JP2003335711A - Method for purifying liquid crystalline compound - Google Patents

Method for purifying liquid crystalline compound

Info

Publication number
JP2003335711A
JP2003335711A JP2002250593A JP2002250593A JP2003335711A JP 2003335711 A JP2003335711 A JP 2003335711A JP 2002250593 A JP2002250593 A JP 2002250593A JP 2002250593 A JP2002250593 A JP 2002250593A JP 2003335711 A JP2003335711 A JP 2003335711A
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
crystal compound
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250593A
Other languages
Japanese (ja)
Inventor
Tomoaki Hara
智章 原
Makoto Negishi
真 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002250593A priority Critical patent/JP2003335711A/en
Publication of JP2003335711A publication Critical patent/JP2003335711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying a liquid crystalline compound by heat treatment to obtain the liquid crystalline compound which does not reduce voltage retention after exposed to high temperature conditions in a manufacturing process or the like of a liquid crystal display element. <P>SOLUTION: The method for purifying the liquid crystalline compound comprises heating the liquid crystalline compound in a specific temperature range to give 0.5-5% decomposition of the liquid crystalline compound under an oxygen-containing atmosphere, subsequently bringing the liquid crystalline compound into contact with a nitrogen-containing basic compound and purifying the liquid crystalline compound with an adsorbent. The liquid crystalline compound comprises elements selected from a group consisting of carbon, hydrogen, fluorine, chlorine and oxygen and has no aliphatic unsaturation. The specific temperature range is from 20°C less than a temperature A (°C) to 150°C higher than the temperature A, wherein the temperature A express an extrapolated heat generation-beginning temperature of a peak in the side of the lowest temperature in a temperature range higher than a nematic phase-isotropic phase transition temperature of the liquid crystalline compound obtained by differential scanning calorimetry of the liquid crystalline compound under the oxygen-containing atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶化合物の精製
方法に関し、液晶ディスプレイ製造時の加熱、あるいは
液晶ディスプレイの屋外使用による電圧保持率の低下が
少ない液晶化合物を与える精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a liquid crystal compound, and more particularly to a method for purifying a liquid crystal compound which is less likely to have a decrease in voltage holding ratio due to heating during manufacture of the liquid crystal display or outdoor use of the liquid crystal display.

【0002】[0002]

【従来の技術】液晶ディスプレイは、電卓のディスプレ
イとして登場して以来、コンピューターの開発と歩みを
同じくして、捻れネマチック液晶ディスプレイから、超
捻れネマチック液晶ディスプレイへと表示容量の拡大に
対応してきた。特に、各画素に薄膜トランジスタをつけ
たアクティブマトリクス液晶ディスプレイ(以下、AM
−LCDと略す。)は、古くから使用されているブラウ
ン管にも代替できる高画質を備え、フラット化、省エネ
ルギー化の後押しを受けて、現在最も有望なディスプレ
イとして成長を続けている。
2. Description of the Related Art Liquid crystal displays have expanded their display capacity from twisted nematic liquid crystal displays to super twisted nematic liquid crystal displays in line with the development of computers since they appeared as calculator displays. In particular, an active matrix liquid crystal display (hereinafter referred to as AM
-LCD is abbreviated. ) Has high image quality that can replace the cathode ray tubes that have been used for a long time, and continues to grow as the most promising display at the moment, supported by flattening and energy saving.

【0003】AM−LCDではコントラストを上げるた
めに、各画素に薄膜トランジスタやダイオードのスイッ
チング素子をつけて、画素に電圧を印加する。これは従
来のネマチック液晶ディスプレイのパッシブ駆動方式と
は異なり、スイッチング素子を通して、各画素に数十m
s毎に電圧を印加することにより駆動する。このため、
電圧が印加がされてから数十ms後の次の書き込み時間
までの間は、与えられた電圧を完全に保持できないと、
表示の悪化をきたすことになる。電極間の電圧が下がる
と、透過光強度が変化してコントラストが低下してしま
う。
In the AM-LCD, in order to increase the contrast, a switching element such as a thin film transistor or a diode is attached to each pixel and a voltage is applied to the pixel. This is different from the conventional nematic liquid crystal display passive drive method, in which each pixel is tens of meters through a switching element.
It is driven by applying a voltage every s. For this reason,
If the applied voltage cannot be completely held until the next writing time, which is several tens of ms after the voltage is applied,
This will cause deterioration of the display. When the voltage between the electrodes is lowered, the transmitted light intensity is changed and the contrast is lowered.

【0004】そこで、電圧保持率を維持するために、通
常、AM−LCD用の液晶化合物は、電圧保持率の低下
の原因である不純物を、再結晶、蒸留、液体クロマトグ
ラフィー等の方法で精製してから使用している。また、
液晶化合物中の水分や金属イオンを除去する方法とし
て、特開昭62−210420号公報には液晶化合物を
シリカゲルと接触させる方法が、特開昭58−1774
号公報には活性アルミナと接触させる方法が、特開昭5
2−59081号公報にはイオン交換樹脂で処理する方
法が、特開昭63−261224号公報にはゼオライト
と接触させる方法がそれぞれ開示されている。更に、特
開昭50−108186号公報、特開昭51−1106
9号公報、特開平4−86812号公報には、対向する
一対の電極間に液晶化合物を入れ、電界をかけることに
より、電界による移動度の比較的大きなNa+、K+等
の金属イオンや、SO 2−、NO 、Cl等のイ
オン性不純物を除去する方法等が開示されている。
Therefore, in order to maintain the voltage holding ratio, the liquid crystal compound for AM-LCD is usually purified by a method such as recrystallization, distillation, liquid chromatography, etc. for impurities causing the decrease in the voltage holding ratio. I have been using it since then. Also,
As a method for removing water and metal ions in a liquid crystal compound, JP-A-62-210420 discloses a method of contacting a liquid crystal compound with silica gel, which is disclosed in JP-A-58-1774.
The method disclosed in Japanese Patent Laid-Open Publication No. Sho 5 is a method of contacting with activated alumina.
No. 2-59081 discloses a method of treating with an ion exchange resin, and JP-A No. 63-261224 discloses a method of contacting with zeolite. Furthermore, JP-A-50-108186 and JP-A-51-1106.
In Japanese Patent Laid-Open No. 9-86812 and Japanese Patent Laid-Open No. 4-86812, a liquid crystal compound is put between a pair of electrodes facing each other, and an electric field is applied, whereby metal ions such as Na + and K + having a relatively large mobility due to the electric field and SO. A method for removing ionic impurities such as 4 2− , NO 3 , Cl − and the like are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記方法で精
製し、実用に耐えうる電圧保持率を有している液晶化合
物を使用した場合であっても、液晶ディスプレイの製造
過程において、該液晶化合物が高温にさらされた場合、
電圧保持率が低下することがあった。
However, even when a liquid crystal compound purified by the above method and having a voltage holding ratio that can withstand practical use is used, the liquid crystal compound is still used in the process of manufacturing a liquid crystal display. Is exposed to high temperatures,
The voltage holding ratio sometimes decreased.

【0006】本発明が解決しようとする課題は、高温に
さらされた場合であっても電圧保持率の低下を起こすこ
とのない液晶化合物を得るための精製方法を提供するこ
とである。
The problem to be solved by the present invention is to provide a purification method for obtaining a liquid crystal compound which does not cause a reduction in voltage holding ratio even when exposed to high temperatures.

【0007】[0007]

【課題を解決するための手段】前記従来の方法で精製
し、実用に耐えうる電圧保持率を有している液晶化合物
を使用した場合であっても、液晶ディスプレイの製造過
程で、該液晶化合物が高温にさらされた場合電圧保持率
が低下する理由としては、上記精製方法で除去しきれな
かった微量の不純物が液晶化合物中に存在し、これが加
熱によって分解するためであると推測される。本発明
は、液晶化合物を、酸素存在下で、不純物が分解しうる
温度で加熱処理して、加熱によって分解しやすい微量の
不純物を分解した後、窒素を含有する塩基性化合物と接
触させ、次いで吸着剤で精製する、液晶化合物の精製方
法を提供することによって、上記課題を解決した。
Even when a liquid crystal compound which has been purified by the above-mentioned conventional method and has a voltage holding ratio that can withstand practical use is used, the liquid crystal compound is still produced in the manufacturing process of the liquid crystal display. It is speculated that the reason why the voltage holding ratio is lowered when exposed to a high temperature is that trace amounts of impurities that cannot be completely removed by the above-mentioned purification method are present in the liquid crystal compound and decomposed by heating. In the present invention, a liquid crystal compound is heated in the presence of oxygen at a temperature at which impurities can be decomposed to decompose a trace amount of impurities which are easily decomposed by heating, and then contacted with a basic compound containing nitrogen, The above problems have been solved by providing a method for purifying a liquid crystal compound, which is purified with an adsorbent.

【0008】[0008]

【発明の実施の形態】本発明においては、液晶化合物
を、酸素を含有する雰囲気下で、該液晶化合物の分解率
が0.5〜5%となる範囲内で加熱処理した後、窒素を
含有する塩基性化合物と接触させ、その後吸着剤で精製
することによって行う。具体的には、液晶化合物に含ま
れる、再結晶、蒸留、液体クロマトグラフィー等、通常
行われている精製方法では除去できない、特に熱分解し
やすい不純物を、加熱処理により酸化、分解等の化学変
化を生じさせ、吸着剤に吸着しやすい化学構造へと変化
させてから、精製する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a liquid crystal compound is heat-treated in an atmosphere containing oxygen within a range such that the decomposition rate of the liquid crystal compound is 0.5 to 5%, and then the liquid crystal compound is added with nitrogen. It is carried out by bringing it into contact with a basic compound, and then purifying with an adsorbent. Specifically, chemical changes such as oxidation and decomposition by heat treatment of impurities that are contained in the liquid crystal compound and cannot be removed by ordinary purification methods such as recrystallization, distillation, and liquid chromatography, which are particularly susceptible to thermal decomposition. Is generated, and the chemical structure is changed so that it is easily adsorbed by the adsorbent, and then purified.

【0009】本発明で使用する液晶化合物は、炭素、水
素、フッ素、塩素及び酸素からなる群から選ばれる元素
から成り、脂肪族系不飽和基を持たないこと以外には特
に限定はないが、120℃〜300℃に加熱した際に化
学変化あるいは分解しにくい液晶化合物であることが好
ましい。脂肪族系不飽和基を有していたり、あるいはシ
アノ基等、炭素、水素、フッ素、塩素、又は酸素以外の
元素を含む構造を有するものは、液晶化合物そのものが
耐熱性に劣り、120℃以下であっても容易に分解する
おそれがある。特に本発明は脂肪族不飽和結合をそれ自
身の構造中に有する液晶化合物の精製には適さない。
The liquid crystal compound used in the present invention is composed of an element selected from the group consisting of carbon, hydrogen, fluorine, chlorine and oxygen and is not particularly limited except that it has no aliphatic unsaturated group. It is preferable that the liquid crystal compound is resistant to chemical change or decomposition when heated to 120 ° C to 300 ° C. Those having an aliphatic unsaturated group or having a structure containing an element other than carbon, hydrogen, fluorine, chlorine, or oxygen such as a cyano group, the liquid crystal compound itself is inferior in heat resistance and is 120 ° C or less. However, it may be easily decomposed. In particular, the present invention is not suitable for purifying a liquid crystal compound having an aliphatic unsaturated bond in its own structure.

【0010】本発明が適用される液晶化合物として、具
体的には、液晶表示素子、すなわち捻れネマティック型
液晶表示素子、超捻れネマティック型液晶表示素子、ポ
リマー分散型液晶型液晶表示素子、光学自己補償型複屈
折型液晶表示素子等に一般に使用されるネマティック液
晶化合物、あるいは強誘電性液晶ディスプレイに一般に
使用されるカイラルスメクチック液晶化合物等が挙げら
れ、例えば、フッ素、塩素、アルキル基、アルコキシ
基、フッ化アルキル基、塩化アルキル基、フッ化アルコ
キシ基、塩化アルコキシ基等の置換基を有していても良
いビフェニル系、同フェニルシクロヘキサン系、同安息
香酸フェニルエステル系、同シクロヘキシルカルボン酸
フェニルエステル系、同ナフタレン系、同フェニルナフ
タレン系、同シクロヘキシルナフタレン系、同シクロヘ
キシルフェニルナフタレン系、同テトラリン系、同フェ
ニルテトラリン系、同シクロヘキシルテトラリン系、同
シクロヘキシルフェニルテトラリン系、同デカリン系、
同フェニルデカリン系、同シクロヘキシルデカリン系、
同シクロヘキシルフェニルデカリン系、同フェナントレ
ン系、
As the liquid crystal compound to which the present invention is applied, specifically, a liquid crystal display element, that is, a twisted nematic liquid crystal display element, a super twisted nematic type liquid crystal display element, a polymer dispersion type liquid crystal type liquid crystal display element, and optical self-compensation. Examples include nematic liquid crystal compounds generally used for birefringent liquid crystal display elements and the like, and chiral smectic liquid crystal compounds generally used for ferroelectric liquid crystal displays, and examples thereof include fluorine, chlorine, alkyl groups, alkoxy groups, and fluorine. Alkyl group, chlorinated alkyl group, fluorinated alkoxy group, biphenyl type which may have a substituent such as chlorinated alkoxy group, the same phenylcyclohexane type, the same benzoic acid phenyl ester type, the same cyclohexylcarboxylic acid phenyl ester type, Same naphthalene, same phenylnaphthalene, same cyclo Hexyl naphthalene, the phenyl naphthalene, the tetralin system, the phenyl tetraline type, the cyclohexyl tetralin system, the phenyl tetraline type, the decalin system,
The same phenyldecalin type, the same cyclohexyldecalin type,
The same cyclohexylphenyl decalin type, the same phenanthrene type,

【0011】同フェニルフェナントレン系、同シクロヘ
キシルフェナントレン系、同シクロヘキシルフェニルフ
ェナントレン系、同テトラヒドロフェナントレン系、同
フェニルトテラヒドロフェナントレン系、同シクロヘキ
シルテトラヒドロフェナントレン系、同シクロヘキシル
フェニルテトラヒドロフェナントレン系、同オクタヒド
ロフェナントレン系、同フェニルオクタヒドロフェナン
トレン系、同シクロヘキシルオクタヒドロフェナントレ
ン系、同シクロヘキシルフェニルオクタヒドロフェナン
トレン系、同パーヒドロフェナントレン系、同フェニル
パーヒドロフェナントレン系、同シクロヘキシルパーヒ
ドロフェナントレン系、同シクロヘキシルフェニルパー
ヒドロフェナントレン系、同ビシクロオクテン系、同イ
ンダン系、同ベンゾインダン系等の液晶化合物を挙げる
ことができる。
The same phenylphenanthrene type, the same cyclohexylphenanthrene type, the same cyclohexylphenylphenanthrene type, the same tetrahydrophenanthrene type, the same phenyltoterahydrophenanthrene type, the same cyclohexyltetrahydrophenanthrene type, the same cyclohexylphenyltetrahydrophenanthrene type, the same octahydrophenanthrene type, The same phenyl octahydrophenanthrene system, the same cyclohexyl octahydrophenanthrene system, the same cyclohexyl phenyl octahydrophenanthrene system, the same perhydrophenanthrene system, the same phenyl perhydrophenanthrene system, the same cyclohexyl perhydrophenanthrene system, the same cyclohexyl phenyl perhydrophenanthrene system, Bicyclooctene system, Indan system, Ben It is a liquid crystal compound of indane system and the like.

【0012】加熱処理により不純物を酸化分解させるた
めに、加熱処理工程においては酸素の存在が必須であ
り、具体的には、酸素を5〜100体積%の範囲で含有
する雰囲気下、中でも15〜70体積%の範囲で含有す
る雰囲気下で加熱処理を行うことが望ましい。この雰囲
気中の酸素以外の成分としては、窒素、アルゴン、ネオ
ン等の不活性ガスが好ましい。例えば、空気は酸素濃度
が21体積%であり、容易に利用することができるので
好ましい。
In order to oxidatively decompose the impurities by the heat treatment, the presence of oxygen is essential in the heat treatment step, and specifically, in an atmosphere containing oxygen in the range of 5 to 100% by volume, especially 15 to It is desirable to perform the heat treatment in an atmosphere containing 70% by volume. As a component other than oxygen in this atmosphere, an inert gas such as nitrogen, argon or neon is preferable. For example, air is preferable because it has an oxygen concentration of 21% by volume and can be easily used.

【0013】加熱処理温度の設定においては、酸素を含
有する雰囲気下、示差走査熱量測定(以下、DSCと称
す)で得られる液晶化合物が等方相を示す温度域におけ
る最も低温のピークの補外発熱開始温度A(℃)とする
と、Aより20℃低い温度からAより150℃高い温度
範囲内であることが好ましく、Aより10℃低い温度か
らAより70℃高い温度範囲が最も好ましい。
In setting the heat treatment temperature, the extrapolation of the lowest temperature peak in the temperature range where the liquid crystal compound obtained by differential scanning calorimetry (hereinafter referred to as DSC) shows an isotropic phase in an atmosphere containing oxygen. The heat generation start temperature A (° C.) is preferably within a temperature range of 20 ° C. lower than A to 150 ° C. higher than A, and most preferably 10 ° C. lower than A to 70 ° C. higher than A.

【0014】液晶化合物の、酸素を含有する雰囲気下に
おけるDSCを用いた熱分析では、液晶化合物が等方相
を示す温度域で酸化または熱分解に起因する発熱が観測
される。この発熱ピークのベースラインと、発熱ピーク
の立ち上がり曲線の、こう配が最大となる接線との交点
の温度が補外発熱開始温度Aである。この補外発熱開始
温度Aは多くの場合100℃〜300℃の範囲で観測さ
れるが、特に加熱処理工程を経た後の電圧保持率の低下
が問題となる液晶化合物では、100℃〜200℃の範
囲内にピークが一つ観測され、更に、より高温側に液晶
化合物そのものの熱分解に伴う発熱が観測されることが
多い。
In the thermal analysis of the liquid crystal compound using DSC in an atmosphere containing oxygen, heat generation due to oxidation or thermal decomposition is observed in a temperature range where the liquid crystal compound shows an isotropic phase. The temperature at the intersection of the baseline of this exothermic peak and the tangent line of the rising curve of the exothermic peak with the maximum gradient is the extrapolated exothermic onset temperature A. This extrapolation exothermic onset temperature A is often observed in the range of 100 ° C. to 300 ° C., but in the case of a liquid crystal compound in which a decrease in voltage holding ratio after a heat treatment step is a problem, it is 100 ° C. to 200 ° C. One peak is often observed within the range, and heat generation due to thermal decomposition of the liquid crystal compound itself is often observed on the higher temperature side.

【0015】このような熱分析結果が得られる液晶化合
物には、熱分解しやすい不純物が含まれていることが推
定でき、ここで観測される補外発熱開始温度Aは、その
不純物が熱分解を始める最低温度であることが推定でき
る。従って、このような熱分解しやすい不純物だけに熱
分解させ、液晶化合物そのものをできるだけ熱分解させ
ないために、加熱処理温度は、熱分解しやすい不純物が
熱分解を始める最低温度以上であって、液晶化合物その
ものの熱分解温度以下に設定することが好ましい。実際
には、DSCで観測される補外発熱開始温度Aよりも低
い温度から僅かながら熱分解が起こっており、Aより2
0℃低い温度で加熱処理を行っても、本発明の効果を得
ることができる。一方、液晶化合物そのものの熱分解
は、Aより150℃高い温度範囲内であればかなり抑え
ることができる。
It can be presumed that the liquid crystal compound from which such a thermal analysis result is obtained contains impurities that are easily decomposed by heat, and the extrapolated exothermic onset temperature A observed here is that the impurities are decomposed by heat. It can be estimated that it is the lowest temperature at which Therefore, in order to thermally decompose only the impurities that are easily thermally decomposed and the liquid crystal compound itself is not thermally decomposed as much as possible, the heat treatment temperature is equal to or higher than the minimum temperature at which the easily thermally decomposed impurities start thermal decomposition. It is preferable to set the temperature below the thermal decomposition temperature of the compound itself. Actually, a slight thermal decomposition occurs from a temperature lower than the extrapolation heat generation start temperature A observed by DSC.
The effect of the present invention can be obtained even if the heat treatment is performed at a temperature lower by 0 ° C. On the other hand, thermal decomposition of the liquid crystal compound itself can be considerably suppressed within a temperature range higher than A by 150 ° C.

【0016】補外発熱開始温度Aより20℃低い温度が
120℃を下回ってしまう場合は、加熱処理温度は12
0℃に設定するとよい。120℃より低い温度で加熱処
理を行ったのでは、比較的熱分解しやすい不純物であっ
ても酸化分解されず、熱分解しやすい不純物を除去でき
ないおそれがある。加熱処理温度は140℃で設定する
となおよい。
When the temperature 20 ° C. lower than the extrapolation heat generation start temperature A falls below 120 ° C., the heat treatment temperature is 12
It is recommended to set it to 0 ° C. If the heat treatment is performed at a temperature lower than 120 ° C., even impurities that are relatively thermally decomposed are not oxidatively decomposed, and there is a possibility that impurities that are easily thermally decomposed cannot be removed. It is more preferable to set the heat treatment temperature at 140 ° C.

【0017】一方、補外発熱開始温度Aより150℃高
い温度が300℃を上回ってしまう場合は、加熱処理温
度は300℃に設定するとよい。300℃より高い温度
で加熱処理を行ったのでは、液晶化合物そのものが急激
に化学変化あるいは分解を起こしやすく、熱分解物、酸
化物等が多量に生成するおそれがあり、多量の吸着剤が
必要となることや、液晶化合物そのものの得られる収量
が低下するおそれがある。加熱処理温度は260℃で設
定しておくとなおよく、200℃で設定しておくと最も
良い。
On the other hand, when the temperature 150 ° C. higher than the extrapolation heat generation start temperature A exceeds 300 ° C., the heat treatment temperature should be set to 300 ° C. If the heat treatment is performed at a temperature higher than 300 ° C, the liquid crystal compound itself is liable to undergo a rapid chemical change or decomposition, and a large amount of thermal decomposition products or oxides may be generated, so a large amount of adsorbent is required. And the yield of the liquid crystal compound itself may decrease. The heat treatment temperature is more preferably set to 260 ° C, and most preferably set to 200 ° C.

【0018】また、DSCにおける昇温速度は5℃/分
以下とすることが好ましい。昇温速度が大きすぎると補
外発熱開始温度Aが高温側にシフトする等誤差が大きく
なる。
The rate of temperature rise in DSC is preferably 5 ° C./minute or less. If the rate of temperature increase is too high, an error such as the extrapolated heat generation start temperature A being shifted to a high temperature side becomes large.

【0019】本発明の精製方法において、加熱処理時間
は15分〜24時間が好ましい。より好ましくは30分
〜12時間である。加熱処理時間は加熱処理温度との兼
ね合いによって適切な時間が異なってくる。補外発熱開
始温度Aに比べて加熱処理温度が高ければ高いほど不純
物の熱分解は急速に進行するため加熱処理時間を短くす
ることができる。一方、補外発熱開始温度Aに比べて加
熱処理温度がさほど高くなければ不純物の熱分解の進行
は遅いため加熱処理時間を長くする必要がある。実際に
は、液晶化合物の分解率が0.5〜5%の範囲内となる
ようにする。液晶化合物の分解率が0.5%未満では、
加熱処理が不十分のため不純物自体を熱分解できず、不
純物が完全に除去できないおそれがある。一方、液晶化
合物の分解率が5%を上回ってしまっては、精製後得ら
れる液晶化合物の収率が下がり、効率的ではない。
In the purification method of the present invention, the heat treatment time is preferably 15 minutes to 24 hours. It is more preferably 30 minutes to 12 hours. The heat treatment time varies depending on the heat treatment temperature. As the heat treatment temperature is higher than the extrapolation heat generation start temperature A, the thermal decomposition of the impurities progresses more rapidly, so that the heat treatment time can be shortened. On the other hand, if the heat treatment temperature is not so high as compared with the extrapolation heat generation start temperature A, the progress of the thermal decomposition of impurities is slow, so the heat treatment time must be lengthened. Actually, the decomposition rate of the liquid crystal compound is set within the range of 0.5 to 5%. When the decomposition rate of the liquid crystal compound is less than 0.5%,
Since the heat treatment is insufficient, the impurities themselves cannot be thermally decomposed, and the impurities may not be completely removed. On the other hand, if the decomposition rate of the liquid crystal compound exceeds 5%, the yield of the liquid crystal compound obtained after purification decreases, which is not efficient.

【0020】加熱処理時に、不純物がより効率的に酸素
に接触するようにした方が、酸化分解が促進され、加熱
処理時間を短縮することができる。従って、液晶化合物
を撹拌しながら加熱したり、あるいは液晶化合物中に酸
素を含有する気体を吹き込みながら加熱することが好ま
しい。また必要に応じ、液晶化合物を有機溶媒溶液とし
てから加熱してもよい。加熱源としてはマイクロ波を使
用すると、加熱効率が格段に高まるためより好ましい。
When the impurities are brought into contact with oxygen more efficiently during the heat treatment, oxidative decomposition is promoted and the heat treatment time can be shortened. Therefore, it is preferable to heat the liquid crystal compound while stirring, or to heat the liquid crystal compound while blowing a gas containing oxygen into the liquid crystal compound. If necessary, the liquid crystal compound may be heated in an organic solvent solution and then heated. The use of microwaves as the heating source is more preferable because the heating efficiency is significantly increased.

【0021】前記加熱処理条件で液晶化合物を加熱処理
した後、窒素を含有する塩基性化合物と接触させ、その
後吸着剤で精製する。(以下、窒素を含有する塩基性化
合物を、窒素含有化合物と略す。)窒素含有化合物と接
触させることで、加熱により生じた不純物や、液晶化合
物の分解物の中でも、特に酸性度の高いものを除去する
ことができる。この工程のメカニズムは明らかになって
いないが、窒素含有化合物がその塩基性によって酸性度
の高い不純物を引き寄せ、該不純物と、窒素含有化合物
の窒素原子が有する孤立電子対とがコンプレックスを形
成すると考えられる。
After the liquid crystal compound is heat-treated under the above-mentioned heat treatment conditions, it is brought into contact with a basic compound containing nitrogen and then purified with an adsorbent. (Hereinafter, a nitrogen-containing basic compound is abbreviated as a nitrogen-containing compound.) By contacting with a nitrogen-containing compound, impurities generated by heating and decomposition products of a liquid crystal compound, which have particularly high acidity, are selected. Can be removed. Although the mechanism of this process is not clear, it is considered that the nitrogen-containing compound attracts highly acidic impurities due to its basicity, and the impurities and the lone electron pair possessed by the nitrogen atom of the nitrogen-containing compound form a complex. To be

【0022】加熱した後の液晶化合物を窒素含有化合物
と接触させるには、該液晶化合物を冷却し、窒素含有化
合物と混合させればよい。混合は通常室温で行うが、混
合しづらい場合には加温して行うのがよい。混合する温
度下で、該液晶化合物が液晶状態あるいは等方性液体で
あり、かつ窒素含有化合物が液体の場合は、そのまま両
者を混合すれば良い。また、該液晶化合物が固体である
場合や、窒素含有化合物が気体もしくは固体である場合
は、各々を溶媒に溶かした溶液としてから混合するのが
好ましい。そのときに使用する溶媒としては、該液晶化
合物の溶媒としては各種有機溶媒が挙げられ、窒素含有
化合物の溶媒としては、水、アルコール類、エーテル
類、炭化水素系溶媒類等の溶媒が挙げられる。該液晶化
合物溶液と窒素含有化合物溶液とを混合する場合には、
該液晶化合物に使用した溶媒と窒素含有化合物に使用し
た溶媒とが相溶しないように、それぞれの溶媒を選択す
ることが好ましい。しかし、混合後に、抽出等を行うこ
とで該液晶化合物と窒素含有化合物とを分離できる場合
は、お互い相溶する溶媒であっても構わない。
In order to bring the liquid crystal compound after heating into contact with the nitrogen-containing compound, the liquid crystal compound may be cooled and mixed with the nitrogen-containing compound. Mixing is usually performed at room temperature, but if it is difficult to mix, it is preferable to perform heating. When the liquid crystal compound is in a liquid crystal state or an isotropic liquid and the nitrogen-containing compound is a liquid at the mixing temperature, they may be mixed as they are. Further, when the liquid crystal compound is a solid or when the nitrogen-containing compound is a gas or a solid, it is preferable to mix each of them as a solution in a solvent. Examples of the solvent used at that time include various organic solvents as the solvent of the liquid crystal compound, and examples of the solvent of the nitrogen-containing compound include water, alcohols, ethers, hydrocarbon solvents and the like. . When the liquid crystal compound solution and the nitrogen-containing compound solution are mixed,
It is preferable to select each solvent so that the solvent used for the liquid crystal compound and the solvent used for the nitrogen-containing compound are incompatible with each other. However, if the liquid crystal compound and the nitrogen-containing compound can be separated by performing extraction or the like after mixing, solvents that are compatible with each other may be used.

【0023】混合方法に特に限定はなく、通常は30分
〜3時間程度攪拌するだけでよい。窒素含有化合物の使
用割合は、該液晶化合物に対して1〜1000質量%が
好ましく、5〜200質量%が更に好ましい。使用割合
が少なすぎると不純物が除去しきれずに電圧保持率が低
下し、使用割合が多すぎると攪拌や液晶化合物との分離
が困難となるおそれがある。
There is no particular limitation on the mixing method, and it is usually sufficient to stir for about 30 minutes to 3 hours. The use ratio of the nitrogen-containing compound is preferably 1 to 1000% by mass, and more preferably 5 to 200% by mass based on the liquid crystal compound. If the usage ratio is too low, impurities cannot be completely removed and the voltage holding ratio is lowered, and if the usage ratio is too high, stirring or separation from the liquid crystal compound may become difficult.

【0024】本発明で使用する窒素含有化合物として
は、塩基性であれば特に限定はなく、例えば、アンモニ
ア、アミン化合物、アミド化合物、ヒドラジン化合物、
ヒドラゾン化合物、ヒドロキシルアミン化合物、窒素を
含有する複素環を有する化合物、イミン化合物、アゾ化
合物、アミジン化合物、カルボジイミド化合物、グアニ
ジン化合物、及びクリプタンド化合物が挙げられる。ま
たこれらの化合物の塩類を使用することもできる。
The nitrogen-containing compound used in the present invention is not particularly limited as long as it is basic, and examples thereof include ammonia, amine compounds, amide compounds, hydrazine compounds,
Examples thereof include a hydrazone compound, a hydroxylamine compound, a compound having a nitrogen-containing heterocycle, an imine compound, an azo compound, an amidine compound, a carbodiimide compound, a guanidine compound, and a cryptand compound. It is also possible to use salts of these compounds.

【0025】アンモニアは通常は水溶液となっているも
のを使用する。その濃度は特に限定はないが1〜50質
量%の範囲が好ましく、中でも5〜30質量%が好まし
い。アミン化合物としてはメチルアミン、エチルアミ
ン、プロピルアミン、シクロヘキシルアミン等の第一級
アミン、ジメチルアミン、ジエチルアミン等の第二級ア
ミン、トリメチルアミン、トリエチルアミン等の第三級
アミン、エチレンジアミン、シクロペンタンジアミン等
の脂肪族ジアミン、エタノールアミン、ジエタノールア
ミン等のアルカノールアミン、アニリン、ジメチルアニ
リン等の芳香族アミン、及びこれらアミン類の塩(塩酸
塩、硫酸塩、酢酸塩等)が挙げられ、中でも脂肪族ジア
ミン類及びアルカノールアミン類が好ましい。これらア
ミン化合物はそのまま用いても溶媒で希釈して用いても
よい。希釈する際に使用する溶媒としては水、アルコー
ル類、エーテル類、炭化水素系溶媒類が挙げられる。ア
ミド化合物(対応するイミドヒドリン互変異性体を含
む)としては芳香族アミドや脂肪族アミドが挙げられ
る。
Ammonia used is usually an aqueous solution. The concentration is not particularly limited, but is preferably in the range of 1 to 50% by mass, and particularly preferably 5 to 30% by mass. Examples of amine compounds include primary amines such as methylamine, ethylamine, propylamine and cyclohexylamine, secondary amines such as dimethylamine and diethylamine, tertiary amines such as trimethylamine and triethylamine, and fats such as ethylenediamine and cyclopentanediamine. Group diamines, alkanolamines such as ethanolamine and diethanolamine, aromatic amines such as aniline and dimethylaniline, and salts of these amines (hydrochlorides, sulfates, acetates, etc.), among them aliphatic diamines and alkanols. Amines are preferred. These amine compounds may be used as they are or diluted with a solvent. Examples of the solvent used when diluting include water, alcohols, ethers, and hydrocarbon solvents. Examples of the amide compound (including the corresponding imidehydrin tautomer) include aromatic amide and aliphatic amide.

【0026】ヒドラジン化合物としてはヒドラジン、ヒ
ドラジン水和物、ヒドラジン塩酸塩や硫酸塩等の塩類、
メチルヒドラジン、エチルヒドラジン、ジメチルヒドラ
ジン等のアルキルヒドラジン、フェニルヒドラジン等の
芳香族ヒドラジンが挙げられる。中でも、ヒドラジン、
ヒドラジンの水和物や、ヒドラジン塩類が好ましい。ヒ
ドラゾン化合物としてはアルデヒドヒドラゾン、ケトン
ヒドラゾン、あるいはこれらの水和物や塩類、ヒドラゾ
ベンゼン等の芳香族ヒドラゾン類が挙げられる。
As the hydrazine compound, hydrazine, hydrazine hydrate, salts such as hydrazine hydrochloride and sulfate,
Examples thereof include alkylhydrazine such as methylhydrazine, ethylhydrazine and dimethylhydrazine, and aromatic hydrazine such as phenylhydrazine. Among them, hydrazine,
Hydrazine hydrate and hydrazine salts are preferred. Examples of the hydrazone compound include aldehyde hydrazone, ketone hydrazone, hydrates and salts thereof, and aromatic hydrazones such as hydrazobenzene.

【0027】ヒドロキシルアミン化合物としてはヒドロ
キシルアミン、あるいはこれらの水和物や塩類、N−ア
ルキルヒドロキシルアミン、N−アリールヒドロキシル
アミンが挙げられ、中でもヒドロキシルアミン、あるい
はこれらの水和物や塩類が特に好ましい。窒素を含有す
る複素環を有する化合物としてはピリジン、キノリン、
イソキノリン、ピリダジン、ピリミジン、ピラジン、ベ
ンゾピロール、ピラゾール、イミダゾール、及びこれら
の塩類が挙げられる。イミン化合物としてはベンズアル
デヒドフェニルアミン等のシッフ塩基、N置換イミン
類、ジフェニルケチミン等のN無置換イミン類が挙げら
れる。
Examples of the hydroxylamine compound include hydroxylamine, hydrates and salts thereof, N-alkylhydroxylamine and N-arylhydroxylamine, and among them, hydroxylamine and hydrates and salts thereof are particularly preferable. . As the compound having a nitrogen-containing heterocycle, pyridine, quinoline,
Examples include isoquinoline, pyridazine, pyrimidine, pyrazine, benzopyrrole, pyrazole, imidazole, and salts thereof. Examples of the imine compound include Schiff bases such as benzaldehyde phenylamine, N-substituted imines, and N-unsubstituted imines such as diphenylketimine.

【0028】アゾ化合物としてはアゾメタン等のアゾア
ルカン類、アゾベンゼン等のアゾアリール類が挙げられ
る。アミジン類としてはアセトアミジン等の脂肪族アミ
ジン、N−ベンズアミジン等の芳香族アミジン、あるい
はこれらの水和物や塩類が挙げられる。カルボジイミド
類としては芳香族系カルボジイミド、脂肪族カルボジイ
ミドが挙げられる。グアニジン類としてはグアニジン、
グアニジン酢酸等が挙げられる。クリプタンド化合物と
しては1,4,7,10,13,16−ヘキサアザシク
ロオクタデカン等の大環状ポリアミン類、ポリアミン−
エーテル類が挙げられる。これらの窒素含有化合物は、
単体で使用しても良いし、2種以上を混合して使用して
も構わない。中でも、アンモニア、アミン化合物、アミ
ド化合物、ヒドラジン化合物、ヒドラゾン化合物、ヒド
ロキシルアミン化合物、窒素を含有する複素環を有する
化合物が特に好ましい。
Examples of the azo compound include azoalkanes such as azomethane and azoaryls such as azobenzene. Examples of the amidines include aliphatic amidines such as acetamidine, aromatic amidines such as N-benzamidine, and hydrates and salts thereof. Examples of carbodiimides include aromatic carbodiimides and aliphatic carbodiimides. As guanidines, guanidine,
Examples include guanidine acetic acid. Examples of the cryptand compound include macrocyclic polyamines such as 1,4,7,10,13,16-hexaazacyclooctadecane, polyamine-
Examples include ethers. These nitrogen-containing compounds are
They may be used alone or in combination of two or more. Among them, ammonia, amine compounds, amide compounds, hydrazine compounds, hydrazone compounds, hydroxylamine compounds, and compounds having a nitrogen-containing heterocycle are particularly preferable.

【0029】接触後、該液晶化合物と該窒素含有化合物
とを分離するには、該液晶化合物と該窒素含有化合物と
が相溶していなければ、分液漏斗等を用いて分離すれば
よい。また、両者が相溶している時は、相溶物の中に炭
化水素系溶媒等の有機溶媒と水を添加し、該液晶化合物
を有機溶媒層に、窒素含有化合物を水層にうつしてか
ら、分液漏斗等で分離し、該液晶化合物の有機溶媒溶液
を得る。該液晶化合物の有機溶媒溶液は、吸着剤で精製
する前に酸で洗浄するとさらによい。
After contact, the liquid crystal compound and the nitrogen-containing compound can be separated by using a separatory funnel or the like if the liquid crystal compound and the nitrogen-containing compound are not compatible with each other. When both are compatible, an organic solvent such as a hydrocarbon solvent and water are added to the compatible material, and the liquid crystal compound is transferred to the organic solvent layer and the nitrogen-containing compound is transferred to the aqueous layer. Then, the mixture is separated with a separating funnel or the like to obtain a solution of the liquid crystal compound in an organic solvent. The organic solvent solution of the liquid crystal compound is more preferably washed with an acid before being purified with an adsorbent.

【0030】前記方法により窒素含有化合物と接触させ
た後の液晶化合物を、吸着剤で精製する。窒素含有化合
物との接触により、若干量の窒素含有化合物が該液晶化
合物に残る場合があるが、これも吸着剤で除去すること
ができる。吸着剤による精製は、公知の方法によって行
うことができる。
The liquid crystal compound after being contacted with the nitrogen-containing compound by the above method is purified with an adsorbent. Contact with the nitrogen-containing compound may leave some amount of the nitrogen-containing compound in the liquid crystal compound, which can also be removed by an adsorbent. Purification with an adsorbent can be performed by a known method.

【0031】本発明において使用できる吸着剤として
は、無機系の吸着剤と有機系の吸着剤が挙げられる。無
機系の吸着剤としては、シリカゲル、活性アルミナ、活
性マグネシア、ケイ酸マグネシウム、ゼオライト、酸化
チタン等が挙げられ、有機系の吸着剤としては、スチレ
ン系、アクリル系、フェノール系、セルロース系等の合
成樹脂吸着剤が挙げられる。このうちシリガゲル、活性
アルミナ、活性マグネシア、ケイ酸マグネシウムの中か
ら選ばれた一種またはこれらの組み合わせを用いること
が好ましい。中でもシリカゲルを使用することが簡便で
あり、好ましい。
Examples of the adsorbent that can be used in the present invention include inorganic adsorbents and organic adsorbents. Examples of the inorganic adsorbent include silica gel, activated alumina, activated magnesia, magnesium silicate, zeolite, titanium oxide, and the like, and organic adsorbents include styrene-based, acrylic-based, phenol-based, and cellulose-based adsorbents. Examples include synthetic resin adsorbents. Of these, it is preferable to use one selected from silica gel, activated alumina, activated magnesia, and magnesium silicate or a combination thereof. Among them, it is preferable to use silica gel, which is preferable.

【0032】これらの吸着剤は、窒素含有化合物と接触
させた後の液晶化合物又は液晶化合物を含む溶液中に分
散させて、撹拌した後濾過するか、あるいは、該吸着剤
をカラムに充填し、カラム上部から該溶液を通すことが
好ましい。特にカラムを使用すると、加熱により化学変
化した耐熱性の低い不純物を確実に除去できるため好ま
しい。吸着剤の使用量に特に制限はないが、一般的には
該液晶化合物の1〜30倍量を使用する。吸着剤の使用
量が少ないと不純物が完全に除去できないおそれがあ
る。一方使用量が多すぎると、精製にかかる時間が長く
なってしまう。
These adsorbents are dispersed in a liquid crystal compound or a solution containing the liquid crystal compound after being brought into contact with a nitrogen-containing compound, and the mixture is stirred and then filtered, or the adsorbent is packed in a column, It is preferable to pass the solution from the top of the column. In particular, it is preferable to use a column because it is possible to reliably remove impurities having low heat resistance that are chemically changed by heating. The amount of the adsorbent used is not particularly limited, but it is generally 1 to 30 times the amount of the liquid crystal compound. If the amount of adsorbent used is small, impurities may not be completely removed. On the other hand, if the amount used is too large, the time required for purification becomes long.

【0033】カラムの展開溶媒としては、単一の溶剤で
あっても混合溶剤であっても構わないが、一旦吸着剤に
吸着された極性の高い不純物を再度溶出しないために、
極性の低い溶剤を使用することが好ましい。具体的に
は、n−ヘキサン、n−ヘプタン、ベンゼン、シクロヘ
キサン、メチルシクロヘキサン等の炭化水素系溶剤を使
用することが特に好ましい。
The developing solvent for the column may be a single solvent or a mixed solvent, but since the highly polar impurities once adsorbed by the adsorbent are not eluted again,
It is preferred to use a less polar solvent. Specifically, it is particularly preferable to use a hydrocarbon solvent such as n-hexane, n-heptane, benzene, cyclohexane or methylcyclohexane.

【0034】通常、カラムを使用した場合、加熱によっ
て生じた液晶化合物中の熱分解物、酸化物等は吸着剤層
上部にとどまる。このため特に分取する必要はなく、カ
ラム濾過するだけで該液晶化合物を精製できる場合が多
い。
Usually, when a column is used, thermal decomposition products, oxides, etc. in the liquid crystal compound generated by heating remain on the upper part of the adsorbent layer. Therefore, it is not necessary to separate the liquid crystal compound in many cases, and the liquid crystal compound can be purified simply by column filtration.

【0035】本発明の精製方法により精製された液晶化
合物は、必要に応じて水またはアルカリ水溶液等で洗浄
し、溶媒を留去し、再結晶することで更に精製する。ま
た、本発明の精製方法を繰り返したり、あるいは再結
晶、蒸留、液体クロマトグラフィー等の公知慣用の精製
方法を組み合わせても良い。このようにして、本発明の
精製方法により精製された液晶化合物は高温にさらされ
た場合であっても高い電圧保持率を示し、加熱処理工程
を経た後や野外に暴露された後でも電圧保持率の低下が
少なく、優れた信頼性を示す。
The liquid crystal compound purified by the purification method of the present invention is further purified by washing with water or an aqueous alkali solution as necessary, distilling off the solvent and recrystallizing. Further, the purification method of the present invention may be repeated, or known and commonly used purification methods such as recrystallization, distillation and liquid chromatography may be combined. In this way, the liquid crystal compound purified by the purification method of the present invention exhibits a high voltage holding ratio even when exposed to high temperatures, and the voltage holding is maintained even after a heat treatment step or after being exposed outdoors. It shows excellent reliability with little decrease in the rate.

【0036】[0036]

【実施例】以下、実施例及び比較例によって本発明を具
体的に説明する。尚、評価は電圧保持率の変化で判断
し、精製後の液晶化合物について、加熱処理試験後の電
圧保持率の変化を測定した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. The evaluation was judged by the change in voltage holding ratio, and the change in voltage holding ratio after the heat treatment test was measured for the purified liquid crystal compound.

【0037】[DSCの測定方法]DSCの測定にはメ
トラートレド社製「DSC822」を用いた。空気雰囲
気下容量40μlのアルミニウムパンに測定対象である
液晶化合物4mgを入れ、圧着して密閉状態とした。こ
れを−30℃から毎分5℃の昇温速度で、300℃まで
昇温させた。この時の発熱量、吸熱量を温度に対してプ
ロットし、液晶化合物が等方相を示す温度域で観測され
る発熱を熱分解熱とし、そのうち最も低い温度で起こる
発熱の補外発熱開始温度を熱分解開始温度とした。
[DSC Measuring Method] "DSC822" manufactured by METTLER TOLEDO was used for measuring DSC. 4 mg of the liquid crystal compound to be measured was placed in an aluminum pan having a volume of 40 μl under an air atmosphere and pressure-bonded to make a sealed state. This was heated from -30 ° C to 300 ° C at a heating rate of 5 ° C per minute. The heat generation amount and heat absorption amount at this time are plotted against temperature, and the heat generation observed in the temperature range where the liquid crystal compound exhibits an isotropic phase is defined as the heat of thermal decomposition, and the extrapolation heat generation start temperature of the heat generation that occurs at the lowest temperature Was set as the thermal decomposition start temperature.

【0038】[加熱処理による液晶化合物の分解率の測
定方法]加熱処理前後の液晶化合物それぞれ500mg
を精秤し、アセトン100mLに溶解させた。ここにナ
フタレンを標準物質とした標準溶液10mLを加え、試
料溶液とした。この試料溶液を島津製作所(株)製ガス
クロマトグラフ「GC−17A」にて分析した。カラム
はJ&W Scientific(株)製「DB−1」
を使用し、カラム長は50mとした。キャリアガスはヘ
リウムを用い、カラム温度を200℃から300℃まで
昇温して分析を行った。予めナフタレンを標準物質とし
て液晶化合物の濃度を変えて分析を行い検量線を作成し
ておき、加熱処理前後の液晶化合物の試料溶液中濃度を
定量し、その差から加熱処理による液晶化合物の分解率
を求めた。
[Method of measuring decomposition rate of liquid crystal compound by heat treatment] 500 mg of liquid crystal compound before and after heat treatment
Was precisely weighed and dissolved in 100 mL of acetone. To this, 10 mL of a standard solution containing naphthalene as a standard substance was added to prepare a sample solution. This sample solution was analyzed by a gas chromatograph "GC-17A" manufactured by Shimadzu Corporation. The column is "DB-1" manufactured by J & W Scientific Co., Ltd.
Column length was 50 m. Helium was used as the carrier gas, and the column temperature was raised from 200 ° C. to 300 ° C. for analysis. Using naphthalene as a standard substance, change the concentration of the liquid crystal compound and analyze it to prepare a calibration curve, quantify the concentration of the liquid crystal compound in the sample solution before and after the heat treatment, and from the difference, decompose the liquid crystal compound by the heat treatment. I asked.

【0039】[電圧保持率測定用液晶組成物の調製]下
記式(1)に示す構造を有する液晶化合物1と、下記式
(2)に示す構造を有する液晶化合物2の等質量混合物
をベース液晶組成物とした。これは、25℃でネマチッ
ク相を示した。このベース液晶組成物80質量部に対し
て、各実施例、比較例で精製した液晶化合物を20質量
部混合し、25℃でネマチック相を示す電圧保持率測定
用液晶組成物を得た。
[Preparation of Liquid Crystal Composition for Measuring Voltage Holding Ratio] A base liquid crystal containing an equal mass mixture of a liquid crystal compound 1 having a structure represented by the following formula (1) and a liquid crystal compound 2 having a structure represented by the following formula (2). It was a composition. It showed a nematic phase at 25 ° C. To 80 parts by mass of this base liquid crystal composition, 20 parts by mass of the liquid crystal compound purified in each of Examples and Comparative Examples was mixed to obtain a liquid crystal composition for measuring voltage holding ratio showing a nematic phase at 25 ° C.

【0040】[0040]

【化1】 (1)[Chemical 1] (1)

【0041】[0041]

【化2】 (2)[Chemical 2] (2)

【0042】[電圧保持率の測定方法]測定セル:電圧
保持率の測定セルには、コーニング社製のガラス基板
「1737」上に、透明電極としてITOを成膜し、さ
らにJSR社製のポリイミド配向膜「AL−1051」
を設けたTN(捻れネマチック)セルを使用した。電極
面積は0.64cm、セル厚は6μmとした。測定条
件:図1に示すように、±5V、2.5Hzの矩形波か
ら成るソース電圧VSをゲートパルスVGによる高イン
ピーダンスFET(電界効果トランジスタ)スイッチン
グにより、64μ秒だけテストセルに印加し、遮断す
る。テストセルの両電極間の電圧VLが1/2周期に描
くカーブより図中斜線部分の面積を求める。VLの減衰
が全くない場合の面積を100%とし、これに対する面
積比率を電圧保持率として算出した。測定温度は80℃
とした。
[Measurement method of voltage holding ratio] Measuring cell: In the measuring cell of voltage holding ratio, ITO was formed as a transparent electrode on a glass substrate "1737" manufactured by Corning, and further polyimide manufactured by JSR. Alignment film "AL-1051"
A TN (twisted nematic) cell provided with was used. The electrode area was 0.64 cm 2 and the cell thickness was 6 μm. Measurement condition: As shown in FIG. 1, a source voltage VS consisting of a rectangular wave of ± 5 V and 2.5 Hz is applied to a test cell for 64 μs by a high impedance FET (field effect transistor) switching by a gate pulse VG, and then cut off. To do. The area of the shaded area in the figure is obtained from the curve drawn by the voltage VL between the electrodes of the test cell in 1/2 cycle. The area when there was no VL attenuation was defined as 100%, and the area ratio to this was calculated as the voltage holding ratio. Measurement temperature is 80 ℃
And

【0043】[加熱処理試験]前記電圧保持率測定用液
晶組成物2gを容量10mLの共栓付試験管に入れて1
5分間ロータリーポンプで脱気した後窒素封入して密栓
し、これを150℃に保ったオーブンに入れて1時間加
熱処理した。
[Heat Treatment Test] 2 g of the above liquid crystal composition for measuring voltage holding ratio was placed in a test tube with a stopper having a capacity of 10 mL, and 1
After degassing with a rotary pump for 5 minutes, it was sealed with nitrogen and sealed, and this was placed in an oven kept at 150 ° C. and heat-treated for 1 hour.

【0044】[ベース液晶組成物の加熱処理試験後の電
圧保持率の変化]ベース液晶組成物2gを容量10mL
の共栓付試験管に入れて15分間ロータリーポンプで脱
気した後窒素封入して密栓し、これを150℃に保った
オーブンに入れて1時間加熱処理した。試験前の電圧保
持率は95.3%、試験後が94.4%であった。
[Change in voltage holding ratio after heat treatment test of base liquid crystal composition] 2 g of the base liquid crystal composition was added to a capacity of 10 mL.
The mixture was placed in a test tube with a ground stopper and degassed by a rotary pump for 15 minutes, then sealed with nitrogen and tightly sealed, and this was placed in an oven kept at 150 ° C. and heat-treated for 1 hour. The voltage holding ratio before the test was 95.3% and after the test was 94.4%.

【0045】[実施例1]空気雰囲気下におけるDSC
を測定した結果、160℃から熱分解が観測された下記
式(3)に示す液晶化合物3の5gを50mlのナス型
フラスコに入れ、空気雰囲気下オーブンで150℃に加
熱した。8時間加熱処理した後液晶化合物3の分解率を
測定すると1.5%であった。これを15mlのn−ヘ
キサンに溶解し、ヒドラジン一水和物2gを加えて室温
で2時間撹拌した。これを分液漏斗に入れ、n−ヘキサ
ン相を純水20mlで3回洗浄した後n−ヘキサンを留
去した。得られた液晶化合物3の粗精製物を5mlのn
−ヘキサンに溶解し、吸着剤として富士シリシア社製カ
ラムクロマトグラフィー用シリカゲル「BW−127Z
H」25gを充填した内径20mmのガラス製カラムに
60分間で通し、精製した。移動相としては、n−ヘキ
サンを用いた。溶出液からn−ヘキサンを減圧留去した
後、メタノール:エタノール=4:1からなる混合溶媒
で再結晶し、真空乾燥させて、液晶化合物3の精製物を
得た。該液晶化合物3を電圧保持率測定用液晶組成物の
調製方法に従いベース液晶組成物に混合し、電圧保持率
を評価した。その結果、加熱処理試験前の電圧保持率が
91.2%、加熱処理試験後が91.1%であった。
[Example 1] DSC under air atmosphere
As a result of the measurement, 5 g of the liquid crystal compound 3 represented by the following formula (3) in which thermal decomposition was observed at 160 ° C. was placed in a 50 ml eggplant-shaped flask and heated to 150 ° C. in an oven under an air atmosphere. After the heat treatment for 8 hours, the decomposition rate of the liquid crystal compound 3 was measured and found to be 1.5%. This was dissolved in 15 ml of n-hexane, 2 g of hydrazine monohydrate was added, and the mixture was stirred at room temperature for 2 hours. This was put in a separatory funnel, the n-hexane phase was washed 3 times with 20 ml of pure water, and then n-hexane was distilled off. The liquid crystal compound 3 thus obtained was purified with 5 ml of n
-Dissolved in hexane and used as an adsorbent, silica gel for column chromatography "BW-127Z" manufactured by Fuji Silysia Ltd.
It was passed through a glass column having an inner diameter of 20 mm filled with 25 g of “H” for 60 minutes for purification. N-Hexane was used as the mobile phase. After n-hexane was distilled off under reduced pressure from the eluate, it was recrystallized with a mixed solvent of methanol: ethanol = 4: 1 and dried under vacuum to obtain a purified liquid crystal compound 3. The liquid crystal compound 3 was mixed with the base liquid crystal composition according to the method for preparing the liquid crystal composition for measuring voltage holding ratio, and the voltage holding ratio was evaluated. As a result, the voltage holding ratio before the heat treatment test was 91.2%, and after the heat treatment test was 91.1%.

【0046】[0046]

【化3】 (3)[Chemical 3] (3)

【0047】[実施例2]窒素含有化合物としてヒドラ
ジン一水和物の代わりにジエチルアミン2gを用いたこ
と以外は実施例1と同様にして液晶化合物3を精製し
た。この液晶化合物3を実施例1と同様の方法でベース
液晶組成物に混合し、電圧保持率を評価した。その結
果、加熱処理試験前が91.4%、加熱処理試験後が9
1.3%であった。
Example 2 Liquid crystal compound 3 was purified in the same manner as in Example 1 except that 2 g of diethylamine was used as the nitrogen-containing compound instead of hydrazine monohydrate. This liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, 91.4% before the heat treatment test and 9 after the heat treatment test.
It was 1.3%.

【0048】[実施例3]窒素含有化合物としてヒドラ
ジン一水和物の代わりに20質量%濃度のアンモニア水
溶液10gを用いたこと以外は実施例1と同様にして液
晶化合物3を精製した。この液晶化合物3を実施例1と
同様の方法でベース液晶組成物に混合し、電圧保持率を
評価した。その結果、加熱処理試験前が91.0%、加
熱処理試験後が90.8%であった。
Example 3 Liquid crystal compound 3 was purified in the same manner as in Example 1 except that 10 g of an aqueous ammonia solution having a concentration of 20% by mass was used instead of hydrazine monohydrate as the nitrogen-containing compound. This liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.0% before the heat treatment test and 90.8% after the heat treatment test.

【0049】[実施例4]窒素含有化合物としてヒドラ
ジン一水和物の代わりに20質量%濃度のヒドロキシル
アミン塩酸塩水溶液10gを用いたこと以外は実施例1
と同様にして液晶化合物3を精製した。この液晶化合物
3を実施例1と同様の方法でベース液晶組成物に混合
し、電圧保持率を評価した。その結果、加熱処理試験前
が91.2%、加熱処理試験後が90.9%であった。
Example 4 Example 1 was repeated except that 10 g of a 20% by weight aqueous solution of hydroxylamine hydrochloride was used as the nitrogen-containing compound instead of hydrazine monohydrate.
Liquid Crystal Compound 3 was purified in the same manner as. This liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.2% before the heat treatment test and 90.9% after the heat treatment test.

【0050】[実施例5]窒素含有化合物としてヒドラ
ジン一水和物の代わりにピリジン2gを用いたこと以外
は実施例1と同様にして液晶化合物3を精製した。この
液晶化合物3を実施例1と同様の方法でベース液晶組成
物に混合し、電圧保持率を評価した。その結果、加熱処
理試験前が91.5%、加熱処理試験後が91.4%で
あった。
Example 5 Liquid Crystal Compound 3 was purified in the same manner as in Example 1 except that 2 g of pyridine was used instead of hydrazine monohydrate as the nitrogen-containing compound. This liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.5% before the heat treatment test and 91.4% after the heat treatment test.

【0051】[実施例6]ヒドラジン一水和物の量を
0.25gとしたこと以外は全て実施例1と同様にして
液晶化合物3を精製した。この液晶化合物3を実施例1
と同様の方法でベース液晶組成物に混合し、電圧保持率
を評価した。その結果、加熱処理試験前が91.3%、
加熱処理試験後が91.2%であった。
Example 6 Liquid crystal compound 3 was purified in the same manner as in Example 1 except that the amount of hydrazine monohydrate was 0.25 g. This liquid crystal compound 3 was used in Example 1.
It mixed with the base liquid crystal composition by the same method as above, and the voltage holding ratio was evaluated. As a result, 91.3% before the heat treatment test,
It was 91.2% after the heat treatment test.

【0052】[実施例7]ヒドラジン一水和物の量を1
0gとしたこと以外は全て実施例1と同様にして液晶化
合物3を精製した。この液晶化合物3を実施例1と同様
の方法でベース液晶組成物に混合し、電圧保持率を評価
した。その結果、加熱処理試験前が91.2%、加熱処
理試験後が91.2%であった。
Example 7 The amount of hydrazine monohydrate was set to 1
The liquid crystal compound 3 was purified in the same manner as in Example 1 except that the amount was 0 g. This liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.2% before the heat treatment test and 91.2% after the heat treatment test.

【0053】[実施例8]加熱温度を180℃、加熱処
理時間を2時間とした以外は全て実施例1と同様にして
液晶化合物3を精製した。2時間加熱処理した後の液晶
化合物3の分解率は0.9%であった。精製した液晶化
合物3を実施例1と同様の方法でベース液晶組成物に混
合し、電圧保持率を評価した。その結果、加熱処理試験
前が91.4%、加熱処理試験後が91.4%であっ
た。
Example 8 The liquid crystal compound 3 was purified in the same manner as in Example 1 except that the heating temperature was 180 ° C. and the heat treatment time was 2 hours. The decomposition rate of the liquid crystal compound 3 after the heat treatment for 2 hours was 0.9%. The purified liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.4% before the heat treatment test and 91.4% after the heat treatment test.

【0054】[実施例9]加熱温度を260℃、加熱処
理時間を15分とした以外は全て実施例1と同様にして
液晶化合物3を精製した。15分間加熱処理した後の液
晶化合物3の分解率は5.0%であった。精製した液晶
化合物3を実施例1と同様の方法でベース液晶組成物に
混合し、電圧保持率を評価した。その結果、加熱処理試
験前が91.0%、加熱処理試験後が90.8%であっ
た。
Example 9 Liquid crystal compound 3 was purified in the same manner as in Example 1 except that the heating temperature was 260 ° C. and the heat treatment time was 15 minutes. The decomposition rate of liquid crystal compound 3 after the heat treatment for 15 minutes was 5.0%. The purified liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.0% before the heat treatment test and 90.8% after the heat treatment test.

【0055】[実施例10]加熱時、液晶化合物3中に
酸素ガスを吹き込み、加熱処理時間を2時間とした以外
は全て実施例1と同様にして液晶化合物3を精製した。
2時間加熱処理した後の液晶化合物3の分解率は2.1
%であった。精製した液晶化合物3を実施例1と同様の
方法でベース液晶組成物に混合し、電圧保持率を評価し
た。その結果、加熱処理試験前が91.5%、加熱処理
試験後が91.4%であった。
[Example 10] Liquid crystal compound 3 was purified in the same manner as in example 1 except that oxygen gas was blown into liquid crystal compound 3 during heating and the heat treatment time was changed to 2 hours.
The decomposition rate of the liquid crystal compound 3 after the heat treatment for 2 hours is 2.1.
%Met. The purified liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.5% before the heat treatment test and 91.4% after the heat treatment test.

【0056】[実施例11]加熱時、マイクロ波オーブ
ンを用い、マイクロ波によって180℃に加熱し、加熱
処理時間を20分とした以外は全て実施例1と同様にし
て液晶化合物3を精製した。20分間加熱処理した後の
液晶化合物3の分解率は1.2%であった。精製した液
晶化合物3を実施例1と同様の方法でベース液晶組成物
に混合し、電圧保持率を評価した。その結果、加熱処理
試験前が91.2%、加熱処理試験後が91.0%であ
った。
[Example 11] A liquid crystal compound 3 was purified in the same manner as in Example 1 except that a microwave oven was used to heat to 180 ° C by heating at the heating time of 20 minutes. . The decomposition rate of liquid crystal compound 3 after heat treatment for 20 minutes was 1.2%. The purified liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, it was 91.2% before the heat treatment test and 91.0% after the heat treatment test.

【0057】[実施例12]空気雰囲気下におけるDS
Cの測定結果、160℃から熱分解が観測された下記式
(4)に示す液晶化合物4の5gを50mlのナス型フ
ラスコに入れ、空気雰囲気下オーブンで180℃に加熱
した。1時間加熱処理した後の液晶化合物4の分解率は
1.3%であった。これを15mlのn−ヘキサンに溶
解し、ヒドラジン一水和物2gを加えて室温で2時間撹
拌した。これを分液漏斗に入れ、n−ヘキサン相を純水
20mlで3回洗浄した後n−ヘキサンを留去した。得
られた液晶化合物4の粗精製物を5mlのn−ヘキサン
に溶解し、吸着剤として富士シリシア社製カラムクロマ
トグラフィー用シリカゲル「BW−127ZH」25g
を充填した内径20mmのガラス製カラムに、60分間
で通し、精製した。移動相としては、n−ヘキサンを用
いた。溶出液を超純水で洗浄した後、n−ヘキサンを減
圧留去し、メタノール:エタノール=4:1からなる混
合溶媒で再結晶し、真空乾燥させて液晶化合物4の精製
物を得た。該液晶化合物4を実施例1と同様にベース液
晶組成物に混合させ、電圧保持率を評価した。その結果
加熱処理試験前が94.8%、加熱処理試験後が90.
6%であった。
[Embodiment 12] DS in air atmosphere
As a result of measuring C, 5 g of liquid crystal compound 4 represented by the following formula (4) in which thermal decomposition was observed at 160 ° C. was placed in a 50 ml eggplant-shaped flask and heated to 180 ° C. in an oven under an air atmosphere. The decomposition rate of liquid crystal compound 4 after the heat treatment for 1 hour was 1.3%. This was dissolved in 15 ml of n-hexane, 2 g of hydrazine monohydrate was added, and the mixture was stirred at room temperature for 2 hours. This was put in a separatory funnel, the n-hexane phase was washed 3 times with 20 ml of pure water, and then n-hexane was distilled off. The obtained crude product of liquid crystal compound 4 was dissolved in 5 ml of n-hexane, and 25 g of silica gel "BW-127ZH" for column chromatography manufactured by Fuji Silysia Chemical Ltd. was used as an adsorbent.
It was passed through a glass column having an inner diameter of 20 mm filled with the mixture for 60 minutes for purification. N-Hexane was used as the mobile phase. The eluate was washed with ultrapure water, then n-hexane was distilled off under reduced pressure, recrystallized with a mixed solvent of methanol: ethanol = 4: 1, and vacuum dried to obtain a purified liquid crystal compound 4. The liquid crystal compound 4 was mixed with the base liquid crystal composition in the same manner as in Example 1, and the voltage holding ratio was evaluated. As a result, 94.8% before the heat treatment test and 90.
It was 6%.

【0058】[0058]

【化4】 (4)[Chemical 4] (4)

【0059】[比較例1]液晶化合物4に対して全く熱
処理及び精製を行わず、そのままベース液晶組成物に混
合し、電圧保持率を評価した。その結果、加熱処理試験
前が94.9%、加熱処理試験後が42.7%であっ
た。
Comparative Example 1 Liquid crystal compound 4 was mixed with the base liquid crystal composition as it was without heat treatment and purification, and the voltage holding ratio was evaluated. As a result, it was 94.9% before the heat treatment test and 42.7% after the heat treatment test.

【0060】[比較例2]液晶化合物4に対して、加熱
処理の後ヒドラジン一水和物と接触させず、すぐにシリ
カゲルカラム精製したこと以外は全て実施例12と同様
にして精製した。この液晶化合物を実施例1と同様の方
法でベース液晶組成物に混合し、電圧保持率を評価し
た。その結果、加熱処理試験前が94.6%、加熱処理
試験後が87.6%であった。
[Comparative Example 2] Liquid crystal compound 4 was purified in the same manner as in Example 12 except that after heat treatment, it was not contacted with hydrazine monohydrate and immediately purified by a silica gel column. This liquid crystal compound was mixed with the base liquid crystal composition in the same manner as in Example 1 to evaluate the voltage holding ratio. As a result, it was 94.6% before the heat treatment test and 87.6% after the heat treatment test.

【0061】[比較例3]液晶化合物3に対して全く加
熱処理及び精製を行わず、そのままベース液晶組成物に
混合し、電圧保持率を評価した。その結果、加熱処理試
験前が90.1%、加熱処理試験後が75.6%であっ
た。
Comparative Example 3 The liquid crystal compound 3 was mixed with the base liquid crystal composition as it was without any heat treatment and purification, and the voltage holding ratio was evaluated. As a result, it was 90.1% before the heat treatment test and 75.6% after the heat treatment test.

【0062】[比較例4]液晶化合物3に対して、加熱
処理を行わずその後の操作は全て実施例1と同様にして
精製した。得られた液晶化合物3の精製物を実施例1と
同様の方法でベース液晶組成物に混合し、電圧保持率を
評価した。その結果、加熱処理試験前が91.5%、加
熱処理試験後が79.6%であった。
[Comparative Example 4] The liquid crystal compound 3 was purified by the same procedure as in Example 1 except that the heat treatment was not performed. The purified product of the obtained liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1 to evaluate the voltage holding ratio. As a result, it was 91.5% before the heat treatment test and 79.6% after the heat treatment test.

【0063】[比較例5]液晶化合物3に対して、加熱
処理を空気雰囲気下ではなく、窒素ガスを吹き込みなが
ら行ったこと以外は全て実施例1と同様にして精製し
た。得られた液晶化合物3の精製物を実施例1と同様の
方法でベース液晶組成物に混合し、電圧保持率を評価し
た。その結果、加熱処理試験前が90.7%、加熱処理
試験後が78.2%であった。
[Comparative Example 5] The liquid crystal compound 3 was purified in the same manner as in Example 1 except that the heat treatment was conducted in a nitrogen gas atmosphere instead of in an air atmosphere. The purified product of the obtained liquid crystal compound 3 was mixed with the base liquid crystal composition in the same manner as in Example 1 to evaluate the voltage holding ratio. As a result, it was 90.7% before the heat treatment test and 78.2% after the heat treatment test.

【0064】[比較例6]液晶化合物4を減圧蒸留した
後、得られた本留分5gをn−ヘキサン5mlに溶解
し、吸着剤として富士シリシア社製カラムクロマトグラ
フィー用シリカゲル「BW−127ZH」250gを充
填した内径50mmのガラス製カラムに、4時間で通
し、精製した。移動相としては、n−ヘキサンを用い
た。溶出液を100mlづつ分取し、液晶化合物4のガ
スクロマトグラフィー純度が99.99%以上の分画の
みを集めて超純水で洗浄した後、n−ヘキサンを留去し
てメタノール:エタノール=4:1からなる混合溶媒で
再結晶し、真空乾燥して液晶化合物4の精製物を得た。
この液晶化合物4を実施例12と同様にしてベース液晶
組成物に混合し、電圧保持率を評価した。その結果、加
熱処理試験前が95.1%、加熱処理試験後が63.6
%であった。
Comparative Example 6 After distilling the liquid crystal compound 4 under reduced pressure, 5 g of the obtained main fraction was dissolved in 5 ml of n-hexane and used as an adsorbent, silica gel "BW-127ZH" for column chromatography manufactured by Fuji Silysia Chemical Ltd. It was passed through a glass column having an inner diameter of 50 mm filled with 250 g for 4 hours for purification. N-Hexane was used as the mobile phase. The eluate was collected in 100 ml portions, and only the fractions having a gas chromatography purity of the liquid crystal compound 4 of 99.99% or more were collected and washed with ultrapure water, and then n-hexane was distilled off to obtain methanol: ethanol = The crystals were recrystallized from a mixed solvent of 4: 1 and dried in vacuum to obtain a purified liquid crystal compound 4.
This liquid crystal compound 4 was mixed with the base liquid crystal composition in the same manner as in Example 12, and the voltage holding ratio was evaluated. As a result, 95.1% before the heat treatment test and 63.6% after the heat treatment test.
%Met.

【0065】[0065]

【発明の効果】本発明の精製方法は、液晶化合物を、酸
素を含有する雰囲気下で行った示差走査熱量測定で得ら
れるピークのうち、該液晶化合物が等方相を示す温度域
における最も低温側のピークの補外発熱開始温度A
(℃)よりも20℃低い温度から、Aより150℃高い
温度までの範囲内で、且つ、酸素を含有する雰囲気下、
該液晶化合物の分解率が0.5〜5%の範囲で加熱処理
することによって、該液晶化合物中に含まれている熱分
解しやすい不純物を酸化又は分解させた後、窒素を含有
する塩基性化合物と接触させ、その後吸着剤で精製す
る。塩基性化合物と接触させることで、加熱により生じ
た不純物や、液晶化合物の分解物の中でも、特に酸性度
の高いものを除去することができる。本発明の精製方法
により、加熱処理試験後に電圧保持率の低下を起こすこ
とのない液晶化合物を得ることができる。
INDUSTRIAL APPLICABILITY The purification method of the present invention is a liquid crystal compound having the lowest temperature in the temperature range in which the liquid crystal compound shows an isotropic phase among the peaks obtained by differential scanning calorimetry carried out in an atmosphere containing oxygen. Side peak extrapolation heat generation start temperature A
Within a temperature range of 20 ° C. lower than (° C.) to 150 ° C. higher than A and under an atmosphere containing oxygen,
By subjecting the liquid crystal compound to a heat treatment in the range of 0.5 to 5% to oxidize or decompose the thermally-decomposable impurities contained in the liquid crystal compound, a nitrogen-containing basic compound Contact with compound and then purification with adsorbent. By bringing into contact with the basic compound, it is possible to remove impurities generated by heating and those decomposed from the liquid crystal compound, which have particularly high acidity. According to the purification method of the present invention, a liquid crystal compound that does not cause a decrease in voltage holding ratio after a heat treatment test can be obtained.

【0066】[0066]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による液晶化合物を注入したテストセ
ルをアクティブ駆動させたときの電圧波形の一例を示す
概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of a voltage waveform when a test cell in which a liquid crystal compound according to the present invention is injected is actively driven.

【符号の説明】[Explanation of symbols]

VS ソース電圧 VG ゲート電圧 VL 両電極間にかかる電圧 VS source voltage VG gate voltage VL Voltage applied between both electrodes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素、水素、フッ素、塩素及び酸素か
らなる群から選ばれる元素からなり、脂肪族系不飽和基
を持たない液晶化合物を、酸素を含有する雰囲気下で行
った示差走査熱量測定で得られる該液晶化合物のネマチ
ック相−等方相転移温度よりも高い温度域における最も
低温側のピークの補外発熱開始温度A(℃)よりも20
℃低い温度からAより150℃高い温度までの範囲内
で、且つ、酸素を含有する雰囲気下、該液晶化合物の分
解率が0.5〜5%となる範囲内で加熱した後、窒素を
含有する塩基性化合物と接触させ、その後吸着剤で精製
することを特徴とする液晶化合物の精製方法。
1. A differential scanning calorimetry measurement of a liquid crystal compound, which is composed of an element selected from the group consisting of carbon, hydrogen, fluorine, chlorine and oxygen, and has no aliphatic unsaturated group, in an atmosphere containing oxygen. 20 than the extrapolation exothermic onset temperature A (° C.) of the peak on the lowest temperature side in the temperature range higher than the nematic phase-isotropic phase transition temperature of the liquid crystal compound obtained in
After heating within a range from a temperature lower than C to a temperature higher than A by 150 ° C. and in a range where the decomposition rate of the liquid crystal compound is 0.5 to 5% in an atmosphere containing oxygen, the liquid crystal contains nitrogen. A method for purifying a liquid crystal compound, which comprises contacting with a basic compound to be purified, followed by purification with an adsorbent.
【請求項2】 前記窒素を含有する塩基性化合物がア
ンモニア、アミン化合物、アミド化合物、ヒドラジン化
合物、ヒドラゾン化合物、ヒドロキシルアミン化合物、
又は窒素を含有する複素環を有する化合物である請求項
1に記載の液晶化合物の精製方法。
2. The nitrogen-containing basic compound is ammonia, an amine compound, an amide compound, a hydrazine compound, a hydrazone compound, a hydroxylamine compound,
The method for purifying a liquid crystal compound according to claim 1, which is a compound having a heterocycle containing nitrogen.
【請求項3】 前記窒素を含有する塩基性化合物を、
液晶化合物に対し5〜200質量%使用する請求項1に
記載の液晶化合物の精製方法。
3. The nitrogen-containing basic compound,
The method for purifying a liquid crystal compound according to claim 1, which is used in an amount of 5 to 200% by mass based on the liquid crystal compound.
JP2002250593A 2002-03-11 2002-08-29 Method for purifying liquid crystalline compound Pending JP2003335711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250593A JP2003335711A (en) 2002-03-11 2002-08-29 Method for purifying liquid crystalline compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-65175 2002-03-11
JP2002065175 2002-03-11
JP2002250593A JP2003335711A (en) 2002-03-11 2002-08-29 Method for purifying liquid crystalline compound

Publications (1)

Publication Number Publication Date
JP2003335711A true JP2003335711A (en) 2003-11-28

Family

ID=29713968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250593A Pending JP2003335711A (en) 2002-03-11 2002-08-29 Method for purifying liquid crystalline compound

Country Status (1)

Country Link
JP (1) JP2003335711A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057573A1 (en) * 2007-10-31 2009-05-07 Dic Corporation Method for producing liquid crystal composition
JP2011213787A (en) * 2010-03-31 2011-10-27 Dic Corp Liquid crystal composition with reduced impurity content
KR20160095026A (en) 2014-01-06 2016-08-10 디아이씨 가부시끼가이샤 Nematic liquid crystal composition and liquid crystal display device using same
WO2019039165A1 (en) * 2017-08-23 2019-02-28 日本ゼオン株式会社 Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizer, antireflective film, display device and method for manufacturing polymerizable liquid crystal composition
WO2020056795A1 (en) * 2018-09-20 2020-03-26 江苏和成新材料有限公司 Purification method for liquid crystal material having fluoroalkoxy as end group

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057573A1 (en) * 2007-10-31 2009-05-07 Dic Corporation Method for producing liquid crystal composition
CN101681073B (en) * 2007-10-31 2012-12-05 Dic株式会社 Method for producing liquid crystal composition
KR101441470B1 (en) 2007-10-31 2014-09-17 디아이씨 가부시끼가이샤 Method for producing liquid crystal composition
JP2011213787A (en) * 2010-03-31 2011-10-27 Dic Corp Liquid crystal composition with reduced impurity content
KR20160095026A (en) 2014-01-06 2016-08-10 디아이씨 가부시끼가이샤 Nematic liquid crystal composition and liquid crystal display device using same
KR20180069142A (en) 2014-01-06 2018-06-22 디아이씨 가부시끼가이샤 Nematic liquid crystal composition and liquid crystal display device using same
DE112014006109B4 (en) 2014-01-06 2018-09-20 Dic Corporation A nematic liquid crystal composition and its use for producing a liquid crystal display element
WO2019039165A1 (en) * 2017-08-23 2019-02-28 日本ゼオン株式会社 Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizer, antireflective film, display device and method for manufacturing polymerizable liquid crystal composition
WO2020056795A1 (en) * 2018-09-20 2020-03-26 江苏和成新材料有限公司 Purification method for liquid crystal material having fluoroalkoxy as end group

Similar Documents

Publication Publication Date Title
Kirsch et al. Nematic liquid crystals for active matrix displays: molecular design and synthesis
TWI333973B (en) Nematic liquid crystal mixtures for bistable display devices
JP3065092B2 (en) LCD matrix display
EP0331091B1 (en) Cyclohexene derivatives
JP2922298B2 (en) Matrix liquid crystal display
JP2003335711A (en) Method for purifying liquid crystalline compound
JP2003342576A (en) Method for purifying liquid crystal compound
JP2003213261A (en) Method for purifying liquid crystal compound
JP2003342575A (en) Method for purifying liquid crystal compound
JPH08277391A (en) Purification of liquid crystal compound
JPS59170056A (en) Novel nematic liquid crystal compound
JPS5980651A (en) 3-fluoro-4-cyanophenol derivative
JPH0959631A (en) Liquid crystal display
JPS5810552A (en) 4-(trans-4&#39;-(trans-4&#34;-alkylcyclohexyl)cyclohexyl)- benzonitrile
JP2003160525A (en) 2,6-DI-tert-BUTYLPHENOL DERIVATIVE, ANTIOXIDANT AND LIQUID CRYSTAL COMPOSITION USING IT
JP5654189B2 (en) Liquid crystal material purification apparatus and liquid crystal material purification method
JPH0978068A (en) Liquid crystal composition
JPH09194420A (en) Cyclic diketone compound and liquid crystal display device produced by using the compound
JP4788015B2 (en) Liquid crystal composition
JP2009173817A (en) Nematic liquid crystal mixture and liquid crystal panel
JPH0629262B2 (en) Pyrimidine derivative
JPS6084230A (en) 1-trans-4&#39;-(trans-4&#34;-alkylcyclohexyl)cyclohexyl-2-(4&#39;&#39;&#39;- substituted phenyl)ethane
JPH0558981A (en) Terphenyl derivative, liquid crystal composition containing the same and liquid crystal display element using the same
JPH061727A (en) Phenylcyclohexane derivative and liquid crystal composition containing the same and liquid crystal display device using the composition
JP2929677B2 (en) Ether compounds