintering a sheet prepared by wet-texturing polytetrafluoroethylene fiber and inorganic fiber. ing. Since the sheet obtained by wet papermaking has a uniform fiber distribution, when it is used as a printed wiring board, there is no problem of partial variation in dielectric properties as in the case of the glass cloth type, and the dimensional change rate in the Z direction is small. However, it is larger than the glass cloth type in the X and Y directions, and
In order to reduce the difference in the dimensional change rate between the Y-direction and the Y-direction, even if paper-making conditions such that the appearance is random in terms of fiber orientation are selected, the paper-making direction (longitudinal direction) or width direction ( It is not possible to suppress the tendency of the fibers to be oriented in the (horizontal direction) unevenly, and as a result, in the case of a printed wiring board, the dimensional change rate is small in the direction in which the fibers are oriented, and conversely increases in the direction perpendicular to the direction. Therefore, there is a problem that the printed wiring board is deformed. Furthermore, in order to adjust the relative permittivity of the printed wiring board, when the inorganic particles are contained in the fluororesin fiber primary sheet, the yield in the primary sheet is low, and the printed wiring board having a desired relative permittivity is obtained. There are problems that it is difficult to obtain, that the inorganic fine particles existing on the surface of the primary sheet are easily detached from the surface, that the adhesion of the metal foil is poor and that the water absorption rate is large.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、高比誘電率を有し、比誘電率及び
誘電正接の部分的ばらつきが小さく、プリント配線板の
表面に微小な凹凸もなく平滑で、かつ、X方向、Y方向
及びZ方向の寸法安定性に優れたフッ素樹脂プリント配
線板及びその製造方法を提供することにある。さらには
上記特性に加えて、金属箔の密着力に優れ、吸水率の小
さいフッ素樹脂プリント配線板、及びその製造方法を提
供することにある。
Therefore, the problem to be solved by the present invention is to have a high relative permittivity, a small partial variation in the relative permittivity and the dielectric loss tangent, and a small amount on the surface of a printed wiring board. It is an object to provide a fluororesin printed wiring board which is smooth without unevenness and has excellent dimensional stability in the X, Y and Z directions, and a method for producing the same. Further, in addition to the above-mentioned characteristics, it is to provide a fluororesin printed wiring board having excellent adhesion to a metal foil and a small water absorption, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために種々検討の結果、下記手段を見出し
た。本発明は、フッ素樹脂繊維を主成分とし、少なくと
も無機微粒子及び耐熱性絶縁繊維を含有する水系スラリ
ーを湿式抄造して得た一次シートを、フッ素樹脂の融点
以上で熱処理して紙状物とし、該紙状物の少なくとも2
枚を縦方向または横方向を基準として90°に直交させ
て積層した絶縁層と、該絶縁層の少なくとも片面に設け
た回路パターンの導電層とを有することを特徴とするフ
ッ素樹脂プリント配線板である(請求項1)。また、フ
ッ素樹脂繊維を主成分とし、少なくとも無機微粒子及び
耐熱性絶縁繊維を含有する水系スラリーを湿式抄造して
得た一次シートの少なくとも一方の表面部分にフッ素樹
脂を付着させた後、フッ素樹脂の融点以上で熱処理して
紙状物とし、該紙状物の少なくとも2枚を縦方向または
横方向を基準として90°に直交させて積層した絶縁層
と、該絶縁層の少なくとも片面に設けた回路パターンの
導電層とを有することを特徴とするフッ素樹脂プリント
配線板である(請求項2)。また、比誘電率が5〜20
であることを特徴とする請求項1もしくは2に記載のフ
ッ素樹脂プリント配線板であり(請求項3)、前記フッ
素樹脂繊維は、ポリテトラフルオロエチレン繊維である
ことを特徴とする請求項1乃至3のいずれかに記載のフ
ッ素樹脂プリント配線板であり(請求項4)、前記無機
微粒子は、チタン系セラミック微粒子であることを特徴
とする請求項1乃至4のいずれかに記載のフッ素樹脂プ
リント配線板であり(請求項5)、 前記耐熱性絶縁繊
維は、ガラス繊維であることを特徴とする請求項1乃至
5のいずれかに記載のフッ素樹脂プリント配線板であり
(請求項6)、前記耐熱性絶縁繊維は、ガラス繊維及び
ポリパラフェニレンベンゾビスオキサゾール繊維である
ことを特徴とする請求項1乃至5のいずれかに記載のフ
ッ素樹脂プリント配線板であり(請求項7)、前記無機
微粒子の配合量は、フッ素樹脂繊維と無機微粒子と耐熱
性絶縁繊維の合計量に対して10〜70重量%であるこ
とを特徴とする請求項1乃至7のいずれかに記載のフッ
素樹脂プリント配線板であり(請求項8)、前記耐熱性
絶縁繊維の配合量は、フッ素樹脂繊維と無機微粒子と耐
熱性絶縁繊維の合計に対して3〜40重量%であること
を特徴とする請求項1乃至8のいずれかに記載のフッ素
樹脂プリント配線板である(請求項9)。
Means for Solving the Problems The present inventors have found the following means as a result of various studies for solving the above problems. The present invention contains a fluororesin fiber as a main component, a primary sheet obtained by wet papermaking of an aqueous slurry containing at least inorganic fine particles and a heat-resistant insulating fiber, is heat-treated at a temperature not lower than the melting point of the fluororesin to give a paper-like material, At least 2 of the paper-like material
A fluororesin printed wiring board comprising: an insulating layer formed by stacking a plurality of the sheets so as to be orthogonal to each other at 90 ° with respect to the vertical direction or the horizontal direction, and a conductive layer having a circuit pattern provided on at least one surface of the insulating layer. There is (claim 1). Further, after the fluororesin is adhered to at least one surface portion of the primary sheet obtained by wet papermaking of an aqueous slurry containing fluororesin fibers as a main component and containing at least inorganic fine particles and heat resistant insulating fibers, An insulating layer obtained by heat-treating at a melting point or higher to form a paper-like material, and at least two paper-like materials laminated at right angles to each other at 90 ° with respect to the longitudinal direction or the transverse direction, and a circuit provided on at least one surface of the insulating layer. A fluororesin printed wiring board having a patterned conductive layer (claim 2). Further, the relative dielectric constant is 5 to 20.
The fluororesin printed wiring board according to claim 1 or 2, wherein the fluororesin fiber is a polytetrafluoroethylene fiber. 5. The fluororesin printed wiring board according to claim 3 (claim 4), wherein the inorganic fine particles are titanium-based ceramic fine particles, and the fluororesin print according to any one of claims 1 to 4. It is a wiring board (Claim 5), and the heat-resistant insulating fiber is glass fiber. The fluororesin printed wiring board according to any one of claims 1 to 5, (Claim 6), The fluororesin printed circuit board according to any one of claims 1 to 5, wherein the heat-resistant insulating fibers are glass fibers and polyparaphenylenebenzobisoxazole fibers. A wire plate (claim 7), wherein the content of the inorganic fine particles is 10 to 70% by weight based on the total amount of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber. The fluororesin printed wiring board according to any one of claims 1 to 7 (claim 8), wherein the blending amount of the heat resistant insulating fiber is 3 to 40 relative to the total of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber. The fluororesin printed wiring board according to any one of claims 1 to 8, wherein the fluororesin printed wiring board has a weight% (claim 9).

【0010】また、本発明は、フッ素樹脂繊維を主成分
とし、少なくとも無機微粒子及び耐熱性絶縁繊維を含有
する水系スラリーを湿式抄造して一次シート化する工
程、該フッ素樹脂の融点以上の温度で熱処理してフッ素
樹脂繊維同士を融着して紙状物とする工程、及び該紙状
物の少なくとも2枚を縦方向または横方向を基準として
90°に直交させて積層し絶縁層とし、かつ該絶縁層の
少なくとも片面に導電性金属箔を配置し導電層とする工
程、フッ素樹脂の融点以上の温度で真空加熱プレスしプ
リント配線板用フッ素樹脂積層板を作成する工程、及び
導電層を所望の回路パターンとする工程よりなるフッ素
樹脂プリント配線板の製造方法であり(請求項10)、
また、フッ素樹脂繊維を主成分とし、少なくとも無機微
粒子及び耐熱性絶縁繊維を含有する水系スラリーを湿式
抄造して一次シート化する工程、該一次シートの少なく
とも一方の表面部分にフッ素樹脂を付着させる工程、該
フッ素樹脂の融点以上の温度で熱処理してフッ素樹脂繊
維同士及びフッ素樹脂繊維と表面部分のフッ素樹脂とを
融着して紙状物とする工程、及び該紙状物の少なくとも
2枚を縦方向または横方向を基準として90°に直交さ
せて積層し絶縁層とし、かつ該絶縁層の少なくとも片面
に導電性金属箔を配置し導電層とする工程、フッ素樹脂
の融点以上の温度で真空加熱プレスしプリント配線板用
フッ素樹脂積層板を作製する工程、及び導電層を所望の
回路パターンとする工程よりなるフッ素樹脂プリント配
線板の製造方法であり(請求項11)、前記一次シート
の表面部分に付着させるフッ素樹脂としては、フッ素樹
脂ディスパージョンを用いることを特徴とする請求項1
1に記載のフッ素樹脂プリント配線板の製造方法である
(請求項12)。
Further, the present invention comprises a step of wet-making an aqueous slurry containing fluororesin fibers as a main component and containing at least inorganic fine particles and heat-resistant insulating fibers to form a primary sheet, at a temperature not lower than the melting point of the fluororesin. A step of heat-treating to fuse the fluororesin fibers to each other to form a paper-like material, and at least two paper-like materials laminated at 90 ° orthogonal to the longitudinal direction or the transverse direction to form an insulating layer, and A step of arranging a conductive metal foil on at least one surface of the insulating layer to form a conductive layer, a step of vacuum heating and pressing at a temperature equal to or higher than the melting point of the fluororesin to prepare a fluororesin laminate for a printed wiring board, and a desired conductive layer A method for producing a fluororesin printed wiring board, which comprises the step of forming a circuit pattern according to (10).
Further, a step of wet-paper-making an aqueous slurry containing a fluororesin fiber as a main component and containing at least inorganic fine particles and a heat-resistant insulating fiber to form a primary sheet, a step of adhering a fluororesin to at least one surface portion of the primary sheet A step of heat-treating the fluororesin at a temperature equal to or higher than the melting point of the fluororesin to fuse the fluororesin fibers with each other and the fluororesin fiber and the fluororesin on the surface to form a paper-like material, and at least two sheets of the paper-like material A step of forming an insulating layer by stacking them orthogonally to each other at 90 ° with respect to the vertical direction or the horizontal direction, and disposing a conductive metal foil on at least one surface of the insulating layer to form a conductive layer, and vacuuming at a temperature equal to or higher than the melting point of the fluororesin A method for producing a fluororesin printed wiring board comprising a step of heating and pressing to produce a fluororesin laminated board for a printed wiring board, and a step of forming a conductive layer into a desired circuit pattern. Ri (Claim 11), the fluorine resin to be adhered to the surface portion of the primary sheet, according to claim 1 which comprises using a fluorine resin dispersion
The method for producing a fluororesin printed wiring board according to item 1 (claim 12).

【0011】以下本発明において用いられる各材料につ
いて説明する。本発明において用いられるフッ素樹脂繊
維は、上記PTFE繊維の他に、テトラフルオロエチレ
ン/ヘキサフルオロプロピレン共重合体(FEP)、テ
トラフルオロエチレン/パーフルオロアルキルビニルエ
ーテル共重合体(PFA)、ポリクロロトリフルオロエ
チレン(PCTFE)、ポリフッ化ビニリデン(PVD
F)、ポリフッ化ビニル、エチレン/テトラフルオロエ
チレン共重合体(ETFE)、エチレン/クロロトリフ
ルオロエチレン共重合体(ECTFE)、テトラフルオ
ロエチレン/ヘキサフルオロプロピレン/パーフルオロ
アルキルビニルエーテル共重合体(FEPPFA)の繊
維が挙げられる。中でも、PTFE繊維は、比誘電率及
び誘電正接が低く、耐熱性、耐薬品性にも優れているの
で、本発明のフッ素樹脂プリント配線板を得るのに好ま
しい。なお、本発明で用いるフッ素樹脂繊維には、その
2種以上を混合して使用することもできる。
Each material used in the present invention will be described below. The fluororesin fibers used in the present invention include, in addition to the PTFE fibers, tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkylvinylether copolymer (PFA), polychlorotrifluoro. Ethylene (PCTFE), polyvinylidene fluoride (PVD)
F), polyvinyl fluoride, ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer (FEPPFA) Fibers. Among them, PTFE fiber is preferable for obtaining the fluororesin printed wiring board of the present invention because it has a low relative dielectric constant and a low dielectric loss tangent and is excellent in heat resistance and chemical resistance. The fluororesin fibers used in the present invention may be used as a mixture of two or more thereof.

【0012】なお、本発明で用いられるフッ素樹脂繊維
の直径及び繊維長は、特に限定されず、本発明の湿式抄
造法によって抄造が可能であればよく、形状は単純な繊
維状あるいは、粒状(球状、不定形など)、フィブリッ
ド状、パルプ状、その他様々な形状等、特に限定される
ものではないが、例えば、直径は1μm〜50μm、長
さは0.1mm〜10mmのものが使用される。直径及
び長さが、上記範囲の下限未満では抄造時の脱水性が悪
く生産性が低下し、上限を超えると薄いシートを作製し
にくくなる。
The diameter and the fiber length of the fluororesin fiber used in the present invention are not particularly limited as long as they can be made by the wet papermaking method of the present invention, and the shape is simple fibrous or granular ( Spherical shape, amorphous shape, etc., fibrid shape, pulp shape, and various other shapes are not particularly limited, but for example, those having a diameter of 1 μm to 50 μm and a length of 0.1 mm to 10 mm are used. . If the diameter and the length are less than the lower limits of the above ranges, the dehydration property during papermaking is poor and the productivity is lowered, and if the diameter and the length exceed the upper limits, it becomes difficult to produce a thin sheet.

【0013】また、フッ素樹脂繊維として、フッ素樹脂
繊維紙状物に要求される特性、具体的には本発明におけ
るシート強度、寸法安定性、及び無機微粒子や耐熱性絶
縁繊維の含有量等によって、フッ素樹脂繊維の形態がフ
ィブリル化されているものとフィブリル化されていない
ものを選択して使用でき、場合によっては混合して使用
することができる。
Further, as the fluororesin fiber, the properties required for the fluororesin fiber paper-like material, specifically, the sheet strength, the dimensional stability, the content of the inorganic fine particles and the heat-resistant insulating fiber, etc. in the present invention, It is possible to select and use a fibrillated form of the fluororesin fiber and a non-fibrillated form thereof, and in some cases, they can be mixed and used.

【0014】フィブリル化の度合いは、フッ素樹脂繊維
紙状物の平均孔径、最大孔径やシート強度などとの関係
で決定される。例えば、より強いシート強度を必要とす
る場合には、フィブリル化の程度を進めた繊維を使用す
ることが好ましい。また、それによってフッ素樹脂繊維
と他の材料との接着力も向上する。フィブリル化の度合
いは、JIS P8121:1995に記載のろ水度に
よって表わすことができる。フィブリル化のための手段
としては、一般的な叩解機であるボールミル、ビータ
ー、ランペンミル、PFIミル、SDR(シングルディ
スクリファイナー)、DDR(ダブルデスクリファイナ
ー)、その他のリファイナー等を使用することができ
る。
The degree of fibrillation is determined in relation to the average pore diameter, maximum pore diameter, sheet strength, etc. of the fluororesin fiber paper material. For example, when stronger sheet strength is required, it is preferable to use fibers having an advanced degree of fibrillation. In addition, the adhesion between the fluororesin fiber and other materials is also improved thereby. The degree of fibrillation can be represented by the freeness described in JIS P8121: 1995. As a means for fibrillation, a general beating machine such as a ball mill, beater, lampen mill, PFI mill, SDR (single disc refiner), DDR (double desk refiner), and other refiners can be used.

【0015】本発明に使用できるPTFE繊維の例とし
ては、PTFE微粒子をビスコース、カルボキシメチル
セルロース、ポリビニルアルコールなどの親水性の結着
剤マトリックス中に分散し、細孔から凝固浴に紡出させ
て得られた延伸または未延伸の繊維が挙げられる。この
場合、得られた延伸または未延伸のPTFE繊維を3〜
15mmの長さに切断し、無機微粒子、耐熱性絶縁繊維
やその他原料とともに、ポリアクリルアミドなどの分散
剤を用いて水に分散して抄紙原料を調整する。この抄紙
原料を円網抄紙機、長網抄紙機、短網式、傾斜式などの
抄紙機で抄紙し、PTFE繊維の一次シートを作製す
る。PTFE繊維の一次シート化において、PTFE繊
維に配合されているマトリックス物質が、抄紙の際に繊
維間の結着機能を発揮する。
As an example of the PTFE fiber which can be used in the present invention, PTFE fine particles are dispersed in a hydrophilic binder matrix such as viscose, carboxymethyl cellulose, polyvinyl alcohol, etc., and spun into the coagulation bath through the pores. The obtained stretched or unstretched fiber may be mentioned. In this case, the obtained stretched or unstretched PTFE fiber is
It is cut into a length of 15 mm and dispersed in water using a dispersant such as polyacrylamide together with inorganic fine particles, heat resistant insulating fibers and other raw materials to prepare a papermaking raw material. The papermaking raw material is paper-made by a cylinder paper machine, a fourdrinier paper machine, a short-net paper machine, a tilt paper machine or the like to prepare a primary sheet of PTFE fiber. In forming a primary sheet of PTFE fiber, the matrix substance mixed with the PTFE fiber exhibits a binding function between fibers during papermaking.

【0016】また、本発明においては、プリント配線板
の比誘電率を上げ、かつ寸法安定性を向上させる目的で
無機微粒子を使用する。無機微粒子の種類の選択や配合
によって、プリント配線板の誘電正接は低いまま比誘電
率を高くし、かつプリント配線板のX方向、Y方向及び
Z方向の熱膨張係数や寸法変化を抑えたり、プリント配
線板の曲げ強度および曲げ弾性率などの機械的強度も向
上させることができる。
Further, in the present invention, inorganic fine particles are used for the purpose of increasing the relative dielectric constant of the printed wiring board and improving the dimensional stability. By selecting and mixing the type of inorganic fine particles, the relative dielectric constant is increased while the dielectric loss tangent of the printed wiring board is low, and the thermal expansion coefficient and dimensional change of the printed wiring board in the X, Y, and Z directions can be suppressed. Mechanical strength such as flexural strength and flexural modulus of the printed wiring board can also be improved.

【0017】本発明において、無機微粒子は高比誘電率
を有することが好ましく、具体的には二酸化チタン系セ
ラミック、チタン酸バリウム系セラミック、チタン酸鉛
系セラミック、チタン酸ストロンチウム系セラミック、
チタン酸カルシウム系セラミック、チタン酸ビスマス系
セラミック、チタン酸マグネシウム系セラミックなどの
チタン系セラミック、ジルコン酸鉛系セラミック等や二
酸化チタン、酸化銀、酸化亜鉛などを挙げることができ
る。なお、前記二酸化チタン系セラミックとは、組成的
には二酸化チタンのみを含む系、または二酸化チタンに
他の少量の添加物を含む系で、主成分である二酸化チタ
ンの結晶構造が保持されているものである。他の系のセ
ラミックもこれと同様である。上記無機微粒子の中で、
比誘電率の面でチタン系セラミック微粒子が好ましい。
また、上記無機微粒子を複数種類混合して用いることも
できる。
In the present invention, it is preferable that the inorganic fine particles have a high relative dielectric constant. Specifically, titanium dioxide ceramics, barium titanate ceramics, lead titanate ceramics, strontium titanate ceramics,
Examples thereof include calcium titanate-based ceramics, bismuth titanate-based ceramics, magnesium titanate-based ceramics and other titanium-based ceramics, lead zirconate-based ceramics and the like, and titanium dioxide, silver oxide, zinc oxide and the like. The titanium dioxide ceramic is a system that contains only titanium dioxide in terms of composition, or a system that contains a small amount of other additives in titanium dioxide, and the crystal structure of titanium dioxide as the main component is retained. It is a thing. The same applies to ceramics of other systems. Among the above inorganic fine particles,
Titanium-based ceramic fine particles are preferable in terms of relative dielectric constant.
Further, a plurality of kinds of the above-mentioned inorganic fine particles can be mixed and used.

【0018】無機微粒子の形状及び寸法は特に限定され
ず、本発明での湿式抄造法により一次シートの形成が可
能であればよく、形状は球状、粒状、中空状、繊維状、
異形状、不定形、その他様々な形状のものがあるが、例
えば、球状のものが一般的であり、粒子径としては、好
ましくは約50μm以下のものが使用され、より好まし
くは0.1〜20μm、さらに好ましくは0.1〜15
μmの範囲のものである。無機微粒子の粒子径が大きい
と抄造用スラリーでの均一分散がしにくく、フッ素樹脂
繊維一次シートで不均一な分布をし易くなる。逆に小さ
すぎると取り扱い性が悪く、また、湿式抄造の際、一次
シート中への歩留りが悪く、一次シート中の含有量の制
御がしにくくなる。
The shape and size of the inorganic fine particles are not particularly limited as long as the primary sheet can be formed by the wet papermaking method of the present invention, and the shape can be spherical, granular, hollow, fibrous,
There are various shapes such as irregular shapes, amorphous shapes and the like, but for example, a spherical shape is common, and the particle size is preferably about 50 μm or less, more preferably 0.1 to 50 μm. 20 μm, more preferably 0.1-15
It is in the μm range. When the particle size of the inorganic fine particles is large, it is difficult to uniformly disperse the slurry in the papermaking slurry, and it becomes easy to make an uneven distribution in the fluororesin fiber primary sheet. On the other hand, if it is too small, the handleability is poor, and the yield in the primary sheet during wet papermaking is poor, making it difficult to control the content in the primary sheet.

【0019】無機微粒子の配合量は、プリント配線板の
比誘電率の値と寸法安定性のバランスによって決定され
る。上記バランスを考慮すると、無機微粒子の配合量は
フッ素樹脂繊維、無機微粒子及び耐熱性絶縁繊維の合計
量に対して10〜70重量%であることが好ましい。1
0重量%未満ではプリント配線板の比誘電率を上げる効
果が不足する傾向となり、70重量%を超えると抄造用
スラリー中で均一な分散をし難くなるため、フッ素樹脂
繊維一次シートでの分布が不均一になり易いし、一次シ
ートから脱離し易くなったり、一次シートの強度が低下
して作業性が悪くなるなどの問題が出てくる。また、プ
リント配線板にした場合に機械的強度の低下がみられる
ようになり好ましくない。なお、プリント配線板の比誘
電率は具体的用途毎に適正範囲が細分化されるので、具
体的用途に応じて無機微粒子配合量もより狭い範囲に定
めることになる。
The blending amount of the inorganic fine particles is determined by the balance between the relative dielectric constant of the printed wiring board and the dimensional stability. In consideration of the above balance, the content of the inorganic fine particles is preferably 10 to 70% by weight based on the total amount of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber. 1
If it is less than 0% by weight, the effect of increasing the relative dielectric constant of the printed wiring board tends to be insufficient, and if it exceeds 70% by weight, it becomes difficult to uniformly disperse it in the papermaking slurry. There are problems such as non-uniformity, easy detachment from the primary sheet, and decrease in strength of the primary sheet, resulting in poor workability. Further, when the printed wiring board is used, the mechanical strength is lowered, which is not preferable. Since the appropriate range of the relative permittivity of the printed wiring board is subdivided for each specific use, the compounding amount of the inorganic fine particles is set to a narrower range according to the specific use.

【0020】本発明においては、プリント配線板の寸法
安定性をさらに向上させる目的で、抄紙原料中には、耐
熱性絶縁繊維を使用する。耐熱性絶縁繊維の配合するこ
とによって、プリント配線板のX方向、Y方向及び厚さ
方向(Z方向)の熱膨張係数や寸法変化率を格段と抑え
たり、プリント配線板の曲げ強度および曲げ弾性率など
の機械的強度も向上させることが出来る。また、耐熱性
絶縁繊維の種類や配合量によってプリント配線板の比誘
電率の調整も可能である。
In the present invention, for the purpose of further improving the dimensional stability of the printed wiring board, heat-resistant insulating fibers are used in the papermaking raw material. By incorporating heat-resistant insulating fibers, the thermal expansion coefficient and dimensional change rate of the printed wiring board in the X, Y and thickness directions (Z direction) can be significantly suppressed, and the bending strength and bending elasticity of the printed wiring board can be reduced. Mechanical strength such as rate can also be improved. Further, the relative permittivity of the printed wiring board can be adjusted by the kind and blending amount of the heat resistant insulating fiber.

【0021】耐熱性絶縁繊維としては無機繊維と有機繊
維とがあるが、プリント配線板の熱膨張係数や寸法変化
率を抑えるためには、繊維自身の弾性率が大きく剛直で
あることが好ましい。無機繊維としてガラス繊維、シリ
カ繊維、アルミナ繊維、アルミニウムシリケート繊維な
どがあるが、目的を十分に達成でき、かつ価額が安いガ
ラス繊維が好ましく使用される。有機繊維としては、い
わゆるスーパー繊維と称せられる高耐熱性、高強度・高
弾性率繊維が使用でき、例えばポリパラフェニレンベン
ゾビスオキサゾール繊維(以下、PBO繊維と称す)、
芳香族ポリエステル繊維、ポリフェニレンスルフィド繊
維、全芳香族ポリアミド繊維等を使用できるが、最も弾
性率が大きいPBO繊維が好ましい。また、上記耐熱性
絶縁繊維を複数種類混合して用いることもできる。
The heat-resistant insulating fibers include inorganic fibers and organic fibers, but in order to suppress the coefficient of thermal expansion and the dimensional change rate of the printed wiring board, it is preferable that the fibers themselves have a large elastic modulus and be rigid. As the inorganic fibers, there are glass fibers, silica fibers, alumina fibers, aluminum silicate fibers and the like, but glass fibers that can sufficiently achieve the purpose and are inexpensive are preferably used. As the organic fibers, high heat resistance, high strength and high elastic modulus fibers called so-called super fibers can be used. For example, polyparaphenylene benzobisoxazole fibers (hereinafter referred to as PBO fibers),
Aromatic polyester fibers, polyphenylene sulfide fibers, wholly aromatic polyamide fibers and the like can be used, but PBO fibers having the highest elastic modulus are preferable. Further, a plurality of types of the above heat resistant insulating fibers may be mixed and used.

【0022】上記耐熱性絶縁繊維の形状は、特に限定さ
れるものではないが、直径は50μm以下が好ましく、
長さは0.1〜20mmが好ましくい。直径が50μm
を超えて大きいと薄いシートを作製しにくくなる。長さ
が0.1mm未満では寸法安定性の効果が出にくく、2
0mmを超えて大きいと均一に分散しにくくなる。
The shape of the heat-resistant insulating fiber is not particularly limited, but the diameter is preferably 50 μm or less,
The length is preferably 0.1 to 20 mm. Diameter is 50 μm
If it exceeds, it becomes difficult to produce a thin sheet. If the length is less than 0.1 mm, it is difficult to obtain the effect of dimensional stability.
If it exceeds 0 mm, it becomes difficult to disperse uniformly.

【0023】耐熱性絶縁繊維の配合量は、プリント配線
板に求められる特性つまり誘電特性、及び寸法安定性に
よって決定される。通常、耐熱性絶縁繊維の配合量が少
ない場合は、寸法安定性より誘電特性が優先され、逆に
寸法安定性を優先させたい場合には耐熱性絶縁繊維の配
合量を増やせばよい。一般的には耐熱性絶縁繊維の配合
量が多くなると誘電特性、特に誘電正接の値が大きくな
り、高周波対応プリント配線板として適応しにくくな
る。よって、耐熱性絶縁繊維の配合量は、誘電特性及び
寸法安定性のバランスによって決定される。上記バラン
スを考慮すると、耐熱性絶縁繊維の配合量は、フッ素樹
脂繊維、無機微粒子及び耐熱性絶縁繊維の合計に対して
3〜40重量%であることが好ましい。耐熱性絶縁繊維
の配合量が、3重量%未満では寸法安定化の効果が出に
くく、40重量%を超えて大きいとフッ素樹脂繊維紙状
物の強度が低下し、後の工程で取り扱いにくくなるとと
もに、プリント配線板の誘電正接が大きくなり過ぎる傾
向となる。
The blending amount of the heat resistant insulating fiber is determined by the characteristics required for the printed wiring board, that is, the dielectric characteristics and the dimensional stability. Generally, when the blending amount of the heat resistant insulating fiber is small, the dielectric property is prioritized over the dimensional stability, and conversely, when the dimensional stability is desired, the blending amount of the heat resistant insulating fiber may be increased. Generally, when the blending amount of the heat resistant insulating fiber is large, the dielectric property, especially the value of the dielectric loss tangent becomes large, and it becomes difficult to apply as a high frequency compatible printed wiring board. Therefore, the blending amount of the heat resistant insulating fiber is determined by the balance between the dielectric properties and the dimensional stability. Considering the above balance, the blending amount of the heat resistant insulating fiber is preferably 3 to 40% by weight based on the total amount of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber. If the content of the heat-resistant insulating fiber is less than 3% by weight, it is difficult to obtain the effect of dimensional stabilization, and if it is more than 40% by weight, the strength of the fluororesin fiber paper-like material decreases and it becomes difficult to handle in the subsequent steps. At the same time, the dielectric loss tangent of the printed wiring board tends to become too large.

【0024】前記耐熱性絶縁繊維が有機繊維の場合はフ
ィブリル化させて使用することもでき、それによって繊
維間の絡み合いが強固になり、3次元方向の絡み合いも
強化され、プリント配線板において、Z方向の熱膨張性
を含めた寸法安定性が非常に向上する。フィブリル化の
度合いは、フッ素樹脂繊維紙状物のシート強度や無機微
粒子含有量などとの関係で決定される。例えば、より強
いシート強度を必要とする場合、或いは無機微粒子添加
量が多い場合には、フィブリル化の程度を進めた繊維を
使用する事が望ましい。これにより無機微粒子の歩留り
も向上する。
When the heat-resistant insulating fiber is an organic fiber, it can be fibrillated and used, whereby the entanglement between the fibers is strengthened, and the entanglement in the three-dimensional direction is strengthened. Dimensional stability including thermal expansion in the direction is greatly improved. The degree of fibrillation is determined in relation to the sheet strength of the fluororesin fiber paper-like material and the content of inorganic fine particles. For example, when stronger sheet strength is required, or when the amount of the inorganic fine particles added is large, it is desirable to use fibers having a higher degree of fibrillation. This also improves the yield of the inorganic fine particles.

【0025】本発明のフッ素樹脂繊維の一次シートの製
造方法は、通常の製紙に用いられる湿式抄造法が用いら
れる。すなわち、規定量のフッ素樹脂繊維、無機微粒子
及び耐熱性絶縁繊維等を水中で攪拌、混合し、好ましく
は、固体分濃度が0.5%以下になるように濃度調整し
たスラリーを、円網式、長網式、短網式、傾斜式などの
湿式抄紙機に適用し、連続したワイヤメッシュ状の脱水
パートで脱水し、その後、多筒式ドライヤーやヤンキー
ドライヤーなどで乾燥して一次シートを得る。プリント
配線板のX方向及びY方向の寸法変化率の差を小さくす
るという点で、繊維配向がランダムになり易い長網式、
短網式、傾斜式が好ましく、傾斜式がより好ましい。特
に傾斜式の場合は耐熱性絶縁繊維を厚さ方向に配向させ
る、つまり紙状物内において厚さ方向に繊維を立たせる
ことも可能であり、プリント配線板におけるZ方向の寸
法安定性に効果を発揮する。
As the method for producing the primary sheet of the fluororesin fiber of the present invention, the wet papermaking method used in ordinary papermaking is used. That is, a specified amount of fluororesin fibers, inorganic fine particles, heat-resistant insulating fibers, etc. are stirred and mixed in water, and preferably a slurry whose concentration is adjusted so that the solid content concentration is 0.5% or less It is applied to wet paper machines such as long-mesh type, short-mesh type and inclined type, dehydrated in a continuous wire mesh dewatering part, and then dried with a multi-cylinder dryer or Yankee dryer to obtain a primary sheet. . A fourdrinier type in which the fiber orientation is likely to be random in terms of reducing the difference between the dimensional change rates of the printed wiring board in the X and Y directions,
The short-net type and the inclined type are preferable, and the inclined type is more preferable. Especially in the case of the tilt type, it is also possible to orient the heat-resistant insulating fibers in the thickness direction, that is, to make the fibers stand in the thickness direction in the paper-like material, which is effective for the dimensional stability in the Z direction of the printed wiring board. Exert.

【0026】なお、無機微粒子は、湿式抄造時の流失を
防ぎ歩留りを確保し所定の量を一次シート中に含有させ
るために、下記のように前もって凝集させることが好ま
しい。すなわち、無機微粒子を規定量秤量し、凝集剤と
ともに水中で攪拌し、無機微粒子を凝集させる。 その
凝集粒子と規定量のフッ素樹脂繊維及び耐熱性絶縁繊維
とを水中で攪拌、混合し抄造用スラリーとする。
The inorganic fine particles are preferably agglomerated in advance as described below in order to prevent the fine particles from being washed away during wet papermaking, to secure the yield and to contain a predetermined amount in the primary sheet. That is, a prescribed amount of inorganic fine particles is weighed and stirred in water together with an aggregating agent to aggregate the inorganic fine particles. The agglomerated particles and a prescribed amount of fluororesin fiber and heat resistant insulating fiber are stirred and mixed in water to obtain a papermaking slurry.

【0027】本発明において用いられる凝集剤は、通常
の製紙や産業排水や生活廃水の凝集処理などに使用され
る一般的な凝集剤が適用できる。具体的には、硫酸バン
ド、ポリ塩化アルミニウム、塩化第2鉄、ポリ硫酸第2
鉄、硫酸第1鉄、ジメチルジアリルアンモニウムクロラ
イド、アルキルアミン・エピクロルヒドリン縮合物、エ
チレンイミン・アルキレンジクロライドトポリアルキレ
ンポリアミンの縮合物、ジシアンジアミド・ホルマリン
縮合物、ポリアクリルアミド系、ポリアクリル酸ナトリ
ウム、ポリ(メタ)アクリル酸アミノアルキルエステル
系、ポリアクリルアミドのマンニッヒ変性物、キトサ
ン、その他の無機凝集剤、有機凝集剤、高分子凝集剤が
あり、フッ素樹脂繊維一次シートに含有させる無機微粒
子の種類に応じて、それに適した凝集剤を選択して用い
ることができる。また、無機微粒子の凝集効果を上げて
歩留りを向上させるためには、特に、無機凝集剤と有機
凝集剤あるいは高分子凝集剤の併用、さらにはポリアク
リルアミド系、ポリエチレンオキサイド系などの合成粘
剤の添加が好ましい。また、凝集剤の添加量は、微粒子
の凝集状態に応じて決定される。
As the coagulant used in the present invention, a general coagulant used in ordinary papermaking, coagulation treatment of industrial wastewater and domestic wastewater, etc. can be applied. Specifically, sulfuric acid band, polyaluminum chloride, ferric chloride, polysulfuric acid second
Iron, ferrous sulfate, dimethyldiallylammonium chloride, condensate of alkylamine / epichlorohydrin, condensate of ethyleneimine / alkylenedichloride / polyalkylenepolyamine, dicyandiamide / formalin condensate, polyacrylamide system, sodium polyacrylate, poly (meta ) Acrylic acid aminoalkyl ester type, Mannich modified product of polyacrylamide, chitosan, other inorganic coagulants, organic coagulants, polymer coagulants, depending on the type of inorganic fine particles to be contained in the fluororesin fiber primary sheet, A flocculant suitable for it can be selected and used. Further, in order to increase the aggregation effect of the inorganic fine particles and improve the yield, in particular, a combined use of an inorganic coagulant and an organic coagulant or a polymer coagulant, and further, a synthetic viscous agent such as polyacrylamide-based or polyethylene oxide-based Addition is preferred. Further, the addition amount of the aggregating agent is determined according to the aggregating state of the fine particles.

【0028】また、本発明のフッ素樹脂繊維一次シート
には通常の製紙で用いられる各種の紙力増強剤、分散
剤、消泡剤、合成粘剤や顔料などの添加剤を配合するこ
とができる。
Further, the fluororesin fiber primary sheet of the present invention may be blended with various paper strength enhancers, dispersants, defoamers, synthetic sticky agents, pigments and other additives used in ordinary papermaking. .

【0029】このように得られた本発明のフッ素樹脂繊
維一次シートは、ガラスクロスを基材とするシートや乾
式法不織布と比較して、各種原料の分布がX方向、Y方
向及びZ方向において均一であり、かつ、地合いが均一
であるという優れた特徴を有していて、その結果、プリ
ント配線板の誘電特性も部分的ばらつきが小さいという
利点を有する。
The fluororesin fiber primary sheet of the present invention thus obtained has a distribution of various raw materials in the X-direction, Y-direction and Z-direction as compared with a sheet using glass cloth as a base material and a dry process nonwoven fabric. It has the excellent characteristics that it is uniform and the texture is uniform, and as a result, it has the advantage that the dielectric characteristics of the printed wiring board also have a small partial variation.

【0030】本発明のフッ素樹脂プリント配線板におい
て、金属箔の密着力が特に大きいことが要求される場合
は、一次シートの少なくとも一方の表面部分にフッ素樹
脂を付着させる。その付随的作用として、一次シート表
面からの無機微粒子の脱離防ぎ、またプリント配線板の
吸水率を下げる効果もある。その工程は脱水パートで脱
水した一次シートの乾燥前であっても、乾燥後であって
もよい。また、一次シート全面を覆う事は必ずしも必要
ではなく、均一に存在するスポット状、網状、格子状な
どでもよい。一次シート表面部分にフッ素樹脂を付着さ
せる方法としては、フッ素樹脂ディスパージョンのスプ
レーによる塗工、塗布機によるコーティング及び含浸、
印刷、フッ素樹脂フィルムとの貼り合わせやその他の方
法がある。例えば、フッ素樹脂ディスパージョンを湿紙
にスプレーし、その後多筒式ドライヤー、ヤンキードラ
イヤー、エアードライヤーや赤外線ドライヤー等の乾燥
機で乾燥してフッ素樹脂が付着した一次シートを得る。
なお表面部分にフッ素樹脂を付着させる方法は、前記の
方法に限定されるものではなく、また、フッ素樹脂ディ
スパージョンやフッ素樹脂フィルムを使用することに限
定されない。
In the fluororesin printed wiring board of the present invention, when the metal foil is required to have a particularly high adhesion, the fluororesin is adhered to at least one surface portion of the primary sheet. As an additional effect, it also has an effect of preventing the inorganic fine particles from being desorbed from the surface of the primary sheet and reducing the water absorption rate of the printed wiring board. The process may be performed before or after drying the primary sheet dehydrated in the dehydration part. Further, it is not always necessary to cover the entire surface of the primary sheet, and spots, nets, lattices, etc. that are uniformly present may be used. As a method of attaching the fluororesin to the surface portion of the primary sheet, coating by spraying a fluororesin dispersion, coating and impregnation by a coating machine,
There are printing, laminating with a fluororesin film, and other methods. For example, a fluororesin dispersion is sprayed onto a wet paper, and then dried with a dryer such as a multi-cylinder dryer, a Yankee dryer, an air dryer or an infrared dryer to obtain a primary sheet to which the fluororesin is attached.
The method of attaching the fluororesin to the surface portion is not limited to the above method, and is not limited to the use of the fluororesin dispersion or the fluororesin film.

【0031】また、フッ素樹脂の付着量は、銅箔との密
着力を確保し、一次シート表面からの無機微粒子の脱離
防止が可能であればよいが、片面1g/m〜100g
/m が好ましく、5g/m〜50g/mがより好
ましい。1g/m未満では、銅箔との密着力向上効果
が得られにくく、また一次シート表面から無機微粒子が
脱離することを抑え切れない。100g/mを超える
と、比誘電率が低いフッ素樹脂の割合が非常に大きくな
り、プリント配線板の比誘電率を所望の値にしにくくな
る。
Further, the amount of the fluororesin adhered should be close to that of the copper foil.
Ensures adhesion and detaches inorganic fine particles from the surface of the primary sheet
It should be possible to prevent it, but one side is 1g / mTwo~ 100g
/ M TwoIs preferred, 5 g / mTwo~ 50g / mTwoIs better
Good 1 g / mTwoBelow, the effect of improving adhesion with copper foil
Is difficult to obtain, and inorganic fine particles are not
We cannot control desorption. 100 g / mTwoOver
And the ratio of fluororesin with a low dielectric constant is very large.
This makes it difficult to set the relative permittivity of the printed wiring board to the desired value.
It

【0032】次に得られたフッ素樹脂繊維一次シートを
フッ素樹脂の融点以上の温度で、電気炉等で焼成し、フ
ッ素樹脂繊維紙状物とする。焼成によりフッ素樹脂繊維
同士間、フッ素樹脂繊維と無機微粒子間、及びフッ素樹
脂繊維と耐熱性絶縁繊維間、さらに一次シートの表面部
分にフッ素樹脂を付着させた場合はフッ素樹脂繊維とフ
ッ素樹脂間を融着せしめると共に、有機物質は熱分解さ
れ除去される。前記のPTFE繊維を使用した場合は、
PTFE繊維中のマトリックス樹脂はこの工程で熱分解
し除去される。
Next, the obtained fluororesin fiber primary sheet is fired at a temperature not lower than the melting point of the fluororesin in an electric furnace or the like to obtain a fluororesin fiber paper-like material. Between fluororesin fibers by firing, between fluororesin fibers and inorganic fine particles, between fluororesin fibers and heat-resistant insulating fibers, and when fluororesin is attached to the surface portion of the primary sheet, between fluororesin fibers and fluororesins The organic substances are pyrolyzed and removed together with the fusion. When the above PTFE fiber is used,
The matrix resin in the PTFE fiber is thermally decomposed and removed in this step.

【0033】本発明におけるフッ素樹脂繊維紙状物の坪
量は、10〜1500g/mであり、使用用途に応じ
て適切な坪量が決定される。
The basis weight of the fluororesin fiber paper material in the present invention is 10 to 1500 g / m 2 , and an appropriate basis weight is determined according to the intended use.

【0034】このようにして得られる多孔性のフッ素樹
脂繊維紙状物を金属箔と貼り合わせるのは次のように行
われる。
The porous fluororesin fiber paper material thus obtained is attached to a metal foil in the following manner.

【0035】上記紙状物をある大きさに裁断し、例えば
同―方向から裁断した2枚以上の紙状物を縦方向または
横方向を基準として90°に直交させて重ね合わせる。
つまり、積層板において、抄造の流れ方向(縦方向)と
抄造の幅方向(横方向)とが交互に90°に直交して重
なり合うようにする。本発明では重ね合わせる枚数は特
に限定されず、目的とする積層板の厚さ及び使用する紙
状物の厚さあるいは坪量によって決められる。ただし、
配線板のX方向及びY方向での寸法変化率、及びその差
を出来るだけ小さくするためには重ねる枚数は偶数が好
ましい。このようにして得られたものを絶縁層とし、そ
の絶縁層の上下両面、或は片面に導電体層としての金属
箔を重ねて、フッ素樹脂の融点以上の温度で熱プレスす
る。なお、金属箔の裏面、つまり絶縁層と接触する面に
は、多数の微小な突起が設けられており、これらが、絶
縁層つまりフッ素樹脂繊維を主成分とする紙状物の繊維
間に存在する空隙に入り込んだ状態で熱プレスされる。
これにより金属箔が絶縁層と密に接着し、導電層とな
る。
The above-mentioned paper-like material is cut into a certain size, and for example, two or more paper-like materials cut from the same direction are overlapped at 90 ° with respect to the longitudinal direction or the transverse direction.
That is, in the laminated plate, the flow direction of the papermaking (longitudinal direction) and the width direction of the papermaking (horizontal direction) are alternately overlapped with each other at 90 °. In the present invention, the number of sheets to be superposed is not particularly limited, and is determined depending on the intended thickness of the laminated plate and the thickness or basis weight of the paper-like material to be used. However,
In order to minimize the dimensional change rates of the wiring boards in the X direction and the Y direction and the difference between them, it is preferable that the number of stacked sheets is an even number. The thus-obtained material is used as an insulating layer, and metal foil as a conductor layer is laid on both upper and lower surfaces or one surface of the insulating layer, and heat-pressed at a temperature not lower than the melting point of the fluororesin. The back surface of the metal foil, that is, the surface that comes into contact with the insulating layer, is provided with a large number of minute projections, which are present between the insulating layer, that is, between the fibers of the paper-like material whose main component is fluororesin fiber. It is hot-pressed in a state of entering the void.
As a result, the metal foil closely adheres to the insulating layer and becomes a conductive layer.

【0036】PTFE繊維紙状物を用いた場合の成型条
件の例は、PTFE繊維紙状物の両面(場合によっては
片面)に銅箔を配置し、PTFEの融点327℃以上の
温度、例えば380℃でかつ圧力1MPaの条件下にて
90分間真空プレスによる加熱圧縮処理を行い、一体成
形したプリント配線板用両面銅張板とすることができ
る。
An example of molding conditions in the case of using the PTFE fiber paper-like material is that a copper foil is arranged on both sides (in some cases, one surface) of the PTFE fiber paper-like material, and the temperature of the melting point of PTFE is 327 ° C. or higher, for example, 380. A double-sided copper clad board for a printed wiring board can be integrally formed by performing heat compression processing by a vacuum press for 90 minutes at a temperature of 1 ° C. and a pressure of 1 MPa.

【0037】その後、回路パターンの導電層形成のため
の後工程を施し、所望のパターンの導電路を設けたフッ
素樹脂プリント配線板を得ることができる。パターン形
成は、剥離現像型ホトレジスト、溶融現像型ホトレジス
ト等を用いて行われる。例えば、銅箔表面にアルカリ現
像型ホトレジスト膜を形成し、ホトマスクを介して所望
のパターンを露光する。次に、銅箔の露出部をエッチン
グなどにより除去し、さらにホトレジストの露光部を溶
解除去して、所望のパターンの導電層を有するフッ素樹
脂プリント配線板が得られる。
After that, a post-process for forming a conductive layer having a circuit pattern is performed to obtain a fluororesin printed wiring board provided with a conductive path having a desired pattern. The pattern formation is performed using a peeling development type photoresist, a melt development type photoresist, or the like. For example, an alkali development type photoresist film is formed on the surface of a copper foil, and a desired pattern is exposed through a photomask. Next, the exposed portion of the copper foil is removed by etching or the like, and the exposed portion of the photoresist is dissolved and removed to obtain a fluororesin printed wiring board having a conductive layer having a desired pattern.

【0038】また、本発明の導電層に使用される金属箔
としては、銅、アルミニウム、真鍮、ニッケル、鉄等の
単独の箔、合金箔、複合箔などを用いることができる
が、特に銅箔が電気伝導性が良好な点で好ましい。この
場合、電解銅箔、圧延銅箔いずれでもよく限定するもの
ではない。また、これら銅箔を含む上記金属箔に回路を
形成した金属箔を用いることもできる。また、必要に応
じて金属箔の片面に接着剤層を設けておくことができ
る。
As the metal foil used in the conductive layer of the present invention, a single foil of copper, aluminum, brass, nickel, iron or the like, an alloy foil, a composite foil or the like can be used, but a copper foil is particularly preferable. Is preferable in terms of good electrical conductivity. In this case, neither electrolytic copper foil nor rolled copper foil is limited. Further, a metal foil in which a circuit is formed on the above metal foil including these copper foils can also be used. In addition, an adhesive layer can be provided on one surface of the metal foil if necessary.

【0039】金属箔の厚みは特に限定されるものではな
いが、 厚み9〜35μmが高周波プリント回路の加工
精度を確保する面で好ましい。
The thickness of the metal foil is not particularly limited, but a thickness of 9 to 35 μm is preferable in terms of ensuring the processing accuracy of the high frequency printed circuit.

【0040】上記の如く作製された本発明のフッ素樹脂
プリント配線板の比誘電率は、5〜20が好ましい。プ
リント配線板の比誘電率は、主として無機微粒子の種類
と配合量で調整することが多いが、耐熱性絶縁繊維の種
類と配合量での調整も可能である。また、プリント配線
板の比誘電率の適正範囲は具体的用途によりそれぞれ異
なるので、本発明においても具体的用途に応じて上記範
囲の中でより狭い範囲に設定することになる。
The relative permittivity of the fluororesin printed wiring board of the present invention produced as described above is preferably 5 to 20. The relative permittivity of the printed wiring board is often adjusted mainly by the type and blending amount of the inorganic fine particles, but it can also be adjusted by the type and blending amount of the heat resistant insulating fiber. Further, since the appropriate range of the relative permittivity of the printed wiring board differs depending on the specific application, the present invention also sets the range to be narrower in the above range according to the specific application.

【0041】[0041]

【発明の実施の形態】実施例 以下、さらに本発明を実施例を以って説明するが、本発
明はこれらに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

【0042】<実施例1>水中に無機微粒子としてチタ
ン酸ストロンチウム微粒子(堺化学工業社製、商品名:
ST−03、平均粒子径0.3μm)と無機凝集剤(日
本軽金属社製、商品名:硫酸バンド)を上記微粒子に対
して2.0重量%、高分子凝集剤(栗田工業社製、商品
名:ハイホルダー109)を上記微粒子に対して1.0
重%と合成粘剤(ダイヤフロック社製、商品名:ACR
YPERSE PMP)を上記微粒子に対して1.5重
量%添加して、攪拌し、チタン酸ストロンチウム微粒子
を凝集させた懸濁液とした。該懸濁液に、フッ素樹脂繊
維としてPTFE繊維(東レファインケミカル社製、商
品名:トヨフロン、直径15μm、繊維長3mm)と耐
熱性絶縁繊維としてガラス繊維(ユニチカグラスファイ
バー社製、商品名:PDE1/8ZA509、直径6μ
m、、繊維長3mm)を、重量比でPTFE繊維:チタ
ン酸ストロンチウム微粒子:耐熱性絶縁繊維=45:5
0:5となるように添加し、攪拌し、均一に分散させ
る。この原材料分散液をスラリー濃度0.5%に調製
し、傾斜式湿式抄紙機を用いて抄造し、脱水した後、P
TFE樹脂ディスパージョン液(三井デユポンフロロケ
ミカル社製、商品名:30−J、濃度30%)をスプレ
ーを用いて片面に固形分で10g/mのPTFE樹脂
が付着するよう吹き付け、130℃に加熱調整したヤン
キー式ドライヤーを用いての乾燥工程を経て一次シート
を得た。その後、該一次シートを350℃に加熱調整し
た電気炉を通して熱処理し、繊維間を融着して、坪量2
50g/mのフッ素樹脂繊維を主成分とした紙状物を
得た。その得られた紙状物から300×300mmの大
きさのシートを縦方向に2枚切り出し、それらを縦方向
を基準として90°に直交させて重ね合わせた。その
際、フッ素樹脂を付着させた面を最外層とし、フッ素樹
脂を付着させなかった面同士を向かい合わせた。さらに
その上下に金属箔として電解銅箔(福田金属箔工業社
製、商品名:CF−T9、厚さ18μm)を重ねて配置
し、真空下で、1MPaの加圧、380℃の加熱で90
分間プレスを行い本発明のプリント配線板用フッ素樹脂
積層板を得た。引き続き、銅箔表面にアルカリ現像型ホ
トレジスト膜を形成し、ホトマスクを介してパターンを
露光し、銅箔の露出部をエッチングで除去し、ホトレジ
ストの露光部を溶解除去して、回路パターンを有する本
発明のフッ素樹脂プリント配線板を得た。
<Example 1> Strontium titanate fine particles as inorganic fine particles in water (manufactured by Sakai Chemical Industry Co., Ltd., trade name:
ST-03, average particle size 0.3 μm) and an inorganic flocculant (manufactured by Nippon Light Metal Co., Ltd., trade name: sulfuric acid band) at 2.0% by weight based on the above fine particles, a polymer flocculant (manufactured by Kurita Water Industries Co., Ltd., product Name: High holder 109) 1.0 for the above fine particles
Weight% and synthetic sticky agent (manufactured by Diafrock, trade name: ACR
YPERSE PMP) was added to the above fine particles in an amount of 1.5% by weight and stirred to obtain a suspension in which the strontium titanate fine particles were aggregated. In the suspension, PTFE fiber (manufactured by Toray Fine Chemical Co., trade name: Toyofuron, diameter 15 μm, fiber length 3 mm) as fluororesin fiber and glass fiber (manufactured by Unitika Glass Fiber Co., Ltd., trade name: PDE1 /) as heat resistant insulating fiber. 8ZA509, diameter 6μ
m, fiber length 3 mm) in a weight ratio of PTFE fiber: strontium titanate fine particles: heat resistant insulating fiber = 45: 5
Add so that it becomes 0: 5, stir, and disperse uniformly. This raw material dispersion liquid was prepared to have a slurry concentration of 0.5%, papermaking was carried out using a slant type wet paper machine, and dehydration was carried out.
TFE resin dispersion liquid (manufactured by Mitsui Dupont Fluorochemical Co., Ltd., trade name: 30-J, concentration 30%) was sprayed on one surface so that a solid resin content of 10 g / m 2 of PTFE resin was adhered to 130 ° C. A primary sheet was obtained through a drying process using a Yankee dryer that was heat-adjusted. After that, the primary sheet is heat-treated through an electric furnace whose temperature is adjusted to 350 ° C. to fuse the fibers to each other to obtain a basis weight of 2
A paper-like material containing 50 g / m 2 of a fluororesin fiber as a main component was obtained. From the obtained paper-like material, two sheets each having a size of 300 × 300 mm were cut out in the longitudinal direction, and they were stacked at 90 ° with respect to the longitudinal direction. At that time, the surface to which the fluororesin was attached was used as the outermost layer, and the surfaces to which the fluororesin was not attached were opposed to each other. Further, electrolytic copper foils (manufactured by Fukuda Metal Foil Industry Co., Ltd., trade name: CF-T9, thickness 18 μm) are placed on top of each other as metal foils and placed under vacuum at a pressure of 1 MPa and heating at 380 ° C. to 90 ° C.
After pressing for minutes, a fluororesin laminate for a printed wiring board of the present invention was obtained. Subsequently, an alkali development type photoresist film is formed on the copper foil surface, the pattern is exposed through a photomask, the exposed part of the copper foil is removed by etching, the exposed part of the photoresist is dissolved and removed, and a book with a circuit pattern is formed. The fluororesin printed wiring board of the invention was obtained.

【0043】<実施例2>PTFE繊維とチタン酸スト
ロンチウム微粒子とガラス繊維の配合比を50:10:
40とした以外は実施例1と同様にして、本発明のフッ
素樹脂プリント配線板を得た。
Example 2 The compounding ratio of PTFE fiber, strontium titanate fine particles and glass fiber was 50:10:
A fluororesin printed wiring board of the present invention was obtained in the same manner as in Example 1 except that the number was changed to 40.

【0044】<実施例3>PTFE繊維とチタン酸スト
ロンチウム微粒子とガラス繊維の配合比を27:70:
3とした以外は実施例1と同様にして、本発明のフッ素
樹脂プリント配線板を得た。
Example 3 The compounding ratio of PTFE fiber, strontium titanate fine particles and glass fiber was 27:70:
A fluororesin printed wiring board of the present invention was obtained in the same manner as in Example 1 except that the number was changed to 3.

【0045】<実施例4>耐熱性絶縁繊維としてガラス
繊維の他にPBO繊維(東洋紡績社製、商品名:ザイロ
ンAS、直径12μm、繊維長3mm)を叩解処理によ
りろ水度500mlにフィブリル化したPBOパルプを
用い、PTFE繊維とチタン酸ストロンチウム微粒子と
ガラス繊維とPBOパルプの配合比を40:50:5:
5とした以外は実施例1と同様にして、本発明のフッ素
樹脂プリント配線板を得た。
Example 4 PBO fiber (manufactured by Toyobo Co., Ltd., trade name: Zylon AS, diameter 12 μm, fiber length 3 mm) was fibrillated to a freeness of 500 ml as a heat resistant insulating fiber by beating. Using the prepared PBO pulp, the compounding ratio of the PTFE fiber, the strontium titanate fine particles, the glass fiber and the PBO pulp is 40: 50: 5:
A fluororesin printed wiring board of the present invention was obtained in the same manner as in Example 1 except that the number was changed to 5.

【0046】<実施例5>一次シートにフッ素樹脂の吹
き付けをしなかった以外は、実施例1と同様にして、本
発明のフッ素樹脂プリント配線板を得た。
Example 5 A fluororesin printed wiring board of the present invention was obtained in the same manner as in Example 1 except that the fluororesin was not sprayed on the primary sheet.

【0047】<比較例1>フッ素樹脂繊維紙状物の重ね
合せを同一方向とした以外は、実施例1と同様にして比
較用のフッ素樹脂プリント配線板を得た。
Comparative Example 1 A fluororesin printed wiring board for comparison was obtained in the same manner as in Example 1 except that the fluororesin fiber papers were superposed in the same direction.

【0048】<比較例2>チタン酸ストロンチウムを使
用せず、PTFE繊維とチタン酸ストロンチウム微粒子
とガラス繊維の配合比を60:0:40とした以外は、
実施例1と同様にして比較用のフッ素樹脂プリント配線
板を得た。
Comparative Example 2 A strontium titanate was not used, but the compounding ratio of PTFE fiber, strontium titanate fine particles and glass fiber was set to 60: 0: 40.
A fluororesin printed wiring board for comparison was obtained in the same manner as in Example 1.

【0049】<比較例3>ガラス繊維を使用せず、PT
FE繊維とチタン酸ストロンチウム微粒子とガラス繊維
の配合比を50:50:0とし、かつフッ素樹脂繊維一
次シートにPTFE樹脂ディスパージョンを吹き付けな
かった以外は比較例1と同様にして、比較用のフッ素樹
脂プリント配線板を得た。
<Comparative Example 3> PT without using glass fiber
Fluorine for comparison was used in the same manner as in Comparative Example 1 except that the compounding ratio of the FE fiber, the strontium titanate fine particles and the glass fiber was 50: 50: 0, and the PTFE resin dispersion was not sprayed on the fluororesin fiber primary sheet. A resin printed wiring board was obtained.

【0050】<比較例4>プリント配線板として、ガラ
スクロスを基材とし、フッ素樹脂ディスパージョンを含
浸して作製された高比誘電率タイプの市販のプリント配
線用フッ素樹脂銅張板であるAR1000(アーロン社
製)に、比較例1と同様にしてパターンを形成し比較用
のフッ素樹脂プリント配線板を得た。
<Comparative Example 4> As a printed wiring board, a high relative dielectric constant type commercially available fluororesin copper clad board for printed wiring, which is made of glass cloth as a base material and impregnated with fluororesin dispersion, is AR1000. A pattern was formed on (Aaron Co.) in the same manner as in Comparative Example 1 to obtain a fluororesin printed wiring board for comparison.

【0051】実施例1〜5、比較例1〜4のフッ素樹脂
プリント配線板のパターン形成前の銅張基板に対して下
記の評価を行った。 1.比誘電率:JIS C6481に準じて、10MH
zにて測定した。 2.吸水率:JIS C6481に準じて測定した。 3.銅箔密着力(引きはがし強さ):JIS C648
1に準じて測定した。 4.Z方向熱膨張係数:JIS C6481に準じて測
定した。得られたフッ素樹脂プリント配線板の銅箔をエ
ッチングにより除去した試料を、熱分析装置TMAを用
いて、25℃から150℃まで2℃/minで昇温させ
て、厚さ方向(Z方向)の寸法変化を測定し、熱膨張係
数を算出した。 5.寸法変化率:加熱処理(150℃/30分)後のX
方向、Y方向の寸法変化率をJIS C6481に準じ
て測定した。 上記項目での評価結果を表1に示す。
The following evaluations were performed on the copper-clad substrates of Examples 1 to 5 and Comparative Examples 1 to 4 before the pattern formation of the fluororesin printed wiring boards. 1. Relative permittivity: 10MH according to JIS C6481
It was measured at z. 2. Water absorption rate: Measured according to JIS C6481. 3. Copper foil adhesion (peel strength): JIS C648
It measured according to 1. 4. Z-direction thermal expansion coefficient: Measured according to JIS C6481. A sample obtained by removing the copper foil of the obtained fluororesin printed wiring board by etching was heated at 25 ° C. to 150 ° C. at 2 ° C./min using a thermal analysis apparatus TMA, and the thickness direction (Z direction). Was measured, and the coefficient of thermal expansion was calculated. 5. Dimensional change rate: X after heat treatment (150 ° C / 30 minutes)
The dimensional change rates in the Y and Y directions were measured according to JIS C6481. Table 1 shows the evaluation results of the above items.

【0052】[0052]

【表1】 [Table 1]

【0053】表1より、次の諸点が確認された。すなわ
ち、縦方向に採取したフッ素繊維紙状物を90°に直交
させて重ね合わせて作製したフッ素樹脂銅張基板の寸法
変化率が、同方向に重ね合わせたものより極めて小さ
く、かつ、X方向とY方向との差がほとんど無いことが
明らかとなった。しかも、比較例4のガラスクロスタイ
プと比較してもX方向、Y方向で、寸法変化率が小さ
く、かつX方向とY方向との差が小さく、Z方向の熱膨
張係数も、同等以下となり得ることが明らかとなった。
また、耐熱性絶縁繊維としてガラス繊維に加えてPBO
パルプを使用することにより、基板のZ方向の寸法変化
が抑えられることが明らかとなった。また、無機微粒子
を使用しないとZ方向の熱膨張係数が大きくなることが
明らかとなった。また、フッ素樹脂繊維一次シートの表
面部分にフッ素樹脂を付着させることにより吸水率が小
さく、かつ銅箔密着力が向上することが明らかとなっ
た。
From Table 1, the following points were confirmed. That is, the dimensional change rate of the fluororesin copper-clad substrate produced by stacking the fluorofiber papers taken in the vertical direction at 90 ° perpendicular to each other is significantly smaller than that in the same direction, and the X direction It is clear that there is almost no difference between the Y direction and the Y direction. Moreover, compared with the glass cloth type of Comparative Example 4, the dimensional change rate is small in the X direction and the Y direction, the difference between the X direction and the Y direction is small, and the coefficient of thermal expansion in the Z direction is equal to or less than that. It became clear to get.
In addition to glass fiber as heat-resistant insulating fiber, PBO
It was revealed that the use of pulp suppresses the dimensional change of the substrate in the Z direction. It was also clarified that the coefficient of thermal expansion in the Z direction becomes large if the inorganic fine particles are not used. Further, it has been clarified that by attaching the fluororesin to the surface portion of the fluororesin fiber primary sheet, the water absorption is small and the copper foil adhesion is improved.

【0054】[0054]

【発明の効果】本発明は、従来の技術に比べて簡単な方
法で、比誘電率及び誘電正接の部分的ばらつきがなく、
プリント配線板の表面に微少な凹凸がなく平滑で、か
つ、X方向、Y方向及びZ方向の寸法安定性が画期的に
優れた高比誘電率のフッ素樹脂プリント配線板及びその
製造方法を提供することができる。さらには上記特性に
加えて、吸水率が小さく、金属箔密着力に優れた高比誘
電率のフッ素樹脂プリント配線板及びその製造方法を提
供することができる。また、Z方向での原材料の分布が
均一で、スルーホールでのメッキ層が均一に形成できる
フッ素樹脂プリント配線板及びその製造方法を提供する
ことが出来る。
The present invention is a simple method as compared with the prior art, and there is no partial variation in relative permittivity and dielectric loss tangent.
A fluororesin printed wiring board having a high relative dielectric constant, which is smooth without any fine irregularities on the surface of the printed wiring board, and has epoch-making dimensional stability in the X, Y and Z directions, and a method for producing the same. Can be provided. Further, in addition to the above-mentioned characteristics, a high relative dielectric constant fluororesin printed wiring board having a small water absorption rate and excellent metal foil adhesion, and a method for producing the same can be provided. Further, it is possible to provide a fluororesin printed wiring board having a uniform distribution of raw materials in the Z direction and capable of uniformly forming a plated layer in a through hole, and a method for manufacturing the same.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA00A AD00A AG00A AK17A AK17B AK18A AK80A AR00C BA03 BA10A BA10C BA22 DE01A DG01A DG01B DG10A DG10B GB16 GB43 HB31C JG01C JG04A JG05 JJ03A   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F100 AA00A AD00A AG00A AK17A                       AK17B AK18A AK80A AR00C                       BA03 BA10A BA10C BA22                       DE01A DG01A DG01B DG10A                       DG10B GB16 GB43 HB31C                       JG01C JG04A JG05 JJ03A

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】フッ素樹脂繊維を主成分とし、少なくとも
無機微粒子及び耐熱性絶縁繊維を含有する水系スラリー
を湿式抄造して得た一次シートを、フッ素樹脂の融点以
上で熱処理して紙状物とし、該紙状物の少なくとも2枚
を縦方向または横方向を基準として90°に直交させて
積層した絶縁層と、該絶縁層の少なくとも片面に設けた
回路パターンの導電層とを有することを特徴とするフッ
素樹脂プリント配線板。
1. A primary sheet obtained by wet papermaking of an aqueous slurry containing fluororesin fibers as a main component and containing at least inorganic fine particles and heat-resistant insulating fibers is heat-treated at a temperature not lower than the melting point of fluororesin to give a paper-like material. And an insulating layer in which at least two sheets of the paper-like material are laminated orthogonally to each other at 90 ° with respect to the vertical direction or the horizontal direction, and a conductive layer having a circuit pattern provided on at least one surface of the insulating layer. Fluororesin printed wiring board.
【請求項2】フッ素樹脂繊維を主成分とし、少なくとも
無機微粒子及び耐熱性絶縁繊維を含有する水系スラリー
を湿式抄造して得た一次シートの少なくとも一方の表面
部分にフッ素樹脂を付着させた後、フッ素樹脂の融点以
上で熱処理して紙状物とし、該紙状物の少なくとも2枚
を縦方向または横方向を基準として90°に直交させて
積層した絶縁層と、該絶縁層の少なくとも片面に設けた
回路パターンの導電層とを有することを特徴とするフッ
素樹脂プリント配線板。
2. A fluororesin is adhered to at least one surface portion of a primary sheet obtained by wet papermaking of an aqueous slurry containing fluororesin fibers as a main component and containing at least inorganic fine particles and heat-resistant insulating fibers, A heat treatment is performed at a temperature equal to or higher than the melting point of the fluororesin to form a paper-like material, and an insulating layer in which at least two paper-like materials are laminated orthogonally to each other at 90 ° with respect to the longitudinal direction or the transverse direction, and at least one surface of the insulating layer A fluororesin printed wiring board having a conductive layer of a circuit pattern provided.
【請求項3】比誘電率が5〜20であることを特徴とす
る請求項1もしくは2に記載のフッ素樹脂プリント配線
板。
3. The fluororesin printed wiring board according to claim 1, which has a relative dielectric constant of 5 to 20.
【請求項4】前記フッ素樹脂繊維は、ポリテトラフルオ
ロエチレン繊維であることを特徴とする請求項1乃至3
のいずれかに記載のフッ素樹脂プリント配線板。
4. The fluororesin fiber is a polytetrafluoroethylene fiber.
The fluororesin printed wiring board according to any one of 1.
【請求項5】前記無機微粒子は、チタン系セラミック微
粒子であることを特徴とする請求項1乃至4のいずれか
に記載のフッ素樹脂プリント配線板。
5. The fluororesin printed wiring board according to any one of claims 1 to 4, wherein the inorganic fine particles are titanium-based ceramic fine particles.
【請求項6】前記耐熱性絶縁繊維は、ガラス繊維である
ことを特徴とする請求項1乃至5のいずれかに記載のフ
ッ素樹脂プリント配線板。
6. The fluororesin printed wiring board according to claim 1, wherein the heat-resistant insulating fiber is glass fiber.
【請求項7】前記耐熱性絶縁繊維は、ガラス繊維及びポ
リパラフェニレンベンゾビスオキサゾール繊維であるこ
とを特徴とする請求項1乃至5のいずれかに記載のフッ
素樹脂プリント配線板。
7. The fluororesin printed wiring board according to claim 1, wherein the heat resistant insulating fibers are glass fibers and polyparaphenylenebenzobisoxazole fibers.
【請求項8】前記無機微粒子の配合量は、フッ素樹脂繊
維と無機微粒子と耐熱性絶縁繊維の合計量に対して10
〜70重量%であることを特徴とする請求項1乃至7の
いずれかに記載のフッ素樹脂プリント配線板。
8. The blending amount of the inorganic fine particles is 10 with respect to the total amount of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber.
The fluororesin printed wiring board according to any one of claims 1 to 7, wherein the fluororesin printed wiring board is from 70 to 70% by weight.
【請求項9】前記耐熱性絶縁繊維の配合量は、フッ素樹
脂繊維と無機微粒子と耐熱性絶縁繊維の合計に対して3
〜40重量%であることを特徴とする請求項1乃至8の
いずれかに記載のプリント配線板用フッ素樹脂積層板。
9. The blending amount of the heat resistant insulating fiber is 3 with respect to the total of the fluororesin fiber, the inorganic fine particles and the heat resistant insulating fiber.
It is 40 weight% or less, The fluororesin laminated board for printed wiring boards in any one of Claim 1 thru | or 8 characterized by the above-mentioned.
【請求項10】フッ素樹脂繊維を主成分とし、少なくと
も無機微粒子及び耐熱性絶縁繊維を含有する水系スラリ
ーを湿式抄造して一次シート化する工程、該フッ素樹脂
の融点以上の温度で熱処理してフッ素樹脂繊維同士を融
着して紙状物とする工程、及び該紙状物の少なくとも2
枚を縦方向または横方向を基準として90°に直交させ
て積層し絶縁層とし、かつ該絶縁層の少なくとも片面に
導電性金属箔を配置し導電層とする工程、フッ素樹脂の
融点以上の温度で真空加熱プレスしプリント配線板用フ
ッ素樹脂積層板を作製する工程、及び導電層を所望の回
路パターンとする工程よりなるフッ素樹脂プリント配線
板の製造方法。
10. A step of wet-fabrication of an aqueous slurry containing fluororesin fibers as a main component and containing at least inorganic fine particles and heat-resistant insulating fibers to form a primary sheet, which is heat-treated at a temperature equal to or higher than the melting point of the fluororesin. A step of fusing resin fibers together to form a paper-like material, and at least 2
A step of laminating sheets so as to be orthogonal to each other at 90 ° with respect to the longitudinal direction or the transverse direction to form an insulating layer, and arranging a conductive metal foil on at least one surface of the insulating layer to form a conductive layer, a temperature not lower than the melting point of the fluororesin. A method for producing a fluororesin printed wiring board, comprising: a step of vacuum heating and pressing to produce a fluororesin laminate for a printed wiring board; and a step of forming a conductive layer into a desired circuit pattern.
【請求項11】フッ素樹脂繊維を主成分とし、少なくと
も無機微粒子及び耐熱性絶縁繊維を含有する水系スラリ
ーを湿式抄造して一次シート化する工程、該一次シート
の少なくとも一方の表面部分にフッ素樹脂を付着させる
工程、該フッ素樹脂の融点以上の温度で熱処理してフッ
素樹脂繊維同士及びフッ素樹脂繊維と表面部分のフッ素
樹脂とを融着して紙状物とする工程、及び該紙状物の少
なくとも2枚を縦方向または横方向を基準として90°
に直交させて積層し絶縁層とし、かつ該絶縁層の少なく
とも片面に導電性金属箔を配置し導電層とする工程、フ
ッ素樹脂の融点以上の温度で真空加熱プレスしプリント
配線板用フッ素樹脂積層板を作製する工程、及び導電層
を所望の回路パターンとする工程よりなるフッ素樹脂プ
リント配線板の製造方法。
11. A step of wet-fabrication an aqueous slurry containing a fluororesin fiber as a main component and containing at least inorganic fine particles and a heat-resistant insulating fiber to form a primary sheet, the fluororesin being provided on at least one surface portion of the primary sheet. A step of adhering, a step of heat-treating at a temperature equal to or higher than the melting point of the fluororesin to fuse the fluororesin fibers with each other and the fluororesin fibers and the fluororesin on the surface to form a paper-like material, and at least the paper-like material 90 ° with 2 pieces as vertical or horizontal direction
A step of forming an insulating layer by stacking it orthogonally to and forming a conductive metal foil on at least one surface of the insulating layer to form a conductive layer, vacuum heating pressing at a temperature equal to or higher than the melting point of the fluororesin, and laminating a fluororesin for printed wiring board A method for manufacturing a fluororesin printed wiring board, comprising the steps of producing a board and forming a conductive layer into a desired circuit pattern.
【請求項12】前記一次シートの表面部分に付着させる
フッ素樹脂として、フッ素樹脂ディスパージョンを用い
ることを特徴とする請求項11に記載のフッ素樹脂プリ
ント配線板の製造方法。
12. The method for producing a fluororesin printed wiring board according to claim 11, wherein a fluororesin dispersion is used as the fluororesin attached to the surface portion of the primary sheet.
JP2002147884A 2002-05-22 2002-05-22 Fluororesin printed wiring board and manufacturing method thereof Expired - Fee Related JP3942489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147884A JP3942489B2 (en) 2002-05-22 2002-05-22 Fluororesin printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147884A JP3942489B2 (en) 2002-05-22 2002-05-22 Fluororesin printed wiring board and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003338670A true JP2003338670A (en) 2003-11-28
JP2003338670A5 JP2003338670A5 (en) 2005-04-28
JP3942489B2 JP3942489B2 (en) 2007-07-11

Family

ID=29706153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147884A Expired - Fee Related JP3942489B2 (en) 2002-05-22 2002-05-22 Fluororesin printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3942489B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080097A (en) * 2020-08-20 2022-02-22 浙江华正新材料股份有限公司 Circuit substrate and preparation method thereof
JP2023002496A (en) * 2021-06-22 2023-01-10 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド Method for manufacturing copper clad laminate
CN116852815A (en) * 2023-08-31 2023-10-10 山东森荣新材料股份有限公司 Three-dimensional formed PTFE-based copper-clad plate and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362175A (en) * 1976-11-15 1978-06-03 Matsushita Electric Works Ltd Method of producing printed circuit board
JPS63165599A (en) * 1986-12-25 1988-07-08 株式会社 巴川製紙所 Fluorocarbon fiber paper and its production
JPH06344503A (en) * 1993-06-03 1994-12-20 Nippon Pillar Packing Co Ltd Production of laminated sheet and composite film for laminated sheet
JPH08148780A (en) * 1994-11-16 1996-06-07 Nippon Pillar Packing Co Ltd Multilayer board for fluororesin multilayer printed interconnection boards and multilayer circuit board
JP2000022291A (en) * 1998-06-29 2000-01-21 Nippon Pillar Packing Co Ltd Printed-wiring board and its manufacturing method
JP2001355193A (en) * 2000-06-08 2001-12-26 Tomoegawa Paper Co Ltd Fluororesin fiber paper and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362175A (en) * 1976-11-15 1978-06-03 Matsushita Electric Works Ltd Method of producing printed circuit board
JPS63165599A (en) * 1986-12-25 1988-07-08 株式会社 巴川製紙所 Fluorocarbon fiber paper and its production
JPH06344503A (en) * 1993-06-03 1994-12-20 Nippon Pillar Packing Co Ltd Production of laminated sheet and composite film for laminated sheet
JPH08148780A (en) * 1994-11-16 1996-06-07 Nippon Pillar Packing Co Ltd Multilayer board for fluororesin multilayer printed interconnection boards and multilayer circuit board
JP2000022291A (en) * 1998-06-29 2000-01-21 Nippon Pillar Packing Co Ltd Printed-wiring board and its manufacturing method
JP2001355193A (en) * 2000-06-08 2001-12-26 Tomoegawa Paper Co Ltd Fluororesin fiber paper and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080097A (en) * 2020-08-20 2022-02-22 浙江华正新材料股份有限公司 Circuit substrate and preparation method thereof
JP2023002496A (en) * 2021-06-22 2023-01-10 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド Method for manufacturing copper clad laminate
JP7403589B2 (en) 2021-06-22 2023-12-22 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド Manufacturing method for copper clad laminates
CN116852815A (en) * 2023-08-31 2023-10-10 山东森荣新材料股份有限公司 Three-dimensional formed PTFE-based copper-clad plate and preparation method thereof
CN116852815B (en) * 2023-08-31 2023-11-07 山东森荣新材料股份有限公司 Three-dimensional formed PTFE-based copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
JP3942489B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US6942756B2 (en) Fluororesin fiber paper, copper-clad laminate for printed board using the same and production process thereof
TWI304848B (en)
JP3401381B2 (en) Aromatic polyamide fiber paper, prepreg and laminate made of the aromatic polyamide fiber paper
CA2455078C (en) Solid sheet material especially useful for circuit boards
EP0930393A1 (en) Heat-resistant fiber paper
WO2002012619A1 (en) Heat-resistant fibrous paper
JP3922866B2 (en) Fluororesin fiber paper for printed circuit board and manufacturing method thereof
JP3942489B2 (en) Fluororesin printed wiring board and manufacturing method thereof
JP2003324257A (en) Fluororesin printed wiring board and manufacturing method therefor
JP2004091948A (en) Fluororesin fiber sheet, metal-clad substrate for printed circuit board using the sheet and method for producing the board
JP2003309335A (en) Basic material sheet for printed wiring board and manufacture of the same
US20080105395A1 (en) Polyketone Fiber Paper, Polyketone Fiber Paper Core Material For Printed Wiring Board, And Printed Wiring Board
JP2004243605A (en) Fluoroplastic fiber sheet, metal clad substrate for printed wiring board using the sheet and its manufacturing method
JP2005306898A (en) Electrical insulating substrate, method for producing the same, prepreg and printed wiring board using the same
JP3590783B2 (en) Fluororesin fiber paper and method for producing the same
JP3588423B2 (en) Heat-resistant fiber paper, method for producing the same, and prepreg using the heat-resistant fiber paper
JP3484455B2 (en) Aromatic polyamide fiber paper
KR102477320B1 (en) Aramid Paper Suitable for Electronic Applications
JP2001355193A (en) Fluororesin fiber paper and method for producing the same
JP2002212893A (en) Aromatic polyamide fiber paper
JP3840070B2 (en) Printed circuit board with photocatalytic activity
JPH11112117A (en) Substrate material for printed wiring, substrate and manufacture thereof
JP2001123389A (en) Aromatic polyamide fiber paper
JP2001295192A (en) Aromatic polyamide fiber paper
JP2001248093A (en) Aromatic polyamide fiber paper

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees