JP2003336913A - Refrigerating device control method and refrigerating device - Google Patents

Refrigerating device control method and refrigerating device

Info

Publication number
JP2003336913A
JP2003336913A JP2002147381A JP2002147381A JP2003336913A JP 2003336913 A JP2003336913 A JP 2003336913A JP 2002147381 A JP2002147381 A JP 2002147381A JP 2002147381 A JP2002147381 A JP 2002147381A JP 2003336913 A JP2003336913 A JP 2003336913A
Authority
JP
Japan
Prior art keywords
compressor
temperature
capacity
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002147381A
Other languages
Japanese (ja)
Other versions
JP3693038B2 (en
Inventor
Tadashi Tomikawa
匡 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002147381A priority Critical patent/JP3693038B2/en
Publication of JP2003336913A publication Critical patent/JP2003336913A/en
Application granted granted Critical
Publication of JP3693038B2 publication Critical patent/JP3693038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a refrigerating device capable of accurately controlling the temperature of water and realizing energy saving. <P>SOLUTION: An arithmetic processing unit 11 calculates a minimum load reduced by a compressor 2 under present operating conditions based on a pressure difference between the suction pressure of the compressor 2 detected by a suction pressure sensor 15 and the delivery pressure of the compressor 2 detected by a delivery pressure sensor 16. When the unit 11 determines that the outlet temperature C of the water in a first heat exchanger 1 detected by an outlet temperature sensor 9 is lower than a target temperature B obtained by deducting an allowable temperature difference D from the outlet temperature and the present load of the compressor 2 reaches the minimum load, the unit 11 instructs a capacity control device 12 to stop the compressor 2. Since the capacity of the compressor 2 can be controlled to the minimum load smaller than before, a refrigerating capacity can be controlled to a capacity smaller than before and the water can be accurately temperature-controlled. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置の制御方
法および冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a refrigeration system and a refrigeration system.

【0002】[0002]

【従来の技術】従来より、冷凍装置として、図3に示す
ようなものがある。この冷凍装置は水を冷却するチラー
であり、水側熱交換器101、圧縮機102、空気側熱
交換器103および膨張弁104を順に接続していると
共に、上記水側熱交換器101に、冷却すべき水を導く
入口配管106と、冷却した水を排出する出口配管10
7とを備える。上記入口配管106に、水の入口温度を
検出する入口温度センサ108を備えると共に、上記出
口配管107に、水の出口温度を検出する出口温度セン
サ109を備える。上記入口温度センサ108および出
口温度センサ109は、演算処理装置111に電気的に
接続され、この演算処理装置111は、圧縮機102の
ロード(容量)を制御する容量制御装置112に電気的
に接続されている。
2. Description of the Related Art Conventionally, there is a refrigerating apparatus as shown in FIG. This refrigeration system is a chiller that cools water, and connects a water side heat exchanger 101, a compressor 102, an air side heat exchanger 103, and an expansion valve 104 in order, and at the same time, to the water side heat exchanger 101, An inlet pipe 106 for introducing water to be cooled and an outlet pipe 10 for discharging the cooled water.
7 and 7. The inlet pipe 106 is provided with an inlet temperature sensor 108 for detecting the inlet temperature of water, and the outlet pipe 107 is provided with an outlet temperature sensor 109 for detecting the outlet temperature of water. The inlet temperature sensor 108 and the outlet temperature sensor 109 are electrically connected to the arithmetic processing unit 111, and the arithmetic processing unit 111 is electrically connected to the capacity control unit 112 that controls the load (capacity) of the compressor 102. Has been done.

【0003】上記チラーは以下のように動作する。すな
わち、上記圧縮機102で圧縮された高温高圧の冷媒
は、上記空気側熱交換器103で空気と熱交換されて低
温高圧になり、この低温高圧の冷媒は、上記膨張弁10
4で減圧されて低温低圧になる。この低温低圧の冷媒
は、上記水側熱交換器101で水と熱交換して蒸発し、
その後、上記圧縮機102に戻る。上記水側熱交換器1
01では、入口配管106から導かれた高温の水が、上
記低温低圧の冷媒と熱交換して低温になり、出口配管1
07から排出される。
The chiller operates as follows. That is, the high-temperature and high-pressure refrigerant compressed by the compressor 102 is heat-exchanged with air in the air-side heat exchanger 103 to become a low-temperature and high-pressure refrigerant, and the low-temperature and high-pressure refrigerant is expanded by the expansion valve 10
The pressure is reduced at 4 to a low temperature and low pressure. The low-temperature low-pressure refrigerant exchanges heat with water in the water-side heat exchanger 101 to evaporate,
Then, the process returns to the compressor 102. Water side heat exchanger 1
In 01, the high temperature water introduced from the inlet pipe 106 exchanges heat with the low temperature and low pressure refrigerant to become a low temperature, and the outlet pipe 1
It is discharged from 07.

【0004】上記チラーは、上記水側熱交換器101で
冷却する水の温度を、以下のようにして制御している。
すなわち、上記演算処理装置111が、上記出口温度セ
ンサ109からの信号と、予め設定された水の目標温度
と、上記圧縮機102の現在のロードとに基いて、圧縮
機102のロードを変更する指令を上記容量制御装置1
12に送る。この容量制御装置112は、上記演算処理
装置111から受けた命令に応じて圧縮機のスライド弁
113の開度を変更して、圧縮機102のロードを変更
する。これによってチラーの冷凍能力が変更されて、上
記水側熱交換器101に対する水の出口温度が目標温度
にされる。
The chiller controls the temperature of water cooled by the water side heat exchanger 101 as follows.
That is, the arithmetic processing unit 111 changes the load of the compressor 102 based on the signal from the outlet temperature sensor 109, the preset target temperature of water, and the current load of the compressor 102. Command the above capacity control device 1
Send to 12. The capacity control device 112 changes the opening of the slide valve 113 of the compressor according to the command received from the arithmetic processing device 111, and changes the load of the compressor 102. Thereby, the refrigerating capacity of the chiller is changed and the outlet temperature of water to the water side heat exchanger 101 is set to the target temperature.

【0005】図4は、上記演算処理装置111が実行す
るチラーの制御処理動作を示すフローチャートである。
まず、ステップS201で、出口温度センサ109から
受け取った出口温度Cと、水の出口温度が到達すべき目
標温度Bと、許容温度差Dとの間に、B−D>Cの式の
関係が成り立つか否かを判断する。上記式の関係が成り
立ち、水の出口温度Cが、目標温度Bから許容温度差D
を差し引いた値よりも高いと判断された場合、ステップ
S202に進み、上記圧縮機102のロードを保持また
は増加する指令を容量制御装置112に送る。これによ
って、上記圧縮機102は、スライド弁113の開度が
保持され(ロードキープ)、あるいはスライド弁113
の開度が減少される(ロードアップ)。その結果、チラ
ーの冷凍能力が保持または増大されて、水側熱交換器1
01に対する水の出口温度Cが下降する。その後、ステ
ップS201に戻り、水の出口温度Cと、目標温度Bか
ら許容温度差Dを差し引いた値との比較を再度行う。上
記水の出口温度Cが、目標温度Bから許容温度差Dを差
し引いた値に達するまで、上記ステップS201および
S202が繰り返される。
FIG. 4 is a flowchart showing the chiller control processing operation executed by the arithmetic processing unit 111.
First, in step S201, the outlet temperature C received from the outlet temperature sensor 109, the target temperature B at which the outlet temperature of water should reach, and the allowable temperature difference D have a relationship of the formula BD> C. Determine whether it holds. The relation of the above formula is established, and the outlet temperature C of the water is from the target temperature B to the allowable temperature difference D.
When it is determined that the value is higher than the value obtained by subtracting, the process proceeds to step S202, and a command for holding or increasing the load of the compressor 102 is sent to the capacity control device 112. As a result, in the compressor 102, the opening degree of the slide valve 113 is maintained (load keep), or the slide valve 113 is held.
The opening degree of is decreased (load up). As a result, the refrigerating capacity of the chiller is maintained or increased, and the water side heat exchanger 1
The water outlet temperature C for 01 drops. After that, the process returns to step S201, and the outlet temperature C of the water and the value obtained by subtracting the allowable temperature difference D from the target temperature B are compared again. The steps S201 and S202 are repeated until the outlet temperature C of the water reaches a value obtained by subtracting the allowable temperature difference D from the target temperature B.

【0006】上記ステップS201において、上記水の
出口温度Cが、目標温度Bから許容温度差Dを差し引い
た値以下であると判断された場合、ステップS203に
進み、圧縮機102の現在のロードが、予め設定された
最小ロードに達しているか否かを判断する。圧縮機10
2のロードが最小ロードに達していないと判断された場
合、ステップS204に進み、圧縮機102のロードを
減じる指令を容量制御装置112に送る。この指令を受
けた容量制御装置112は圧縮機102のスライド弁1
13の開度を増大し(ロードダウン)、これによってチ
ラーの冷凍能力が減少されて、水の出口温度Cが上昇す
る。その後、ステップS201に戻り、出口温度Cと、
目標温度Bから許容温度差Dを差し引いた値との比較を
再度行う。
When it is determined in step S201 that the outlet temperature C of the water is equal to or lower than the value obtained by subtracting the allowable temperature difference D from the target temperature B, the process proceeds to step S203 and the current load of the compressor 102 is determined. , Determine whether or not a preset minimum load has been reached. Compressor 10
When it is determined that the load of No. 2 has not reached the minimum load, the process proceeds to step S204, and a command to reduce the load of the compressor 102 is sent to the capacity control device 112. Upon receipt of this command, the capacity control device 112 operates the slide valve 1 of the compressor 102.
The opening degree of 13 is increased (load down), whereby the refrigerating capacity of the chiller is reduced and the outlet temperature C of water rises. After that, the process returns to step S201, and the outlet temperature C
The comparison with the value obtained by subtracting the allowable temperature difference D from the target temperature B is performed again.

【0007】上記ステップS203において、上記圧縮
機102のロードが最小ロードに達していると判断され
た場合、ステップS205に進み、上記圧縮機102の
停止指令を容量制御装置112に送る。これによって、
上記圧縮機102が停止されて(サーモオフ)、水の温
度制御が終了する。ここで、上記水の出口温度Cと目標
温度Bとの比較を継続することによって、ステップS2
01以降の工程を再度実行し、チラーが冷却する水の出
口温度Cを所定の目標温度B近傍に保持することができ
る。
When it is determined in step S203 that the load of the compressor 102 has reached the minimum load, the process proceeds to step S205, and a command to stop the compressor 102 is sent to the capacity control device 112. by this,
The compressor 102 is stopped (thermo off), and the temperature control of the water ends. Here, by continuing the comparison between the outlet temperature C of the water and the target temperature B, step S2
It is possible to re-execute the steps from 01 to maintain the outlet temperature C of the water cooled by the chiller near the predetermined target temperature B.

【0008】上記圧縮機102は、上記演算処理装置1
11の指令の下で変更されるロードの最小ロードが、最
大ロードに対する25%に固定されている。この最小ロ
ードは、上記チラーが運転される条件について想定し得
る最悪の条件で、チラー内に最低循環冷媒量が確保でき
るロードである。
The compressor 102 is the arithmetic processing unit 1
The minimum load of the loads modified under 11 commands is fixed at 25% of the maximum load. This minimum load is the worst condition that can be assumed for the conditions under which the chiller operates, and is the load that can ensure the minimum circulating refrigerant amount in the chiller.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の冷凍装置としてのチラーは、上記演算処理装置11
1が、上記圧縮機102の最小ロードを最大ロードに対
する25%に固定しているので、上記冷凍装置の運転条
件に応じて圧縮機102の容量が例えば5%程度まで減
少可能である場合であっても、上記圧縮機102の容量
が25%に達すると圧縮機102を停止させてしまう。
したがって、上記圧縮機102の容量を、運転条件に応
じた最小の容量まで減少できないので、被冷却物である
水を高精度に温度制御し難いという問題がある。その結
果、水の出口温度Cを目標温度B近傍に保持しようとす
ると、圧縮機102の発停が頻繁になって、冷凍装置の
消費電力が増大してしまうという問題がある。
However, the chiller as the above-mentioned conventional refrigeration system is the same as the above-mentioned arithmetic processing unit 11.
1 fixes the minimum load of the compressor 102 to 25% of the maximum load, so that the capacity of the compressor 102 can be reduced to, for example, about 5% according to the operating conditions of the refrigeration system. However, when the capacity of the compressor 102 reaches 25%, the compressor 102 is stopped.
Therefore, since the capacity of the compressor 102 cannot be reduced to the minimum capacity according to the operating conditions, it is difficult to control the temperature of the water to be cooled with high accuracy. As a result, when trying to maintain the outlet temperature C of water near the target temperature B, there is a problem that the compressor 102 starts and stops frequently and the power consumption of the refrigeration system increases.

【0010】そこで、本発明の目的は、水を高精度に温
度制御でき、また、省エネルギーが実現できる冷凍装置
の制御方法を提供することにある。
Therefore, an object of the present invention is to provide a method for controlling a refrigerating apparatus which can control the temperature of water with high precision and can realize energy saving.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の冷凍装置の制御方法は、第1熱交
換器、圧縮機、第2熱交換器および膨張弁を備えると共
に、上記第1熱交換器に被温度制御物を供給し、この被
温度制御物の温度を制御する冷凍装置の制御方法におい
て、上記圧縮機の吸入側の吸入圧力と吐出側の吐出圧力
との圧力差に基いて、この圧縮機の最小容量を算出する
工程と、上記圧縮機の容量が上記最小容量に達している
か否かを判断する工程と、上記第1熱交換器から排出さ
れる上記被温度制御物の出口温度が、目標温度近傍にあ
るか否かを判断する工程と、上記圧縮機の容量が上記最
小容量に達し、かつ上記出口温度が目標温度近傍にある
と判断された場合に、上記圧縮機を停止する工程とを備
えることを特徴としている。
In order to achieve the above object, a control method of a refrigerating apparatus according to the invention of claim 1 comprises a first heat exchanger, a compressor, a second heat exchanger and an expansion valve, and In a method of controlling a refrigerating apparatus for supplying a temperature-controlled object to the first heat exchanger and controlling the temperature of the temperature-controlled object, a pressure between a suction pressure on a suction side and a discharge pressure on a discharge side of the compressor. Calculating the minimum capacity of the compressor based on the difference; determining whether the capacity of the compressor has reached the minimum capacity; and the amount of the exhaust gas discharged from the first heat exchanger. The step of determining whether the outlet temperature of the temperature controlled object is in the vicinity of the target temperature, and when the capacity of the compressor reaches the minimum capacity and it is determined that the outlet temperature is in the vicinity of the target temperature. And a step of stopping the compressor. There.

【0012】請求項1に記載の冷凍装置の制御方法によ
れば、上記圧縮機の吸入圧力と吐出圧力との圧力差に基
いて、この圧力差が生じる運転条件の下で圧縮機が運転
可能な最小容量が算出される。上記圧縮機の容量が減少
して上記最小容量に達し、かつ上記第1熱交換器から排
出される上記被温度制御物の出口温度が目標温度近傍に
あると判断された場合には、上記圧縮機はそれ以下に容
量が減少できないと判断されて、動作が停止される。し
たがって、この圧縮機は実際の運転条件に対応して、従
来の最大容量に対して25%に固定された最小容量より
も小さい容量に制御できる。その結果、この冷凍装置の
制御方法によれば、上記被温度制御物を高精度に温度制
御できる。また、上記被温度制御物の温度を目標温度近
傍に保持する際、上記圧縮機の発停頻度を低減できて、
冷凍装置の省エネルギーが実現できる。また、上記被温
度制御物のための配管が保有すべき被温度制御物の最小
保有量が低減できる。
According to the control method of the refrigerating apparatus of the first aspect, the compressor can be operated under the operating condition in which the pressure difference between the suction pressure and the discharge pressure of the compressor causes the pressure difference. A minimum capacity is calculated. When it is determined that the capacity of the compressor has decreased to the minimum capacity and the outlet temperature of the temperature controlled object discharged from the first heat exchanger is near the target temperature, the compression is performed. The machine is determined to be unable to reduce its capacity further and is stopped. Therefore, this compressor can be controlled to a capacity smaller than the minimum capacity fixed to 25% with respect to the conventional maximum capacity in accordance with the actual operating conditions. As a result, according to this control method of the refrigeration system, the temperature of the temperature controlled object can be controlled with high accuracy. Further, when the temperature of the temperature controlled object is maintained near the target temperature, the frequency of starting and stopping the compressor can be reduced,
Energy saving of the refrigeration system can be realized. Further, the minimum holding amount of the temperature controlled object that the pipe for the temperature controlled object should hold can be reduced.

【0013】本発明は、冷凍装置に関して、圧縮機の吸
入圧力と吐出圧力との圧力差と、上記圧縮機の最小容量
とが相関することが見出され、これに基いてなされたも
のである。
The present invention is based on the finding that the pressure difference between the suction pressure and the discharge pressure of the compressor and the minimum capacity of the compressor are related to each other in the refrigeration system. .

【0014】請求項2の発明の冷凍装置は、第1熱交換
器、圧縮機、第2熱交換器および膨張弁を備えると共
に、上記第1熱交換器に被温度制御物を供給し、この被
温度制御物の温度を制御する冷凍装置において、上記圧
縮機の吸入側の吸入圧力を検出する吸入圧力センサと、
上記圧縮機の吐出側の吐出圧力を検出する吐出圧力セン
サと、上記吸入圧力センサからの信号と吐出圧力センサ
からの信号を受けて、上記圧縮機の吸入圧力と吐出圧力
との圧力差を算出する圧力差算出手段と、上記圧力差算
出手段で算出された圧力差に基いて、上記圧縮機の最小
容量を算出する最小容量算出手段と、上記圧縮機の容量
が、上記最小容量に達したか否かを判定する容量判定手
段と、上記第1熱交換器から排出される上記被温度制御
物の出口温度を検出する出口温度センサと、上記出口温
度が目標温度近傍にあるか否かを判定する温度判定手段
と、上記容量判定手段が、上記圧縮機の容量が上記最小
容量に達したと判定し、かつ上記温度判定手段が、上記
出口温度が目標温度近傍にあると判定した場合に、上記
圧縮機を停止する容量制御手段とを備えることを特徴と
している。
A refrigerating apparatus according to a second aspect of the present invention comprises a first heat exchanger, a compressor, a second heat exchanger and an expansion valve, and supplies a temperature controlled object to the first heat exchanger. In a refrigeration system for controlling the temperature of a temperature controlled object, a suction pressure sensor for detecting suction pressure on the suction side of the compressor,
A pressure difference between the suction pressure and the discharge pressure of the compressor is calculated by receiving a signal from the discharge pressure sensor that detects the discharge pressure on the discharge side of the compressor, and a signal from the suction pressure sensor and a signal from the discharge pressure sensor. Based on the pressure difference calculated by the pressure difference calculation means, the minimum capacity calculation means for calculating the minimum capacity of the compressor, and the capacity of the compressor have reached the minimum capacity. Capacity determination means for determining whether or not, an outlet temperature sensor for detecting an outlet temperature of the temperature controlled object discharged from the first heat exchanger, and whether or not the outlet temperature is near a target temperature. In the case where the temperature determining means and the capacity determining means determine that the capacity of the compressor has reached the minimum capacity, and the temperature determining means determines that the outlet temperature is near the target temperature, , Stop the above compressor It is characterized in that it comprises a quantity control means.

【0015】請求項2に記載の冷凍装置によれば、上記
吸入圧力センサによって上記圧縮機の吸入側の吸入圧力
が検出され、上記吐出圧力センサによって上記圧縮機の
吐出側の吐出圧力が検出され、上記吸入圧力センサから
の信号と吐出圧力センサからの信号を受けた圧力差算出
手段によって、上記圧縮機の吸入圧力と吐出圧力との圧
力差が算出される。この圧力差に基いて、この圧力差が
生じる運転条件の下で圧縮機が減少可能な最小容量が、
上記最小容量算出手段によって算出される。この最小容
量に上記圧縮機の容量が達したか否かが、上記容量判定
手段によって判定される。上記第1熱交換器から排出さ
れた上記被温度制御物の出口温度が上記出口温度センサ
によって検出され、この検出された出口温度が目標温度
近傍にあるか否かが、上記温度判定手段で判定される。
上記圧縮機の容量が上記最小容量に達したと判断され、
かつ上記出口温度が目標温度近傍にあると判定された場
合、上記圧縮機は、それ以下に容量が減少できないと判
断されて、上記容量制御手段によって停止される。この
圧縮機は、実際の運転条件に対応する最小容量に制御さ
れるので、従来の最大容量に対して25%に固定された
最小容量よりも小さい容量に制御できる。その結果、こ
の冷凍装置は、上記被温度制御物を高精度に温度制御で
きて、上記被温度制御物の温度を目標温度近傍に保持す
る際、上記圧縮機の発停頻度を低減できて、省エネルギ
ーが実現できる。さらに、上記第1熱交換器に接続され
た被温度制御物のための配管における被温度制御物の最
小保有量が低減できる。
According to the second aspect of the refrigeration system, the suction pressure on the suction side of the compressor is detected by the suction pressure sensor, and the discharge pressure on the discharge side of the compressor is detected by the discharge pressure sensor. The pressure difference between the suction pressure and the discharge pressure of the compressor is calculated by the pressure difference calculation means that receives the signal from the suction pressure sensor and the signal from the discharge pressure sensor. Based on this pressure difference, the minimum capacity that the compressor can reduce under the operating conditions where this pressure difference occurs is
It is calculated by the minimum capacity calculation means. Whether or not the capacity of the compressor has reached this minimum capacity is judged by the capacity judging means. The outlet temperature sensor detects the outlet temperature of the temperature controlled object discharged from the first heat exchanger, and the temperature determination means determines whether or not the detected outlet temperature is near the target temperature. To be done.
It is determined that the capacity of the compressor has reached the minimum capacity,
When it is determined that the outlet temperature is near the target temperature, it is determined that the capacity of the compressor cannot be reduced below that, and the capacity control means stops the operation. Since this compressor is controlled to the minimum capacity corresponding to the actual operating conditions, it can be controlled to a capacity smaller than the minimum capacity fixed to 25% with respect to the conventional maximum capacity. As a result, this refrigerating apparatus can control the temperature of the temperature controlled object with high accuracy, and when the temperature of the temperature controlled object is maintained near the target temperature, the frequency of starting and stopping the compressor can be reduced, Energy saving can be realized. Furthermore, the minimum holding amount of the temperature controlled object in the pipe for the temperature controlled object connected to the first heat exchanger can be reduced.

【0016】[0016]

【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0017】本発明の冷凍装置の実施形態としてのチラ
ーは、図1の概略構成図で示すように、第1熱交換器と
しての水側熱交換器1と、圧縮機2と、第2熱交換器と
しての空気側熱交換器3と、膨張弁4とを順に接続して
いる。上記水側熱交換器1に、被温度制御物としての水
を導く入口配管6と、上記水を排出する出口配管7とを
備える。上記入口配管6には、水の入口温度を検出する
入口温度センサ8を備えると共に、上記出口配管7に
は、水の出口温度を検出する出口温度センサ9を備え
る。上記圧縮機2の吸入口には、この圧縮機2の吸入圧
力を検出する吸入圧力センサ15を備え、上記圧縮機2
の吐出口には、この圧縮機2の吐出圧力を検出する吐出
圧力センサ16を備える。上記入口温度センサ8および
出口温度センサ9、並びに上記吸入圧力センサ15およ
び吐出圧力センサ16は、演算処理装置11に電気的に
接続されている。上記演算処理装置11は、圧縮機2の
容量制御手段としての容量制御装置12に電気的に接続
されている。上記容量制御装置12は、上記演算処理装
置11からの信号に基いて圧縮機2のスライドバルブ1
3を駆動して、この圧縮機2のロード(容量)を制御す
るようになっている。
The chiller as an embodiment of the refrigerating apparatus of the present invention has a water side heat exchanger 1 as a first heat exchanger, a compressor 2 and a second heat exchanger, as shown in the schematic diagram of FIG. The air side heat exchanger 3 as an exchanger and the expansion valve 4 are connected in order. The water side heat exchanger 1 is provided with an inlet pipe 6 for introducing water as a temperature-controlled object and an outlet pipe 7 for discharging the water. The inlet pipe 6 is provided with an inlet temperature sensor 8 for detecting the inlet temperature of water, and the outlet pipe 7 is provided with an outlet temperature sensor 9 for detecting the outlet temperature of water. The suction port of the compressor 2 is provided with a suction pressure sensor 15 for detecting the suction pressure of the compressor 2.
A discharge pressure sensor 16 for detecting the discharge pressure of the compressor 2 is provided at the discharge port of the. The inlet temperature sensor 8 and the outlet temperature sensor 9, and the suction pressure sensor 15 and the discharge pressure sensor 16 are electrically connected to the arithmetic processing unit 11. The arithmetic processing device 11 is electrically connected to a capacity control device 12 as a capacity control means of the compressor 2. The capacity control device 12 controls the slide valve 1 of the compressor 2 based on the signal from the arithmetic processing device 11.
3 is driven to control the load (capacity) of the compressor 2.

【0018】上記演算処理装置11は、以下に説明する
制御処理を実行するためのプログラムが記憶された記憶
部と、上記プログラムを実する演算部とを備え、圧力差
算出手段、最小容量算出手段、容量判定手段および温度
判定手段として機能する。また、上記演算処理装置11
の記憶部には、圧縮機2の吸入圧力と吐出圧力との圧力
差の値と、その圧力差が生じる運転条件の下で圧縮機が
運転可能な最小ロード(容量)の値とが格納されたテー
ブルが、予め記憶されている。
The arithmetic processing unit 11 includes a storage unit in which a program for executing the control process described below is stored, and an arithmetic unit that executes the program, and includes a pressure difference calculating unit and a minimum capacity calculating unit. , And functions as a capacity determination unit and a temperature determination unit. Further, the arithmetic processing device 11
The storage unit stores the value of the pressure difference between the suction pressure and the discharge pressure of the compressor 2 and the value of the minimum load (capacity) at which the compressor can operate under the operating conditions in which the pressure difference occurs. Tables are stored in advance.

【0019】図2は、上記演算処理装置11で実行され
る制御処理動作を示すフローチャートである。このフロ
ーチャートを用いて、本実施形態のチラーの制御方法を
説明する。
FIG. 2 is a flow chart showing the control processing operation executed by the arithmetic processing unit 11. The chiller control method of this embodiment will be described with reference to this flowchart.

【0020】まず、上記演算処理装置11は、吸入圧力
センサ15の検出値と、吐出圧力センサ16の検出値と
から、上記圧縮機2の吸入圧力と吐出圧力との圧力差Δ
Pを算出する。そして、上記演算処理装置11の記憶部
に記憶されたテーブルを参照して、上記圧縮機が減少可
能な最小ロードの値を算出する(S101)。この最小
ロードと、現在の圧縮機2の容量である現在ロードとを
比較して、圧縮機2のロードが最小ロードに達している
か否かを判断する(S102)。圧縮機2の現在ロード
が最小ロードでない場合、ステップS103に進んで、
水側熱交換器1から排出される水の出口温度Cと、この
水の出口温度が到達すべき目標温度Bと、許容温度差D
との間に、B−D>Cの関係が成り立つか否かを判断す
る。これによって、上記水の出口温度Cが上記目標温度
B近傍にあるか否か、すなわち、水の出口温度Cが、目
標温度Bから許容温度差Dを差し引いた値よりも低いか
否かを判断する。上記水の出口温度Cが、目標温度Bか
ら許容温度差Dを差し引いた値よりも高くて、B−D>
Cの関係が成立しないと判断された場合、ステップ10
4に進む。ステップ104では、上記水側熱交換器1の
水の出口温度Cに応じて、圧縮機2のロードを増やし
(ロードアップ)、あるいは保持(ロードキープ)す
る。その後、ステップS101に戻る。
First, the arithmetic processing unit 11 determines the pressure difference Δ between the suction pressure and the discharge pressure of the compressor 2 based on the detection value of the suction pressure sensor 15 and the detection value of the discharge pressure sensor 16.
Calculate P. Then, with reference to the table stored in the storage unit of the arithmetic processing unit 11, the value of the minimum load that the compressor can reduce is calculated (S101). This minimum load is compared with the current load, which is the current capacity of the compressor 2, to determine whether the load of the compressor 2 has reached the minimum load (S102). If the current load of the compressor 2 is not the minimum load, the process proceeds to step S103,
The outlet temperature C of the water discharged from the water side heat exchanger 1, the target temperature B that the outlet temperature of the water should reach, and the allowable temperature difference D
It is determined whether or not the relationship BD> C is satisfied between and. This determines whether or not the outlet temperature C of the water is near the target temperature B, that is, whether the outlet temperature C of the water is lower than the target temperature B minus the allowable temperature difference D. To do. The water outlet temperature C is higher than the target temperature B minus the allowable temperature difference D, and BD>
If it is determined that the relationship C does not hold, step 10
Go to 4. In step 104, the load of the compressor 2 is increased (load up) or held (load keep) according to the outlet temperature C of the water of the water side heat exchanger 1. Then, it returns to step S101.

【0021】上記ステップ103において、上記水の出
口温度Cが、目標温度Bから許容温度差Dを差し引いた
値よりも低くて、B−D>Cの関係が成立すると判断さ
れた場合、ステップ105に進んで、再度圧縮機2のロ
ードが最小ロードに達しているか否かを判断する。上記
圧縮機2のロードが最小ロードに達していないと判断さ
れると、ステップS106に進んで圧縮機2のロードが
減少される(ロードダウン)。上記ステップS105に
おいて、上記圧縮機2のロードが最小ロードに達してい
ると判断された場合、圧縮機2のロードはこれ以下に減
少できないので、ステップS108に進んで圧縮機2が
停止される(サーモオフ)。
When it is determined in step 103 that the outlet temperature C of the water is lower than the value obtained by subtracting the allowable temperature difference D from the target temperature B, and the relationship BD> C is established, step 105 Then, it is determined again whether the load of the compressor 2 has reached the minimum load. When it is determined that the load of the compressor 2 has not reached the minimum load, the process proceeds to step S106 and the load of the compressor 2 is reduced (load down). When it is determined in step S105 that the load of the compressor 2 has reached the minimum load, the load of the compressor 2 cannot be reduced below this, so the process proceeds to step S108 and the compressor 2 is stopped ( Thermo off).

【0022】上記ステップS102において、圧縮機2
の現在ロードが最小ロードに達していると判断した場
合、ステップS107に進んで、水側熱交換器1から排
出される水の出口温度Cと、この水の出口温度が到達す
べき目標温度Bと、許容温度差Dとの間に、B−D>C
の関係が成り立つか否かを判断する。上記水の出口温度
Cが、目標温度Bから許容温度差Dを差し引いた値より
も高くてB−D>Cの関係が成立しない場合、上記ステ
ップ105に進む。一方、上記水の出口温度Cが、目標
温度Bから許容温度差Dを差し引いた値よりも低くてB
−D>Cの関係が成立する場合、ステップS108に進
んで圧縮機2が停止される(サーモオフ)。
In step S102, the compressor 2
When it is determined that the current load of the water reaches the minimum load, the process proceeds to step S107, the outlet temperature C of the water discharged from the water side heat exchanger 1 and the target temperature B that the outlet temperature of the water should reach. And the allowable temperature difference D, BD-> C
It is determined whether the relationship of is established. When the outlet temperature C of the water is higher than the value obtained by subtracting the allowable temperature difference D from the target temperature B and the relationship BD> C is not established, the process proceeds to step 105. On the other hand, if the outlet temperature C of the water is lower than the value obtained by subtracting the allowable temperature difference D from the target temperature B,
When the relationship of -D> C is established, the process proceeds to step S108, and the compressor 2 is stopped (thermo off).

【0023】本実施形態のチラーは、圧縮機2の吸入圧
力と吐出圧力との圧力差に基いて、この圧力差が得られ
る運転条件の下での圧縮機2の最小ロードを算出し、そ
の最小ロードに達するまで圧縮機2のロードを減少し
て、冷凍能力を調節している。したがって、この圧縮機
2は、従来のチラーのような最小ロードが固定されてい
るよりも、実際に運転可能な最小ロードまで圧縮機のロ
ードを調節できて、冷凍能力が従来よりも高精度に調節
できる。その結果、上記水側熱交換器1から排出される
水の出口温度Cが、高精度に温度制御できる。また、上
記水の出口温度Cを目標温度B近傍に保持する際、上記
圧縮機2を従来よりも小さい最小ロードで運転すること
によって、チラーを従来よりも小さい冷凍能力で継続運
転できるから、上記圧縮機2の発停頻度が少なくでき
る。その結果、上記圧縮機2の消費エネルギーが低減で
きる。また、上記水側熱交換器1に接続された水の配管
が保持すべき水の最小保有量が低減できる。
The chiller of the present embodiment calculates the minimum load of the compressor 2 under the operating condition where this pressure difference is obtained based on the pressure difference between the suction pressure and the discharge pressure of the compressor 2, and The refrigerating capacity is adjusted by reducing the load of the compressor 2 until the minimum load is reached. Therefore, in the compressor 2, the load of the compressor can be adjusted to the minimum load that can be actually operated, and the refrigerating capacity is higher than that of the conventional chiller. Can be adjusted. As a result, the outlet temperature C of the water discharged from the water side heat exchanger 1 can be controlled with high accuracy. When the outlet temperature C of the water is maintained near the target temperature B, the chiller can be continuously operated with a smaller refrigerating capacity than before by operating the compressor 2 with a smaller minimum load than before. The frequency of starting and stopping the compressor 2 can be reduced. As a result, the energy consumption of the compressor 2 can be reduced. Further, the minimum amount of water to be held by the water pipe connected to the water side heat exchanger 1 can be reduced.

【0024】上記実施形態において、上記水側熱交換器
1は蒸発器として機能して、この水側熱交換器に供給さ
れる水を冷却したが、水側熱交換器を凝縮器として機能
させて、この水側熱交換器に供給される水を加熱しても
よい。
In the above embodiment, the water-side heat exchanger 1 functions as an evaporator to cool the water supplied to the water-side heat exchanger, but the water-side heat exchanger functions as a condenser. Then, the water supplied to this water side heat exchanger may be heated.

【0025】また、上記水側熱交換器1に換えて、水以
外の他の被温度制御物の温度を制御する熱交換器を備え
てもよい。つまり、本発明は、水以外の他の液体、気
体、固体、気液混合体、固液混合体、固気混合体、ある
いは固気液混合体のいずれの温度制御を行なう冷凍装置
に適用できる。
Further, instead of the water side heat exchanger 1, a heat exchanger for controlling the temperature of the temperature controlled object other than water may be provided. That is, the present invention can be applied to a refrigerating apparatus that controls the temperature of any liquid other than water, gas, solid, gas-liquid mixture, solid-liquid mixture, solid-gas mixture, or solid-gas liquid mixture. .

【0026】また、上記圧縮機2は、スライドバルブ1
3以外の装置でロードを調節して容量制御してもよく、
また、インバータで圧縮機2の回転数を調節して容量制
御してもよい。
The compressor 2 includes a slide valve 1
You may adjust the load with a device other than 3 to control the capacity,
The capacity may be controlled by adjusting the rotation speed of the compressor 2 with an inverter.

【0027】また、上記圧縮機2の最小容量は、上記演
算処理装置11が記憶部に予め記憶したテーブルを参照
して算出したが、圧力差ΔPの値を予め定められた数式
に代入して算出してもよい。
Further, the minimum capacity of the compressor 2 is calculated by referring to a table stored in advance in the storage unit by the arithmetic processing unit 11, but the value of the pressure difference ΔP is substituted into a predetermined mathematical expression. It may be calculated.

【0028】[0028]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍装置の制御方法によれば、第1熱交換器、圧縮
機、第2熱交換器および膨張弁を備えると共に、上記第
1熱交換器に被温度制御物を供給し、この被温度制御物
の温度を制御する冷凍装置の制御方法において、上記圧
縮機の吸入側の吸入圧力と吐出側の吐出圧力との圧力差
に基いて、この圧縮機の最小容量を算出する工程と、上
記圧縮機の容量が上記最小容量に達しているか否かを判
断する工程と、上記第1熱交換器から排出される上記被
温度制御物の出口温度が、目標温度近傍にあるか否かを
判断する工程と、上記圧縮機の容量が上記最小容量に達
し、かつ上記出口温度が目標温度近傍にあると判断され
た場合に、上記圧縮機を停止する工程とを備えるので、
上記圧縮機を実際の運転条件に対応して、従来の固定さ
れた最小容量よりも小さい容量に制御できる。その結
果、上記被温度制御物を高精度に温度制御でき、また、
上記被温度制御物を目標温度近傍に保持する場合に圧縮
機の発停頻度を減少できて、冷凍装置の省エネルギーが
実現できる。また、上記第1熱交換器に接続された被温
度制御物の配管における被温度制御物の最小保有量が低
減できる。
As is apparent from the above, according to the control method of the refrigerating apparatus of the first aspect of the invention, the first heat exchanger, the compressor, the second heat exchanger and the expansion valve are provided, and the above-mentioned first heat exchanger is provided. (1) In a control method of a refrigerating apparatus for supplying a temperature-controlled object to a heat exchanger and controlling the temperature of the temperature-controlled object, in a pressure difference between a suction pressure on a suction side and a discharge pressure on a discharge side of the compressor, Based on this, a step of calculating the minimum capacity of the compressor, a step of determining whether or not the capacity of the compressor has reached the minimum capacity, and the temperature control for discharging from the first heat exchanger. The step of determining whether the outlet temperature of the object is near the target temperature, and the capacity of the compressor reaches the minimum capacity, and when it is determined that the outlet temperature is near the target temperature, Since it has a step of stopping the compressor,
The compressor can be controlled to a capacity smaller than the conventional fixed minimum capacity in accordance with actual operating conditions. As a result, the temperature controlled object can be temperature controlled with high accuracy, and
When the temperature controlled object is maintained near the target temperature, the frequency of starting and stopping the compressor can be reduced, and energy saving of the refrigeration system can be realized. Further, the minimum holding amount of the temperature controlled object in the pipe of the temperature controlled object connected to the first heat exchanger can be reduced.

【0029】請求項2の発明の冷凍装置によれば、第1
熱交換器、圧縮機、第2熱交換器および膨張弁を備える
と共に、上記第1熱交換器に被温度制御物を供給し、こ
の被温度制御物の温度を制御する冷凍装置において、上
記圧縮機の吸入側の吸入圧力を検出する吸入圧力センサ
と、上記圧縮機の吐出側の吐出圧力を検出する吐出圧力
センサと、上記吸入圧力センサからの信号と吐出圧力セ
ンサからの信号を受けて、上記圧縮機の吸入圧力と吐出
圧力との圧力差を算出する圧力差算出手段と、上記圧力
差算出手段で算出された圧力差に基いて、上記圧縮機が
減少可能な最小容量を算出する最小容量算出手段と、上
記圧縮機の容量が、上記最小容量まで減少したか否かを
判定する容量判定手段と、上記第1熱交換器から排出さ
れる上記被温度制御物の出口温度を検出する出口温度セ
ンサと、上記出口温度が目標温度近傍にあるか否かを判
定する温度判定手段と、上記容量判定手段が、上記圧縮
機の容量が上記最小容量まで減少したと判定し、かつ上
記温度判定手段が、上記出口温度が目標温度近傍にある
と判定した場合に、上記圧縮機を停止する容量制御手段
とを備えるので、上記圧縮機を、実際の運転条件に対応
して、従来の固定された最小容量よりも小さい容量にま
で制御できる。その結果、被温度制御物の温度が高精度
に制御でき、また、上記被温度制御物の温度を目標温度
近傍に保持する際、圧縮機の発停頻度を低減して省エネ
ルギーが実現できる。また、上記第1熱交換器に接続さ
れた被温度制御物の配管における被温度制御物の最小保
有量が低減できる。
According to the refrigerating apparatus of the invention of claim 2,
A refrigerating apparatus that includes a heat exchanger, a compressor, a second heat exchanger, and an expansion valve, supplies a temperature-controlled object to the first heat exchanger, and controls the temperature of the temperature-controlled object. A suction pressure sensor for detecting the suction pressure on the suction side of the machine, a discharge pressure sensor for detecting the discharge pressure on the discharge side of the compressor, a signal from the suction pressure sensor and a signal from the discharge pressure sensor, A pressure difference calculating means for calculating the pressure difference between the suction pressure and the discharge pressure of the compressor, and a minimum for calculating the minimum capacity that the compressor can reduce based on the pressure difference calculated by the pressure difference calculating means. A capacity calculating means, a capacity determining means for determining whether or not the capacity of the compressor has decreased to the minimum capacity, and an outlet temperature of the temperature controlled object discharged from the first heat exchanger. Outlet temperature sensor and above outlet Temperature determining means for determining whether the temperature is near the target temperature, the capacity determining means determines that the capacity of the compressor has decreased to the minimum capacity, and the temperature determining means determines the outlet temperature. Is equipped with a capacity control means for stopping the compressor when it is determined to be near the target temperature, so that the compressor is smaller than the conventional fixed minimum capacity in accordance with actual operating conditions. You can control up to the capacity. As a result, the temperature of the temperature controlled object can be controlled with high accuracy, and when the temperature of the temperature controlled object is maintained near the target temperature, the frequency of starting and stopping the compressor can be reduced to realize energy saving. Further, the minimum holding amount of the temperature controlled object in the pipe of the temperature controlled object connected to the first heat exchanger can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態のチラーを示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing a chiller according to an embodiment of the present invention.

【図2】 図1のチラーの演算処理装置11で実行され
る制御処理動作を示すフローチャートである。
FIG. 2 is a flowchart showing a control processing operation executed by the chiller arithmetic processing unit 11 of FIG.

【図3】 従来の冷凍装置としてのチラーを示す図であ
る。
FIG. 3 is a view showing a chiller as a conventional refrigeration system.

【図4】 従来のチラーの演算処理装置111で実行さ
れる制御処理動作を示すフローチャートである。
FIG. 4 is a flowchart showing a control processing operation executed by a conventional chiller arithmetic processing unit 111.

【符号の説明】[Explanation of symbols]

1 水側熱交換器 2 圧縮機 3 空気側熱交換器 4 膨張弁 6 入口配管 7 出口配管 8 入口温度センサ 9 出口温度センサ 11 演算処理装置 12 容量制御装置 13 スライドバルブ 15 吸入圧力センサ 16 吐出圧力センサ 1 Water side heat exchanger 2 compressor 3 Air side heat exchanger 4 expansion valve 6 Inlet piping 7 outlet piping 8 Inlet temperature sensor 9 Outlet temperature sensor 11 arithmetic processing unit 12 Capacity control device 13 Slide valve 15 Intake pressure sensor 16 Discharge pressure sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1熱交換器(1)、圧縮機(2)、第
2熱交換器(3)および膨張弁(4)を備えると共に、
上記第1熱交換器(1)に被温度制御物を供給し、この
被温度制御物の温度を制御する冷凍装置の制御方法にお
いて、 上記圧縮機(2)の吸入側の吸入圧力と吐出側の吐出圧
力との圧力差(ΔP)に基いて、この圧縮機(2)の最
小容量を算出する工程と、 上記圧縮機(2)の容量が上記最小容量に達しているか
否かを判断する工程と、 上記第1熱交換器から排出される上記被温度制御物の出
口温度(C)が、目標温度(B)近傍にあるか否かを判
断する工程と、 上記圧縮機(2)の容量が上記最小容量に達し、かつ上
記出口温度(C)が目標温度(B)近傍にあると判断さ
れた場合に、上記圧縮機(2)を停止する工程とを備え
ることを特徴とする冷凍装置の制御方法。
1. A first heat exchanger (1), a compressor (2), a second heat exchanger (3) and an expansion valve (4) are provided, and
A method for controlling a refrigerating apparatus for supplying a temperature controlled object to the first heat exchanger (1) and controlling the temperature of the temperature controlled object, comprising: a suction pressure on a suction side and a discharge side of a compressor (2); Based on the pressure difference (ΔP) from the discharge pressure of the compressor (2), a step of calculating the minimum capacity of the compressor (2) and determining whether or not the capacity of the compressor (2) has reached the minimum capacity A step of determining whether or not the outlet temperature (C) of the temperature controlled object discharged from the first heat exchanger is in the vicinity of a target temperature (B), and the step of the compressor (2) A step of stopping the compressor (2) when it is determined that the capacity reaches the minimum capacity and the outlet temperature (C) is near the target temperature (B). Device control method.
【請求項2】 第1熱交換器(1)、圧縮機(2)、第
2熱交換器(3)および膨張弁(4)を備えると共に、
上記第1熱交換器(1)に被温度制御物を供給し、この
被温度制御物の温度を制御する冷凍装置において、 上記圧縮機(2)の吸入側の吸入圧力を検出する吸入圧
力センサ(15)と、 上記圧縮機(2)の吐出側の吐出圧力を検出する吐出圧
力センサ(16)と、 上記吸入圧力センサ(15)からの信号と吐出圧力セン
サ(16)からの信号を受けて、上記圧縮機(2)の吸
入圧力と吐出圧力との圧力差(ΔP)を算出する圧力差
算出手段(11)と、 上記圧力差算出手段で算出された圧力差(ΔP)に基い
て、上記圧縮機(2)の最小容量を算出する最小容量算
出手段(11)と、 上記圧縮機(2)の容量が、上記最小容量に達したか否
かを判定する容量判定手段(11)と、 上記第1熱交換器(1)から排出される上記被温度制御
物の出口温度(C)を検出する出口温度センサ(9)
と、 上記出口温度(C)が目標温度(B)近傍にあるか否か
を判定する温度判定手段(11)と、 上記容量判定手段(11)が、上記圧縮機(2)の容量
が上記最小容量に達したしたと判定し、かつ上記温度判
定手段(11)が、上記出口温度(C)が目標温度
(B)近傍にあると判定した場合に、上記圧縮機(2)
を停止する容量制御手段(11,12)とを備えること
を特徴とする冷凍装置。
2. A first heat exchanger (1), a compressor (2), a second heat exchanger (3) and an expansion valve (4), and
In a refrigeration system for supplying a temperature controlled object to the first heat exchanger (1) and controlling the temperature of the temperature controlled object, a suction pressure sensor for detecting a suction pressure on a suction side of the compressor (2). (15), a discharge pressure sensor (16) for detecting the discharge pressure on the discharge side of the compressor (2), a signal from the suction pressure sensor (15) and a signal from the discharge pressure sensor (16). Based on the pressure difference (ΔP) calculated by the pressure difference calculation means (11) for calculating the pressure difference (ΔP) between the suction pressure and the discharge pressure of the compressor (2). A minimum capacity calculation means (11) for calculating the minimum capacity of the compressor (2), and a capacity determination means (11) for determining whether or not the capacity of the compressor (2) has reached the minimum capacity. And the temperature-controlled product discharged from the first heat exchanger (1) Outlet temperature sensor (9) for detecting outlet temperature (C)
A temperature determination means (11) for determining whether or not the outlet temperature (C) is in the vicinity of the target temperature (B), and the capacity determination means (11) for the capacity of the compressor (2). When it is determined that the minimum capacity is reached and the temperature determination means (11) determines that the outlet temperature (C) is near the target temperature (B), the compressor (2)
And a capacity control means (11, 12) for stopping the refrigeration.
JP2002147381A 2002-05-22 2002-05-22 Control method of refrigeration apparatus and refrigeration apparatus Expired - Fee Related JP3693038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147381A JP3693038B2 (en) 2002-05-22 2002-05-22 Control method of refrigeration apparatus and refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147381A JP3693038B2 (en) 2002-05-22 2002-05-22 Control method of refrigeration apparatus and refrigeration apparatus

Publications (2)

Publication Number Publication Date
JP2003336913A true JP2003336913A (en) 2003-11-28
JP3693038B2 JP3693038B2 (en) 2005-09-07

Family

ID=29705966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147381A Expired - Fee Related JP3693038B2 (en) 2002-05-22 2002-05-22 Control method of refrigeration apparatus and refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP3693038B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000754A2 (en) * 2007-06-04 2008-12-10 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
EP2012068A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
EP2012069A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
EP2075515A1 (en) * 2006-10-20 2009-07-01 Mitsubishi Heavy Industries, Ltd. Heat source device, heat source system, and method of controlling heat source device
CN104457069A (en) * 2013-09-24 2015-03-25 江森自控空调冷冻设备(无锡)有限公司 Capacity regulating method for refrigerating system
EP3421904A1 (en) * 2017-06-26 2019-01-02 Trane International Inc. Compressor cycling control for variable flow systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075515A1 (en) * 2006-10-20 2009-07-01 Mitsubishi Heavy Industries, Ltd. Heat source device, heat source system, and method of controlling heat source device
EP2075515A4 (en) * 2006-10-20 2013-03-27 Mitsubishi Heavy Ind Ltd Heat source device, heat source system, and method of controlling heat source device
EP2000754A2 (en) * 2007-06-04 2008-12-10 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
EP2012068A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
EP2012069A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
EP2000754A3 (en) * 2007-06-04 2013-03-27 RHOSS S.p.A. Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
CN104457069A (en) * 2013-09-24 2015-03-25 江森自控空调冷冻设备(无锡)有限公司 Capacity regulating method for refrigerating system
CN104457069B (en) * 2013-09-24 2017-01-18 江森自控空调冷冻设备(无锡)有限公司 Capacity regulating method for refrigerating system
EP3421904A1 (en) * 2017-06-26 2019-01-02 Trane International Inc. Compressor cycling control for variable flow systems

Also Published As

Publication number Publication date
JP3693038B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US11585561B2 (en) Control method and device for air conditioning system and air conditioning system
WO2022002286A1 (en) Air conditioner and control method thereof
EP3543617B1 (en) Outdoor unit for air conditioner
CN109539380B (en) Method for controlling frequency of compressor of heat pump water heater
JP2008008540A (en) Refrigerating cycle device, heat pump-type water heater, and control method of refrigerating cycle device
JP2002327964A (en) Refrigerator
CN112665239B (en) Water chilling unit starting method and device and water chilling unit
JP3693038B2 (en) Control method of refrigeration apparatus and refrigeration apparatus
JP2000320936A (en) Safety unit for refrigeration cycle
CN111076350B (en) Control method and device for starting compressor and air conditioner
JP2002257425A (en) Refrigerating device
JP2010175203A (en) Refrigeration system
EP3764022B1 (en) Hot water supply device
JP2003336891A (en) Control method for refrigeration unit, and refrigeration unit
JP2002071228A (en) Control device for refrigerating cycle
US20220146165A1 (en) Air conditioning apparatus
JP3260681B2 (en) Air conditioner using non-azeotropic mixed refrigerant and operation control method of the air conditioner
CN112432404A (en) Defrosting control method and device for heat pump air conditioning unit, controller and air conditioning system
CN111721034A (en) Variable-frequency efficient water source heat pump system and implementation method thereof
JPH06323639A (en) Method for controlling chilled water supplying device
JP2001193993A (en) Refrigerating cycle system
WO2022224392A1 (en) Heat pump water heater
JP2002061969A (en) Controller of freezing cycle
JP2004205163A (en) Refrigerating plant
JP2002061979A (en) Cooling and heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R151 Written notification of patent or utility model registration

Ref document number: 3693038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees