JP2003337098A - Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes - Google Patents

Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes

Info

Publication number
JP2003337098A
JP2003337098A JP2002183677A JP2002183677A JP2003337098A JP 2003337098 A JP2003337098 A JP 2003337098A JP 2002183677 A JP2002183677 A JP 2002183677A JP 2002183677 A JP2002183677 A JP 2002183677A JP 2003337098 A JP2003337098 A JP 2003337098A
Authority
JP
Japan
Prior art keywords
probes
sample
probe
scanning
electrically nonconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002183677A
Other languages
Japanese (ja)
Inventor
Takahiro Sato
隆宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002183677A priority Critical patent/JP2003337098A/en
Publication of JP2003337098A publication Critical patent/JP2003337098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning tunneling microscope capable of measuring the surface of electrically nonconductive matter which does not conduct electricity. <P>SOLUTION: Two STM (scanning tunneling microscope) probes 8 are used, brought close to each other, and adjusted to locations at the same height for the tip parts of the probes and at the shortest distance 15 from each other through which a tunneling current does not pass. When a voltage is impressed on the two probes, and a sample 13 is brought close, electrons 14 emitted from the tipmost atom 12 of one probe are collected by the tipmost atom 12 of the other probe through the sample 13 to pass a tunneling current. By operating the probes so as to maintain the constant tunneling current and scanning the surface of the sample, it is possible to read the structure of the surface of the electrically nonconductive sample. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、電気を通さない
非電導性の物質でも、走査型トンネル顕微鏡が使えるよ
うに改良した装置や考えに関するものである。 【0002】 【従来の技術】走査型トンネル顕微鏡(以下STMと略
す)は、試料物質の表面とSTM探針が近づいたとき、
非接触でも電気が流れる現象、トンネル電流を使って試
料表面とSTM探針の距離を一定に保ちつつ走査するこ
とにより、試料表面の構造を原子レベルで測定する装置
である。 【0003】 【発明が解決しようとする課題】これは、次のような欠
点があった。 (イ)STMには電気を通す金属などの物質は測定でき
るが、電気を通さない非電導性物質は、そのままでは測
定できないという欠点があった。本発明は、これらの欠
点を除くためなされたものである。 【0004】 【課題を解決するための手段】2本のSTM探針を使
い、探針同士を近づける。探針の先端部分は同じ高さで
なおかつトンネル電流が流れない状況に精密に位置調整
をする。探針には原子ワイヤー(量子細線)を使用する
のが望ましいと考える。この2本の探針に電圧を印加
し、試料を近づけていくと、一方の探針から出た電子を
試料を通してもう一方の探針で拾う。これによって電子
の流れができ、トンネル電流が流れる。このトンネル電
流が一定になるように探針を操作し試料表面を走査して
いくことによって、試料表面の構造を読みとることがで
きる。 【0005】 【発明の実施の形態】2本のSTM探針を使い、探針同
士を近づける。それぞれの探針の付け根部分には圧電素
子などで探針をXYZ方向いずれにも微調整できるよう
にしておく。探針の先端部分は同じ高さでなおかつトン
ネル電流が流れないぎりぎりの距離に位置を調整をす
る。探針の先端は数〜数十原子の原子ワイヤー(量子細
線)になっている。この2本の探針に電圧を印加し、試
料を近づけていくと、一方の探針の最先端の原子から出
た電子を試料を通してもう一方の探針の最先端の原子で
拾う。これによって電子の流れができ、トンネル電流が
流れる。このトンネル電流が一定になるように探針を操
作し試料表面を走査していくことによって、試料表面の
構造を読みとることができる。この走査型トンネル顕微
鏡(STM)を、ダブル探針走査型トンネル顕微鏡(d
STM)と呼ぶことにする。 【0006】 【発明の効果】今までできなかったSTMを利用しての
非電導性物質の表面観察が、dSTMを利用して非電導
性物質をそのままの状態で観察ができること。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an improved apparatus and method for using a scanning tunneling microscope even with a non-conductive substance that does not conduct electricity. 2. Description of the Related Art A scanning tunneling microscope (hereinafter abbreviated as STM) is used when a surface of a sample material comes close to an STM probe.
This device measures the structure of the sample surface at the atomic level by scanning while keeping the distance between the sample surface and the STM tip constant using the phenomenon that electricity flows even in a non-contact state, and the tunnel current. [0003] This has the following disadvantages. (A) STM has the drawback that it can measure substances such as metals that conduct electricity, but cannot measure non-conductive substances that do not conduct electricity as it is. The present invention has been made to eliminate these disadvantages. [0004] Two STM probes are used to bring the probes closer together. The position of the tip of the probe is precisely adjusted so that it is at the same height and no tunnel current flows. We believe that it is desirable to use an atomic wire (quantum wire) for the probe. When a voltage is applied to the two probes and the sample is brought closer, electrons emitted from one probe are picked up by the other probe through the sample. As a result, electrons flow and tunnel current flows. By manipulating the probe and scanning the sample surface so that the tunnel current is constant, the structure of the sample surface can be read. DETAILED DESCRIPTION OF THE INVENTION Two STM tips are used to bring the tips closer together. At the base of each probe, the probe can be finely adjusted in any of the XYZ directions using a piezoelectric element or the like. The position of the tip of the probe is adjusted at the same height and at a distance as far as the tunnel current does not flow. The tip of the probe is an atomic wire (quantum wire) of several to several tens of atoms. When a voltage is applied to these two probes to bring the sample closer, electrons emitted from the most advanced atoms of one probe are picked up by the most advanced atoms of the other probe through the sample. As a result, electrons flow and tunnel current flows. By manipulating the probe and scanning the sample surface so that the tunnel current is constant, the structure of the sample surface can be read. This scanning tunneling microscope (STM) is connected to a double probe scanning tunneling microscope (d).
(STM). According to the present invention, it is possible to observe the surface of a non-conductive material using STM, which has not been possible so far, and to observe the non-conductive material as it is using dSTM.

【図面の簡単な説明】 【図1】本発明の立面図である。 【符号の説明】 1 電流検出器 2 バイアス電圧 3 フィードバック回路及び走査管理装置 4 画像化装置 5 増幅器 6 走査用圧電素子 7 探針位置調節圧電素子 8 探針 9 試料 10 探針先端 11 試料 12 探針の最先端原子 13 試料原子 14 電子の移動 15 試料原子と探針の垂直距離[Brief description of the drawings] FIG. 1 is an elevation view of the present invention. [Explanation of symbols] 1 Current detector 2 Bias voltage 3. Feedback circuit and scanning management device 4 Imaging device 5 Amplifier 6. Scanning piezoelectric element 7 Piezoelectric element for adjusting probe position 8 Tip 9 samples 10 Tip 11 samples 12 Advanced atom of the probe 13 Sample atoms 14. Electron transfer 15 Vertical distance between sample atom and probe

Claims (1)

【特許請求の範囲】 【請求項1】 2本の探針を使用し、非電導性の物質
表面を測定できるようにした走査型トンネル顕微鏡装
置。
Claims: 1. A scanning tunneling microscope using two probes to measure the surface of a non-conductive material.
JP2002183677A 2002-05-20 2002-05-20 Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes Pending JP2003337098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183677A JP2003337098A (en) 2002-05-20 2002-05-20 Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183677A JP2003337098A (en) 2002-05-20 2002-05-20 Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes

Publications (1)

Publication Number Publication Date
JP2003337098A true JP2003337098A (en) 2003-11-28

Family

ID=29707229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183677A Pending JP2003337098A (en) 2002-05-20 2002-05-20 Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes

Country Status (1)

Country Link
JP (1) JP2003337098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036614A1 (en) * 2005-09-30 2007-04-05 Oulun Yliopisto Measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036614A1 (en) * 2005-09-30 2007-04-05 Oulun Yliopisto Measuring system

Similar Documents

Publication Publication Date Title
JP2917674B2 (en) Probe for scanning tunneling microscope and method of manufacturing the same
Petersen et al. Scanning microscopic four-point conductivity probes
Kaiser et al. Spectroscopy of electronic states of metals with a scanning tunneling microscope
WO2019144396A1 (en) Method and apparatus for testing thermal conductivity of nanoscale material
US20050127929A1 (en) Electrical feedback detection system for multi-point probes
Druga et al. A versatile high resolution scanning tunneling potentiometry implementation
CN102279288B (en) Device and method for measuring sample interface potential barrier by atomic force microscope
Wielgoszewski et al. A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes
JP3638865B2 (en) Four-terminal measuring device using nanotube terminals
Bayerl et al. Three‐dimensional Kelvin probe microscopy for characterizing in‐plane piezoelectric potential of laterally deflected ZnO micro‐/nanowires
Kim et al. Temperature dependence of thermopower in molecular junctions
Fuller et al. Quantitative Kelvin probe force microscopy of current-carrying devices
JP2005351720A (en) Probe for scanning microscope
JP2006258536A (en) Work function measuring instrument
JP2003337098A (en) Scanning tunnel microscope capable of measuring surface of electrically nonconductive matter by two probes
JP2004085321A (en) Probe device
Brown et al. Millikelvin scanned probe for measurement of nanostructures
TW201003057A (en) A chemical sensing device based on nanowires fabricated by the combination of atomic force microscopy nanomachining and photolithography
JP4502193B2 (en) Circuit forming cassette and use thereof
Hamian et al. Quantitative probing of tip-induced local cooling with a resistive nanoheater/thermometer
JP6179994B2 (en) Elemental analyzer
Morawski et al. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications
KR101290060B1 (en) Electrical force microscope in liquid using insulator coated conducting cantilever
Chen et al. Nanomanipulation of field emission measurement for vacuum nanodiodes based on uniform silicon nanowire emitters
Kolekar et al. Random telegraphic noise and 1/f noise from CNT emitters in Tuning fork-based scanning tunneling microscopy