JP2003334541A - Method for removing arsenic, method for producing drinking water, and apparatus for removing arsenic - Google Patents

Method for removing arsenic, method for producing drinking water, and apparatus for removing arsenic

Info

Publication number
JP2003334541A
JP2003334541A JP2002265595A JP2002265595A JP2003334541A JP 2003334541 A JP2003334541 A JP 2003334541A JP 2002265595 A JP2002265595 A JP 2002265595A JP 2002265595 A JP2002265595 A JP 2002265595A JP 2003334541 A JP2003334541 A JP 2003334541A
Authority
JP
Japan
Prior art keywords
arsenic
laterite
soil
water
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002265595A
Other languages
Japanese (ja)
Other versions
JP3858060B2 (en
Inventor
Junjiro Kawasaki
順二郎 川崎
Hiroaki Habaki
広顕 はばき
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002265595A priority Critical patent/JP3858060B2/en
Publication of JP2003334541A publication Critical patent/JP2003334541A/en
Application granted granted Critical
Publication of JP3858060B2 publication Critical patent/JP3858060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can remove arsenic in water at low costs. <P>SOLUTION: In the method for removing arsenic, water containing arsenic is brought into contact with laterite soil. Arsenic contained in water can be removed at low costs by the method. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,砒素を含有する水
中からの砒素除去方法および砒素除去装置に関する。更
に詳細には,水中の砒素を低コストで除去することので
きる方法,及び低コストで作成することのできる,水中
の砒素を除去できる装置に関する。
TECHNICAL FIELD The present invention relates to an arsenic removing method and an arsenic removing apparatus from water containing arsenic. More specifically, it relates to a method capable of removing arsenic in water at low cost, and an apparatus capable of removing arsenic in water that can be produced at low cost.

【0002】本発明の砒素除去方法及び砒素除去装置
は,自然水(河川水,湖沼水および地下水等)の深刻な
砒素汚染問題を抱える発展途上国における飲料水確保用
技術として使用されるものであり,世界各地域に広く分
布している入手容易なラテライト土壌を吸着剤として使
用し,自然水中の砒素及び砒素化合物(特許請求の範囲
および以下の記載においてこれらを総称して「砒素」と
いうことととする)を除去する方法および装置に関す
る。
The arsenic removal method and the arsenic removal apparatus of the present invention are used as a technique for securing drinking water in developing countries which have serious arsenic pollution problems of natural water (river water, lake water, groundwater, etc.). Yes, using readily available laterite soil widely distributed in each region of the world as an adsorbent, arsenic and arsenic compounds in natural water (in the claims and the following description, these are collectively referred to as "arsenic") And) are removed.

【0003】[0003]

【従来の技術】現在,浄水施設及び上下水道の整備され
ていない発展途上国において水の砒素汚染は深刻な問題
となっている。世界保健機構(WHO)は砒素の飲料水
中の許容濃度を1.0×10-5g/Lと極めて低濃度に
定めているが,これを大きく上回る数千倍の濃度の砒素
を含有する地下水を飲まざるを得ない地域が多数存在し
ている。砒素中毒の人体への影響は,重度により3段階
に分けられる。第1段階として,皮膚炎,角質障害,結
膜炎,気管支炎及び胃腸炎を示し,更に進むと第2段階
として抹消神経障害,肝機能障害,皮膚への黒色色素沈
着等の症状が現れ,最終的に第3段階である四肢の壊疽
及び悪性腫瘍を経て死に至る。従って,飲料水中に砒素
が含まれる場合,この砒素を取り除くことは重要であ
る。
2. Description of the Related Art At present, arsenic pollution of water is a serious problem in developing countries where water purification facilities and water and sewerage systems are not provided. The World Health Organization (WHO) has set the allowable concentration of arsenic in drinking water to 1.0 x 10 -5 g / L, which is an extremely low concentration. There are many areas where you cannot help drinking. The effects of arsenic poisoning on the human body can be divided into three stages depending on the severity. As the first stage, dermatitis, keratopathies, conjunctivitis, bronchitis, and gastroenteritis are shown, and as it progresses further, peripheral neuropathy, liver dysfunction, black pigmentation on the skin, etc. appear as the second stage. The third stage is gangrene of the extremities and malignant tumor, leading to death. Therefore, when arsenic is contained in drinking water, it is important to remove this arsenic.

【0004】先進国において一般的に行われている含砒
素水質の処理技術としては,例えば鉄イオンを用いた共
沈法およびアルミナを用いた吸着除去法が挙げられる。
これらの方法においては鉄含有試薬およびアルミナ等の
使用によりコスト高となるため,発展途上国において用
いることは困難である。
Examples of the arsenic-containing water quality treatment technique generally used in developed countries include a coprecipitation method using iron ions and an adsorption removal method using alumina.
In these methods, it is difficult to use them in developing countries because the cost is high due to the use of iron-containing reagents and alumina.

【0005】また,活性炭による砒素の除去法が報告さ
れており,この活性炭を用いた砒素の除去法の発展途上
国への展開を意図した技術も報告されている。東南アジ
アにおいて農業廃棄物として問題となっているアブラヤ
シ殻を原料として活性炭を作成し,さらに鉄イオンによ
って活性炭を修飾し砒素の吸着性能を向上させた研究も
報告されている。しかし,活性炭の作製法は困難なもの
であり(活性炭の作成および鉄イオンによる修飾),発
展途上国において作製するにはコストが高くなってしま
うという問題がある。従って,飲料用水等に砒素が含ま
れる場合に,水中の砒素を低コストで除去することので
きる簡便な方法が望まれている。
Further, a method of removing arsenic using activated carbon has been reported, and a technique intended to develop the method of removing arsenic using activated carbon to developing countries has also been reported. A study has also been reported that activated carbon was prepared from oil palm shells, which has been a problem as agricultural waste in Southeast Asia, and activated carbon was modified with iron ions to improve arsenic adsorption performance. However, the method of producing activated carbon is difficult (production of activated carbon and modification with iron ions), and there is a problem that the cost is high to produce it in developing countries. Therefore, when arsenic is contained in drinking water or the like, a simple method that can remove arsenic in water at low cost is desired.

【0006】従って,発展途上国において,飲料として
用いられる水中に多く含まれる砒素を除去することは重
要な課題であり,このような水中に含まれる砒素を低コ
ストで除去することのできる方法,及び低コストで作製
することのできる装置を得ることが望まれていた。
Therefore, in developing countries, it is an important subject to remove arsenic contained in water used as a drink in a large amount, and a method capable of removing such arsenic contained in water at low cost, It has been desired to obtain a device that can be manufactured at low cost.

【0007】一方,ラテライトは,年間を通じて高温,
多湿な熱帯雨林気候帯ないし熱帯モンスーン気候帯に広
く分布している風化の著しく進行した赤褐色土壌であ
る。このようなラテライトは,アフリカ,南アメリカ,
東南アジア,オーストラリア等に分している土壌であ
る。ラテライトの主成分は,Si,Al及びFeの酸化物であ
る,カオリナイト(Al2O3・2SiO2・2H2O),ギブサイト
(γ−Al(OH)3),ヘマタイト(α−Fe2O3)である。こ
のようなラテライト土壌は,わが国でも,亜熱帯性気候
に属する小笠原諸島,奄美大島,沖縄等に分布すること
が知らされている。このように世界各地に広く分布して
いるラテライト土壌の有効利用は今までに報告されてい
なかった。
On the other hand, laterite has a high temperature throughout the year.
It is a highly weathered reddish brown soil that is widely distributed in the humid rainforest climate zone or tropical monsoon climate zone. Such laterites are found in Africa, South America,
The soil is divided into Southeast Asia and Australia. The main components of laterite are oxides of Si, Al and Fe, kaolinite (Al 2 O 3 · 2SiO 2 · 2H 2 O), gibbsite (γ-Al (OH) 3 ), hematite (α-Fe 2 O 3 ). It is known that such laterite soil is distributed in the Ogasawara Islands, Amami Oshima, Okinawa, etc., which belong to the subtropical climate, even in Japan. Thus, effective utilization of laterite soil widely distributed in various parts of the world has not been reported so far.

【0008】[0008]

【発明が解決しようとする課題】従って,本発明の目的
は,飲料用水等に砒素が含まれる場合に,水中の砒素を
低コストで除去することのできる方法,及び低コストで
作製することのできる砒素除去装置を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for removing arsenic in water at a low cost when the drinking water contains arsenic, and a method for producing the arsenic at a low cost. An object of the present invention is to provide an arsenic removal device that can perform the above.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め,本発明者らは鋭意検討した結果,アジアを中心に世
界各地に広く分布している土壌であるラテライト土壌が
砒素を顕著に吸着することを見出し,本発明を完成させ
た。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted extensive studies, and as a result, laterite soil, which is a soil widely distributed around the world mainly in Asia, remarkably adsorbs arsenic. Based on this finding, the present invention has been completed.

【0010】すなわち,上記課題を解決するための本発
明の砒素除去方法は,砒素を含有する水から砒素を除去
する方法であって,上記砒素を含有する水をラテライト
土壌と接触させることを特徴とする。ラテライト土壌
は,上述したように世界各国に広く分布しているので入
手が容易である。このようなラテライト土壌を利用する
ことにより,水中に含有される砒素を除去することがで
きるので,水中の砒素を低コストで除去することが可能
となる。
That is, the arsenic removal method of the present invention for solving the above problems is a method of removing arsenic from water containing arsenic, characterized in that the water containing arsenic is brought into contact with laterite soil. And Laterite soil is readily available because it is widely distributed throughout the world as described above. By using such laterite soil, arsenic contained in water can be removed, and therefore arsenic in water can be removed at low cost.

【0011】本発明の飲料用水製造方法は,砒素を含有
する水から砒素を除去して飲料用水を製造する方法であ
って,上記砒素を含有する水をラテライト土壌と接触さ
せることを特徴とする。ラテライト土壌は,上述したよ
うに世界各地に広く分布しているので入手が容易であ
る。このようなラテライト土壌を利用することにより,
砒素を含有する水であっても,低コストで砒素を除去す
ることができ,飲料用水とすることができる。
The method for producing drinking water of the present invention is a method for producing drinking water by removing arsenic from water containing arsenic, which is characterized in that the water containing arsenic is brought into contact with laterite soil. . Laterite soil is readily available because it is widely distributed throughout the world as described above. By using such laterite soil,
Even water containing arsenic can be removed at low cost and can be used as drinking water.

【0012】本発明の砒素除去装置は,ラテライト土壌
を容器に充填したことを特徴とする。本発明の砒素除去
装置において,ラテライト土壌を充填するために用いら
れる容器としては,特に制限なく,ラテライト土壌を充
填することができるものであればどのようなものを用い
てもよい。また,水中の砒素を除去するため,水を通貨
させることのできるものが好ましく,例えば筒状の上下
に孔が設けられた容器を用いることができる。このよう
な容器を用いることにより,例えば容器上部に設けられ
た孔から水を供給し,容器の下部に設けられた孔より砒
素が除去された水を排出するようにしてもよい。
The arsenic removing apparatus of the present invention is characterized in that the container is filled with laterite soil. In the arsenic removal apparatus of the present invention, the container used for filling the laterite soil is not particularly limited, and any container can be used as long as it can fill the laterite soil. Further, in order to remove arsenic in water, it is preferable to use water which can be currency. For example, a cylindrical container having upper and lower holes can be used. By using such a container, for example, water may be supplied from a hole provided in the upper part of the container and water from which arsenic has been removed may be discharged from a hole provided in the lower part of the container.

【0013】本発明の飲料用水を得る方法は,世界各地
に広く分布している入手容易なラテライト土壌を吸着剤
として使用し,自然水中に含まれる砒素および砒素化合
物を吸着させることを特徴とする。
The method for obtaining drinking water of the present invention is characterized by using readily available laterite soil widely distributed in various parts of the world as an adsorbent to adsorb arsenic and arsenic compounds contained in natural water. .

【0014】本発明は,世界各地に広く分布している入
手容易なラテライト土壌を吸着剤として使用し,自然水
中に含まれる砒素および砒素化合物を吸着除去させる
際,該ラテライトに対して熱処理(150〜700℃)
を行うことにより土壌を殺菌し,かつ該ラテライト粒子
表面上のFe2O3,Fe3O4,Fe3O5およびAl2O3の存在比を調
節することによる吸着性能を向上させることを特徴とす
る熱処理ラテライトを吸着剤として使用する方法であ
る。
The present invention uses readily available laterite soil widely distributed all over the world as an adsorbent, and when adsorbing and removing arsenic and arsenic compounds contained in natural water, the laterite is heat treated (150). ~ 700 ℃)
To sterilize the soil and improve the adsorption performance by adjusting the abundance ratio of Fe 2 O 3 , Fe 3 O 4 , Fe 3 O 5 and Al 2 O 3 on the surface of the laterite particles. This is a method of using a heat-treated laterite, which is a characteristic, as an adsorbent.

【0015】また,本発明は,世界各地に広く分布して
いる入手容易なラテライト土壌を吸着剤として使用し,
自然水中に含まれる砒素および砒素化合物を吸着除去さ
せる際,該ラテライトの土壌を微粒子化(平均粒子径6
0μm程度以下)することにより吸着剤当たりの接触面
積を増大させることによって吸着性能を向上させること
を特徴とするラテライトを微粒子化する方法である。
Further, the present invention uses readily available laterite soil which is widely distributed all over the world as an adsorbent,
When adsorbing and removing arsenic and arsenic compounds contained in natural water, the laterite soil is made into fine particles (average particle size 6
It is a method for atomizing laterite, which is characterized by increasing the contact area per adsorbent to improve the adsorption performance.

【0016】また,本発明は,世界各地に広く分布して
いる入手容易なラテライト土壌を吸着剤として使用し,
自然水中に含まれる砒素および砒素化合物を吸着除去さ
せる際に使用する,簡易型モジュール除去装置である。
Further, the present invention uses readily available laterite soil which is widely distributed all over the world as an adsorbent,
This is a simple module removal device used when adsorbing and removing arsenic and arsenic compounds contained in natural water.

【0017】[0017]

【発明の実施の形態】以下,本発明の砒素除去方法につ
いて説明する。本発明の砒素除去方法は,砒素を含有す
る水をラテライト土壌と接触させることを特徴とする。
本発明の砒素除去方法において用いられるラテライト土
壌は,上述したように,世界各地に広く分布しており容
易に入手可能なものである。具体的には,ラテライト土
壌とは,年間を通じて高温,多湿な熱帯雨林気候帯ない
し熱帯モンスーン気候帯に広く分布する,赤褐色の土壌
である。このようなラテライト土壌は,アフリカ,南ア
メリカ,東南アジア,オーストラリア等に分布してい
る。ラテライトの主成分は,Si,Al及びFeの酸化物であ
る,カオリナイト(Al2O3・2SiO2・2H2O),ギブサイト
(γ−Al(OH)3),ヘマタイト(α−Fe2O3)である。こ
のようなラテライト土壌は,わが国でも,亜熱帯性気候
に属する小笠原諸島,奄美大島,沖縄等に分布してい
る。本発明においては,上記のいずれの地域から採取し
たラテライト土壌でも用いることが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The arsenic removal method of the present invention will be described below. The arsenic removal method of the present invention is characterized by bringing water containing arsenic into contact with laterite soil.
The laterite soil used in the arsenic removal method of the present invention is widely distributed in various parts of the world as described above and is easily available. Specifically, laterite soils are reddish brown soils that are widely distributed throughout the year in hot and humid tropical rainforest climate zones or tropical monsoon climate zones. Such laterite soils are distributed in Africa, South America, Southeast Asia, Australia, etc. The main components of laterite are oxides of Si, Al and Fe, kaolinite (Al 2 O 3 · 2SiO 2 · 2H 2 O), gibbsite (γ-Al (OH) 3 ), hematite (α-Fe 2 O 3 ). In Japan, such laterite soil is distributed in the Ogasawara Islands, Amami Oshima, Okinawa, etc., which belong to the subtropical climate. In the present invention, laterite soil collected from any of the above areas can be used.

【0018】本発明において用いられるラテライト土壌
は,150〜700℃の温度で熱処理されたものである
ことが好ましく,300〜500℃の温度で処理された
ものであることが更に好ましい。150〜700℃の温
度で熱処理することにより,土壌が殺菌されるととも
に,かつラテライト粒子表面上のFe2O3,Fe3O4,Fe3O5
及びAl2O3の存在比が調節され,砒素の吸着性能が向上
する。
The laterite soil used in the present invention is preferably one that has been heat-treated at a temperature of 150 to 700 ° C, and more preferably one that has been treated at a temperature of 300 to 500 ° C. The soil is sterilized by heat treatment at a temperature of 150 to 700 ° C, and Fe 2 O 3 , Fe 3 O 4 , and Fe 3 O 5 on the surface of the laterite particles are sterilized.
And the abundance ratio of Al 2 O 3 is adjusted, and the adsorption performance of arsenic is improved.

【0019】また,ラテライト土壌を熱処理する時間
は,土壌が殺菌され,ラテライト粒子表面上のFe2O3,F
e3O4,Fe3O5及びAl2O3の存在比が調節されるのに十分な
時間であればよく30分〜2時間程度でよく,1時間程
度が好ましい。また,ラテライトの平均粒子径は100
μm以下であることが好ましく,60μm以下であるこ
とが更に好ましい。ラテライトの粒子径を上記範囲とす
ることにより,ラテライト粒子と水との接触面積が増大
し,吸着性能が向上する。ラテライトの平均粒子径を1
00μm以下とする方法に特に制限はなく,土壌を破壊
する手段を用いることによって実施することができる。
破壊された土壌を100μmのふるいを通過するものを
集めることにより,平均粒子径が100μm以下のラテ
ライトを得ることができる。
Further, during the heat treatment of the laterite soil, the soil is sterilized, and Fe 2 O 3 and F on the surface of the laterite particles are added.
The time is sufficient for adjusting the abundance ratio of e 3 O 4 , Fe 3 O 5 and Al 2 O 3 and may be about 30 minutes to 2 hours, preferably about 1 hour. The average particle size of laterite is 100.
It is preferably not more than μm, more preferably not more than 60 μm. By setting the particle size of the laterite within the above range, the contact area between the laterite particles and water is increased and the adsorption performance is improved. The average particle size of laterite is 1
There is no particular limitation on the method for adjusting the thickness to 00 μm or less, and it can be carried out by using a means for destroying the soil.
Laterites having an average particle size of 100 μm or less can be obtained by collecting the destroyed soil that passes through a 100 μm sieve.

【0020】砒素含有水をラテライト土壌と接触させる
方法としては,ラテライト土壌を充填した容器内に砒素
含有水を入れ,一定時間静置した後,上澄みを取り出し
て飲料用水として用いる方法が挙げられる。この方法に
おいては,容器内の水とラテライトを攪拌してもよい。
また,ラテライト土壌と水との割合はラテライト土壌1
00質量部に対し,500〜10000質量部程度が好
ましい。また砒素含有水をラテライト土壌と接触させる
時間としては,水中に含まれる砒素がラテライト土壌に
吸着されるのに十分な時間接触させることが好ましく,
一日程度接触させることが好ましい。この時間は攪拌す
ることによって更に短縮することができる。
As a method of bringing the arsenic-containing water into contact with the laterite soil, there is a method in which the arsenic-containing water is placed in a container filled with the laterite soil, left standing for a certain period of time, and the supernatant is taken out and used as drinking water. In this method, the water and the laterite in the container may be stirred.
The ratio of laterite soil to water is 1 for laterite soil.
About 500 to 10000 parts by mass is preferable with respect to 00 parts by mass. Further, as the time for contacting the arsenic-containing water with the laterite soil, it is preferable to contact the arsenic contained in the water for a time sufficient to be adsorbed to the laterite soil,
It is preferable to contact them for about one day. This time can be further shortened by stirring.

【0021】また,容器の上部(もしくは下部)に水供
給口を設け,容器の下部(もしくは上部)に水排出口を
設けた容器にラテライト土壌を充填し,水供給口から砒
素含有水を供給し,容器の下部(もしくは上部)に設け
られた水排出口から水を取り出し,飲料用水として用い
る方法が挙げられる。この方法においては,砒素を含有
する水からの砒素の除去を連続的に行うことが可能であ
り,排水出口より出てきた水は直ちに飲料可能である。
Further, a container having a water supply port on the upper (or lower) side of the container and a water discharge port on the lower (or upper) side of the container is filled with laterite soil, and arsenic-containing water is supplied from the water supply port. Then, the water is taken out from the water discharge port provided at the lower part (or the upper part) of the container and used as drinking water. In this method, it is possible to continuously remove arsenic from water containing arsenic, and the water discharged from the drainage outlet can be immediately drinkable.

【0022】次に,本発明の飲料用水製造方法について
説明する。本発明の飲料用水製造方法は,砒素を含有す
る水をラテライト土壌と接触させることを特徴とする。
本発明の飲料用水製造方法において用いられるラテライ
ト土壌,接触方法,接触時間等については,上述した本
発明の砒素除去方法と同様である。
Next, the method for producing drinking water of the present invention will be described. The method for producing drinking water of the present invention is characterized in that water containing arsenic is brought into contact with laterite soil.
The laterite soil, contact method, contact time, etc. used in the method for producing drinking water of the present invention are the same as those of the arsenic removal method of the present invention described above.

【0023】次に,本発明の砒素除去装置について説明
する。本発明の砒素除去装置は,ラテライト土壌を容器
に充填したことを特徴とする。本発明の砒素除去装置に
おいて用いられる容器としては,ラテライト土壌を充填
できるものであれば特に制限なく使用できる。材質につ
いても特に制限なく,浄水器等に通常に用いるものが使
用可能である。
Next, the arsenic removing apparatus of the present invention will be described. The arsenic removing apparatus of the present invention is characterized in that a laterite soil is filled in a container. As the container used in the arsenic removal apparatus of the present invention, any container can be used without particular limitation as long as it can be filled with laterite soil. There are no particular restrictions on the material, and those normally used for water purifiers can be used.

【0024】容器としては,例えば上部に開口部がある
ものでよく,ラテライト土壌を上部に開口部がある容器
に充填し,砒素を含有する水を上記開口部から供給し,
一定時間静置又は攪拌した後,水を開口部から取り出す
ことにより,飲料用水として用いることができる。
The container may be, for example, one having an opening at the top, and laterite soil is filled in a container having an opening at the top, and water containing arsenic is supplied from the opening.
After standing or stirring for a certain period of time, water can be taken out from the opening to be used as drinking water.

【0025】また,筒状の容器の上下に孔を設け,上部
(もしくは下部)に設けられた孔(水供給口)から水を
供給し,容器の下部(もしくは上部)に設けられた孔
(水排出口)から水を取り出し,取り出した水を飲料用
水として用いることができる。このような容器を用いる
ことにより,砒素を含有する水からの砒素の除去を連続
的に行うことが可能である。このような容器の大きさと
しては,特に制限はないが,一般家庭において用いるこ
とができ,また運搬が容易な程度の大きさが好ましい。
通常には,直径が30cm以内で,長さが100cm以
上のものが好ましいが,直径が5cmであり,長さが5
0cm程度の小型ラテライト充填モジュールが適当であ
る。
Further, holes are provided at the top and bottom of the cylindrical container, and water is supplied from a hole (water supply port) provided at an upper part (or a lower part), and a hole provided at a lower part (or an upper part) of the container ( Water can be taken out from the water outlet) and the taken out water can be used as drinking water. By using such a container, it is possible to continuously remove arsenic from water containing arsenic. The size of such a container is not particularly limited, but it is preferable that it can be used in a general household and is easy to carry.
Usually, it is preferable that the diameter is within 30 cm and the length is 100 cm or more, but the diameter is 5 cm and the length is 5 cm.
A small laterite filling module on the order of 0 cm is suitable.

【0026】このような小型ラテライト土壌モジュール
(直径5cm,長さ50cm)の使用寿命は,平均的家
庭(4人家族,1日15リットル使用すると仮定)にお
いて約5年である。なお,本発明の砒素除去装置におい
て,容器に充填されているラテライト土壌としては,上
述の砒素除去方法において説明したものと同様のものが
用いられる。すなわち,150〜700℃の温度で熱処
理をしたものが好ましく,500℃の温度で熱処理した
ものが更に好ましい。また,平均粒子径が100μm以
下のものが好ましく,60μ以下のものが更に好まし
い。
The service life of such a small laterite soil module (diameter 5 cm, length 50 cm) is about 5 years in an average household (family of 4 people, assuming 15 liters a day). In the arsenic removal apparatus of the present invention, the laterite soil filled in the container is the same as that described in the above arsenic removal method. That is, the one heat-treated at a temperature of 150 to 700 ° C. is preferable, and the one heat-treated at a temperature of 500 ° C. is more preferable. The average particle size is preferably 100 μm or less, more preferably 60 μm or less.

【0027】以下,本発明を実施例により更に詳細に説
明する。なお,本発明の範囲は,かかる実施例に限定さ
れないことはいうまでもない。 実施例1 以下の実施例において用いられたラテライト土壌として
は,本邦でラテライトを産する東京都・小笠原諸島のラ
テライト土壌を使用した。ラテライト土壌を乳鉢で細か
くすりつぶした後,砒素水溶液(和光純薬工業(株)製:
砒素標準溶液(As2O3,100ppm,pH5.0))と96時間接
触させることにより吸着平衡へ至らせ,砒素の吸着平衡
を測定した。なお,水中の初期砒素濃度を0.04×1
-3〜2.3×10-2g/Lに調整した砒素水溶液50
mlに対し,ラテライト土壌を0.5g用いた。また,
本試験は25℃の温度の下で行い,平衡濃度はICP質
量分析器(セイコー電子(株)製:SPQ9000)を用
いて測定した。結果を図1に示す(実線は,実施例1の
ラングミュア等温線を示す)。
Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such embodiments. Example 1 As the laterite soil used in the following examples, the laterite soil of Tokyo and Ogasawara Islands, which produces laterite in Japan, was used. After grinding the laterite soil finely in a mortar, arsenic solution (Wako Pure Chemical Industries, Ltd .:
Adsorption equilibrium was reached by contacting with an arsenic standard solution (As 2 O 3 , 100 ppm, pH 5.0) for 96 hours, and the adsorption equilibrium of arsenic was measured. The initial arsenic concentration in water was 0.04 × 1
Aqueous arsenic solution 50 adjusted to 0 −3 to 2.3 × 10 −2 g / L
0.5 g of laterite soil was used per ml. Also,
This test was carried out at a temperature of 25 ° C., and the equilibrium concentration was measured using an ICP mass spectrometer (SPQ9000 manufactured by Seiko Denshi KK). The results are shown in FIG. 1 (the solid line shows the Langmuir isotherm of Example 1).

【0028】実施例2〜5 150℃(実施例2),300℃(実施例3),500
℃(実施例4)及び1000℃(実施例5)の温度で1
時間熱処理を行ったラテライトを用いた以外は,実施例
1と同様に操作を行った。結果を図1に示す(破線は,
実施例4におけるラングミュア等温線を示す)。なお,
熱処理は,ステンレス製ボート内へラテライトを仕込
み,窒素ガス12.0L/時間を導入しながら所定の温
度で1時間行った。熱処理前のラテライトは赤褐色であ
るが,300℃,500℃の温度で熱処理したものは,
それぞれ茶褐色,黒色に変色した。これは,ラテライト
に含まれるFe2O3がFe3O4に変化し,土壌中の有機物が炭
化したことが原因と考えられる。また,1000℃の温
度で熱処理したものは灰色に変色した。これは,炭素が
気化したため,白色であるAl2O3の色が表面に現れたた
めと考えられる。
Examples 2 to 5 150 ° C. (Example 2), 300 ° C. (Example 3), 500
1 at a temperature of ° C (Example 4) and 1000 ° C (Example 5)
The operation was performed in the same manner as in Example 1 except that the laterite subjected to the heat treatment for a period of time was used. The results are shown in Fig. 1 (the broken line is
The Langmuir isotherm in Example 4 is shown). In addition,
The heat treatment was performed by charging laterite into a stainless steel boat and introducing a nitrogen gas at 12.0 L / hour for 1 hour at a predetermined temperature. Before the heat treatment, the laterite is reddish brown, but the ones heat-treated at temperatures of 300 ℃ and 500 ℃ are
The color changed to brown and black respectively. This is probably because Fe 2 O 3 contained in the laterite changed to Fe 3 O 4 , and organic matter in soil was carbonized. Moreover, what was heat-treated at the temperature of 1000 degreeC turned into gray. This is probably because the color of white Al 2 O 3 appeared on the surface due to the vaporization of carbon.

【0029】実施例6 ラテライト土壌を63μmのふるいに通し,このふるい
を通過したラテライト土壌を用いた以外(すなわち,ラ
テライトの粒子径は63μ以下である)は,実施例1と
同様に操作を行った。結果を図1に示す。なお,ふるい
を通さないラテライトの粒径,最大1.23mmであっ
たがほとんどの粒子は100μm以下であった。
Example 6 The same operation as in Example 1 was carried out except that the laterite soil was passed through a 63 μm sieve and the laterite soil which passed through this sieve was used (that is, the particle size of the laterite is 63 μm or less). It was The results are shown in Fig. 1. The particle size of the laterite that did not pass through the sieve was 1.23 mm at maximum, but most particles were 100 μm or less.

【0030】図1は,実施例1〜6の結果を示すグラフ
である。図1において,横軸は,平衡時における水相中
の砒素濃度(g/L)を示し,縦軸は,使用したラテラ
イト土壌1gに対する砒素の吸着量を示す。図1に示す
ように,ラテライト土壌と砒素溶液とを接触させること
により,砒素を含有する水中から砒素を除去することが
でき,さらに砒素含有量をWHOの基準値以下に処理す
ることが可能であることがわかる。特に,熱処理(30
0℃及び500℃)をしたものについては,その効果は
更に顕著であった。また,粒子径を微細に(63μm以
下)にすることにより砒素の吸着性能が改善されること
がわかった。なお,結果を示していないが,砒素水溶液
とラテライト土壌とを接触させた場合,約5時間程度で
平衡状態に達した。
FIG. 1 is a graph showing the results of Examples 1-6. In FIG. 1, the horizontal axis represents the arsenic concentration (g / L) in the aqueous phase at equilibrium, and the vertical axis represents the amount of arsenic adsorbed on 1 g of the laterite soil used. As shown in FIG. 1, arsenic can be removed from the arsenic-containing water by bringing the laterite soil and the arsenic solution into contact with each other, and the arsenic content can be treated to be below the WHO standard value. I know there is. In particular, heat treatment (30
The effect was even more remarkable for the samples subjected to 0 ° C. and 500 ° C.). It was also found that the adsorption performance of arsenic was improved by making the particle size fine (63 μm or less). Although the results are not shown, the equilibrium state was reached in about 5 hours when the aqueous arsenic solution was contacted with the laterite soil.

【0031】[0031]

【発明の効果】以上詳述した通り,本発明の砒素除去方
法によれば,飲料用水等に砒素が含まれる場合に,水中
の砒素を低コストで除去することができる。また,本発
明の砒素除去装置は,低コストで作製することができ,
砒素除去効果に優れたものである。
As described in detail above, according to the arsenic removal method of the present invention, when arsenic is contained in drinking water or the like, arsenic in water can be removed at low cost. Further, the arsenic removal device of the present invention can be manufactured at low cost,
It has an excellent arsenic removal effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ラテライトによる砒素の吸着平衡実験の結果を
示すグラフである。
FIG. 1 is a graph showing the results of an arsenic adsorption equilibrium experiment with laterite.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D024 AA05 AB17 BA05 BB01 BC01 CA01 CA06 CA12 4G066 AA20B AA27B AA30B BA09 BA36 CA46 DA07 FA21 FA34 FA37    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D024 AA05 AB17 BA05 BB01 BC01                       CA01 CA06 CA12                 4G066 AA20B AA27B AA30B BA09                       BA36 CA46 DA07 FA21 FA34                       FA37

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】砒素を含有する水から砒素を除去する方法
であって,上記砒素を含有する水をラテライト土壌と接
触させることを特徴とする,砒素除去方法。
1. A method for removing arsenic from water containing arsenic, which comprises contacting the water containing arsenic with a laterite soil.
【請求項2】前記ラテライト土壌が,150〜700℃
の温度で熱処理されたものである,請求項1に記載の砒
素除去方法。
2. The laterite soil has a temperature of 150 to 700 ° C.
The arsenic removal method according to claim 1, wherein the arsenic is heat-treated at the temperature of.
【請求項3】前記ラテライトの平均粒子径が100μm
以下である,請求項1又は2に記載の砒素除去方法。
3. The average particle size of the laterite is 100 μm.
The arsenic removal method according to claim 1 or 2, which is as follows.
【請求項4】砒素を含有する水から砒素を除去して飲料
用水を製造する方法であって,上記砒素を含有する水を
ラテライト土壌と接触させることを特徴とする,飲料水
製造方法。
4. A method for producing drinking water by removing arsenic from water containing arsenic, which comprises contacting the water containing arsenic with a laterite soil.
【請求項5】前記ラテライト土壌が,150〜700℃
の温度で熱処理されたものである,請求項4に記載の砒
素除去方法。
5. The laterite soil has a temperature of 150 to 700 ° C.
The arsenic removal method according to claim 4, which is heat-treated at the temperature of.
【請求項6】前記ラテライトの平均粒子径が100μm
以下である,請求項4又は5に記載の砒素除去方法。
6. The average particle size of the laterite is 100 μm.
The arsenic removal method according to claim 4 or 5, which is as follows.
【請求項7】ラテライト土壌を容器に充填したことを特
徴とする,砒素除去装置。
7. An arsenic removing device, characterized in that a laterite soil is filled in a container.
【請求項8】前記ラテライト土壌が,150〜700℃
の温度で熱処理されたものである,請求項7に記載の砒
素除去装置。
8. The laterite soil has a temperature of 150 to 700 ° C.
The arsenic removal device according to claim 7, which has been heat-treated at the temperature of.
【請求項9】前記ラテライトの平均粒子径が100μm
以下である,請求項7又は8に記載の砒素除去装置。
9. The average particle size of the laterite is 100 μm.
The arsenic removal device according to claim 7, which is as follows.
【請求項10】世界各地に広く分布している入手容易な
ラテライト土壌を吸着剤として使用し,自然水中に含ま
れる砒素および砒素化合物を吸着させることを特徴とす
る水中の砒素除去による飲料用水を得る方法。
10. A potable water for removing arsenic in water, characterized by adsorbing arsenic and arsenic compounds contained in natural water by using an easily available laterite soil widely distributed in various parts of the world as an adsorbent. How to get.
【請求項11】世界各地に広く分布している入手容易な
ラテライト土壌を吸着剤として使用し,自然水中に含ま
れる砒素および砒素化合物を吸着除去させる際,該ラテ
ライトに対して熱処理(150〜700℃)を行うこと
により土壌を殺菌し,かつ該ラテライト粒子表面上のFe
2O3,Fe3O4,Fe3O5およびAl2O3の存在比を調節すること
による吸着性能を向上させることを特徴とする熱処理ラ
テライトを吸着剤として使用する方法。
11. A readily available laterite soil that is widely distributed throughout the world is used as an adsorbent, and when the arsenic and arsenic compounds contained in natural water are adsorbed and removed, the laterite is heat treated (150 to 700). ℃) to sterilize the soil and to remove Fe on the surface of the laterite particles.
A method for using heat-treated laterite as an adsorbent, which is characterized by improving adsorption performance by adjusting the abundance ratio of 2 O 3 , Fe 3 O 4 , Fe 3 O 5 and Al 2 O 3 .
【請求項12】世界各地に広く分布している入手容易な
ラテライト土壌を吸着剤として使用し,自然水中に含ま
れる砒素および砒素化合物を吸着除去させる際,該ラテ
ライトの土壌を微粒子化(平均粒子径60μm程度以
下)することにより吸着剤当たりの接触面積を増大させ
ることによって吸着性能を向上させることを特徴とする
ラテライトを微粒子化する方法。
12. Use of readily available laterite soil widely distributed throughout the world as an adsorbent to adsorb and remove arsenic and arsenic compounds contained in natural water, the laterite soil is made into fine particles (average particles). A method for atomizing laterite, which comprises improving the adsorption performance by increasing the contact area per adsorbent by making the diameter 60 μm or less).
【請求項13】世界各地に広く分布している入手容易な
ラテライト土壌を吸着剤として使用し,自然水中に含ま
れる砒素および砒素化合物を吸着除去させる際に使用す
る,簡易型モジュール除去装置。
13. A simple module removing device, which is used when adsorbing and removing arsenic and arsenic compounds contained in natural water by using readily available laterite soil widely distributed all over the world as an adsorbent.
JP2002265595A 2002-03-14 2002-09-11 Arsenic removal method, drinking water production method and arsenic removal apparatus Expired - Fee Related JP3858060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265595A JP3858060B2 (en) 2002-03-14 2002-09-11 Arsenic removal method, drinking water production method and arsenic removal apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002146939 2002-03-14
JP2002-146939 2002-03-14
JP2002265595A JP3858060B2 (en) 2002-03-14 2002-09-11 Arsenic removal method, drinking water production method and arsenic removal apparatus

Publications (2)

Publication Number Publication Date
JP2003334541A true JP2003334541A (en) 2003-11-25
JP3858060B2 JP3858060B2 (en) 2006-12-13

Family

ID=29714284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265595A Expired - Fee Related JP3858060B2 (en) 2002-03-14 2002-09-11 Arsenic removal method, drinking water production method and arsenic removal apparatus

Country Status (1)

Country Link
JP (1) JP3858060B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154766A2 (en) * 2007-06-20 2008-12-24 Bibus Ag Method of producing and recycling arsenic adsorbing materials from laterite
CN100593433C (en) * 2006-06-23 2010-03-10 中国科学院地理科学与资源研究所 Agent for removing fluorin, preparation method, and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593433C (en) * 2006-06-23 2010-03-10 中国科学院地理科学与资源研究所 Agent for removing fluorin, preparation method, and application
WO2008154766A2 (en) * 2007-06-20 2008-12-24 Bibus Ag Method of producing and recycling arsenic adsorbing materials from laterite
WO2008154766A3 (en) * 2007-06-20 2009-04-09 Bibus Ag Method of producing and recycling arsenic adsorbing materials from laterite

Also Published As

Publication number Publication date
JP3858060B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
Fazlzadeh et al. Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution
Yin et al. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands
Yang et al. Dewatered alum sludge: a potential adsorbent for phosphorus removal
Matilainen et al. Comparison of the effiency of aluminium and ferric sulphate in the removal of natural organic matter during drinking water treatment process
Hussain et al. Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies
CN104941583B (en) A kind of cadmium arsenic adsorbent material, Preparation method and use
SHI et al. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe (III) oxide
Dhoble et al. Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water
Siswoyo et al. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water
Driehaus et al. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water
Altundoğan et al. Arsenic removal from aqueous solutions by adsorption on red mud
Liu et al. Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings
Kalak et al. Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe (III) ions
Hema et al. Rhodamine B adsorption by activated carbon: Kinetic and equilibrium studies
Habineza et al. Heavy metal removal from wastewaters by agricultural waste low-cost adsorbents: Hindrances of adsorption technology to the large scale industrial application—A review
Aulenbach et al. Studies on the mechanism of phosphorus removal from treated wastewater by sand
CN108889266A (en) A kind of magnetism Mg-Al composite oxide and its preparation method and application
Ai et al. Single-component and competitive adsorption of tetracycline and Zn (ii) on an NH 4 Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: studies on the kinetics, isotherms, and mechanism
Sharma A guide to the economic removal of metals from aqueous solutions
Baigorria et al. Nanoclays as eco-friendly adsorbents of arsenic for water purification
Tian et al. Removal of Cr (VI) from aqueous solution using MCM-41
CN108975626A (en) A kind of landscape water treatment device with recovery of nitrogen and phosphorus effect
JP2003334541A (en) Method for removing arsenic, method for producing drinking water, and apparatus for removing arsenic
US20210370205A1 (en) Removal of water contaminants using enhanced ceramic filtration materials
Lin et al. Adsorption kinetics and equilibrium of arsenic onto an iron-based adsorbent and an ion exchange resin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040122

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050909

A975 Report on accelerated examination

Effective date: 20060118

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060609

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090929

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090929

LAPS Cancellation because of no payment of annual fees