JP2003335876A - Composite material having shape-memory alloy embedded therein - Google Patents

Composite material having shape-memory alloy embedded therein

Info

Publication number
JP2003335876A
JP2003335876A JP2002248628A JP2002248628A JP2003335876A JP 2003335876 A JP2003335876 A JP 2003335876A JP 2002248628 A JP2002248628 A JP 2002248628A JP 2002248628 A JP2002248628 A JP 2002248628A JP 2003335876 A JP2003335876 A JP 2003335876A
Authority
JP
Japan
Prior art keywords
composite material
memory alloy
shape memory
sma wire
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248628A
Other languages
Japanese (ja)
Other versions
JP3713540B2 (en
Inventor
Heikoku Cho
炳國 張
Hitoshi Yoshida
均 吉田
Ryutaro Oishi
竜太郎 大石
Hidemiki Nagai
英幹 永井
Teruo Kishi
輝雄 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002248628A priority Critical patent/JP3713540B2/en
Publication of JP2003335876A publication Critical patent/JP2003335876A/en
Application granted granted Critical
Publication of JP3713540B2 publication Critical patent/JP3713540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To decrease the number of materials by making a distortion censer serve also as an actuator. <P>SOLUTION: A previously distorted shape-memory alloy (SMA) wire embedded in a matrix material of a composite material detects deformation or distortion of the composite material, and restrains and restores damages of the composite material by its contracting and restoring power (actuator functions). A processor detects an electric resistance of the SMA wire by a resistance detecting circuit, calculates the changes in the resistance caused by distortion by a processor (CPU), and generates restoring power for the SMA wire to self-restrain and self-restore the composite material. The SMA wire embedded in the composite material is utilized not only as the actuator for restraining and restoring damages but also as a censor for detecting distortion, deformation and damages. Thus, the number of materials used for the composite material can be decreased. The temperature compensation of the resistance of the SMA wire can be made by providing another SMA wire in an unloaded state to measure the resistance of the SMA wire. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複合材料の変形,
ひずみ,損傷を自己検知して自己抑制,自己修復機能を
持たせたスマート材料(Smart Material,知的材料)
に関し、特に複合材料を構成する材料自身に自己検知と
自己抑制,自己修復機能とを兼ねた形状記憶合金を使用
した知的材料に関する。
TECHNICAL FIELD The present invention relates to deformation of a composite material,
Smart materials (smart materials, intelligent materials) that have self-sensing and self-repairing functions by self-detecting strain and damage
In particular, the present invention relates to an intelligent material that uses a shape memory alloy that has self-detection, self-suppression, and self-repairing functions as the material itself that constitutes the composite material.

【0002】[0002]

【従来の技術】構造材料や構造物において、材料内部に
発生した変形,ひずみ,損傷の検知(センサ機能)には
光ファイバが幅広く使用されている( 島田明佳ほか,
「 光ファイバセンサ船体損傷検知システム」,電子情
報通信学会雑誌,第7−10巻,(1999年11月);芳我
攻,「埋設光ファイバによるスーパーハイブリッド材料
の疲労き裂モニタリング」,材料,第l48巻4号,第403
〜第409頁(1999);北出真太郎ほか,「光ファイバを
用いたFRP積層板の衝撃損傷検知試験」,材料,第44
巻第504号,第 1196-1200頁(1995)等)。
2. Description of the Related Art Optical fibers are widely used to detect deformation, strain, and damage (sensor function) inside structural materials and structures (Akiyoshi Shimada et al.,
"Optical fiber sensor hull damage detection system", The Institute of Electronics, Information and Communication Engineers, Volume 7-10, (November 1999);
Attack, "Fatigue crack monitoring of super hybrid materials by embedded optical fiber", Materials, Vol. 48, No. 4, 403
~ 409 (1999); Shintaro Kitade et al., "Impact damage detection test of FRP laminated plate using optical fiber", Material, 44th
Volume 504, pp. 1196-1200 (1995)).

【0003】しかし、光ファイバのアセンブリ・コスト
および検知用システムのコストは高い。また、光ファイ
バ自身が損傷を受けやすく、材料内部で光ファイバが損
傷してしまう可能性がある。この場合、変形,ひずみ,
損傷の検知は不可能になってしまう。また、ひずみゲー
ジを構造物の表面に貼り付け、ひずみを検知して、変
形,ひずみ,損傷を検知することがある。しかし、この
方法では、ひずみゲージ付近の局所状態しか検知でき
ず、材料全体に亘ってひずみを検知することはできな
い。また、ひずみゲージにはその耐久性に問題がある。
さらに、これらは損傷検知という機能(センサ機能)の
みであった。
However, the cost of assembling the optical fiber and the cost of the sensing system are high. Further, the optical fiber itself is easily damaged, and the optical fiber may be damaged inside the material. In this case, the deformation, strain,
Damage detection becomes impossible. Further, a strain gauge may be attached to the surface of the structure to detect strain, and thus deformation, strain, or damage may be detected. However, with this method, only the local state near the strain gauge can be detected, and strain cannot be detected over the entire material. Further, the strain gauge has a problem in its durability.
Furthermore, these were only damage detection functions (sensor functions).

【0004】一方、構造材料や構造物における変形,ひ
ずみ,損傷を抑制,修復する手段として、材料に埋め込
まれた形状記憶合金(SMA,Shape Memory Alloy)
が使用されている。これは形状記憶合金の相変態による
記憶形への復元力機能(アクチュエータ機能)を利用
し、材料の損傷抑制,修復を行うものである。
On the other hand, a shape memory alloy (SMA, Shape Memory Alloy) embedded in a material is used as a means for suppressing and repairing the deformation, strain, and damage in the structural material and structure.
Is used. This utilizes the restoring force function (actuator function) to the memory shape due to the phase transformation of the shape memory alloy, and suppresses and repairs the material damage.

【0005】上記のセンサとアクチュエータの材料を2
つ以上組み合わせた構造体などの材料に変形,ひずみ,
損傷の検知機能を有する光ファイバなどのセンサと、ま
た材料の変形,ひずみ,損傷の抑制,修復機能を有する
SMAワイヤとを埋め込んだ知的材料が製作されてい
る。
The material of the above-mentioned sensor and actuator is 2
Deformation, strain, etc. in materials such as structures that combine two or more
An intelligent material is manufactured by embedding a sensor such as an optical fiber having a damage detection function and an SMA wire having a material deformation, strain, damage suppression, and repair function.

【0006】[0006]

【発明が解決しようとする課題】しかし、複合材料に多
数の異種材料を入れることは各構成材料および全体構造
の劣化につながり、好ましくない。したがって、複合材
料は極力その材料数を少なくする必要がある。
However, it is not preferable to add a large number of different materials to the composite material, since this leads to deterioration of the constituent materials and the overall structure. Therefore, it is necessary to reduce the number of composite materials as much as possible.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、複合材料の母材に埋め込まれた形状記憶
合金ワイヤに、変形,ひずみ,損傷の検知機能と抑制,
修復機能の2つの機能を同時に具備させた部材を含むス
マート複合材料(知的複合材料)を提供する。
In order to solve the above problems, the present invention provides a shape memory alloy wire embedded in a base material of a composite material, which has a function of detecting deformation, strain, and damage, and suppressing the deformation.
Provided is a smart composite material (intelligent composite material) including a member having two functions of restoration at the same time.

【0008】本発明者らは、付加的応力,荷重によるS
MAのひずみはその電気抵抗値と所定の関係にあること
を知見した。複合材料に埋め込まれたSMAの電気抵抗
値変化を検出することによって、複合材料の変形,ひず
みを検出し、さらに、複合材料の変形,ひずみは、その
損傷度合いと関係があるところから、SMAの電気抵抗
値変化を検出することによって、その損傷状態の検知を
可能とした。
The present inventors have found that S due to additional stress and load.
It was found that the strain of MA has a predetermined relationship with its electric resistance value. The deformation and strain of the composite material are detected by detecting the change in the electrical resistance value of the SMA embedded in the composite material. Further, since the deformation and strain of the composite material are related to the degree of damage, By detecting the change in electrical resistance, the damage state can be detected.

【0009】本発明は、複合材料の母材に埋め込まれた
予ひずみ付加SMAワイヤの電気抵抗値を抵抗検出回路
が検出し、プロセッサがひずみによる抵抗値変化を演算
することにより複合材料の変形,ひずみを検出し、さら
に、プロセッサによって通電加熱制御されたSMAワイ
ヤの収縮復元力(アクチュエータ機能)により複合材料
の損傷の抑制,修復を行うことができる複合材料を提供
する。
According to the present invention, the resistance detecting circuit detects the electric resistance value of the pre-strained SMA wire embedded in the base material of the composite material, and the processor calculates the change in the resistance value due to the strain. Provided is a composite material which is capable of detecting strain and further suppressing and repairing damage of the composite material by the contraction restoring force (actuator function) of the SMA wire whose energization and heating are controlled by a processor.

【0010】さらに、本発明は、温度補償用の第2の形
状記憶合金ワイヤを形状記憶合金ワイヤの近辺に応力に
対して無負荷状態で設け、形状記憶合金ワイヤと第2の
形状記憶合金ワイヤとを抵抗検出回路に接続することに
より形状記憶合金ワイヤの抵抗値を温度補償して検出で
きるようにした形状記憶合金埋め込み型複合材料を提供
する。
Further, according to the present invention, a second shape memory alloy wire for temperature compensation is provided in the vicinity of the shape memory alloy wire in an unloaded state against stress, and the shape memory alloy wire and the second shape memory alloy wire are provided. Provided is a shape memory alloy-embedded composite material capable of temperature-compensating and detecting the resistance value of a shape memory alloy wire by connecting and to a resistance detection circuit.

【0011】本発明では複合材料に埋め込まれたSMA
ワイヤを損傷制御,修復するためのアクチュエータとし
て使用するのみならず、ひずみ,変形,損傷を検知する
センサとして利用する。これにより、複合材料に使用す
る材料の数を少なくすることができる。また、プロセッ
サを設けて、自己検知,自己抑制,自己修復機能をもっ
た複合材料を実現できる。
In the present invention, SMA embedded in a composite material
Not only is it used as an actuator to control and repair damage to wires, but it is also used as a sensor to detect strain, deformation, and damage. Thereby, the number of materials used for the composite material can be reduced. Further, a processor can be provided to realize a composite material having self-sensing, self-suppressing, and self-repairing functions.

【0012】[0012]

【発明の実施の形態】本発明は信頼性が要求される様々
な種類の複合材料・構造体に応用が可能である。ここで
は複合材料・構造体の母材として宇宙・航空分野を始
め、様々な分野に実用化が幅広く期待されている炭素繊
維強化材(CFRP,Carbon Fiber Reinforced Pla
stics)を一実施例として説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention can be applied to various types of composite materials / structures that require reliability. Here, carbon fiber reinforcement (CFRP, Carbon Fiber Reinforced Plas), which is widely expected to be put to practical use in various fields including the space and aviation fields as a base material for composite materials and structures
stics) will be described as an example.

【0013】図1は、本発明の自己検知,自己抑制,自
己修復機能をもった複合材料実施例を示す。図中、1は
SMAワイヤ埋め込み型CFRP複合材料片、2は複合
材料母材のCFRP材層、3はSMAワイヤ、4は導
線、5は電流制御回路、6は直流電源、7は抵抗検出回
路、8は抵抗値変化を演算し、電流制御回路5の出力電
流を制御するCPU、9は制御回路を表す。制御回路9
はCFRP複合材料に一体的に構成しても良い。
FIG. 1 shows an embodiment of a composite material having self-sensing, self-suppressing and self-repairing functions according to the present invention. In the figure, 1 is an SMA wire embedded CFRP composite material piece, 2 is a CFRP material layer of a composite material base material, 3 is an SMA wire, 4 is a lead wire, 5 is a current control circuit, 6 is a DC power supply, and 7 is a resistance detection circuit. , 8 are CPUs that calculate resistance value changes and control the output current of the current control circuit 5, and 9 is a control circuit. Control circuit 9
May be integrally formed with the CFRP composite material.

【0014】図1の例は、CFRP複合材料片中にTi-N
i系SMAワイヤを埋め込み、損傷抑制,損傷修復機能
を付与したSMA埋め込み型CFRP複合材料の例を
示す。SMAワイヤにはTi-Ni系(50.5%原子Ni)の直径
0.4mmのワイヤを、母材には幅50mm,厚さ0.2mmのCFR
Pプリプレグを使用した。CFRP複合材料にSMAワ
イヤ3を埋め込む前に、引張試験機でSMAワイヤに引
張荷重をかけ、約3%(0.5〜7%の場合もある)の予ひず
みを与える。CFRPプリプレグ6層(積層の構成は[01
/904/01])の中層部にSMAワイヤ3を1mm(1〜4mm
間隔の場合もある)で挟んで成形積層体は成形積層され
る。そのSMAワイヤを埋め込んだCFRP成形積層体
をホットプレス機により180℃,0.3MPa,2時間の条件で
加熱,加圧することによりSMAワイヤ埋め込みCFR
P複合材料を製造し,それを切断して幅10mmの複合材料
片を作成した。
The example of FIG. 1 shows Ti-N in CFRP composite material pieces.
An example of an SMA-embedded CFRP composite material piece in which an i-based SMA wire is embedded to provide damage suppression and damage repair functions is shown. Diameter of Ti-Ni system (50.5% atomic Ni) for SMA wire
A 0.4 mm wire with a width of 50 mm and a thickness of 0.2 mm as the base material CFR
P prepreg was used. Prior to embedding the SMA wire 3 in the CFRP composite material, the SMA wire is subjected to a tensile load in a tensile tester to provide a prestrain of about 3% (sometimes 0.5-7%). 6 layers of CFRP prepreg (The laminated structure is [0 1
/ 90 4/0 1]) 1mm the SMA wire 3 to the middle part of (1 to 4 mm
The molded laminate is molded and laminated by sandwiching the gap (may be a space). The CFRP molded laminate in which the SMA wire is embedded is heated and pressed under the conditions of 180 ° C., 0.3 MPa and 2 hours by a hot press machine so that the SMA wire embedded CFR is obtained.
A P-composite material was manufactured and cut into pieces of composite material with a width of 10 mm.

【0015】複合材料片中のSMAワイヤ3には直流電
源6から電流制御回路5によって制御された0.5〜5Aの
電流を流すことによって、SMAワイヤが加熱され(S
MA通電加熱)収縮復元力が発生し、複合材料は収縮す
る。図2は、複合材料に引張り応力を加えて、積層板内
部に生じた損傷欠陥と残留ひずみを与えた後、図1のS
MAワイヤ埋め込みCFRP複合材料1のSMAワイヤ
3に、通電加熱することによって生じる複合材料中のS
MAワイヤによる回復力の評価例を示す。縦軸は複合材
料のひずみΔL/L、横軸は複合材料の温度を表す。こ
こで、Lは複合材料の元の長さ、ΔLはその変位を表
す。
The SMA wire 3 in the composite material piece is heated by applying a current of 0.5 to 5 A controlled by the current control circuit 5 from the DC power source 6 to the SMA wire 3 (S
MA energization heating) A contraction restoring force is generated and the composite material contracts. FIG. 2 shows that after the tensile stress is applied to the composite material to give the damage defect and the residual strain generated inside the laminated plate, S of FIG.
The SMA wire 3 of the CFRP composite material 1 in which the MA wire is embedded, is heated in the composite material by heating with an electric current.
An example of evaluation of recovery force by MA wire is shown. The vertical axis represents the strain ΔL / L of the composite material, and the horizontal axis represents the temperature of the composite material. Here, L represents the original length of the composite material, and ΔL represents its displacement.

【0016】図2中の、0%,1%,3%,5%はSMAワイヤに
付加された予ひずみを表す。予ひずみを与えなかった複
合材料片(0%予ひずみ)では、通電加熱によって発生
したひずみは膨張の傾向を示している。これは、予ひず
みがないためSMAに収縮復元力が発生せず、樹脂の熱
膨張に起因していると考えられる。
In FIG. 2, 0%, 1%, 3% and 5% represent the prestrain applied to the SMA wire. In a composite material piece (0% prestrain) which was not prestrained, the strain generated by electric heating showed a tendency of expansion. It is considered that this is because there is no pre-strain, so that the SMA does not generate shrinkage restoring force, and it is due to the thermal expansion of the resin.

【0017】これに対して、予ひずみを付与した複合材
料片では温度上昇につれ、圧縮ひずみが増大し、この傾
向は予ひずみが大きい程顕著である。このことから、予
ひずみを与えることによって、アクチュエータとしての
機能が働き、母材の損傷を抑制,修復するための収縮力
が得られていることがわかる。
On the other hand, in the case of the prestrained composite material piece, the compression strain increases as the temperature rises, and this tendency becomes more remarkable as the prestrain increases. From this, it is understood that by applying the pre-strain, the function as the actuator works, and the contracting force for suppressing and repairing the damage of the base material is obtained.

【0018】図3は,引張荷重をかけながら複合材料
(CFRP層+SMAワイヤ)にひずみを与え,そのと
きのSMAワイヤの電気抵抗変化率と複合材料のひずみ
との関係を示す。図の縦軸はSMAワイヤの電気抵抗変
化率ΔR/R、横軸はひずみを表す。ここで、Rは複合
材料変形前における(複合母材にひずみがないときの)
SMAワイヤの電気抵抗値、ΔRはひずみ,変形が発生
たときのSMAワイヤの電気抵抗値変化量を表す。
FIG. 3 shows the relationship between the rate of change in electrical resistance of the SMA wire and the strain of the composite material when a strain is applied to the composite material (CFRP layer + SMA wire) while applying a tensile load. In the figure, the vertical axis represents the electrical resistance change rate ΔR / R of the SMA wire, and the horizontal axis represents the strain. Where R is before deformation of the composite material (when there is no strain in the composite base material)
The electric resistance value of the SMA wire, ΔR, represents the amount of change in the electric resistance value of the SMA wire when strain or deformation occurs.

【0019】図3に示すように、複合材料のひずみに対
してSMAワイヤの電気抵抗値は増加する傾向にあるこ
とが分かる。一方、母材のひずみが増加するにつれて、
材料内部に発生するトランスバースクラック(Transver
se crack,複合材料片内部に発生した繊維破断を伴わ
ないき裂)の数は増加する。これらから、埋め込まれた
SMAワイヤの電気抵抗値増加は、材料内部に発生するト
ランスバースクラック数の増加、すなわち損傷増加に対
応していると考えられる。したがって、埋め込まれたS
MAワイヤの電気抵抗値変化を検知することにより変
形,ひずみ,損傷状態の検知が可能で、埋め込みSMA
ワイヤをセンサとして使用することができる。
As shown in FIG. 3, it can be seen that the electric resistance value of the SMA wire tends to increase with the strain of the composite material. On the other hand, as the strain of the base metal increases,
Transverse cracks that occur inside the material
se crack, the number of cracks in the composite material piece without fiber breakage) increases. From these, embedded
It is considered that the increase in the electrical resistance of the SMA wire corresponds to the increase in the number of transverse cracks generated inside the material, that is, the increase in damage. Therefore, the embedded S
Deformation, strain and damage can be detected by detecting changes in the electrical resistance of the MA wire.
Wires can be used as sensors.

【0020】図4は、CFRPの損傷度(複合材料片に
発生したトランスバースクラックの発生の数)とひずみ
の関係を表す。このとき、トランスバースクラック数は
光学顕微鏡を用いて測定した。一般に、図4に示したよ
うに、CFRPの損傷度はひずみに関係し、あるひずみ
以上でトランスバースクラック数が急速に増加し、それ
が複合材料全体の破壊(致命的な破壊)に発展する。
FIG. 4 shows the relationship between the damage degree of CFRP (the number of transverse cracks generated in the composite material piece) and the strain. At this time, the number of transverse cracks was measured using an optical microscope. Generally, as shown in FIG. 4, the damage degree of CFRP is related to strain, and the number of transverse cracks is rapidly increased above a certain strain, which leads to the destruction (fatal failure) of the entire composite material. .

【0021】致命的な材料破壊を防ぐためには、複合材
料全体に破壊が発展する前に、それを検知し、CFRP
材料のひずみを一定値(しきい値)以下に抑制する必要
がある。図4の特性例で説明すると、例えば、ひずみが
1.5%以上になったとき、すなわち、図3のSMAワイ
ヤの電気抵抗変化が約7%以上になったとき、SMAワ
イヤを通電加熱してSMAワイヤに収縮復元力を与え、
CFRP複合材に収縮力を付与する。これによって、C
FRP複合材料の損傷を抑制,修復する効果が発現され
る。
In order to prevent a fatal material failure, it is necessary to detect the CFRP before it develops throughout the composite material and to detect CFRP.
It is necessary to suppress the strain of the material below a certain value (threshold value). Explaining with the characteristic example of FIG. 4, for example, the strain is
When it becomes 1.5% or more, that is, when the electric resistance change of the SMA wire of FIG. 3 becomes about 7% or more, the SMA wire is electrically heated to give a contraction restoring force to the SMA wire.
Provides shrinkage force to the CFRP composite. This gives C
The effect of suppressing and repairing damage of the FRP composite material is exhibited.

【0022】したがって、複合材料全体の破壊を抑制す
るには,埋め込まれたSMAワイヤの電気抵抗変化を測
定し、あるしきい値以上(この場合約7%以上)になっ
たら、SMA通電加熱により材料の損傷抑制が可能とな
る。また、プロセッサはSMAワイヤの電気抵抗値変化
を演算し、複合材料の変形・ひずみ・損傷状態を診断す
ることができる。
Therefore, in order to suppress the destruction of the entire composite material, the electrical resistance change of the embedded SMA wire is measured, and when it becomes a certain threshold value or more (about 7% or more in this case), the SMA current heating is performed. Material damage can be suppressed. Further, the processor can calculate the change in electric resistance value of the SMA wire and diagnose the deformation / strain / damage state of the composite material.

【0023】本発明の図1の実施例は、以上の原理を使
用した装置を含む複合材料片である。複合材料片1に図
の矢印方向の引張荷重が負荷されると、母材とともにS
MAワイヤ3もひずみ、変形する。抵抗検出回路7はマ
ルチメータ及びSMAワイヤを1枝とするブリッジ回
路、及び測定用電源を含み、測定サンプル時間ごとにS
MAワイヤ3の抵抗Rを計測する。
The embodiment of FIG. 1 of the present invention is a piece of composite material containing a device using the above principles. When a tensile load in the direction of the arrow in the figure is applied to the composite material piece 1, S
The MA wire 3 is also strained and deformed. The resistance detection circuit 7 includes a multimeter, a bridge circuit having one branch of an SMA wire, and a measurement power supply, and S
The resistance R of the MA wire 3 is measured.

【0024】プロセッサ(CPU)8は、所定サンプル
時間ごとに抵抗検出回路7から計測抵抗値を取込み、抵
抗値が複合材料の破損前に比べて大きく変化した(図
3,図4の例では約7%変化)と判断すると、抵抗検出
回路7を導線4から切り離し、電流制御回路5からSM
Aワイヤ3に所定の電流を流し、SMAワイヤ3を加熱
する。通電加熱されたSMAワイヤは図の矢印方向に収
縮力を生じ、複合材料のひずみ,変形を収縮して、複合
材料のひずみ,変形を抑制,修復させる。
The processor (CPU) 8 takes in the measured resistance value from the resistance detection circuit 7 at every predetermined sampling time, and the resistance value greatly changes compared to before the breakage of the composite material (in the examples of FIGS. 3 and 4, about 7% change), the resistance detection circuit 7 is disconnected from the lead wire 4, and the current control circuit 5 causes the SM
A predetermined current is applied to the A wire 3 to heat the SMA wire 3. The SMA wire heated by electric current generates a contracting force in the direction of the arrow in the figure, contracts the strain and deformation of the composite material, and suppresses and restores the strain and deformation of the composite material.

【0025】十分な収縮力が得られる加熱時間を経過す
ると、電流制御回路5からの通電加熱電流は遮断され
る。同時に、抵抗検出回路7は再び導線4に接続され、
SMAワイヤの抵抗検出が再開され、次のひずみ検知、
修復制御に備える。このように複合材料への引張りひず
みが所定値以下になるようにSMAワイヤの収縮力が制
御される。SMAワイヤの抵抗値は予ひずみ、通電加熱
による母材の温度上昇により、変動するが、本発明では
抵抗値変化率によりひずみ状態を検知しているので、こ
の抵抗値変動は無視できる程度に小さくなる。無視でき
ないときは、プロセッサ(CPU)の抵抗値変化率演算
で校正すれば良い。
When the heating time for obtaining a sufficient contracting force has elapsed, the heating current supplied from the current control circuit 5 is cut off. At the same time, the resistance detection circuit 7 is again connected to the lead wire 4,
The resistance detection of the SMA wire is restarted, the next strain detection,
Prepare for repair control. In this way, the contraction force of the SMA wire is controlled so that the tensile strain on the composite material becomes equal to or less than the predetermined value. Although the resistance value of the SMA wire fluctuates due to the prestrain and the temperature rise of the base material due to the heating by energization, since the strain state is detected by the resistance value change rate in the present invention, this resistance value fluctuation is small enough to be ignored. Become. If it cannot be ignored, it may be calibrated by the resistance value change rate calculation of the processor (CPU).

【0026】CFRP複合材料の場合、損傷は微視的な
もの(トランスバースクラック)と巨視的なものとが考
えられる。図5は引張荷重によって複合材料片内部に発
生したトランスバースクラックが、本発明の損傷修復機
能によって修復された結果を示している。このとき、埋
め込まれたSMAワイヤの予ひずみは3%である。図5
(a)は、矢印方向の引張荷重によってトランスバース
クラックが発生した状態を示す。損傷状態を自己検知し
て、複合材料に埋め込まれたSMAワイヤを通電加熱す
ることにより、逆変態温度(A=52.3℃)以上の温度
80°Cまで加熱した。このとき、予ひずみ付加SMAワ
イヤがマルテンサイト相からオーステナイト相へ相変態
し、SMAワイヤに収縮復元力を発生する。図5(b)
は、これによって、トランスバースクラックを塞ぐ方向
に複合材料片全体が収縮して、修復された複合材料片の
状態を示す。
In the case of CFRP composite material, damage is considered to be microscopic (transverse crack) or macroscopic. FIG. 5 shows the result of the transverse crack generated inside the composite material piece due to the tensile load being repaired by the damage repairing function of the present invention. At this time, the pre-strain of the embedded SMA wire is 3%. Figure 5
(A) shows a state in which a transverse crack has occurred due to a tensile load in the direction of the arrow. A temperature above the reverse transformation temperature (A f = 52.3 ° C) by self-detecting the damage state and heating the SMA wire embedded in the composite material by applying electricity.
Heated to 80 ° C. At this time, the prestrained SMA wire undergoes a phase transformation from the martensite phase to the austenite phase, and a shrinkage restoring force is generated in the SMA wire. Figure 5 (b)
Shows the state of the repaired composite material piece due to shrinkage of the entire composite material piece in the direction of closing the transverse crack.

【0027】図6は、引張荷重などにより大きな損傷が
発生した場合の複合材料片の損傷修復結果を示す。図6
から、トランスバースクラックより大きな複合材料の損
傷に対しても本発明のSMAワイヤ埋め込み型複合材料
で修復可能なことが確認された。このことからCFRP
に埋め込まれたSMAワイヤをアクチュエータとして利
用し、発生したトランスバースクラックや大きなき裂を
修復できることが分かる。
FIG. 6 shows a damage repair result of a composite material piece when a large damage occurs due to a tensile load or the like. Figure 6
From this, it was confirmed that the SMA wire-embedded composite material of the present invention can repair damage to the composite material larger than the transverse crack. From this, CFRP
It can be seen that the transverse cracks and large cracks that have occurred can be repaired by using the SMA wire embedded in the substrate as an actuator.

【0028】これらの結果から、従来、変形,ひずみ,
損傷の抑制,修復機能のためアクチュエータとして用い
てきた埋め込み型SMAワイヤを、変形,ひずみ,損傷
検知のためのセンサとして使用することが可能になっ
た。これによって、1種類の材料(SMAワイヤ)のみ
を母材に埋め込み、変形,ひずみ,損傷の検知,抑制,
修復機能を同時に備えた複合材料製作を実現化した。ま
た、プロセッサ(CPU)がSMAワイヤの電気抵抗値
変化から複合材料の変形,ひずみ,損傷を診断、その結
果によって変形,ひずみ,損傷の抑制,修復を行うこと
のできる知的複合材料を実現した。(図6参照)。
From these results, it has been confirmed that deformation, strain,
The embedded SMA wire that has been used as an actuator for damage suppression and repair functions can now be used as a sensor for deformation, strain, and damage detection. As a result, only one type of material (SMA wire) is embedded in the base material to detect and suppress deformation, strain and damage.
We have realized the production of composite materials with a restoration function at the same time. In addition, the processor (CPU) realizes an intelligent composite material that can diagnose deformation, strain, and damage of the composite material based on the change in the electric resistance value of the SMA wire, and suppress and repair the deformation, strain, and damage according to the result. . (See Figure 6).

【0029】図7は、本発明の他の実施例で、図1の実
施例とは複合材料の2方向に加えられるひずみに対し
て、ひずみ状態の検出および損傷の抑制,修復ができる
ようにした複合材料片である点で相違する。複数個の複
合材料を結合,貼り合わせて大きな表面の複合材が製造
できる。複合材料に発生する損傷の抑制,修復の原理は
図1の実施例と同じである。
FIG. 7 is another embodiment of the present invention, which is different from the embodiment of FIG. 1 in that the strain state can be detected and the damage can be suppressed and repaired with respect to the strain applied in two directions of the composite material. The difference is that it is a composite material piece. A large surface composite material can be manufactured by combining and bonding a plurality of composite materials. The principle of suppressing and repairing damage generated in the composite material is the same as that of the embodiment shown in FIG.

【0030】図7中、11Aは図1の複合材料片に対応
して図の横方向のひずみ検出、損傷の抑制,修復する複
合材料片、11Bは図1の上下方向のひずみに対して、
ひずみ検出および損傷の抑制,修復ができるようにした
複合材料片を表し、両者で1つの複合材料片11を構成
する。3A1,3B1はSMAワイヤ、4A1,4B1
はSMAワイヤを通電加熱するための電流を供給する導
線、51A,51Bは定電流制御回路を表す。
7, 11A is a composite material piece corresponding to the composite material piece of FIG. 1 for detecting strain in the lateral direction, suppressing damage, and repairing damage, and 11B is for the vertical strain of FIG.
It represents a composite material piece capable of detecting strain, suppressing damage, and repairing them, and one composite material piece 11 is constituted by both. 3A1 and 3B1 are SMA wires, 4A1 and 4B1
Is a conducting wire for supplying a current for electrically heating the SMA wire, and 51A and 51B are constant current control circuits.

【0031】さらに、図中、12A並びに13A、12
B並びに13B、12並びに13、42A並びに43
A,42B並びに43B、52A並びに53A、52B
並びに53Bのものは、それぞれ複合材料片11A若し
くは11B、両者で構成される複合材料片11、導線4
1A若しくは41B、電流制御回路51A若しくは51
Bのものと同一のものを表す。
Further, in the figure, 12A and 13A, 12
B and 13B, 12 and 13, 42A and 43
A, 42B and 43B, 52A and 53A, 52B
And 53B, the composite material piece 11A or 11B, the composite material piece 11 composed of both, and the conductive wire 4 respectively.
1A or 41B, current control circuit 51A or 51
The same as B.

【0032】71はSMAワイヤ31A,31B,32
A,32B,33A,33Bの抵抗を計測する抵抗検出
回路、81はプロセッサ(CPU)を表す。抵抗検出回
路71はマルチメータ及びSMAワイヤを1枝とするブ
リッジ回路及び測定用電源を含み、測定サンプル時間ご
とに導線41A,41B,42A,42B,43A,4
4Bを測定サンプル時間で切り替えて、各SMAワイヤ
の抵抗値R1A,R1B,・・・・R3A,R3BRを
計測する。
71 is SMA wire 31A, 31B, 32
A resistance detection circuit that measures resistances of A, 32B, 33A, and 33B, and 81 represents a processor (CPU). The resistance detection circuit 71 includes a multimeter and a bridge circuit having one branch of an SMA wire and a power source for measurement, and the lead wires 41A, 41B, 42A, 42B, 43A, 4 are provided at each measurement sample time.
4B is switched at the measurement sample time, and the resistance values R1A, R1B, ... R3A, R3BR of each SMA wire are measured.

【0033】SMAワイヤの抵抗値の変化率が所定値に
なるSMAワイヤを抵抗検出回路71が検出すると、そ
のSMAワイヤを通電加熱する。通電加熱されたSMA
ワイヤは収縮力を生じ、その複合材料片のひずみ,変形
を収縮して、複合材料のひずみ,変形を抑制,修復させ
る。
When the resistance detection circuit 71 detects an SMA wire whose rate of change in the resistance value of the SMA wire becomes a predetermined value, the SMA wire is electrically heated. Electrically heated SMA
The wire generates a contracting force, contracts the strain and deformation of the composite material piece, and suppresses and repairs the strain and deformation of the composite material.

【0034】ところが、SMAワイヤの抵抗値は,一般
の金属と同様にひずみのみではなく温度によっても変化
するため、温度による影響を取り除く必要がある。さら
に、SMAワイヤには相変態があるため、温度による抵
抗変化は複雑である。図8はSMAワイヤ電気抵抗値の
温度依存性の測定例を示す。図中下部の示差走査熱量曲
線(任意単位,Arbitrary unitで表示)において箇所
30℃、60℃付近(相変態温度)の急激に変化してい
る温度で、SMAワイヤは相変態が起きていることを示
している。相変態温度において、上部の電気抵抗値が急
激に変化していることが分かる。それ以外の温度帯で
は、一般の金属と同様に単純増加である。そこで、SM
Aワイヤのひずみ・変形による抵抗変化のみを検出する
ために、SMAワイヤの温度変化に対する抵抗値変化を
取り除く必要がある。
However, the resistance value of the SMA wire changes not only with the strain but also with the temperature as in the case of general metals, so it is necessary to eliminate the influence of the temperature. Further, since the SMA wire has a phase transformation, the resistance change with temperature is complicated. FIG. 8 shows an example of measuring the temperature dependence of the electrical resistance value of the SMA wire. In the differential scanning calorimetric curve (arbitrary unit) in the lower part of the figure, the SMA wire undergoes a phase transformation at a rapidly changing temperature around 30 ° C and 60 ° C (phase transformation temperature). Is shown. It can be seen that at the phase transformation temperature, the electric resistance value of the upper portion changes abruptly. In other temperature zones, it is a simple increase as in general metals. So SM
In order to detect only the resistance change due to strain / deformation of the A wire, it is necessary to remove the change in resistance value with respect to the temperature change of the SMA wire.

【0035】そのため、ひずみの影響を受けないもう一
つのSMAワイヤ(リファレンス・ワイヤ)を用いて温
度依存性を取り除く。温度補償なしの場合、電気抵抗変
化(ΔR/R)は、次の式(1)によって算出される。
式(1)中で、RsはSMAワイヤの電気抵抗値でひず
みに依存し、Rs0は初期抵抗値で規格化のための定数
を表す。
Therefore, the temperature dependence is removed by using another SMA wire (reference wire) which is not affected by strain. When there is no temperature compensation, the electric resistance change (ΔR / R) is calculated by the following equation (1).
In the formula (1), Rs is an electric resistance value of the SMA wire and depends on strain, and Rs0 is an initial resistance value and represents a constant for normalization.

【0036】[0036]

【数1】 [Equation 1]

【0037】この中の温度依存性を取り除くためには、
リファレンス・ワイヤの電気抵抗値Rrで規格化する。
すなわち、次の式(2)で算出される。ここで、Rr0
はリファレンス・ワイヤの初期抵抗値を表す。これによ
って温度依存性を取り除くことができる。
In order to remove the temperature dependence in this,
Normalize by the electric resistance value Rr of the reference wire.
That is, it is calculated by the following equation (2). Where Rr0
Represents the initial resistance of the reference wire. This can eliminate the temperature dependence.

【0038】[0038]

【数2】 [Equation 2]

【0039】図9は、図1の形状記憶合金埋め込み型複
合材料の別の実施例を示す。図1の実施例と相違する構
成は、無負荷状態で設置されたリファレンス・ワイヤ3
Rとリファレンス・ワイヤの抵抗値を測定するために抵
抗検出回路7に接続された導線4A,4Bを新たに設け
た点である。2つのリファレンス・ワイヤ3R,3R
は、図のCFRP層で隠れた側の端で接続されている。
リファレンス・ワイヤ3Rは、SMAワイヤ3の付近
で、無負荷状態になるような位置に設置され、SMAワ
イヤ3の温度と対応する温度状態となるようにしてあ
る。
FIG. 9 shows another embodiment of the shape memory alloy-embedded composite material of FIG. The configuration different from the embodiment of FIG. 1 is that the reference wire 3 installed in an unloaded state
The point is that conductors 4A and 4B connected to the resistance detection circuit 7 for measuring the resistance values of R and the reference wire are newly provided. Two reference wires 3R, 3R
Are connected at the hidden end by the CFRP layer in the figure.
The reference wire 3R is installed near the SMA wire 3 in such a position as to be in an unloaded state, and is brought into a temperature state corresponding to the temperature of the SMA wire 3.

【0040】リファレンス・ワイヤ3Rは複合材料ブロ
ックの周辺部又は隅部に設置されると、抵抗の測定に際
してリファレンス・ワイヤ3Rに印加される応力の影響
が少なく、実際の通電制御ではその影響を無視しえるも
のであり、実質的に無負荷状態が維持されていると同等
に作用する。また、複合材料ブロック内に貫通孔を設
け、その中にリファレンス・ワイヤ3Rを設置すること
によって、リファレンス・ワイヤ3Rをほぼ無負荷状態
にすることもできる。
When the reference wire 3R is installed in the peripheral portion or the corner portion of the composite material block, the influence of the stress applied to the reference wire 3R when measuring the resistance is small, and the influence is ignored in the actual energization control. Yes, it works as if a substantially unloaded condition was maintained. Further, by providing a through hole in the composite material block and installing the reference wire 3R therein, the reference wire 3R can be put into a substantially unloaded state.

【0041】SMAワイヤ3,リファレンス・ワイヤ3
Rの抵抗値は、その初期抵抗値Rs0,Rr0とともに
抵抗検出回路7のマルチメータにより測定され、その値
はプロセッサ(CPU)8内のメモリに記録される。プ
ロセッサ(CPU)8は式(2)により温度補償された
電気抵抗値変化ΔR/Rを算出する。この電気抵抗値変
化ΔR/Rに基づいてSMAワイヤの歪みΔL/Lを正
確に求め、図1の実施例同様な方法で、検知、制御を行
う。図7の実施例に適用できることは勿論である。
SMA wire 3, reference wire 3
The resistance value of R is measured by the multimeter of the resistance detection circuit 7 together with the initial resistance values Rs0 and Rr0, and the value is recorded in the memory in the processor (CPU) 8. The processor (CPU) 8 calculates the temperature-compensated electric resistance value change ΔR / R by the equation (2). The strain ΔL / L of the SMA wire is accurately obtained based on this electric resistance change ΔR / R, and detection and control are performed by the same method as in the embodiment of FIG. Of course, it can be applied to the embodiment of FIG.

【0042】図10は、26℃と3℃の2種類の環境下
で、リファレンス・ワイヤ3Rを用いて、温度補償を行
った結果を示す。図中、下の2本の線が温度補償をしな
い場合、上の2本の線が温度補償をした場合の電気抵抗
値変化ΔR/RとSMAワイヤの歪みΔL/Lの測定例
である。温度補償を行うことにより、温度依存性を(縦
軸への平行移動)を抑えることができ。図の例では、温
度補償は完全ではないが、誤差は0.004%/℃程で
あり、充分実用に耐える補償となっている。
FIG. 10 shows the results of temperature compensation using the reference wire 3R in two environments of 26 ° C. and 3 ° C. In the figure, the lower two lines are examples of measurement of the change in electrical resistance ΔR / R and the strain ΔL / L of the SMA wire when temperature compensation is not performed and when the upper two lines are temperature compensated. By performing temperature compensation, it is possible to suppress the temperature dependence (parallel movement to the vertical axis). In the example of the figure, the temperature compensation is not perfect, but the error is about 0.004% / ° C., which is sufficient for practical use.

【0043】[0043]

【発明の効果】形状記憶合金ワイヤのみ1種類を構造体
に埋め込み、センサとアクチュエータとして使用するこ
とで、変形,ひずみ,損傷の検知,抑制,修復機能を同
時に備えた複合材料が可能となった。これにより、スマ
ート複合材料を用いた構造物の単純化、コストダウンが
可能となった。また、様々な構造体の信頼性、安全性を
向上し、構造体の寿命を長くすることができる。さら
に、形状記憶合金ワイヤのすぐ近くに無負荷状態の形状
記憶合金ワイヤを設け、その抵抗値を測定することによ
り、SMAワイヤの抵抗値の温度補償を行い、変形,ひ
ずみ,損傷の検知,抑制,修復機能を正確に行うことが
できる。
By embedding only one type of shape memory alloy wire in a structure and using it as a sensor and an actuator, a composite material having deformation, strain, damage detection, suppression, and repair functions at the same time becomes possible. . This has made it possible to simplify the structure using smart composite materials and reduce costs. In addition, reliability and safety of various structures can be improved and life of the structures can be extended. Furthermore, by providing a shape memory alloy wire in the unloaded state in the immediate vicinity of the shape memory alloy wire and measuring the resistance value, temperature compensation of the resistance value of the SMA wire is performed, and detection, suppression of deformation, strain, damage is performed. , The repair function can be performed accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のひずみ,変形,損傷の自己検知,自己
抑制,自己修復機能をもった複合材料実施例を示す図で
ある。
FIG. 1 is a diagram showing an embodiment of a composite material having self-detection, self-suppression, and self-repairing functions of strain, deformation, and damage of the present invention.

【図2】複合材料のSMAワイヤに、通電加熱すること
によって生じるSMAワイヤによる回復力評価例を示す
図である。
FIG. 2 is a diagram showing an example of evaluation of recovery force by an SMA wire generated by heating a composite SMA wire by applying electricity.

【図3】引張荷重をかけながら複合材料(CFRP層+
SMAワイヤ)にひずみを与え,そのときのSMAワイ
ヤの電気抵抗変化率と複合材料のひずみとの関係を示す
図である。
[Fig. 3] Composite material (CFRP layer +
It is a figure which shows the relationship between the strain of an SMA wire and the strain of a composite material at the time of giving strain to a SMA wire.

【図4】CFRP複合材料片の損傷度(複合材料片に発
生したトランスバースクラックの発生の数)とひずみの
関係を表す図である。
FIG. 4 is a diagram showing a relationship between a damage degree of a CFRP composite material piece (the number of transverse cracks generated in the composite material piece) and strain.

【図5】発生したトランスバースクラックの本発明によ
る修復を示す図で、(a)は複合材料に発生したトラン
スバースクラックを、(b)はトランスバースクラック
が修復された結果を示す図である。
5A and 5B are diagrams showing repair of a transversal crack that has occurred according to the present invention, wherein FIG. 5A is a diagram showing a transversal crack occurring in a composite material, and FIG. 5B is a diagram showing a result of transversal crack healing. .

【図6】発生したより大きな損傷の本発明による修復を
示す図で、(a)はより大きな損傷の発生を、(b)は
損傷が修復された結果を示す図である。
6A and 6B are diagrams showing repair of a larger damage caused by the present invention, wherein FIG. 6A shows the occurrence of larger damage and FIG. 6B shows the result of repairing the damage.

【図7】本発明の他の実施例を示す図である。FIG. 7 is a diagram showing another embodiment of the present invention.

【図8】SMAワイヤの電気抵抗値の温度依存性を示す
例である。
FIG. 8 is an example showing the temperature dependence of the electrical resistance value of an SMA wire.

【図9】本発明の別の実施例を示す図である。FIG. 9 is a diagram showing another embodiment of the present invention.

【図10】図8の実施例の温度補償例を説明する図であ
る。
10 is a diagram illustrating an example of temperature compensation of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1,11A,11B,11 複合材料片 2 CFRP層 3,31A,31B SMAワイヤ 3R リファレンス・ワイヤ 4,41A,41B 導線 5,51A,51B 電流制御回路 6 直流電源 7,71 抵抗検出回路 8,81 プロセッサ(CPU) 1,11A, 11B, 11 Composite material pieces 2 CFRP layer 3,31A, 31B SMA wire 3R reference wire 4,41A, 41B Conductor 5,51A, 51B Current control circuit 6 DC power supply 7,71 Resistance detection circuit 8,81 Processor (CPU)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 英幹 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 岸 輝雄 茨城県つくば市東1−1−1独立行政法人 産業技術総合研究所つくばセンター内 Fターム(参考) 2F063 AA25 BA17 CA29 DA05 DA22 DC08 EC05 FA12 LA27 4F072 AA01 AA06 AB10 AG03 AG17 AK05 AK14 AL02 AL09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Nagai             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba center (72) Inventor Teruo Kishi             1-1-1 East, Tsukuba City, Ibaraki Prefecture             AIST Tsukuba Center F term (reference) 2F063 AA25 BA17 CA29 DA05 DA22                       DC08 EC05 FA12 LA27                 4F072 AA01 AA06 AB10 AG03 AG17                       AK05 AK14 AL02 AL09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 母材と母材に埋め込まれた形状記憶合金
ワイヤと形状記憶合金ワイヤの電気抵抗値変化を検知す
る抵抗検出回路と形状記憶合金ワイヤの電気抵抗値変化
が所定値になると形状記憶合金ワイヤに所定電流流す電
流制御回路とを具備する複合材料であって形状記憶合金
ワイヤの電気抵抗値変化により複合材料のひずみ,変形
量,損傷を検知するとともに形状記憶合金ワイヤの復元
力によって複合材料自身で抑制、修復することを特徴と
する形状記憶合金埋め込み型複合材料。
1. A base material, a shape memory alloy wire embedded in the base material, a resistance detection circuit for detecting a change in electric resistance value of the shape memory alloy wire, and a shape when the change in electric resistance value of the shape memory alloy wire reaches a predetermined value. A composite material having a current control circuit for passing a predetermined current through a memory alloy wire, which detects strain, deformation amount, and damage of the composite material by a change in electric resistance of the shape memory alloy wire, and by the restoring force of the shape memory alloy wire. A shape memory alloy-embedded composite material characterized by being suppressed and repaired by the composite material itself.
【請求項2】 複合材料の母材が繊維等の強化材であ
り、複合材料に発生する繊維等の強化材の破断を伴わな
いき裂や巨視的な損傷を自己抑制、修復することを特徴
とする請求項1記載の形状記憶合金埋め込み型複合材
料。
2. The base material of the composite material is a reinforcing material such as fiber, and self-suppresses and repairs cracks and macroscopic damage that occur in the composite material without breaking the reinforcing material such as fiber. The shape memory alloy embedded composite material according to claim 1.
【請求項3】 形状記憶合金ワイヤの電気抵抗値を検知
する抵抗検出回路と抵抗検出回路の測定抵抗値に基づい
て、該抵抗値の変化を検知するとともに、形状記憶合金
ワイヤの復元力の制御を行い、複合材料に生じる変形,
ひずみ,損傷の自己抑制、自己修復するプロセッサとを
具備することを特徴とする請求項1又は請求項2のいず
れか記載の形状記憶合金埋め込み型複合材料。
3. A resistance detection circuit for detecting the electric resistance value of the shape memory alloy wire and a change in the resistance value based on the measured resistance value of the resistance detection circuit, and controlling the restoring force of the shape memory alloy wire. The deformation of the composite material,
The shape memory alloy-embedded composite material according to claim 1 or 2, further comprising a processor that self-controls strain and damage and repairs itself.
【請求項4】 温度補償用の第2の形状記憶合金ワイヤ
を形状記憶合金ワイヤの近辺に応力に対して無負荷状態
で設け、形状記憶合金ワイヤと第2の形状記憶合金ワイ
ヤとを抵抗検出回路に接続することにより形状記憶合金
ワイヤの抵抗値を温度補償して検出できるようにしたこ
とを特徴とする請求項1ないし請求項3のいずれか記載
の形状記憶合金埋め込み型複合材料。
4. A second shape memory alloy wire for temperature compensation is provided in the vicinity of the shape memory alloy wire in an unloaded state against stress, and the shape memory alloy wire and the second shape memory alloy wire are subjected to resistance detection. The shape memory alloy embedded composite material according to any one of claims 1 to 3, wherein the resistance value of the shape memory alloy wire can be detected by temperature compensation by being connected to a circuit.
JP2002248628A 2002-03-11 2002-08-28 Shape memory alloy embedded composite material Expired - Lifetime JP3713540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248628A JP3713540B2 (en) 2002-03-11 2002-08-28 Shape memory alloy embedded composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-65156 2002-03-11
JP2002065156 2002-03-11
JP2002248628A JP3713540B2 (en) 2002-03-11 2002-08-28 Shape memory alloy embedded composite material

Publications (2)

Publication Number Publication Date
JP2003335876A true JP2003335876A (en) 2003-11-28
JP3713540B2 JP3713540B2 (en) 2005-11-09

Family

ID=29713966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248628A Expired - Lifetime JP3713540B2 (en) 2002-03-11 2002-08-28 Shape memory alloy embedded composite material

Country Status (1)

Country Link
JP (1) JP3713540B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010444A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Wireless-strain measuring system
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
CN102095362A (en) * 2010-11-20 2011-06-15 武汉理工大学 Grid-type carbon fiber strain transducer
CN103453833A (en) * 2013-09-03 2013-12-18 东南大学 Long-gauge length carbon fiber strain sensing device and method for testing same
US8834018B1 (en) * 2011-05-13 2014-09-16 The Boeing Company Fast response measurement standards
CN106595470A (en) * 2017-01-17 2017-04-26 徐州工程学院 System of intelligent detection of self restoration of anti-seismic device
CN110785280A (en) * 2017-06-28 2020-02-11 秦内蒂克有限公司 Materials comprising shape memory alloy wires and methods of making these materials
CN110953982A (en) * 2019-12-20 2020-04-03 浙江清华柔性电子技术研究院 Thin film device and preparation method thereof, flexible strain sensor and preparation method thereof
CN113007491A (en) * 2021-03-11 2021-06-22 中国石油大学(北京) Pipeline diameter measuring and pipe cleaning device
US11198924B2 (en) * 2004-10-28 2021-12-14 Qinetiq Limited Composite materials

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198924B2 (en) * 2004-10-28 2021-12-14 Qinetiq Limited Composite materials
JP4561500B2 (en) * 2005-06-30 2010-10-13 株式会社日立製作所 Wireless strain measurement system
JP2007010444A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Wireless-strain measuring system
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
CN102095362A (en) * 2010-11-20 2011-06-15 武汉理工大学 Grid-type carbon fiber strain transducer
US8834018B1 (en) * 2011-05-13 2014-09-16 The Boeing Company Fast response measurement standards
CN103453833A (en) * 2013-09-03 2013-12-18 东南大学 Long-gauge length carbon fiber strain sensing device and method for testing same
CN106595470A (en) * 2017-01-17 2017-04-26 徐州工程学院 System of intelligent detection of self restoration of anti-seismic device
CN110785280A (en) * 2017-06-28 2020-02-11 秦内蒂克有限公司 Materials comprising shape memory alloy wires and methods of making these materials
US11926719B2 (en) 2017-06-28 2024-03-12 Qinetiq Limited Materials comprising shape memory alloy wires and methods of making these materials
CN110953982A (en) * 2019-12-20 2020-04-03 浙江清华柔性电子技术研究院 Thin film device and preparation method thereof, flexible strain sensor and preparation method thereof
CN110953982B (en) * 2019-12-20 2024-02-06 浙江清华柔性电子技术研究院 Thin film device and preparation method thereof, flexible strain sensor and preparation method thereof
CN113007491A (en) * 2021-03-11 2021-06-22 中国石油大学(北京) Pipeline diameter measuring and pipe cleaning device

Also Published As

Publication number Publication date
JP3713540B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
Grammatikos et al. On the electrical properties of multi scale reinforced composites for damage accumulation monitoring
US7296477B2 (en) Composite material and method of controlling damage thereto and damage sensor
Hofmann et al. Woven piezoelectric sensors as part of the textile reinforcement of fiber reinforced plastics
JP2003335876A (en) Composite material having shape-memory alloy embedded therein
KR101781687B1 (en) Deveice for detection and recordation of damages on conductive composite material and method for manufacturing the same
US20100154556A1 (en) Strain Guage and Fracture Indicator Based on Composite Film Including Chain-Structured Magnetically Active Particles
Sevkat et al. A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading
US20150369767A1 (en) Anisotropic multiphysics sensing systems for materials and methods of using the same
Todoroki et al. Electrical resistance change of carbon/epoxy composite laminates under cyclic loading under damage initiation limit
US9829450B2 (en) Structural health monitoring
Groo et al. Fatigue damage tracking and life prediction of fiberglass composites using a laser induced graphene interlayer
Tuloup et al. Structural health monitoring of polymer-matrix composite using embedded piezoelectric ceramic transducers during several four-points bending tests
Fernberg et al. Piezoresistive performance of long-fiber composites with carbon nanotube doped matrix
Pandey et al. Fatigue study on the sensor performance of macro fiber composite (MFC): Theoretical and experimental approach
US10648871B2 (en) Fracture ring sensor
JP4877950B2 (en) Method for controlling shape recovery force in intelligent material and intelligent material
Santo Zarnik et al. Study of LTCC-based pressure sensors in water
Hirano et al. Damage identification of woven graphite/epoxy composite beams using the electrical resistance change method
Wang et al. Structural health monitoring of stitch repaired composite structure with Buckypaper sensors and MXene sensors
De Baere et al. The use of rivets for electrical resistance measurement on carbon fibre-reinforced thermoplastics
Grammatikos et al. Monitoring strain and damage in multi-phase composite materials using electrical resistance methods
Kwon et al. Strain sensing characteristics using piezoresistivity of semi-conductive silicon carbide fibers
Mäder et al. Highly elastic strain gauges based on shape memory alloys for monitoring of fibre reinforced plastics
Koutsotolis et al. A carbon nanotube-based thermoelectric generator integrated into a smart composite for structural health monitoring
Saleh et al. Fatigue behavior and electromechanical properties of additively manufactured continuous wire polymer composites for structural health monitoring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

R150 Certificate of patent or registration of utility model

Ref document number: 3713540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term